FIGURES

Figure 1 — Income and Land Value Gradients

Notes: The above graphs are local polynomial smooths of income on distance to the city centre. We use a Gaussian kernel.

Figure 2 — Amenity and Commuting Cost Gradients

Notes: The above graphs are local polynomial smooths of amenities and expected commuting costs on distance to the city centre. We use a Gaussian kernel.
Figure 3 — Sorting and locational quality
Notes: In the above figures we plot the predicted assigned wages as given by the results in column (5) in Table 2 and columns (3) and (7) in Table 3. We then consider two alternative cases as described in Section 7.4.
APPENDIX FIGURES

Figure A.1 — Income and land value gradients

Notes: The above graphs are local polynomial smooths of income on distance to the city centre. We use a Gaussian kernel.

Figure A.2 — Incomes

Notes: The above graph reports smoothed values using a Nadaraya-Watson kernel regression. We use a Gaussian kernel and a bandwidth equal to 1.
Notes: The above graph reports smoothed values using a Nadaraya-Watson kernel regression. We use a Gaussian kernel and a bandwidth equal to 1.

Notes: We set the decay parameter equal to 2.5. The above graph reports smoothed values using a Nadaraya-Watson kernel regression. We use a Gaussian kernel and a bandwidth equal to 1.
Notes: We set the decay parameter equal to 1. The above graph reports smoothed values using a Nadaraya-Watson kernel regression. We use a Gaussian kernel and a bandwidth equal to 1.

Figure A.5 — Expected commuting time

Figure C.1 — Travel time and Euclidian distance
Figure C.2 — Land use in 1900

Figure C.3 — Historic city plans
Figure C.4 — Amenities and commuting time in counterfactual scenarios

(a) Ordinary least squares
(b) 2SLS with 1900 land use instruments
(c) 2SLS with historic city plan instruments