
Green Technology Adoption and the Business
Cycle

Jean-Marc Bourgeon and Margot Hovsepian*

April 13, 2017

Abstract
We analyze the adoption of green technology in a dynamic econ-

omy affected by random shocks where demand spillovers are the main
driver of technological improvements. Firms’ beliefs and consumers’
anticipations drive the path of the economy. We derive the optimal
policy of investment subsidy and the expected time and likelihood of
reaching a targeted level of environmental quality under economic un-
certainty. This allows us to estimate the value that should be given to
the environment in order to avoid an environmental catastrophe as a
function of the strength of spillover effects.
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“I believe that ultimately the electric motor will be universally used for trucking in all

large cities, and that the electric automobile will be the family carriage of the future. All

trucking must come to electricity. I am convinced that it will not be long before all the

trucking in New York City will be electric.”

Thomas Edison, Automobile Topics, May 1914.

1 Introduction

The increasing number of environmental issues that the world is facing has
triggered a wide debate on how to switch toward sustainable development
paths. Adoption of green technologies (AGT) is one amongst the main chan-
nels through which countries will be able to avoid environmental disasters
without harming too much their well-being. However, in addition to the
high level of uncertainty attending most environmental issues, adopting new,
cleaner technologies is risky for firms. At first, they incur a switching cost:
green technologies are often more expensive, less productive, the workforce
may not have the skills to operate the new technology, etc. Moreover, in
the long run, investment choices may reveal to be inefficient, harming the
firms’ profitability. Hence, even if a technology is available (at the turn of
the 20th century, 38% of american automobiles were powered by electricity)
and is endorsed by a preeminent inventor and businessman like Thomas Edi-
son, that does not guarantee that it is the best choice to be made. Both
Network externalities and technological spillovers play an important role in
determining what is the optimal technology that firms must adopt.1 Public
policies may be designed to help firms to overcome this risk and to invest in
green technologies, but the extent of this investment effort also depends on
the prevailing economic environment. If the economy is facing a recession,
available funds may be scarce, leading firms to postpone investment projects.
We may thus expect that the path toward environmental sustainability to
be stochastically affected by the same economic shocks that generate the
business cycle.

1Consider for example that a firm decides to replace its fleet of fuel vehicles by electric
ones (EV). If many firms expect EV to be used nationwide in the near future and decide
to do the same, it is likely that the network of EV charging stations spreads broadly and
using EV may become very convenient and cheap. If instead the rest of the economy turns
to hydrogen vehicles, then the few firms that have chosen EV may end-up being penalized.
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In this paper, we analyze this problem using a simple AGT model, focus-
ing on an environmental policy that takes the form of subsidizing investment
in green technologies. We determine the relationship between the volatility
in the adoption path of technology and the value that should be given to
the environmental quality (EQ) in order to avoid an environmental disaster.
We consider a setting where industrial production continuously harms the
environment, which has an intrinsic ability to partly regenerate and recover
from past damages as long as EQ has not dropped below a tipping point.
By investing in less-polluting technologies, firms contribute to lowering their
impact on the environment. Firms’ profit depends on their past and present
investment choices that are subsumed in a “technology mix” index, a param-
eter that measures the pollution intensity of their production process. A key
feature of our framework is that a firm equipped at a given date with the
optimal production process does not means that its machines are the most
recent one or the most efficient or innovative. Instead, the profitability of
the various production processes depends also on the skills of the workforce
that use the technology and the availability of the inputs and maintenance
services required by the technology.2 The more a technology is used, the
better the diffusion of knowledge and the networks of related services, im-
plying that the “optimal technology mix” depends on the investment choices
made by all firms. Each period, firms devote a certain amount of resources to
conform their technology to the most efficient one. To decide on their invest-
ment, they form expectations based on private and public information that
they aggregate in a Bayesian way. Firms may thus undershoot or overshoot
the optimal technology index.3 The imperfect assessment firms have about
their future economic environment result in an industrial sector composed of
firms with heterogeneous technological processes. This explains why along
any equilibrium path different technologies coexist at the same time, some
more largely adopted than others.

Because markets do not reflect the environmental footprint of the econ-

2Firms using old and backward machines loose profit opportunities because their pro-
ductivity is low. But on the other hand, too advanced machines can be detrimental as
well. They could require high skilled workforce to operate them, material employed may
be difficult and costly to acquire, and they may involve large maintenance costs.

3The literature on global games and information aggregation (see, e.g. Morris & Shin,
2002, Angeletos & Werning, 2006) also considers agents whose payoffs from their invest-
ments are interdependent (i.e., they have a coordination motive) and have imperfect in-
formation an economic fundamentals.
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omy, the social planner designs a policy that redirects the firms’ technology
indexes toward greener mixes. The policy implemented by the social planner
internalizes the marginal benefit of AGT and thus of a better EQ on social
welfare. However, since business cycles and uncertainty affecting AGT make
the path of the economy stochastic, the economy may at some point hit or
even pass the tipping point while transiting toward a desired long-term value.
A sustainable path thus corresponds to an appropriate valuation of EQ, a
“social cost of carbon” (SCC) that offers a safety cushion to society: it must
be such that, at a given confidence level, the environmental catastrophe is
avoided.

Our model allows us to estimate confidence intervals for the realized paths
of AGT and EQ indexes. We can therefore assess the risk of failure of the
environmental policy (because of the occurrence of an environmental disaster)
under various ranges of parameters. It also allows us to estimate the value of
EQ that ensures that an environmental disaster is avoided with at a certain
level of confidence. We illustrate these results with a simple quantitative
example. Our numerical simulations show a positive relationship between
the strength of demand spillovers and this minimum SCC value. The more
spillover effects are at work, the more incentives should be given to direct
firms’ choices toward a sustainable (carbon neutral) path, but also the fastest
this aim is reached under the optimal policy.

Our model is related to the large literature on growth and sustainability.
In the few integrated assessment models encompassing economic risk such as
Golosov et al. (2014) or Traeger (2015), the optimal policy is derived given
an exogenous marginal rate of substitution between consumption and envi-
ronment. Moreover, there is no absorbing lower bound in the dynamics of the
environmental quality and even though there is a risk that the environmental
policy is not optimal given the realized shocks, there will be no irreversible
consequences. Our model instead gives us a simple tool to derive the carbon
price such that given the optimal green technology subsidy, EQ avoids hitting
a tipping point with a large enough probability.

Most of the literature on sustainable growth focuses on environmental un-
certainty, that is, uncertainty on the frequency of catastrophic environmental
events, on the size of the damage, or on the ability of the environment to
recover from pollution (see, e.g. Tsur & Zemel, 1998, or De Zeeuw & Zemel,
2012, for analysis without AGT, and Bretschger & Vinogradova, 2014, and
Soretz, 2007, for studies on the sharing of investment between productive cap-
ital and abatement measures in a AK setting.) Instead, we focus on shocks
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that affect the economy (like changes in international prices, demands shocks,
etc.) and generate the so-called business cycle. The few papers that describe
the responsiveness of optimal abatement policy to business cycles (Jensen &
Traeger, 2014), or assess the optimal policy instrument in stochastic envi-
ronments (Heutel, 2012; Fischer & Heutel, 2013) do not consider AGT.

The literature displaying endogenous green growth focuses on produc-
tivity improvements and frontier innovation. This is the case in the AK
paradigm where capital-knowledge accumulates with learning by doing (Stockey,
1998), in Lucas-like extensions (Bovenberg & Smulders, 1995), in a product
variety framework (Gerlagh & Kuik, 2007) or in the Schumpetarian growth
paradigm of destructive creation and directed technical changes (Acemoglu
et al., 2012), where new innovations are adopted by markets as soon as
they are invented. While frontier innovation is needed to make green tech-
nologies competitive compared to ‘brown’ ones, our focus is on adoption of
existing technologies that operates through spillover effects causing a grad-
ual replacement of the stock of old and polluting machines by greener ones.
Our approach is close to the literature on endogenous growth viewed as a
process of adoption of existing ideas and mutual imitation between firms, as
exposed by Eaton & Kortum (1999); Lucas Jr & Moll (2014); Lucas (2009);
Perla & Tonetti (2014). In these papers, it is assumed that each agent in
the economy is endowed with a certain amount of knowledge (“ideas”) and
this knowledge evolves through contact with the rest of the population. We
adopt a similar approach to describe AGT: while there is no explicit R&D
sector in our model, there is a pool of existing technologies with potentials
that are more or less exploited depending on the proportion of firms that
use them. The distribution of technology used among firms shifts over time
according to the firms’ incentives to adopt new techniques.

The remaining of the paper is organized as follows: In section 2, we
describe the economy and the dynamics of its main variables. In section 3, we
derive the optimal policy of investment subsidy that should be implemented
by a social planner. In section 4, we derive the economic forecasts allowed by
our model. Section 5 is devoted to numerical simulations. The last section
concludes.
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2 Green technology dynamics

The economy is composed of a continuum of firms, of total mass equal to
one, that collectively produce at date t an amount qt of output, taken as the
numeraire, which corresponds to the GDP of the economy. In the following,
we abstract from the problem of production per se (in particular, the demand
and supply of labor) to focus on the cleanliness of the production processes,
i.e. the extent to which firms harm the environment while producing. We
take an agnostic stance on the relative productivity of ‘brown’ and ‘green’
technologies by supposing that the GDP follows the same dynamic whatever
the economy’s technological mix of productive capital and more specifically
that it is given by the following first-order autoregressive dynamic

qt = gqt−1 + ĝ + κt, (1)

with g ≥ 0, ĝ ≥ 0 and where κt corresponds to exogenous shocks that
affect the economy at date t and is the realization of random variable κ̃t ∼
N (0, σ2

κ).
4 We assume that g < 1, which implies that the per period expected

increase in GDP, ĝ − (1 − g)qt−1, diminishes over time and converges to
qS = ĝ/(1− g).5 The production processes used by firms are diverse, and in
the following we suppose that the adequation of firm i’s industrial production
process to its economic environment at date t is captured by a real valued
parameter xit dubbed ‘technology mix’ or ‘green technology’ index, which on
average leads to an AGT index of the industrial sector given by µt ≡

´
xitdi.

The mix level xit allows firm i to earn the date-t profit

π(xit, Iit;x
?
t ) = Π(x?t )− (xit − x?t )2/2− Iit (2)

where x?t corresponds to the technology mix that is the most efficient at time
t, leading to profit level Π(x?t ), (xit−x?t )2/2 the firm’s relative profit loss due
to a less effective mix, and Iit the investment level that allows it to modify
its technology mix according to

xit+1 = xit + Iit. (3)

4Throughout the paper, a random variable is topped with tilde symbol (˜) to distinguish
it from its possible values.

5The case g > 1 corresponds to a steady growth in economic wealth. Sustainable states
in that case are not stationary: the economy should instead follow a sustainable balanced
path.
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A technology mix different from the optimal one is costly because of the
specific knowledge and skills required to operate and maintain technologies
that are not widely used or the relative scarcity of inputs employed. Firms
would ideally being equipped with this most efficient technology mix, but this
mix evolves with the diffusion of knowledge and the know-how of workers (the
so-called knowledge spillover: the more firms invest, the better the workers’
knowledge of new technologies in general), network externality (the easiness
to find specific inputs and parts to service the technology) and the engineering
and research effort exerted by the machine industry firms that compete to
satisfy the demand for means of production in the economy. To grasp these
various effects in a parsimonious way, it is assumed that the dynamic of the
optimal technology mix is given by

x?t+1 = µt + λ

ˆ
Iitdi, (4)

where parameter λ ∈ [0, 1) captures the machine demand spillover. Using
(3) to obtain

´
Iitdi = µt+1 − µt, we get from (4) that

x?t+1 = λµt+1 + (1− λ)µt. (5)

Observe that even if investment in green technology was positive in pe-
riod t (µt+1 > µt), the expected next period ideal mix is lower than the
corresponding average mix µt+1. As shown below, demand spillovers embod-
ied in (4) are not sufficient to spur investment in green technology under
laissez-faire.

Investment Iit allows firm i to adapt its technology to the economic en-
vironment that will prevail the next period by buying new equipment or, for
large investment, by replacing an entire production line. The firm chooses
this investment level according to its beliefs on the future values of the op-
timal technology parameter. As firms make their investment decisions si-
multaneously each period, they must somehow anticipate the extent of the
resulting total investment. This leads to an intertemporal coordination prob-
lem that is formalized as a succession of global games taking place each pe-
riod: firms form their anticipations on the efficient technology mix thanks
to a public and firms’ private (idiosyncratic) signals, ω̃t = x?t+1 + η̃t, and
w̃it = x?t+1 + ε̃it respectively, where η̃t and ε̃it are independently and normally
distributed noises with zero mean and precision τη = σ−2η and τε = σ−2ε ver-
ifying E[ε̃itε̃jt] = 0 for all i, j and

´
ε̃itdi = 0. These signals allow firms to
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(imperfectly) coordinate their investment levels each period although their
decisions are taken independently (in particular, investment plans are not
best-reply functions). This dynamic global game setup is solved sequen-
tially: our focus is on Markov perfect equilibria where x?t is a state variable
that firms must anticipate each period to decide on their investment levels.
More specifically, Bayesian updating implies that firm i’s posterior beliefs
about x?t+1 given its signals are normally distributed with mean

x̂it+1 ≡ E
[
x̃?t+1|ωt, wit

]
=
τηωt + τεwit
τη + τε

= x?t+1 + τηt + (1− τ)εit, (6)

where τ = τη/(τη + τε) is the relative precision of the public signal, and
variance

σ̂2
it = (τη + τε)

−1, (7)

for all i and t. The firm chooses its investment plan to maximize the dis-
counted sum of per period profit (2), which is equivalent to minimizing the
sum of expected intertemporal loss of profit compared with the optimal mix.
Applying the principle of optimality, the firm’s optimal investment plan is
derived by using the Bellman equation which at date t is given by

V(xit;x
?
t ) = min

Iit
(xit − x?t )2/2 + Iit + δtEt[V(xit + Iit;x

?
t+1)|ωt, wit] (8)

where δt is the discount factor corresponding to interest rate rt, i.e. δt =
(1 + rt)

−1. It is shown in the appendix that

Lemma 1 Firm i’s equilibrium investment at time t is given by

Iit = x̂it+1 − xit − rt. (9)

The firms’ technology levels at t+ 1 are normally distributed with mean

µt+1 = µt −
rt − τηt
1− λ

(10)

corresponding to the date-t+ 1 AGT level of the economy, and variance

σ2
x ≡ (1− τ)2 σ2

ε .

According to (9), firms’ investment strategy is to adapt their produc-
tion process to their estimate of the most efficient technology diminished by
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the price of capital rt, which leads firms to disinvest. For firms with a low
technology level, this strategy corresponds to buying more environmentally
friendly equipments. For the others, their investment is directed in the oppo-
site direction: because they have technologies more environmentally efficient
than required next period according to their estimate of x?t+1, they can save
on new equipment spending by buying less expensive ‘brown’ technologies.
On average, this heterogeneity in investment policies should somehow be
cancelled out, but while this is true for idiosyncratic noises, the public signal
ηt distorts firms choices in the same direction to an extent that depends on
its reliability τ : the better the reliability, the larger the distortion. These
distortions modify stochastically the dynamic of the AGT index as given by
(10), which otherwise decreases with the cost of capital rt. The coordination
problem that affects firms’ investment choices translates in the dynamic of
the AGT index (10) through a ‘magnifying’ factor (1 − λ)−1: the larger λ,
the larger the effects of the public signal and of the cost of capital rt. As
E[µt+1] = µt − rt/(1 − λ), the larger λ, the lower the AGT index. Indeed,
as indicated by (5), the ideal technology mix in that case is close to the
next period AGT index when λ is close to 1. As investment is costly, each
firm anticipates that other firms investments will be low, which leads to an
equilibrium that tends to the lower bound of the AGT index.

Due to the idiosyncratic shocks, firms have different expectations on the
optimal mix level. These discrepancies lead to a Gaussian distribution of
firms’ green indexes around the AGT level with a dispersion that is larger
the better the relative precision of the idiosyncratic shocks 1− τ . Hence, the
industrial sector can be thought of as a ‘cloud’ of firms with a technology
level that is drawn each period from a normal distribution centered on the
AGT index µt with standard deviation σx.

To counteract the negative effect of the interest rate on green investment,
we assume in the following that the government implements at date t0 a
subsidy policy plan {zt}t≥t0 leading to a per period investment cost rt − zt.
The dynamic of the AGT index (10) then becomes

µt+1 = µt +
zt − rt + τηt

1− λ
(11)

and this dynamic is positive in expectation if zt > rt, i.e. if the net cost of
capital is negative.

9



The environment

Production generates pollution which harms the environment, but this detri-
mental effect can be reduced if firms improve their technology parameter.
This mechanism is embodied in the following dynamic of the EQ index

et+1 = θet + ê− ιtqt (12)

where θ < 1, ê ≥ 0 and where ιt is the emission intensity of the technology
mix at date t which measures the damage to the environment coming from the
human activities per unit of GDP. ê is the per period maximum regeneration
capacity of the environment, the actual regeneration level reached at period t
being ê−(1−θ)et−1, which depends (positively) on the environmental inertia
rate θ. Without human interferences (ιt = 0), the EQ index is at its pristine
level eN = ê/(1− θ). Emission intensity is related to the AGT index by

ιt = ϕ− ξµt/qt (13)

where ϕ is the maximum emission intensity and ξ >
√

(1− θ)ϕ so that green
technologies are sufficiently effective. Substituting for ιt in (12), we obtain a
dynamic of the EQ index that follows the linear first-order recursive equation

et+1 = θet + ξµt − ϕqt + ê. (14)

We suppose that ϕqS > ê, implying that without AGT, the environment
will collapse once production is sufficiently large and will eventually reach
the “tipping point” ē that should not be passed permanently: if pollution is
too large too often, the resilience of the environment is at stake, i.e. abrupt
shifts in ecosystems may happen with dire and irreversible consequences for
society. On the other hand,

Definition 1 (Carbon Neutral Path) The economy has reached at date
T a Carbon Neutral Path (CNP) if for all t ≥ T , E[ι̃t] = 0.

Therefore, a CNP is a sustainable situation in which the emission inten-
sity of the economy is null in expectation. The AGT subsidy that is required
once the economy as reached a CNP should allow for µt to stay at ϕqt/ξ in ex-
pectations. CNPs are of most interest because we consider green technologies
aiming at reducing emissions (i.e. they do not allow for direct improvement
of EQ) and thus carbon neutrality is the best society can hope for to improve
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the environment. Along a CNP, thanks to the natural regeneration capacity
of the environment, the average EQ increases and tends toward its pristine
level eN .

However, reaching a CNP may prove to be too demanding and society may
end up stabilizing around an expected EQ level eT < eN . This sustainable
situation corresponds to the (weaker) notion of stable environment path:

Definition 2 (Stable Environment Path) The economy has reached at
date T a Stable Environment Path (SEP) at level eS if for all t ≥ T , E[ι̃tq̃t] =
(1− θ)(eN − eS).

Under an SEP, technological improvements must fill the gap between the
environmental damages due to economic growth and the regenerative ca-
pacity of the environment to maintain EQ at the desired level over time.
Compared to its CNP levels, the expected AGT index is lower by a constant
proportional to the difference between the pristine level of EQ eN and the
stabilized level eS : (1− θ)(eN − eS) correspond to the per-period loss of EQ
compared to the pristine level that society does not compensate. Neverthe-
less, to stay at EQ level eS, the AGT index has to increase at the same pace
as the emissions coming from aggregate production.

Consumers

Although EQ has an impact on consumers’ welfare, we suppose that they
do not try to modify the environment through their consumption and sav-
ing plans. This could be the case because they consider that they are too
numerous for their individual behavior to have a significant impact on the
environmental path.6 Accordingly, we model their behavior by considering
a representative consumer who maximizes at each date t her intertemporal
utility arbitraging between consumption and savings every periods so that
her saving and consumption plans solve

maxEt

{
+∞∑
τ=t

βτ−tu(c̃τ , ẽτ ) : c̃τ = R̃τ + r̃τ−1S̃τ−1 − s̃τ , s̃τ = S̃τ − S̃τ−1

}
where ct and Rt are her date-t consumption and revenue, St−1 her savings
from the previous period, rt−1St−1 the corresponding date-t capital earnings,

6The environmental quality being a public good, this reasoning is grounded by the
standard free rider argument that results in the underprovision of public goods.

11



st the savings adjustment of period t, and β the psychological discount fac-
tor. At each date t, the Bellman equation corresponding to the consumer’s
problem can be written as

v(St−1; et) = max
st

u(rt−1St−1 +Rt − st, et) + βEtv(St−1 + st; ẽt+1)

where St and st are the state and the control variables respectively. The
first-order equation is given by

∂u(ct, et)

∂c
= βEt

[
∂v(St; ẽt+1)

∂S

]
(15)

and the envelope theorem gives

∂v(St−1; et)

∂S
= rt−1

∂u(ct, et)

∂c
+ βEt

[
∂v(St; ẽt+1)

∂S

]
.

Replacing the last term using (15), we get

∂v(St−1; et)

∂S
= (1 + rt−1)

∂u(ct, et)

∂c
.

Taking the expectation and replacing in (15) yields

∂u(ct, et)

∂c
= (1 + rt)βEt

[
∂u(c̃t+1, ẽt+1)

∂c

]
(16)

where 1+rt on the RHS is factorized out of the expected value since the date-
t interest rate is a known parameter. Expectation is taken over all possible
date-t+1 consumption/net-production levels that depend on the consumer’s
expectation about the firms’ investment decisions at that date. Equation
(16) corresponds to the supply function of capital, while (11) is the demand
side coming from firms. At the date-t equilibrium on the capital market, the
interest rates embodied in (16) and (11) are equal. Moreover, at the good
market equilibrium, aggregate production net of investment must be equal
to total consumption, i.e.7

ct = qt −
ˆ
Iitdi = qt − µt+1 + µt. (17)

7Observe that the firm’s relative loss (xit−x?t )2/2 does not appear in (17). Indeed, this
cost corresponds to supplementary expenses like payroll outlays, external services, etc.,
that are revenues for the other agents in the economy.
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Together, these two conditions allow us to determine the global equilib-
rium that the economy reaches each period.

This is done in the following by assuming that the representative con-
sumer forms rational expectations over the future states of the economy and,
whenever it is necessary to complete the analysis, that her preferences are
CARA and that consumption and environmental quality can be subsumed in
a ‘global wealth index’ denoted yt ≡ ct + ρ̂et. Here, ρ̂ is the implicit price of
the environment, assumed to be the same whatever the GDP of the economy.8

Under these assumptions, we have u(ct, et) = −e−γyt where γ corresponds to
the coefficient of absolute risk aversion. Assuming that the global wealth
index yt+1 is normally distributed (which is the case at equilibrium), we get
from (16) using E[e−γỹ] = e−γ(E[ỹ]−γV[ỹ]/2), β = e−ψ where ψ is the intrinsic
discount factor, and 1 + rt ≈ ert , a supply function of capital satisfying9

rt = ψ + γ(Et[ỹt+1]− yt)− γ2Vt[ỹt+1]/2 (18)

which exhibits the familiar effects that determine the rental price of capital:
the intrinsic preference for an immediate consumption ψ, the economic trend
of the global wealth index that also encourages immediate consumption if
it is positive, and as revealed by the last term, a precautionary effect that
operates in the opposite direction and corresponds to a risk premium due to
the uncertainty affecting the economy. Under these assumptions, it is possible
to derive the Rational Expectation Equilibrium (REE) of this economy at
each period anticipating the environmental policy that will be implemented
by the government {zt+h}h≥0. More specifically, it is shown in the appendix
that

Lemma 2 Under an REE with preferences over global wealth and CARA
utility, the dynamic of the technological parameter can be approximated by

µt+1 = a1µt + a2et + a3qt + a4 + a5τηt + Zt (19)

8The marginal rate of substitution between economic wealth and the environment is
thus constant in that case. It is a reasonable approximation as long as g < 1 (i.e. wealth
is bounded by qS) and the environment has not incurred dramatic changes (et is above ē).
Assuming steady growth (g > 1), as the environmental quality is bounded upward, this
price should increase at the same pace as GDP along the balanced growth path: ρt = gtρ0.

9While (18) is derived using the approximation 1+rt ≈ ert , it should be noted that the
discrepancy between the exact formulae for the interest rate and (18) is only an artifact
of the discrete time setup: the shorter the time period, the better the approximation.
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where

Zt = a5

+∞∑
i=0

(γa5)
i zt+i, (20)

and the distribution of the wealth index ỹt+1 by a normal distribution with
variance

σ2
y ≡ Vt[ỹt+1] = (1− a3)2σ2

κ + a25τ
2σ2

η. (21)

The coefficient a1 is given by

a1 = 1−
√

[1− θ + (1− λ)/γ]2 + 4ρ̂ξ − [1− θ + (1− λ)/γ]

2
, (22)

and the other coefficients are deduced from

a2 =
(1− a1)(1− θ)

ξ
, a3 =

γ[1− g + ϕ(ρ̂− a2)]
1− λ+ γ(2− a1 − g)

,

a4 = −γ[ê(ρ̂− a2) + ĝ(1− a3)] + rS
1− λ+ γ(1− a1)

, (23)

a5 = 1/[1− λ+ γ(2− a1)],

with rS ≡ ψ − γ2σ2
y/2. Moreover, we have a1 < 1 and a1 > 0 if 2 + (1 −

λ)/γ − θ > ρ̂ξ, 0 < a2 < ρ̂, a3 > 0, 0 < a5 < 1/γ and a4 < 0 whenever
rS ≥ 0, da1/dλ < 0, da2/dλ > 0, da3/dλ > 0 and da5/dλ > 0.

The equilibrium dynamic of the AGT index follows a linear first-order
recursive equation of the state variables (µt, et, qt) and of a forward looking
term Zt given by (20) that accounts for the anticipated effects of the environ-
mental policy. This policy index is an exponential smoothing of the policy
measures to come. This dynamic is thus consistent only if the policy plan is
known.10 Assuming that ρ̂ is not too large, all coefficients are positive except
the constant a4 which is negative (rS ≥ 0 is a sufficient condition only for

10As detailed in the following section, the optimal policy supposes a constant revision
of the schedule {zt+h}h>0 at each date t to account for the shocks that have affected the
economy. That the original policy plan is likely to evolve should be anticipated by the
consumers. We suppose however that the consumers consider Zt as a weighted sum of the
policy scheme as announced by the regulator at date t rather than the weighted sum of
random variables. This is not a too strong assumption since these weights are decreasing
exponentially.
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a4 to be negative).11 Hence, one may thus expect that under laissez-faire,
even if the AGT and EQ indexes have reached very low levels, the increase
in the GDP could reverse a negative trend: this is indeed the case when
qt > −a4/a3 (assuming that a catastrophe is avoided). As expected, the
stronger the spillover effects captured by λ, the less the dynamic of the AGT
index is dependent on its previous value and the more it is on the GDP and
the economic shocks. But as a5 determines the exponential smoothing coef-
ficient of Zt, the dynamic is also more reactive to the public policy when λ
is large.

Because of the linearity of (19), the AGT index µ̃t+2 as estimated at
date t is Gaussian (while the date-t realizations of the shocks are known,
µ̃t+2 depends on the next period shocks κ̃t+1 and η̃t+1). From (17), c̃t+1 is
thus normally distributed, resulting in global wealth index ỹt+1 which is also
Gaussian with variance given by (21). Knowing {zt+h}h≥0, it is possible to
infer statistically the state of the economy at horizon h from an initial state
at date t by applying recursively (19) together with (1), (14), thanks to the
normal distribution of the random shocks.

Using (11) or (18) and (19), it is possible at the beginning of each period
to specify the distributions of the equilibrium interest rate that will prevail
at that date and of the next period wealth index. More precisely, we have

Lemma 3 Under an REE with preferences over global wealth and CARA
utility, before the current period shock and signals are known, the current
interest rate and the next period wealth index are normally distributed. Their
variances are given by

σ2
r = (1− λ)2a23σ

2
κ + [1− (1− λ)a5]

2τ 2σ2
η (24)

and

σ2
y+1

= σ2
y + [(1− a3)g + (1− a1)a3 + (a2 − ρ̂)ϕ]2σ2

κ + [(1− a1)a5τση]2

respectively.

Observe that the variance of the interest rate is different from γ2σ2
y. This

is due to the fact that the two bracketed terms in (18) are correlated random

11If ρ̂ is very large, coefficient a1 is negative which generates oscillations is the AGT
dynamic (19). We suppose that it is not the case and thus that fluctuations in the AGT
index are only the consequences of the shocks affecting the economy.
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variables when the current shocks are unknown: the expectation of ỹt+1

without knowing the realization of ỹt is a random variable.12 Similarly, the
variance of the next period wealth index differs form σ2

y by terms accounting
for the correlation between ỹt+1 and ỹt.

3 Environmental policy

We consider a benevolent social planner who decides on a policy that modifies
the dynamics of the AGT level (11) through setting zt for all t ≥ t0 where
t0 is the first period the policy is designed and implemented. The aim of the
policy is to correct for the fact that the social value of the environment is
not reflected in the interest rate that prevails at equilibrium on the capital
market.

Preliminary to specifying the social planer’s problem, the question of the
social value of the environment should be discussed. At the citizen level, the
marginal rate of substitution between environment and consumption allows
individuals to link the EQ with the damages they encounter from climate
change (or any other kind of pollution effects).13 Hence, from a social view-
point, it seems that these evaluations are the relevant values that should
guide the social planner in defining the optimal policy. However, these eval-
uations are likely to be underestimations of the actual contribution of EQ
to global welfare. Indeed, a measure of the social value of EQ should en-
compass all the services provided by the environment and in particular, the
fact that pass the tipping point ē, the welfare consequences of environmental
degradation are dire and irreversible. Since there is always a non-zero proba-
bility that the actual environmental path hits ē under the optimal policy, the
policy must ensure that an environmental disaster is avoided with at least a
certain level of confidence, i.e. that Pr{ẽt ≤ ē} ≤ α for all t ≥ t0, where α

12Indeed, denoting Et−1[ỹt+1|ỹt] = m(ỹt), it comes from (18) that

r̃t − Et−1[r̃t] = γ{m(ỹt)− Et−1[m(ỹt)]− (ỹt − Et−1[ỹt])},

which gives
σ2
r = γ2(σ2

y + σ2
y+1

)− 2γcov(m(ỹt), ỹt).

13This gives a monetary measure of disutility that may come from a direct impact on
welfare, due for example to frequent extreme weather events, or a more indirect one, due
to private awareness and concern for environmental issues.
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corresponds to the confidence level. The social planner’s program must thus
solve14

maxEt0

{
+∞∑
t=t0

βt−t0u(c̃t, ẽt) : E[ι̃t] ≥ 0,Pr{ẽt ≤ ē} ≤ α

}
(25)

where the first constraint corresponds to the CNP constraint (emission in-
tensity cannot be negative) and the second to the environmental safety con-
straint. If the individual valuation of EQ is very low, it could be the case that
the latter constraint is binding at some date T and that the economy follows
an SEP afterward at expected level eS > ē, the edge depending on α. Or, for
larger individual valuations of EQ, that this constraint is only temporarily
binding while the economy is on its way toward a CNP.

The dynamic of the economy is affected by the public policy in the fol-
lowing way. From (11), the path of the AGT index evolves stochastically
according to15

µ̃t+1 = µt +
zt − r̃t + τ η̃

1− λ
. (26)

In addition to modifying directly the AGT path, the policy also indirectly
affects the equilibrium on the good market since we have, from (26) and (17),

c̃t = qt −
zt − r̃t + τ η̃

1− λ
. (27)

Finally, as we suppose that the social planner does not intervene directly
on the capital market, the interest rate at equilibrium must satisfy the Euler
equation

E
[
∂u(c̃t, et)

∂c

]
= βE

[
(1 + r̃t)

∂u(c̃t+1, ẽt+1)

∂c

]
(28)

14Alternatively, we may consider a state dependent utility approach (see, e.g., Karni,
1983). Assuming that pass threshold ē the utility is null (because human beings are wiped
out), the public objective becomes

maxEt0

{
+∞∑
t=t0

βt−t0 Pr{et > ē}u(ct, et) : µt ≤ ϕqt

}
.

In addition to be much simpler to solve, program (25) does not need an explicit scenario
about the catastrophe that is triggered once the tipping point is passed.

15The optimal policy is thus a scheme that should be revised each period to account for
the current state of the economy.

17



which is the ex ante equivalent of (16).
We first derive the policy that allows the economy to follow either a CNP

or an SEP.

Lemma 4 The economy follows a CNP or an SEP reached at date T if the
government implements the policy {zt}t≥T given by

zt = Rt + (1− λ)(1− g)gt−T (qS − qT )ϕ/ξ (29)

where

Rt = rS+γ(1−g)gt−T (qS−qT )[1+(1−g)ϕ/ξ]+γρ̂(1−θ)θt−T (eS−eT ) (30)

converges toward rS as t goes to infinity, with eT = eS < eN under an SEP
and eT < eS = eN under a CNP. Under an REE with preferences over global
wealth and CARA utility, the corresponding policy index {Zt}t≥T is given by

Zt =
a5rS

1− a5γ
+

(1− g)gt−T (qS − qT )[γ + (1− λ+ γ(1− g))ϕ/ξ]

1− a5γg
(31)

+
γρ̂(1− θ)θt−T (eS − eT )

1− a5γgθ
.

In case of an SEP, denoting by Φ the CDF of the standardized Gaussian
variable, eS = ē + σeΦ

−1(1 − α) where σe is independent of the initial state
of the economy.

Sequence {Rt}t≥T given by (30) corresponds to the path of the expected
interest rate E[r̃t] along a CNP or an SEP. From (29), it follows that in both
cases the gap between the governmental subsidy and the expected interest
rate shrinks exponentially. The expected interest rate also diminishes steadily
toward its stationary state value rS. The last term of (30) which involves the
difference between the state of the environment at date T and its long term
level, is positive in the case of a CNP since the environment keeps improving,
while it is equal to zero for an SEP since, by definition, the environment is
stabilized at level eS < eN .

Reaching a CNP or an SEP is a potential long term objective for soci-
ety. From the initial state of the economy, the optimal policy also entails a
transitory path before taking such routes that is derived as follows. Consider
the problem of the social planer at date t when the state of the economy
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is far from both the CNP and the environmental safety constraints. The
corresponding Bellman equation is given by

W (µt, et, qt) = max
zt

Et[u(c̃t, et)]+βEt[W (µ̃t+1, ẽt+1, q̃t+1)] : (1), (14), (26), (27), (28)]

where µt, et and qt are state variables and zt the control variable. It is shown
in the appendix that:

Proposition 1 The production/environment state that solves the relaxed
program satisfies

ret+1 + ret r
e
t+1 − ret θ = ξ

E [∂u(c̃t+2, ẽt+2)/∂e]

E [∂u(c̃t+2, ẽt+2)/∂c]
, (32)

where

ret ≡
E [r̃t∂u(c̃t+1, ẽt+1)/∂c]

E [∂u(c̃t+1, ẽt+1)/∂c]
= E[r̃?t ] +

cov (r̃t, ∂u(c̃t+1, ẽt+1)/∂c)

E [∂u(c̃t+1, ẽt+1)/∂c]
. (33)

The unconstrained dynamic of the economy is thus determined through
the sequence of the “corrected” expected optimal interest rate ret that solves
(32). Compared to E[r̃?t ], it takes into account the (positive) correlation
between the marginal utility of consumption and the interest rate as shown
in (33).

To completely specify this dynamic, we assume in the following a constant
implicit price of the environmental quality, a CARA utility function and
rational expectations. Using ∂u(c, e)/∂e = ρ̂∂u(c, e)/∂c, the right hand term
of (32) becomes ρ̂ξ. As the individual marginal rate of substitution between
environmental quality and consumption may be different from the optimal
one as discussed above, denote by ρ the value that the social planer considers
in defining the policy. Substituting ρ for ρ̂ in (32) yields

ret+1 + ret r
e
t+1 − ret θ = ρξ (34)

which prescribes the evolution of the interest rate from one period to the
next along an optimal path when neither the CNP constraint nor the envi-
ronmental safety constraint are binding. Observe that this dynamic does not
depend on the state of the economy (none of the state variables qt, et and µt
is involved). From its initial value ret0 , it may converge to a long run level
that solves

(re] + 1− θ)re] = ρξ. (35)
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The left-hand side of (35) is a quadratic equation which is positive for
either re] ≤ −(1− θ) or re] ≥ 0, while the right-hand side is strictly positive.
Hence re] may take two values, one being positive and the other negative and
lower than −(1− θ). Fig. 1 depicts the situation: the parabola corresponds
to the left-hand side of (35) which crosses the x-axis at 0 and −(1− θ). The
horizontal line corresponds to the right-hand side of (35). The negative root
of (35) is lower than −(1 − θ), and increasingly so the larger ρξ. As ret is
greater than the optimal expected interest rate that must prevail in the long
term on the capital market, only the positive root of (35) is relevant. The
following proposition describes the transition of the economy toward this
longterm interest rate.

Proposition 2 Under an REE with preferences over global wealth and CARA
utility, the solution of (34) is given by

ret = re] +
A(ret0 − r

e
] )k

t−t0

A+ (1− kt−t0)(ret0 − re] )
(36)

for all t ≥ t0, where A =
√

(1− θ)2 + 4ρξ is the square root of the discrimi-
nant of (35),

re] = (A− 1 + θ)/2 (37)

the positive root of (35), and

k =
1 + θ − A
1 + θ + A

. (38)

ret converges to re] if ρξ 6= θ and ret0 > −(A + 1 − θ)/2. Convergence is
monotonic if ρξ < θ and oscillatory if ρξ > θ. The corresponding optimal
expected interest rate is given by

Et[r̃?t ] = ret−(1−λ)a3γ
(
σ2
y+1
− σ2

y

)
+γ[1−(1−λ)(a5−a3)](1−a1)2a25τ 2σ2

η (39)

The sequence of rates given by (36) allows the social planer to estimate
at time t0 the expected path of the interest rate that should prevail on the
capital market using (39) and thus to decide on the policy measure zt to
be implemented. It depends on an initial value ret0 deduced from the cur-
rent state of the economy that should not be too negative. This sequence
converges to (37) which depends on the social value of the environment ρ
and on the parameters that govern the dynamic of the environment: the
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environmental inertia θ and the parameter that captures the impact of the
technology index on the environment ξ. It should be noted that Prop. 2
describes the dynamic of the economy when neither the CNP constraint nor
the environmental safety constraint is binding and that the long-run level
r?] (toward which the expected interest rate converges during this phase) is
different from rS.

To detail the convergence of the interest rate given by (36), it is convenient
to use the normalized gap between the expected interest rate at horizon h
and its long run level which is defined as

dt0+h ≡ (ret0+h − r
e
] )/A = (E[r?t0+h]− r

?
] )/A. (40)

It is shown in the appendix that

Proposition 3 Under an REE with preferences over global wealth and CARA
utility, the normalized gap at horizon h from t0 can be derived recursively us-
ing dt0+h = f(dt0+h−1) where

f(x) ≡ kx/[1 + (1− k)x] (41)

with k defined by (38) in Prop. 2. This gap converges to 0 provided dt0 > −1.

A phase diagram of this recursion is given fig. 2 which depicts the rela-
tionship dt+1 = f(dt) in the (dt, dt+1) plane and where the bisector is used
as a “mirror” to project the value dt+1 back on the dt axis. Function f(·)
is concave, with a vertical asymptote at dt = −1/(1 − k) and an horizontal
one for large values of dt. We have f(0) = 0 and f ′(0) = k < 1, hence the
bisector is located above the graph of function f(·) in the positive quadrant
and since f(−1) = −1, below it in the negative quadrant for all dt ≤ −1.
From an initial gap dt0 the arrows describe the recursion toward 0 which
occurs for all dt0 > −1.

Applying recursively dt0+h = f(dt0+h−1) gives the expected value of the
optimal interest rate from one period to the next and thus allows the gov-
ernment to define the entire policy at time t0. To initiate the recursion, we
suppose that the government is able to determine the expected value of the
interest rate at date t0 − 1, the period before the policy is implemented,
which allows it to derive the initial normalized gap: dt0−1 = (rt0−1 − r?] )/A.
The normalized gap of the first period is deduced from this value using
dt0 = f(dt0−1). The first period expected optimal interest rate is deduced
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from Et0 [r̃?t0 ] = r?] + Adt0 , and the sequence of all future ones from applying
Et0 [r̃?t ] = r?] + Adt with dt = f(dt−1) for all t > t0. This allows us to ana-
lyze the commitment (also dubbed open-loop) strategy that supposes that
the government sticks to this plan whatever the state of the economy in the
subsequent periods.16

4 Policy implementation and Environmental

forecast

Assuming that the social planer implements a policy that results in a se-
quence of expected interest rates Et0 [r̃?t ] given by (39), eventually followed
by a sequence satisfying (30) once the economy has reached either an SEP or
a CNP, the expected paths of the AGT and EQ indexes can be anticipated
using the system of equations (1), (14) and (19) which gives the recursion

Ỹt = BtỸt−1 +Hν̃t (42)

where Ỹt = (µ̃t, ẽt, q̃t, 1)′ is the column vector of state values (with the con-
stant), Bt is the time-dependent transition matrix

Bt =


a1 a2 a3 a4 + Zt
ξ θ −ϕ ê
0 0 g ĝ
0 0 0 1

 , H =


a5τση 0

0 0
0 σκ
0 0

 ,

and ν̃t = (ν̃1t, ν̃2t)
′ is a column vector of independent standardized Gaussian

variables. The transition matrix Bt is time-dependent because of the policy
index Zt defined by (20) which is an exponential smoothing of the policy
measures that will be implemented in the following periods. This index is
given by (31) after the economy has reached either an SEP or a CNP. For the
transitory period where the state of the economy is not constrained, using
(11) taken in expectation at date t0, we obtain that the optimal subsidy
scheme satisfies

zt+i = E[r̃?t+i] + (1− λ)(E[µ̃t+i+1]− E[µ̃t+i]). (43)

16As indicated in note 15, the optimal policy should be revised each period (feed-back
or close-loop strategy). This can be easily done using (41) which can be used as a tool to
update the environmental policy each period taking as initial value the observed current
gap.
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Multiplying each side of (43) by a5(γa5)
i and summing over all i ≥ 0

gives

Zt = a5

T−t−1∑
i=0

(γa5)
iE[r̃?t+i] + a5

+∞∑
i=T−t

(γa5)
iRt+i (44)

+ a5(1− λ)(1− γa5)
+∞∑
i=0

(γa5)
i (E[µ̃t+i+1]− E[µ̃t+i])

for all t < T . Because the last term of (44) involves values of the AGT
index that depend on the public policy, it is not possible to obtain the opti-
mal public policy schedule explicitly and a numerical (recursive) procedure
is necessary. The recursion proceeds as follows: given a first set of values
{E[µ̃t]

(1)}t≥t0 , it is possible to estimate {Z(1)
t }t≥t0 from (44) to obtain an

initial set of transition matrices {B(1)
t }t≥t0 .17 Then, using (42), a second

set of estimated values {E[µ̃t]
(2)}t≥t0 is derived which, once plugged in (44),

gives a second estimated set {Z(2)
t }t≥t0 and thus {B(2)

t }t≥t0 . One may iterate

this procedure until iteration i such that {Z(i)
t }t≥t0 is sufficiently close to

{Z(i−1)
t }t≥t0 .
As the recursive dynamic (42) is linear, the path it generates follow Gaus-

sian random walks with expected values and variances at time t given by
E[Ỹt] = (Πt−t0

i=0 Bi)Xt0 and V[Ỹt0 ] =
∑t−t0

i=0 (Πi
j=0Bj)HH

′(Πi
j=0Bj)

′.

5 Numerical simulations

The expected trends of the main economic variables and the confidence in-
tervals in which they are lying can be derived under various assumptions
using numerical simulations.18 Of particular interest is the derivation of the
so-called social cost of carbon (SCC) which in our context corresponds to
the social value of the environment ρ. A general feature of the model is the
convexity of the path of EQ under an optimal policy that leads to a CNP:
once the policy is implemented, the EQ index decreases for a few years, then

17Of course, date T at which one of the constraints is binding should be derived in
the process. We give in the appendix an approximation of dynamic (42) that allows us to
determine a first set of values {E[µ̃t]

(1)}t≥t0 .
18These simulations were realized using Mathematica. The corresponding programs are

available from the authors upon request.
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reaches a minimum before turning up toward the CNP (see Fig. 5). It is
during this phase that the EQ is the most likely to hit the tipping point.
In the following simulations, we determine for each set of parameters the
minimum value of ρ such that the environmental safety constraint is never
binding (SEPs are not considered). More precisely, the SCC that we derive
is defined as the minimum value of ρ that allows society to find its way to a
CNP without passing the environmental tipping point with confidence level
α that is set to 0.01%.19

Calibration of the model

In the simulations, the EQ index et is defined as the difference between
a tipping point level of CO2 in the atmosphere `M (i.e. a threshold above
which the dynamic of the climate is irreversibly changed and no return to the
pre-industrial state of the atmosphere is possible even if green technologies
allows us to completely abate GHG emissions) and the level of GHG at
date t, `t, expressed in CO2 equivalent: et = `M − `t.

20 Hence, et can be
thought of as a global “carbon budget” at date t that the economy should
not deplete entirely to avoid to be environmentally bankrupt. Parameter θ
is determined from the IPCC Fifth Assessment Report which estimates that
100 years after a 100 Gt CO2 pulse in the preindustrial atmosphere, there
would remain 40% of the 100 Gt CO2 emitted, while after 1000 years 25%
would remain. Accordingly, denoting by ˆ̀ the preindustrial level of CO2,
after an initial period `0 = ˆ̀+ 100, we have `100 = ˆ̀+ 40 and `1000 = ˆ̀+ 25.
Using (14) without industrial interferences and solving the recursion gives

`t = θt(ˆ̀+ 100) + (1− θt)`M −
1− θt

1− θ
ê.

Using the IPCC’s estimates for `100 and `1000 we obtain

`M − ˆ̀− ê

1− θ
=

40− 100θ100

1− θ100
=

25− 100θ1000

1− θ1000
.

19While very different from the usual interpretation of the SCC, this definition is in the
spirit of approaches that account for catastrophic damages (see, e.g., Weitzman, 2013).

20The unit used in the following is the gigaton or Gt shorthand, i.e. 109 metric
tons. Theses levels are also commonly expressed in atmospheric concentration, the unit
being the part per million or ppm shorthand, i.e. 0.01%. Each ppm represents ap-
proximately 2.13 Gt of carbon in the atmosphere as a whole, equivalent to 7.77 Gt of
CO2. Conversion values can be found on the dedicated US department of energy website
http://cdiac.ornl.gov/pns/convert.html#3.
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The last equality can be expressed as 1 − 5x + 4x10 = 0 where x = θ100

which gives θ ≈ (1/5)1/100 ≈ 0.984 independently of the choice of ˆ̀ and
`M .21 We deduce parameter ê by assuming that the EQ index has reached
its long term equilibrium eN = `M − ˆ̀ in the preindustrial period which
gives ê = (1 − θ)eN . Considering that ˆ̀ = 2176 Gt CO2 (280 ppm) and
`M = 5439 Gt CO2 (700 ppm), we obtain ê ≈ 52.1.22 Our reference year is
2005 which corresponds to a GHG level equal to 2945 Gt CO2 (379 ppm)
hence an initial EQ index e0 = 2494.17 Gt CO2.

The AGT index in the reference year is deduced from the World Bank’s
estimates of the world CO2 intensity which in our framework is given by
function (13).23 The data show that the world CO2 intensity has sharply
decreased over the second half of the 20th century and has been plateauing
since 2000 (the period covered by the data is 1960 - 2013) with a value
in the reference year ι2005 =0.51kg/US$. We assume in our baseline setup
(Table 1) that the maximum emission intensity ϕ is equal to 6.5kg/US$ (for
static comparative exercises, we also consider the cases ϕ = 7.5kg/US$ and
ϕ = 5kg/US$, see Tables 6 and 7), so that the level of the AGT index in the
reference year is given by

µ2005 = q2005(ϕ− ι2005)/ξ

where q2005 = 47 trillions US$. The effectiveness of the green technologies
is captured by the ratio ϕ/ξ. It is set to 1/2 is the baseline setup, and we
also consider the strong effectiveness (ϕ/ξ = 1) and the weak effectiveness
(ϕ/ξ = 1/3) cases (cf. Tables 4 and 5).

Parameters of the GDP dynamics (1) are set to g = 0.99 and ĝ = 0.2.
These values correspond to a growth rate of 3.1% for the first year (2005)
and a growth rate of 0.9% in year 2055 (t = 50) and then 0.4% in year 2105

21An obvious root of this equation is x = 1. The other roots are complex numbers.
22According to the IPCC Fifth Assessment Report, 700 ppm lead to a temperature in-

crease of approximately 4°C, a situation where “many global risks are high to very high.”
However, several tipping points are considered by climatologists. Candidates include lev-
els corresponding to an irreversible melt of the Greenland ice sheet, the dieback of the
Amazon rainforest and the shift of the West African monsoon. Acemoglu et al. (2012)
use the atmospheric CO2 concentration that would lead to an approximate 6°C increase
in temperatures. Stern (2007) reports that increases in temperature of more than 5°C will
lead among other things to the melting of the Greenland Ice Sheet.

23The data can be found on the world bank website:
http://data.worldbank.org/indicator/EN.ATM.CO2E.KD.GD;
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(t = 100).24 Risk aversion coefficient γ is set to 3 and ψ at 10% which cor-
responds to a stationary state value of the interest rate rS of approximately
6% in the baseline scenario. The standard deviation of the shocks affecting
the GDP is set to σκ = 1.5 (trillions US$), which corresponds to 3.19% of
the 2005 GDP value. We also consider small and large GDP shocks, these
cases corresponding to σκ = 2 (Table 2) and σκ = 1 (Table 3) respectively.
The shocks affecting firms’ beliefs are set to σε = ση = 0.01 (trillions US$),
hence 0.21% of the 2005 GDP value in the baseline. Table 8 reports values
assuming ση = 1 which is awfully large, but small variations around the
baseline proved insignificant (we examined the cases where they are tenfold
that of the baseline values and found no significant effects). For each set of
parameters, the consumer’s marginal rate of substitution between the envi-
ronment and consumption ρ̂ is derived from (18) so that the interest rate
matches its 2005 value, equal to 6%.25 As discussed above, the SCC value
ρ corresponds to the minimal value that allows EQ to stay above 0 along
the optimal path with a confidence level equal to 99.9%. All tables show the
resulting estimates when λ is ranging from 0 to 0.9 by decimal steps.

Results

Table 1 presents the results of our baseline scenario. For each value of λ
indicated in the first column, the second column indicates the implied con-
sumer’s valuation of the environment ρ̂ that leads to an interest rate equal to
6% in 2005 given the other parameter values. The following columns σy, σµ
and rS give the corresponding values of the (one period) standard deviation
of the total wealth, yt = ct + ρ̂et, and of the AGT index µt respectively,
and the longterm stationary level of the interest rate. The rest of the table
reports the environmental policy parameters. Column ρ gives the social cost
of CO2 necessary to avoid an environmental catastrophe with a confidence
level of 99.9%, column r?] the corresponding long term expected interest rate
that the public policy aims at bringing about on the capital market during
the transitory phase toward a CNP, column T indicates the date at which
the expected EQ level under this policy merges with the expected CNP. A

24In Acemoglu et al. (2012), the innovation function is calibrated so as to obtain a 2%
long run growth. In DICE 2010, the economy grows at a rate equal to 1.9% from 2010 to
2100 and 0.9% from 2100 to 2200.

25See King & Low (2014), for a measure of world interest rates. According to this study,
the 2005 quarterly values of the interest rate are 1.479%, 1.456%, 1.449% and 1.542%.
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value equal to 199 indicates that the expected EQ does not reach the CNP
in that time horizon (the maximum considered in the simulations). Finally,
column eT indicates the expected EQ level reached a date T if this policy is
implemented.

We observe that standard deviations do not evolve monotonically with
λ : σy first decreases and then increases, while the reverse is true for σµ.
This is due to the changes in coefficients {ak} that are triggered by the
variations of λ and ρ̂. The stationary level of the interest rate rS is also
non-monotonic: it first increases and then decreases. Still, it stays relatively
close to r0 = 6%. The expected optimal interest rate r?] , that is, the market
interest rate that the social planner targets while implementing the optimal
policy, is particularly high compared to rS: while rS stays around 6%, r?]
ranges from 18% to almost 33%.

The consumer’s valuation ρ̂ is very large for low values of λ and decreases
as λ increases, while the trend for the SCC ρ is the opposite: it increases with
λ. One can observe that in this baseline case, ρ is lower than ρ̂ as long as λ is
lower than 0.7. Graphic 3 depicts the evolutions of theses values and shows
that they cross approximately around λ = 0.65. Hence, while the capital
market does not value correctly the environment, the government can safely
implement a policy that associate a low SCC when λ is low (for example,
if λ = 0.5, the SCC is 15.93$/t, while the implicit consumers’ valuation is
23.79$/t).26

We observe that r?] increases with λ. This can be easily understood:
when λ is large, the economy is less dependent on past values of the AGT
index and firms’ investment choices have a stronger impact on their future
profits. Thus, the economy is likely to react stronger to economic incentives.
Therefore, the growth rate of yt is expected to be larger, and the interest rate
is as well. The change in ρ̂ also drives the way r?] reacts to an increase in λ:
market interest rates tend to decrease when ρ̂ is low, and because ρ̂ decreases
with λ, the targeted optimal interest rate r?] should increase in order to reach
the same investment level. Contrary to ρ̂, the SCC ρ increases with λ. When
λ increases, the actual cost of AGT, measured by rt − zt, increases, which
means that given the impact of the policy on the market interest rate, the
net subsidy is lower.

26We can compare these values to the social costs of carbon found in the literature.
Nordhaus (2007), finds a SCC of 11.5 $/t CO2 for 2015. More recently, with similar
calibration for the rate of pure time preference, Traeger (2015) and Golosov et al. (2014),
find SCC of respectively 15.5 and 16.4 $/t CO2.
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Finally, under the baseline scenario, carbon neutrality is a very long term
objective: only when λ is larger than 0.7 is carbon neutrality reached within
two centuries (but less than a century if λ is very large).

Tables 2 and 3 allow to assess the effects of the magnitude of shocks
affecting the GDP. Not surprisingly, the standard deviations of ỹt and µ̃t
are increasing with σκ, whereas the implied consumers’ valuation ρ̂ and the
long term interest rate rS are decreasing. The policy parameters are also
negatively affected by a change in σκ, but to a lower extent: Large shocks
slightly lower the optimal interest rate r?] and the SCC, while the CNP is
reached faster (and conversely for small shocks). Large GDP shocks lower
the market interest rates, by increasing the precautionary motive for savings.
This compensates increased variances and explains a lower SCC. Variations
in the effectiveness of the green technologies, reported in Tables 4 and 5,
have a intuitive impact on the policy parameters: they are larger the less the
green technologies are effective. Similarly, the variations in the environmental
damages due to industrial emissions reported in Tables 6 and 7 show that
the more they impact the environment, the larger the policy parameters are.

Finally, Table 8 shows the impact of a variation in the public signal. It
should be noted that the change in ση is 100 times larger than the baseline
value. Smaller values (a tenfold increase of either the public or the private
signal standard deviation) did not show any significant effect. Nevertheless,
the standard deviations of ỹt and µ̃t are not much affected. Interestingly, the
range of ρ is larger than in the baseline (its smaller value is reduced while its
larger value is increased) while r?] is reduced (by approximately 3US$/t).

Using our baseline calibration and assuming λ = .8, Fig. 4 and Fig. 5
illustrate the dynamics of the AGT and the EQ indexes respectively, start-
ing from the first period of the implementation of the environmental policy
(2006). In these figures, the expected paths and the upper and lower limits
of a 95% confidence interval around these paths are depicted. Stochastically
generated shocks allow us to illustrate the difference between a laissez-faire
situation and the corresponding “realized” paths of the indexes under the
environmental policy.

Also depicted Fig. 4 is the carbon neutral path (the dashed blue curve
indicated µCNt ) that the expected value of the AGT index under the policy
joins at date T = 147. The laissez-faire curve shows a positive trend, but
significantly below the one under the policy (actually, the curve stays below
the lower-bound of the 95% interval). As a result, Fig. 5 shows that the
EQ is rapidly deteriorating under laissez-faire (the carbon budget is entirely
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Table 1: Carbon price evaluation -Baseline

λ ρ̂ σy σµ rS ρ r?] T eT

0 31.88 9.08 · 10−2 5.92 · 10−2 6.29 11.51 17.96 199 775.08
.1 30.64 8.97 · 10−2 6.03 · 10−2 6.38 12.08 18.48 199 799.46
.2 29.26 8.87 · 10−2 6.13 · 10−2 6.46 12.75 19.08 199 835.86
.3 27.7 8.79 · 10−2 6.21 · 10−2 6.52 13.57 19.79 199 894.33
.4 25.91 8.73 · 10−2 6.27 · 10−2 6.57 14.6 20.58 199 971.57
.5 23.79 8.72 · 10−2 6.28 · 10−2 6.58 15.93 21.59 199 1,110.62
.6 21.2 8.79 · 10−2 6.21 · 10−2 6.52 17.76 22.91 199 1,356.75
.7 17.88 8.99 · 10−2 6.01 · 10−2 6.36 20.47 24.73 199 1,855.88
.8 13.35 9.47 · 10−2 5.53 · 10−2 5.96 25.08 27.58 147 1,541.66
.9 6.76 0.11 4.44 · 10−2 4.98 34.85 32.76 82 1,046.54

Parameters: ση = 0.01, σκ = 0.15, σε = 0.01, ξ = 6.5/2, ϕ = 6.5, γ = 3, ψ = 0.1, r0 =
6%, α = 0.1%, µ0 = 8.66, σκ/q0 = 3.19%.

Table 2: Carbon price evaluation -Large GDP shocks

λ ρ̂ σy σµ rS ρ r?] T eT

0 29.31 0.13 7.44 · 10−2 2.9 11.18 17.15 199 1,189.55
.1 28.2 0.12 7.60 · 10−2 3.08 11.68 17.65 199 1,216.78
.2 26.95 0.12 7.74 · 10−2 3.23 12.27 18.24 199 1,262.76
.3 25.52 0.12 7.86 · 10−2 3.36 13 18.92 199 1,336.38
.4 23.85 0.12 7.94 · 10−2 3.45 13.9 19.68 199 1,439.4
.5 21.86 0.12 7.96 · 10−2 3.47 15.06 20.65 199 1,621.95
.6 19.39 0.12 7.87 · 10−2 3.38 16.63 21.87 199 1,946.53
.7 16.21 0.12 7.60 · 10−2 3.07 18.91 23.52 166 1,768.81
.8 11.86 0.13 6.95 · 10−2 2.34 22.64 26.01 123 1,492.76
.9 5.72 0.14 5.54 · 10−2 0.59 29.94 30.24 68 1,057.43

Parameters: ση = 0.01, σκ = 0.2, σε = 0.01, ξ = 6.5/2, ϕ = 6.5, γ = 3, ψ =
0.1, r0 = 6%, α = 0.1%, µ0 = 8.66, σκ/q0 = 4.26%.
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Table 3: Carbon price evaluation - Small GDP shocks

λ ρ̂ σy σµ rS ρ r?] T eT

0 33.51 5.92 · 10−2 4.09 · 10−2 8.43 11.37 18.18 199 491.92
.1 32.19 5.85 · 10−2 4.16 · 10−2 8.46 11.97 18.68 199 504.08
.2 30.73 5.78 · 10−2 4.22 · 10−2 8.5 12.69 19.32 199 539.44
.3 29.09 5.73 · 10−2 4.27 · 10−2 8.52 13.56 20.01 199 578.9
.4 27.22 5.69 · 10−2 4.31 · 10−2 8.54 14.66 20.86 199 645.85
.5 25.02 5.69 · 10−2 4.32 · 10−2 8.54 16.08 21.91 199 756.72
.6 22.36 5.73 · 10−2 4.27 · 10−2 8.52 18.06 23.29 199 954.69
.7 18.95 5.87 · 10−2 4.14 · 10−2 8.45 21.04 25.23 199 1,360.06
.8 14.31 6.18 · 10−2 3.82 · 10−2 8.28 26.22 28.3 169 1,596.58
.9 7.47 6.92 · 10−2 3.08 · 10−2 7.84 37.74 34.19 94 1,036.41

Parameters: ση = 0.01, σκ = 0.1, σε = 0.01, ξ = 6.5/2, ϕ = 6.5, γ = 3, ψ = 0.1, r0 =
6%, α = 0.1%, µ0 = 8.66, σκ/q0 = 2.13%.

Table 4: Carbon price evaluation - Highly effective GT

λ ρ̂ σy σµ rS ρ r?] T eT

0 28.29 0.11 4.50 · 10−2 5.03 5.35 17.12 199 685.81
.1 27.01 0.1 4.53 · 10−2 5.06 5.68 17.75 199 742.45
.2 25.59 0.1 4.54 · 10−2 5.08 6.06 18.46 199 821.93
.3 23.97 0.1 4.54 · 10−2 5.08 6.54 19.27 199 927.89
.4 22.1 0.1 4.51 · 10−2 5.05 7.14 20.26 199 1,091.92
.5 19.91 0.11 4.44 · 10−2 4.98 7.93 21.48 199 1,355.49
.6 17.25 0.11 4.29 · 10−2 4.84 9.03 23.07 199 1,821.79
.7 13.94 0.11 4.04 · 10−2 4.6 10.68 25.29 158 1,569.13
.8 9.68 0.11 3.60 · 10−2 4.15 13.48 28.63 111 1,218.52
.9 4.3 0.12 2.85 · 10−2 3.35 19.16 34.41 59 790.66

Parameters: ση = 0.01, σκ = 0.15, σε = 0.01, ξ = 6.5, ϕ = 6.5, γ = 3, ψ =
0.1, r0 = 6.%, α = 0.1%, µ0 = 4.3, σκ/q0 = 3.19%.
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Table 5: Carbon price evaluation - Less effective GT

λ ρ̂ σy σµ rS ρ r?] T eT

0 32.88 8.33 · 10−2 6.67 · 10−2 6.88 20.8 19.96 199 1,063.11
.1 31.63 8.17 · 10−2 6.83 · 10−2 7 21.6 20.39 199 1,075.53
.2 30.25 8.01 · 10−2 6.99 · 10−2 7.11 22.57 20.92 199 1,103.45
.3 28.71 7.86 · 10−2 7.14 · 10−2 7.22 23.75 21.55 199 1,150.22
.4 26.96 7.73 · 10−2 7.27 · 10−2 7.31 25.24 22.25 199 1,213.49
.5 24.91 7.64 · 10−2 7.36 · 10−2 7.37 27.15 23.16 199 1,329.64
.6 22.44 7.62 · 10−2 7.38 · 10−2 7.39 29.72 24.32 199 1,533.17
.7 19.3 7.74 · 10−2 7.26 · 10−2 7.3 33.48 25.91 199 1,932.57
.8 14.95 8.16 · 10−2 6.84 · 10−2 7 39.72 28.39 154 1,689.05
.9 8.25 9.35 · 10−2 5.66 · 10−2 6.07 52.79 32.94 92 1,258.7

Parameters: ση = 0.01, σκ = 0.15, σε = 0.01, ξ = 6.5/3, ϕ = 6.5, γ = 3, ψ = 0.1, r0 =
6.%, α = 0.1%, µ0 = 12.99, σκ/q0 = 3.19%.

Table 6: Carbon price evaluation - Large emissions potential

λ ρ̂ σy σµ rS ρ r?] T eT

0 28.69 8.92 · 10−2 6.08 · 10−2 6.42 12.2 20.02 199 1,007.51
.1 27.54 8.82 · 10−2 6.18 · 10−2 6.5 12.73 20.52 199 1,046.48
.2 26.27 8.73 · 10−2 6.27 · 10−2 6.57 13.35 21.11 199 1,104.98
.3 24.83 8.65 · 10−2 6.35 · 10−2 6.63 14.11 21.8 199 1,191.06
.4 23.19 8.61 · 10−2 6.39 · 10−2 6.67 15.07 22.57 199 1,303.89
.5 21.25 8.61 · 10−2 6.39 · 10−2 6.67 16.29 23.56 199 1,497.03
.6 18.89 8.69 · 10−2 6.31 · 10−2 6.6 17.96 24.83 199 1,828.48
.7 15.88 8.91 · 10−2 6.09 · 10−2 6.43 20.41 26.59 170 1,736.22
.8 11.79 9.42 · 10−2 5.58 · 10−2 6.01 24.5 29.34 127 1,456.48
.9 5.93 0.11 4.46 · 10−2 4.99 32.94 34.26 71 1,001.47

Parameters: ση = 0.01, σκ = 0.15, σε = 0.01, ξ = 7.5/2, ϕ = 7.5, γ = 3, ψ = 0.1, r0 =
6.%, α = 0.1%, µ0 = 8.76, σκ/q0 = 3.19%.
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Table 7: Carbon price evaluation - Low emissions potential

λ ρ̂ σy σµ rS ρ r?] T eT

0 38.28 9.40 · 10−2 5.60 · 10−2 6.02 10.17 14.53 199 546.22
.1 36.87 9.28 · 10−2 5.72 · 10−2 6.12 10.79 15.06 199 548.52
.2 35.3 9.17 · 10−2 5.83 · 10−2 6.22 11.53 15.67 199 558.9
.3 33.52 9.07 · 10−2 5.93 · 10−2 6.3 12.43 16.39 199 580.72
.4 31.45 9.00 · 10−2 6.01 · 10−2 6.36 13.57 17.2 199 610.94
.5 28.99 8.96 · 10−2 6.04 · 10−2 6.39 15.06 18.23 199 677.41
.6 25.97 9.00 · 10−2 6.00 · 10−2 6.36 17.13 19.58 199 808.42
.7 22.06 9.16 · 10−2 5.84 · 10−2 6.22 20.29 21.46 199 1,098.21
.8 16.63 9.59 · 10−2 5.42 · 10−2 5.86 25.85 24.44 194 1,807.6
.9 8.59 0.11 4.39 · 10−2 4.94 38.4 30.1 104 1,162.06

Parameters: ση = 0.01, σκ = 0.15, σε = 0.01, ξ = 2.5, ϕ = 5, γ = 3, ψ = 0.1, r0 =
6.%, α = 0.1%, µ0 = 8.44, σκ/q0 = 3.19%.

Table 8: Carbon price evaluation - Very Large public signal shocks

λ ρ̂ σy σµ rS ρ r?] T eT

0 38.28 9.40 · 10−2 5.60 · 10−2 6.02 10.17 14.53 199 546.3
.1 36.87 9.28 · 10−2 5.72 · 10−2 6.12 10.79 15.06 199 548.61
.2 35.3 9.17 · 10−2 5.84 · 10−2 6.21 11.53 15.67 199 559
.3 33.52 9.07 · 10−2 5.93 · 10−2 6.3 12.43 16.39 199 580.83
.4 31.45 9.00 · 10−2 6.01 · 10−2 6.36 13.57 17.2 199 611.07
.5 28.99 8.96 · 10−2 6.04 · 10−2 6.38 15.06 18.23 199 677.55
.6 25.97 9.00 · 10−2 6.01 · 10−2 6.35 17.13 19.58 199 808.61
.7 22.05 9.16 · 10−2 5.84 · 10−2 6.22 20.29 21.46 199 1,098.46
.8 16.63 9.59 · 10−2 5.42 · 10−2 5.86 25.85 24.44 194 1,808.01
.9 8.58 0.11 4.40 · 10−2 4.93 38.39 30.09 104 1,162.39

Parameters: ση = 1, σκ = 0.15, σε = 0.01, ξ = 6.5/2, ϕ = 6.5, γ = 3, ψ = 0.1, r0 =
6%, α = 0.1%, µ0 = 8.66, σκ/q0 = 3.19%.
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depleted in 25 years). As mentioned above, the EQ is also deteriorating under
the optimal policy at first, reaching its minimum after approximately 80
years, but still sufficiently high to safely reduce the odds of reaching 0. It then
increases, but the level reached at the time the economy is carbon neutral
(eT = 1541Gt CO2) is considerably lower than the one in 2005 (e0 = 2494Gt
CO2).

The policy scheme zt and the resulting policy index Zt are illustrated Fig.
6. The subsidy zt increases rapidly the first 5 years (from 15% to 33%) then
slowly decreases toward 28% during the following century. As the targeted
interest rate level is 27.58%, the net expected subsidy rate is thus around
5%. The actual level is stochastic as shown Fig. 7 where the dynamics of
the interest rate under the policy and laissez-faire are depicted together with
the corresponding expected rates. Interest rates are similarly affected by the
GDP shocks, the amplitude of the variations being larger under the policy
than under laissez-faire.

Fig. 8 illustrates the per period investment rates (relative to the AGT in-
dex level) under laissez-faire and under the environmental policy. The invest-
ment is negative under laissez-faire in the first 5 periods, that is, firms tend to
invest increasingly in polluting technologies, while investment in green tech-
nology is always positive under the policy. Investment rates are comparable
after 15 years (but not the level as noted above), and converge to the growth
rate of the economy.

Fig. 9 shows the consumption path under the optimal policy and under
laissez-faire. A higher consumption differential between laissez-faire and the
regulated economy means that the policy implies a higher investment level
and thus a higher cost in terms of postponed welfare.

Fig. 10 shows total wealth dynamics. Because of the decrease in the
environmental quality, the laissez-faire curve decreases rapidly.

There are two aspects in the welfare impact of an environmental policy
that can be analyzed here. First, implementing a subsidy for AGT has the
immediate and most direct effect of increasing the rate of investment in green
technologies, thus introducing a trade-off between current consumption and
future environmental quality. Since our model disentangles green technology
investment from productivity growth, increasing investment has no stock
effect on the GDP level. On the other hand, the environmental quality is
a stock and reducing the size of the negative impact of production on the
environment has long term effects on welfare through environmental quality
accumulation.
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6 Conclusion

In this paper, we analyze the AGT process when demand spillovers are a
key determinant of technical efficiency and when the economy is subject
to uncertainty. We consider the problem of a social planner in charge of
determining an investment subsidy policy to incentivize firms to increase
their AGT. Because investment choices are ultimately made by private agents
who react to the economic context according to their beliefs and because the
efficiency of technologies is the result of their many choices, the public policy
can only imperfectly direct the economy to a sustainable path. Besides,
the value that should be ascribed to the environment to guide the public
policy is difficult to assess because of the lack of scientific knowledge and the
uncertainty that affects the economy. While extremely stylized, our model
allows us to ascertain the effects of these uncertainties on the optimal policy.
It provides a tool to estimate the value of the environment considering that
society should decide on a safety level in order to avoid an environmental
catastrophe. Of course, the SCC values that we obtain depend on the safety
level chosen, but more importantly, they are very dependent of the spillover
effects at work in the AGT process. Our numerical simulations show that
the sharper the demand spillovers are, the higher is the SCC and the larger
should be the subsidies given to firms to direct their choices toward a carbon
neutral path.

We have considered in this analysis that the productivity growth is unaf-
fected by the technologies employed: technologies only differ in their impact
on the environment. Including in the analysis the process that leads to pro-
ductivity growth would permit to assess the intertemporal trade-off between
growth, consumption and environmental safety when society faces both eco-
nomic and environmental risks. This undertaking could also consider other
policy instruments than investment subsidies, like the environmental tax,
and would certainly give better estimates of the SCC.
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Appendix

A Proof of lemma 1

Maximization of (8) with respect to Iit leads to the first-order condition

− 1 + δtE
[
V(xit + Iit;x

?
t+1)

∂x

∣∣∣∣ωt, wit] = 0 (45)

while the envelop condition yields

∂V(xit;x
?
t )

∂x
= x?t − xit + δtE

[
V(xit + Iit;x

?
t+1)

∂x

∣∣∣∣ωt, wit] (46)

implying
∂V(xit;x

?
t )

∂x
= x?t − xit + 1.

Plugging this expression in (45) evaluated in expectation for period t + 1
yields

1 + rt = E
[
x?t+1 − (xit + Iit) + 1|ωt, wit

]
= x̂it+1 − (xit + Iit) + 1.

Reorganizing terms gives (9). Replacing into (3) and using (6), we obtain
that firm i next period AGT index follows

xit+1 = x?t+1 + τηt + (1− τ)εit − rt.

As
´
εitdi = 0, we obtain

µt+1 =

ˆ
i

xit+1di = x?t+1 + τηt − rt, (47)

and thus
xit+1 = µt+1 + (1− τ)εit.

As idiosyncratic investments depend on the firms’ current technologies and
on signals that are normally distributed, their next period technologies are
also normally distributed around µt+1 with variance V[xit+1] = (1− τ)2 σ2

ε .
Using (47) to substitutes for x?t+1 in (5) yields

µt+1 − (τηt − rt) = µt + λ(µt+1 − µt)

which gives (11).
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B Proof of lemma 2

Using (1), (17) and (14), we have

ỹt+1 = c̃t+1+ρet+1 = gqt+ĝ+κ̃t+1−(µ̃t+2−µt+1)+ρ(θet+ξµt−ϕqt+ê) (48)

in which, using (19),

µ̃t+2 = a1µt+1+a2(θet+ξµt−ϕqt+ê)+a3(gqt+ĝ+κ̃t+1)+a4+a5(τ η̃t+1)+Zt+1

(49)
where Zt+1 is a function of the zt+h, h = 2, 3... As the resulting expression of
ỹt+1 is a linear combination of iid random shocks normally distributed, it is
also normally distributed with variance σy given by (21) which is independent
of t.

The coefficients {aj}j=1,...,6 and Zt in (19) are derived as follows. Using
yt = qt − µt+1 + µt + ρet yields

Et[ỹt+1]−yt = ĝ−(1−g+ ρ̂ϕ)qt−Et[µ̃t+2]+2µt+1−(1− ρ̂ξ)µt− ρ̂[(1−θ)et− ê]

which gives, using (49) and collecting terms,

Et[ỹt+1]− yt = ĝ(1− a3)− [1− (1− a3)g + (ρ̂− a2)ϕ]qt − (a4 + Zt+1) + (2− a1)µt+1

− [1− (ρ̂− a2)ξ]µt − [ρ̂(1− θ) + a2θ]et + (ρ̂− a2)ê.

Replacing into (18) gives

rt = ψ − γ2σ2
y/2 + γ{[ϕa2 − (1− g + ϕρ̂)− a3g]qt − (a1 − 2)µt+1 − [1 + ξ(a2 − ρ̂)]µt}

+ γ{ĝ(1− a3)− et[a2θ + ρ̂(1− θ)]− ê(a2 − ρ̂)− a4 − Zt+1}. (50)

Equalizing with (11), which can be rewritten as

rt = zt + τηt − (1− λ)(µt+1 − µt), (51)

and collecting terms yields

µt+1 =
1− λ+ γ[1 + ξ(a2 − ρ̂)]

1− λ+ γ(2− a1)
µt + γ

[a2θ + ρ̂(1− θ)]et
1− λ+ γ(2− a1)

+ γ
[1− g + ϕ(ρ̂− a2) + a3g]qt

1− λ+ γ(2− a1)

−
ψ + γĝ(1− a3)− γê(a2 − ρ̂)− γa4 − γ2σ2

y/2

1− λ+ γ(2− a1)
+

τηt
1− λ+ γ(2− a1)

+
zt + γZt+1

1− λ+ γ(2− a1)
.
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Identifying with (19) gives

a1 =
1− λ+ γ[1 + ξ(a2 − ρ̂)]

1− λ+ γ(2− a1)
, a2 =

γρ̂(1− θ)
1− λ+ γ(2− a1 − θ)

,

a3 = γ
1− g + ϕ(ρ̂− a2)

1− λ+ γ(2− a1 − g)
,

a4 =
γ[ê(a2 − ρ̂) + a4 + γσ2

y/2]− ψ − γĝ(1− a3)
1− λ+ γ(2− a1)

, (52)

a5 =
1

1− λ+ γ(2− a1)

and

Zt = a5(zt + γZt+1) = a5

+∞∑
i=0

(a5γ)izt+i. (53)

The first two equations of (52) form a system involving only coefficients
a1 and a2 that can be solved separately from the others. Observe also that
a2 = ρ̂ and a1 = a01 ≡ 1 + (1− λ)/γ is a degenerate solution of this system.
More precisely, using 1− λ+ γ(2− a1) = γ(a01− a1 + 1), we can express (52)
as

a1 =
a01 + ξ(a2 − ρ̂)

a01 − a1 + 1
, a2 =

ρ̂(1− θ)
a01 − a1 + 1− θ

(54)

a3 =
1− g + ϕ(ρ̂− a2)
a01 − a1 + 1− g

, a5 =
1

γ(a01 − a1 + 1)

a4 = −
ê(ρ̂− a2) + ĝ(1− a3) + ψ/γ − γσ2

y/2

a01 − a1
.

and we get, assuming that the solution is a2 = ρ̂ and a1 = a01, that a3 =
1, a5 = 1/γ but a4 diverges unless ψ = γ2σ2

y/2 = τ 2σ2
η/2 in which case

a4 is indefinite. Alternative solutions can be derived as follows. From the
expression of a2, we get

a2 − ρ̂ =
−ρ̂(a01 − a1)

a01 − a1 + 1− θ
, (55)

which, plugged into the expression for a1, gives

a1(a
0
1 − a1 + 1)− a01 =

−ρ̂ξ(a01 − a1)
a01 − a1 + 1− θ

,
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that can also be expressed as (a01 − a1)P (a1 − 1) = 0 where P (x) ≡ x(a01 −
θ − x) + ρ̂ξ is a second degree polynomial. Non-degenerate solutions must
solve P (a1 − 1) = 0. As P (0) = P (a01 − θ) = ρ̂ξ and P (x) is concave, a1
is either lower than 1 (a1 − 1 is equal to the negative root of P (x) = 0) or
greater than a01 − θ + 1 = 2 − θ + (1 − λ)/γ (a1 − 1 is then equal to the
positive root of P (x) = 0). As zt impacts positively µt+1 for all t, it comes
from (53) that a5 > 0 which implies a1 − 1 < 1 + (1 − λ)/γ and thus rules
out the positive root of P (a1 − 1) = 0. Consequently, a1 − 1 corresponds to
the negative solution of P (x) = 0 which is given by

x =
1

2

(
a01 − θ −

√
(a01 − θ)2 + 4ρ̂ξ

)
.

After substituting 1 + (1− λ)/γ for a01, we get

a1 = 1− 1

2

(√
[1− θ + (1− λ)/γ]2 + 4ρ̂ξ − 1 + θ − (1− λ)/γ

)
which gives (22). The condition a1 > 0 can be expressed as

[3− θ + (1− λ)/γ]2 − [1− θ + (1− λ)/γ]2 − 4ρ̂ξ > 0

which simplifies to 2+(1−λ)/γ−θ > ρ̂ξ. Using a01−θ−a1 +1 = ρ̂ξ/(1−a1)
in (54) gives

a2 = ρ̂(1− θ)(1− a1)/ξ. (56)

As a01 > 1 > a1 we have a2 > 0 and from (55), a2 < ρ̂. We obtain from
(54) that a3 > 0, and we have a3 < 1 if

a01 − a1 > ϕ(ρ̂− a2) =
ϕρ̂(a01 − a1)

a01 − a1 + 1− θ

hence if a01−a1 +1−θ > ϕρ̂. From P (a1−1) = 0, we have a01−θ− (a1−1) =
ρ̂ξ/(1− a1). Replacing, the condition can be expressed as

ξ/ϕ > 1− a1 =
1

2

(√
[1− θ + (1− λ)/γ]2 + 4ρ̂ξ − 1 + θ − (1− λ)/γ

)
.

As the RHS of this inequality is increasing in ρ̂ and null when ρ̂ = 0, this
is the case when ρ̂ is not too large. Since we assume 2 + (1− λ)/γ − θ > ρ̂ξ
(to have a1 > 0), a sufficient condition for a3 < 1 is given by

1

2

(√
[1− θ + (1− λ)/γ]2 + 4[2 + (1− λ)/γ − θ]− 1 + θ − (1− λ)/γ

)
≤ ξ/ϕ
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which can be written as

1

2

(√
y2 + 4y + 4− y

)
≤ K

where y = 1− θ + (1− λ)/γ and K = ξ/ϕ, which gives

0 ≥ y2 + 4y+ 4− (2K + y)2 = 4y(1−K) + 4(1−K2) = 4(1−K)(y+ 1 +K).

Consequently, a sufficient condition for a3 < 1 is ξ ≥ ϕ. We also have
a5 > 0 and γa5 < 1 if γ < 1 − λ + γ(2 − a1) hence if 0 < 1 − λ + γ(1 − a1)
which is always the case since a1 < 1. Zt is thus an exponential smoothing
of the public policy scheme {zt+h}h≥0.

Differentiating P (a1 − 1) = 0 wrt λ yields

da1
dλ

=
−(1− a1)

γ[a01 − θ + 2(1− a1)]
< 0

which also gives, using (56),

da2
dλ

= − ρ̂(1− θ)
ξ

da1
dλ

> 0.

Differentiating a5 wrt λ gives

da5
dλ

= a25

(
1 + γ

da1
dλ

)
where, using P (a1 − 1) = 0,

1+γ
da1
dλ

=
a01 − θ − (1− a1)
a01 − θ + 2(1− a1)

=
ρ̂ξ

(1− a1)[a01 − θ + 2(1− a1)]
= −da1

dλ

γρ̂ξ

(1− a1)2
> 0.

We thus have da5/dλ > 0. Differentiating a3 wrt λ yields

da3
dλ

= γ
−ϕ[1− λ+ γ(2− a1 − g)](da2/dλ) + [1− g + ϕ(ρ̂− a2)](1 + γda1/dλ)

[1− λ+ γ(2− a1 − g)]2

where, using a01 = 1 + (1− λ)/γ,

1− λ+ γ(2− a1 − g) = γ(a01 − a1 + 1− g)
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and, using (55) and (56),

ρ̂− a2 =
ρ̂(a01 − a1)

a01 − a1 + 1− θ
=

(a01 − a1)(1− a1)
ξ

.

Replacing, we obtain that da3/dλ > 0 if

0 >
ϕ(1− θ)

ξ
(a01 − a1 + 1− g)− ξ

(1− a1)2

[
1− g + ϕ

(a01 − a1)(1− a1)
ξ

]
= (1− g)

(
ϕ(1− θ)

ξ
− ξ

(1− a1)2

)
+ ϕ(a01 − a1)

[
1− θ
ξ
− 1

1− a1

]
=

(1− g)ξ

(1− a1)2

(
ϕa22

(1− θ)ρ̂2
− 1

)
+
ϕ(a01 − a1)

1− a1

(
a2
ρ̂
− 1

)
.

As a2 < ρ̂, this is always the case if a2 < ρ̂
√

(1− θ)/ϕ, hence if a1 >

1− ξ/
√

(1− θ)ϕ which yields

1

2

(√
[1− θ + (1− λ)/γ]2 + 4ρ̂ξ − 1 + θ − (1− λ)/γ

)
< ξ/

√
(1− θ)ϕ.

As the LHS of this inequality is increasing in ρ̂ and null when ρ̂ = 0, we
thus have da3/dλ > 0 when ρ̂ is not too large. Since we assume 2 + (1 −
λ)/γ− θ > ρ̂ξ (to have a1 > 0), a sufficient condition for da3/dλ > 0 is given
by

1

2

(√
[1− θ + (1− λ)/γ]2 + 4[2 + (1− λ)/γ − θ]− 1 + θ − (1− λ)/γ

)
< ξ/

√
(1− θ)ϕ

which can be written as

1

2

(√
y2 + 4y + 4− y

)
< K

where y = 1− θ + (1− λ)/γ and K = ξ/
√

(1− θ)ϕ, which gives

0 > y2 + 4y+ 4− (2K + y)2 = 4y(1−K) + 4(1−K2) = 4(1−K)(y+ 1 +K).

Consequently, a sufficient condition for a3 to increase with λ is ξ >√
(1− θ)ϕ.
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C Proof of lemma 3

Using (50), we get

r̃t−Et−1[r̃t] = γ{[ϕa2− (1− g+ϕρ̂)− ga3− (a1− 2)a3]κ̃t− (a1− 2)a5(τ η̃t)}.

Using the expressions of a3 and a5 in (52), it can be expressed as

r̃t − Et−1[r̃t] = [1− (1− λ)a5](τ η̃t)− (1− λ)a3κ̃t, (57)

that can also be derived from (51), which becomes

r̃t = zt + τ η̃t − (1− λ)(µ̃t+1 − µt),

using (19). The two-period-ahead wealth index is deduced from

ỹt+1 = c̃t+1 + ρ̂ẽt+1 = q̃t+1 + µ̃t+1 − µ̃t+2 + ρ̂ẽt+1

where

µ̃t+2 = a1µ̃t+1 + a2ẽt+1 + a3q̃t+1 + a4 + a5(τ η̃t+1) + Zt+1.

Replacing leads to

ỹt+1 = (1− a3)q̃t+1 + (1− a1)µ̃t+1 + (ρ̂− a2)ẽt+1 − a4 − a5(τ η̃t+1)− Zt+1

which gives

ỹt+1 − E[ỹt+1] = (1− a3)(gκ̃t + κ̃t+1) + (1− a1)[a3κ̃t + a5(τ η̃t)]

+ (a2 − ρ̂)ϕκ̃t − a5(τ η̃t+1)

= (1− a3)κ̃t+1 − a5(τ η̃t+1) + [(1− a3)g + (1− a1)a3
+ (a2 − ρ̂)ϕ]κ̃t + a5(1− a1)(τ η̃t)

and

V[ỹt+1] = (1− a3)2σ2
κ + a25τ

2σ2
η + [(1− a3)g + (1− a1)a3 + (a2 − ρ̂)ϕ]2σ2

κ

+ (1− a1)2a25τ 2σ2
η

= σ2
y + [(1− a3)g + (1− a1)a3 + (a2 − ρ̂)ϕ]2σ2

κ + (1− a1)2a25τ 2σ2
η

≡ σ2
y+1
.
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D Proof of Lemma 4

The expected AGT index satisfies E[µ̃t] = E[q̃t]ϕ/ξ for all t > T along a
CNP, so that expected wealth satisfies

E[ỹt] = E[c̃t] + ρ̂E[ẽt] = E[q̃t]− E[µ̃t+1] + E[µ̃t] + ρ̂E[ẽt]

= E[q̃t]− (E[q̃t+1]− E[q̃t])ϕ/ξ + ρ̂E[ẽt]

= E[q̃t][1 + (1− g)ϕ/ξ]− ĝϕ/ξ + ρ̂E[ẽt].

while it is given by

E[ỹt] = E[q̃t][1 + (1− g)ϕ/ξ]− ĝϕ/ξ + ρ̂eT

along an SEP. From (18), the expected interest rate along a CNP satisfies

E[r̃t] = rS + γ(E[yt+1]− E[yt])

= rS + γ(E[q̃t+1]− E[q̃t])[1 + (1− g)ϕ/ξ] + γρ̂(E[ẽt+1]− E[ẽt])

= rS + γ(1− g)(qS − E[q̃t])[1 + (1− g)ϕ/ξ] + γρ̂(1− θ)(eS − E[ẽt])

where, solving the recursion from T to t > T ,

E[q̃t] = qS − gt−T (qS − qT )

and
E[ẽt] = eS − θt−T (eS − eT )

with eT < eS = eN along a CNP and eS = eT < eN in the case of an SEP.
Substituting gives (30). Now, from (11) and E[µ̃t] = E[q̃t]ϕ/ξ + (1− θ)(eN −
eS)/ξ, we get

zt = E[r̃t]+(1−λ)(E[q̃t+1]−E[q̃t])ϕ/ξ = E[r̃t]+(1−λ)(1−g)gt−T (qS−qT )ϕ/ξ

hence (29). Replacing in (20) and (30) yield

Zt = a5

+∞∑
i=0

(a5γ)i
{

(1− g)gt+i−T (qS − qT )[γ + (1− λ+ γ(1− g))ϕ/ξ] + γρ̂(1− θ)θt+i−T (eS − eT )
}
.

which gives (31). The SEP stationary state eS is derived as follows. Suppose
the economy has reached an SEP at date T with corresponding GDP level
qT and EQ level eT = eS. Using (31) to substitute for Zt in (19), we obtain

µt+1 = a1µt + a2et + a3qt + Γt + a4 +
a5rS

1− a5γ
+ a5τηt
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for all t > T , where Γt = gΓt−1 with

ΓT ≡
(1− g)(qS − qT )[γ + (1− λ+ γ(1− g))ϕ/ξ]

1− a5γg
.

We can write the dynamic of the economy along the SEP as

Ỹt = BỸt−1 +Hν̃t (58)

where Ỹt = (µ̃t, ẽt, q̃t,Γt, 1)′ is a column vector,

B =


a1 a2 a3 1 a4 + a5rS

1−a5γ
ξ θ −ϕ 0 ê
0 0 g 0 ĝ
0 0 0 0 1
0 0 0 g 0

 , H =


a5τση 0

0 0
0 σκ
0 0
0 0

 ,
and ν̃t = (ν̃1t, ν̃2t)

′ is a column vector of independent standardized Gaussian
variables.

We have E[Ỹt] = BE[Ỹt−1] which gives

Ỹt − E[Ỹt] = B(Ỹt−1 − E[Ỹt−1]) +Hν̃t.

The covariance matrix thus satisfies

E[(Ỹt−E[Ỹt])(Ỹt−E[Ỹt])
′] = B[E(Ỹt−1−E[Ỹt−1])(Ỹt−1−E[Ỹt−1])

′]B′ +HH ′.

By definition of an SEP, we have E[ẽt] = eS and E[ι̃tq̃t] = ϕE[q̃t]−ξE[µ̃t] =
(1 − θ)(eN − eS) for all t. As qt converges to its stationary value qS, the
stationary value of the AGT index is given by µS ≡ qSϕ/ξ+(1−θ)(eN−eS)/ξ.
Hence, the stationary value of Ỹt is given by YS = (µS, eS, qS, 0, 1)′ and
satisfies YS = BYS. The stationary covariance matrix satisfies

VS ≡ E[(Ỹt − YS)(Ỹt − YS)′] = BE[(Ỹt−1 − YS)(Ỹt−1 − YS)′]B′ +HH ′,

and thus solves the Lyapunov equation

VS = BVSB
′ +HH ′.

As neither B nor H depend on eS and qT , VS is independent of the date at
which the SEP is reached (it only depends on the parameters of the model).
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As the dynamic (58) is linear, the distribution of Ỹt follows a Gaussian distri-
bution with mean YS and covariance matrix VS at the stationary equilibrium.
Denoting by σe the standard deviation corresponding to EQ, its stationary
distribution must satisfy

α = Pr{ẽt ≤ ē} = Pr{(ẽt − eS)/σe ≤ (ē− eS)/σe}

Denoting by Φ(x) the CDF of the standardized Gaussian variable at level
x and using Φ(−x) = 1− Φ(x), we get

α = Pr{ẽt ≤ ē} = 1− Φ((eS − ē)/σe),

hence eS = ē+ σeΦ
−1(1− α).

E Proof of Proposition 1

From (26) and (27), the first-order condition with respect to zt is given by

E
[
∂ut
∂c

]
= βE

[
∂Wt+1

∂µ

]
(59)

where ut and Wt are abbreviated notations for u(ct, et) and W (µt, et, qt)
respectively. The envelop theorem gives

∂Wt

∂µ
= ξβE

[
∂Wt+1

∂e

]
+ βE

[
∂Wt+1

∂µ

]
(60)

and
∂Wt

∂e
= E

[
∂ut
∂e

]
+ θβE

[
∂Wt+1

∂e

]
. (61)

Using (59), (60) can be written as

∂Wt

∂µ
= ξβE

[
∂Wt+1

∂e

]
+ E

[
∂ut
∂c

]
. (62)

Evaluating (62) in expectation one period ahead gives

E
[
∂Wt+1

∂µ

]
= E

[
∂ut+1

∂c

]
+ ξβE

[
∂Wt+2

∂e

]
=

1

β
E
[
∂ut
∂c

]
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using (59), hence

E
[
∂Wt+2

∂e

]
=

1

ξβ2
E
[
∂ut
∂c

]
− 1

ξβ
E
[
∂ut+1

∂c

]
.

Plugging this expression in (61) evaluated one period ahead yields

E
[
∂Wt+1

∂e

]
= E

[
∂ut+1

∂e

]
+

θ

ξβ
E
[
∂ut
∂c

]
− θ

ξ
E
[
∂ut+1

∂c

]
.

We can thus express (62) as

∂Wt

∂µ
= (1 + θ)E

[
∂ut
∂c

]
+ ξβE

[
∂ut+1

∂e

]
− θβE

[
∂ut+1

∂c

]
which, evaluated one period ahead yield gives,

E
[
∂Wt+1

∂µ

]
= (1 + θ)E

[
∂ut+1

∂c

]
+ ξβE

[
∂ut+2

∂e

]
− θβE

[
∂ut+2

∂c

]
=

1

β
E
[
∂ut
∂c

]
using (59). Reorganizing terms, we obtain

E
[
∂ut
∂c

]
= (1 + θ)βE

[
∂ut+1

∂c

]
− θβ2E

[
∂ut+2

∂c

]
+ β2ξE

[
∂ut+2

∂e

]
. (63)

From (28) and (33), we have

E
[
∂ut
∂c

]
= (1 + ret )βE

[
∂ut+1

∂c

]
.

Substituting in (63) for initial dates t and t+ 1 yields

β2

δet δ
e
t+1

E
[
∂ut+2

∂c

]
=

(1 + θ)β2

δet+1

E
[
∂ut+2

∂c

]
− θβ2E

[
∂ut+2

∂c

]
+ β2ξE

[
∂ut+2

∂e

]
where δet ≡ (1 + ret )

−1, which upon simplifying and rearranging terms yields

ξ
E [∂ut+2/∂e]

E [∂ut+2/∂c]
= (1 + ret )(1 + ret+1)− (1 + ret )(1 + θ) + θ

= (1 + ret )(r
e
t+1 − θ) + θ

= ret+1 + ret r
e
t+1 − ret θ.
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F Proof of Proposition 2

Expression (34) gives the recursive equation

ret+1 =
ρξ + ret θ

1 + ret
(64)

which can be solved as follows. Defining vt = (ret + c)−1 or equivalently
ret = 1/vt − c where c is a constant to determine, (64) becomes

1

vt+1

= c+
ρξ + θ/vt − θc
1 + 1/vt − c

= c+
θ + vt(ρξ − θc)
vt(1− c) + 1

=
vt[c(1− c) + ρξ − θc] + c+ θ

vt(1− c) + 1
,

which gives

vt+1 =
vt(1− c) + 1

vt[c(1− c− θ) + ρξ] + c+ θ
,

an equation that simplifies to

vt+1 =
1− c
c+ θ

vt +
1

c+ θ

≡ kvt + k0, (65)

under the conditions c 6= −θ and

c(1− c− θ) + ρξ = 0. (66)

Provided that k 6= 1, the solution of the recurrence equation (65) is given
by

vt+1 = kt+1v0 + k0(1− kt+1)/(1− k) (67)

which converges to v∞ = k0/(1−k) if |k| < 1, i.e. if 1 > |(1− c)/(c+θ)| > 0,
albeit with oscillations along its path if k < 0. The corresponding solution of
(34) would converge to

re∞ = (1− k)/k0 − c = θ − 1 + c
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which must be equal to the solution of (35), i.e. we must have

re] = θ − 1 + c (68)

where re] is either equal to (A− 1 + θ)/2 > 0 or −(A+ 1− θ)/2 < 0. Using
(68) to substitute re] + 1− θ for c in (66) yields (35). (66) is thus satisfied if
(68) is true. Using (68) and (65) yields

k =
θ − re]
re] + 1

. (69)

We have k > 0 if −1 < re] < θ (as we cannot have re] > θ and re] < −1).
The condition k < 1 implies θ − re] < 1 + re] , hence (θ − 1)/2 < re] . We thus
have 1 > k > 0 if (θ − 1)/2 < re] < θ, which rules out the negative root of
(35), since we cannot have (θ − 1)/2 < −(A + 1 − θ)/2. The lower-bound
condition on re] gives (θ − 1)/2 < (A − 1 + θ)/2, which is always true. The
upper-bound condition on re] can be written as θ > (A−1+θ)/2 which gives
A < θ+ 1. Squaring both terms, we arrive at 4ρξ < (1 + θ)2 − (1− θ)2 = 4θ
hence ρξ < θ.

We have k < 0 if either re] < −1 or if re] > θ . Moreover we have |k| < 1
if re] − θ < 1 + re] which is always true. Hence, we have −1 < k < 0 if re] > θ
or if re] < −1. Taking the positive root, this condition gives A− 1 + θ > 2θ
i.e. A > 1 + θ hence ρξ > θ.

Substituting (A − 1 + θ)/2 for re] in (69) yields (38). From (68), the
condition c 6= θ is equivalently stated as re] 6= −1 which is always the case
with the positive root. Using (67) and as initial value ret0 = 1/vt0 − c, the
solution of (34) at period t ≥ t0 satisfies

ret =
(1− k)(ret0 + c)

(1− k)kt−t0 + k0(1− kt−t0)(ret0 + c)
− c.

Using (1− k)/k0 = re] + c, we get

ret =
(re] + c)(ret0 + c)

(re] + c)kt−t0 + (1− kt−t0)(ret0 + c)
− c

= re] +
(re] + c)(ret0 − r

e
] )k

t−t0

re] + c+ (1− kt−t0)(ret0 − re] )
.

Using (68) and (37), we obtain re] + c = 2re] + 1 − θ = A. Substituting
allows us to obtain (36) which converges to re] when re] > ret0 if A > re] − ret0
hence ret0 > −(A+ 1− θ)/2.
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The covariance term in (33) is derived using u(yt) = −e−γyt and E[e−γỹ] =
e−γ(E[ỹ]−γV[ỹ]/2) which gives

u′(ỹt+1)

Et−1 [u′(ỹt+1)]
= e−γ(ỹt+1−Et−1[ỹt+1]+γσ2

y+1
/2).

Consequently,

Covt−1 (r̃t, u
′(ỹt+1))

Et−1 [u′(ỹt+1)]
= E

[
(r̃t − Et−1[r̃t])

(
u′(ỹt+1)

Et−1 [u′(ỹt+1)]
− 1

)]
= E

[
{[1− (1− λ)a5]a5τ η̃t − (1− λ)a3κ̃t}

(
e−γ(ỹt+1−Et−1[ỹt+1]+γσ2

y+1
/2) − 1

)]
= e−γ

2σ2
y+1

/2{[1− (1− λ)a5]E
[
τ η̃te

−γ(ỹt+1−E[ỹt+1])
]

− (1− λ)a3E
[
κ̃te
−γ(ỹt+1−Et−1[ỹt+1])

]
}

where the last term can be written as

E
[
κ̃te
−γ(ỹt+1−Et−1[ỹt+1])

]
= E[κ̃te

−γ[(1−a3)g+(1−a1)a3+(a2−ρ)ϕ]κ̃t ]

× E[e−γ[(1−a3)κ̃t+1+(1−a1)a5τ η̃t−a5τ η̃t+1]

from independence. Using E[e−γX̃ ] = e−γ(EX̃−γσ
2
X/2) for a normal random

variable X̃, it comes that the last term is equal to eγ
2{σ2

y+(1−a1)2a25τ2σ2
η}/2.

Moreover, using

E
[
X̃e−γX̃

]
= − d

dγ
E[e−γX̃ ] = − d

dγ
e−γ(EX̃−γσ

2
X/2) = (EX̃−γσ2

X)e−γ(EX̃−γσ
2
X/2),

we get

E[κ̃te
−γ[(1−a3)g+(1−a1)a3]κ̃t ] = −γ[(1−a3)g+(1−a1)a3+(a2−ρ)ϕ]2σ2

κe
γ2[(1−a3)g+(1−a1)a3]2σ2

κ/2

which gives

E
[
κ̃te
−γ(ỹt+1−Et−1[ỹt+1])

]
= −γ[(1− a3)g+ (1− a1)a3 + (a2− ρ)ϕ]2σ2

κe
γ2σ2

yt+1
/2.

Similarly, we have

E
[
(τ η̃t)e

−γ(ỹt+1−Eỹt+1)
]

= E
[
(τ η̃t)e

−γa5(1−a1)(τ η̃t)
]

× E[e−γ{(1−a3)κ̃t+1+[(1−a3)g+(1−a1)a3]κ̃t−a5(τ η̃t+1)}]

= −γ(1− a1)2a25τ 2σ2
ηe
γ2σ2

yt+1
/2.
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Collecting terms, we get

cov (r̃t, u
′(ỹt+1))

Et−1 [u′(ỹt+1)]
= (1− λ)a3γ[(1− a3)g + (1− a1)a3 + (a2 − ρ)ϕ]2σ2

κ

− [1− (1− λ)a5]γ(1− a1)2a25τ 2σ2
η

= γ(1− λ)a3(σ
2
y+1 − σ2

y)− γ[1− (1− λ)(a5 − a3)](1− a1)2a25τ 2σ2
η

which gives (39).

G Proof of Proposition 3

This result can be obtained recursively by observing that (36) can be rewrit-
ten in term of normalized gaps as dt0+h = fh(dt0) with f 0(x) = x and
fh(x) ≡ f ◦ fh−1(x) for all h ≥ 1. Indeed, it is true for h = 1 since
dt0+1 = f(dt0) and supposing it is true for t + h, it is true for t + h + 1:
we have f(dt+h) = f(fh(dt)) = fh+1(dt) = dt+h+1. A direct and alternative
proof is obtained using fh(x) = khx/[1 + (1− kh)x]: we get

f(fh(x)) =
kfh(x),

1 + (1− k)fh(x)
=

kh+1x

1 + (1− kh)x+ (1− k)khx
=

kh+1x

1 + (1− kh+1)x

= fh+1(x).

H Approximation of the optimal dynamic

Using
Et0 [r̃?t ] = r?] + Adt = r?] + Af t−t0(dt0)

for t < T and, from (30),

Et0 [R̃t] = rS + γ(1− g)gt−T (qS − Et0 [q̃T ])[1 + (1− g)ϕ/ξ] + γρ(1− θ)θt−T (eN − Et0 [ẽT ])

= r?] + (rS − r?] ) + γ(1− g)gt(qS − qt0)[1 + (1− g)ϕ/ξ] + γρ(1− θ)θt−T (eS − Et0 [ẽT ])

for t ≥ T , we arrive at

Zt =
a5r

?
]

1− γa5
+ a5A

T−1∑
i=t

(γa5)
i−tf i(dt0) + Γt

+ a5(1− λ)(1− γa5)
+∞∑
i=0

(γa5)
i (Et0 [µ̃t+i+1]− Et0 [µ̃t+i])
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where

Γt ≡ a5

+∞∑
i=T−t

(γa5)
i(Et0 [R̃t+i]− r?] ) = a5(γa5)

T−t
+∞∑
i=0

(γa5)
i(Et0 [R̃T+i]− r?] )

= a5(γa5)
T−t
{
rS − r?]
1− γa5

+
γ(1− g)gT (qS − qt0)[1 + (1− g)ϕ/ξ]

1− γa5g
+
γρ(1− θ)(eS − Et0 [ẽT ])

1− γa5θ

}
= Γt0/(γa5)

t

with

Γt0 ≡ a5(γa5)
T

{
rS − r?]
1− γa5

+
γ(1− g)gT (qS − qt0)[1 + (1− g)ϕ/ξ]

1− γa5g
+
γρ(1− θ)(eS − Et0 [ẽT ])

1− γa5θ

}
,

(70)
where eS = Et0 [ẽT ] < eN under an SEP and eS = eN > Et0 [ẽT ] under a
CNP. Using a first-order Taylor expansion of f i(dt0) around 0 which gives
f i(dt0) ≈ kidt0 , yields

a5A
T−1∑
i=t

(γa5)
i−tf i(dt0) ≈

a5Adt0
(γa5)t

T−1∑
i=t

(γa5k)i = a5Adt0k
t

T−t−1∑
i=0

(γa5k)i

=
a5Adt0k

t[1− (γa5k)T−t]

1− γa5k

which can be expressed recursively as

a5A
T−1∑
i=t

(γa5)
i−tf i(dt0) ≈ Ut −

a5Adt0
1− γa5k

(γa5k)T
Γt
Γt0

with Ut = kUt−1 and

Ut0 =
a5Adt0

1− γa5k
.

Substituting in (44) we get

Zt ≈
a5r

?
]

1− γa5
+

(
1− a5Adt0

1− γa5k
(γa5k)T

Γt0

)
Γt + Ut

+ a5(1− λ)(1− γa5)
+∞∑
i=0

(γa5)
i (Et0 [µ̃t+i+1]− Et0 [µ̃t+i]) .
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This equation contains a forward looking term which is an exponential
smoothing of the expected values of the AGT index. For all t, approximating
Et0 [µ̃t+i+1]− Et0 [µ̃t+i] by E[µ̃t+1]− E[µ̃t] for all i ≥ 1, we get

(1− γa5)
+∞∑
i=0

(γa5)
i (Et0 [µ̃t+i+1]− Et0 [µ̃t+i]) ≈ Et0 [µ̃t+1]− Et0 [µ̃t]

which gives

Zt ≈
a5r

?
]

1− γa5
+

(
1− a5Adt0

1− γa5k
(γa5k)T

Γt0

)
Γt+Ut+a5(1−λ) (Et0 [µ̃t+1]− Et0 [µ̃t]) .

Substituting for Zt in (19), we obtain

Et0 [µ̃t+1] ≈
a1 − a5(1− λ)

1− a5(1− λ)
Et0 [µ̃t] +

a2Et0 [ẽt]
1− a5(1− λ)

+
a3Et0 [q̃t]

1− a5(1− λ)

+
Γt

1− a5(1− λ)

(
1− Aa5dt0

1− γa5k
(γa5k)T

Γt0

)
+

Ut
1− a5(1− λ)

+
a4 + a5r

?
] /(1− γa5)

1− a5(1− λ)

≡ â1Et0 [µ̃t] + â2Et0 [ẽt] + â3Et0 [q̃t] + â4Γt + â5Ut + â6.

Hence, the dynamic of the economy can be approximated by the first-
order recursive linear equation

X̃t = MX̃t−1 + Cν̃t, (71)

for all t < T , where X̃t = (µ̃t, ẽt, q̃t,Γt, Ut, 1)′,

M =


â1 â2 â3 â4 â5 â6
ξ θ −ϕ 0 0 ê
0 0 g 0 0 q0
0 0 0 (γa5)

−1 0 0
0 0 0 0 k 0
0 0 0 0 0 1

 , C =


a5τση 0

0 0
0 σκ
0 0
0 0
0 0


with

â1 =
a1 − a5(1− λ)

1− a5(1− λ)
, â2 =

a2
1− a5(1− λ)

, â3 =
a3

1− a5(1− λ)

â4 =
1

1− a5(1− λ)

(
1− a5Adt0

1− γa5k
(γa5k)T

Γt0

)
, â5 =

1

1− a5(1− λ)
,

â6 =
a4 + a5r

?
] /(1− γa5)

1− a5(1− λ)
.
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Observe that (71) entails terms that are exponentially decreasing with T
and that for a CNP, (70) also involves E[ẽT ]. In case of an ESP, the last
term of (70) is nil. For a CNP, denoting by τi the 6−dimensional column
vector of zeroes except in position i where there is a 1, date T correspond-
ing to the junction with a CNP is deduced from maxT{ϕτ ′1.MT−t0 .Xt0 ≤
ξτ ′3.M

T−t0 .Xt0}. Applying such a procedure generates a first set of values

{E[µ̃t]
(1)}t≥t0 that can be used to estimate {Z(1)

t }t≥t0 from (44) to obtain an

initial set of transition matrices {B(1)
t }t≥t0 .
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Figure 1: Long run optimal interest rate.
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Figure 2: Convergence of the normalized gap.
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Figure 3: Carbon prices as functions of λ.
Baseline with λ = .8. Unit: US$/t CO2
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Figure 4: AGT index dynamic.
Baseline with λ = .8.
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Figure 5: Environmental quality dynamic.
Baseline with λ = .8. Unit: Gt CO2
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Figure 6: Optimal policy scheme.
Baseline with λ = .8.
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Figure 7: Interest rates.
Baseline with λ = .8.
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Figure 8: Investment rates.
Baseline with λ = .8.
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Figure 9: Consumption dynamic.
Baseline with λ = .8. Unit: 10 trillions US$
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ỹLFt ỹ?t Et0 [ỹ?t ]

Figure 10: Total wealth dynamic.
Baseline with λ = .8. Unit: 10 trillions US$
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