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Centre d’Economie de la Sorbonne, 106-112 Bd de l’Hôpital, 75647 Paris Cedex 13, France
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Abstract. We study a stochastic model of anonymous influence with conformist and anti-conformist
individuals. Each agent with a ‘yes’ or ‘no’ initial opinion on a certain issue can change his opinion
due to social influence. We consider anonymous influence which depends on the number of agents
having a certain opinion, but not on their identity. An individual is conformist/anti-conformist
if his probability of saying ‘yes’ increases/decreases with the number of ‘yes’- agents. In order to
consider both conformists and anti-conformists in a society, we investigate a generalized aggrega-
tion mechanism. It uses the ordered weighted averages which are the only anonymous aggregation
functions. Additionally, every agent has a coefficient of conformism which is a real number from −1
till 1, with the two extreme values corresponding to a pure anti-conformist and a pure conformist,
respectively. We assume that both pure conformists and anti-conformists are present in a society,
and we deliver a qualitative analysis of convergence in the model, i.e., find all terminal classes and
conditions for their occurrence.
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1 Introduction

In this paper we study anti-conformism in a framework of anonymous social influence.
Contrarily to opinion conformity which has been widely studied in various fields, set-
tings, and using different approaches (see, e.g., Jackson (2008); Acemoglu and Ozdaglar
(2011); Förster et al. (2013) for surveys), anti-conformism has received little attention
in the literature. Despite the fact that anti-conformist is very natural to explain human
behavior and dynamic phenomena, and plays a crucial role in many social and economic
situations, there are only a few works related to this phenomenon. Grabisch and Rusi-
nowska (2010a,b) address the problem of measuring negative influence but only in one-
step (static) settings. Bramoullé et al. (2004); López-Pintado (2009); Cao et al. (2013)
study network formation and anti-coordination games, i.e., games where agents prefer
to choose an action different from that chosen by their partners. Anti-conformism and
anti-coordination can easily be casted and detected in many frameworks. For example,
the choice of a firm to go compatible or not with other firms can be seen as a problem
of anti-conformism. Anti-coordination can be optimal when adopting different roles or
having complementary skills are necessary for a successful interaction or realization of a
task in a team.



We consider opinion formation in the framework of anonymous influence as a pure im-
itation process. The seminal work of DeGroot (1974) and some of its extensions (see e.g.
DeMarzo et al. (2003); Jackson (2008); Golub and Jackson (2010); Büchel et al. (2014,
2015)) study a non-anonymous influence in which agents update their opinions by using
a weighted average of the opinions of their neighbors. We are interested in anonymous
influence, which depends only on the number of individuals having a certain opinion and
is not dependent on agents’ identities. Förster et al. (2013) study anonymous social in-
fluence by using the ordered weighted averages (commonly called OWA operators, Yager
(1988)) which are the unique anonymous aggregation functions. More precisely, the au-
thors departure from a general framework of influence based on aggregation functions
(Grabisch and Rusinowska (2013)), where every individual updates his opinion by ag-
gregating the agents’ opinions which determines the probability that his opinion will be
‘yes’ in the next period. However, instead of allowing for arbitrary aggregation functions,
Förster et al. (2013) consider the particular way of aggregating based on the OWA op-
erators. Both frameworks of Grabisch and Rusinowska (2013) and Förster et al. (2013)
cover only positive influence, since by definition aggregation functions are nondecreasing,
and hence cannot model anti-conformism.

In order to consider societies with anti-conformists and anonymous influence, we inves-
tigate a generalized aggregation mechanism. We also use the OWA operators, i.e., every
agent is assumed to have a weight vector, but is additionally characterized by a coefficient
of conformism. Individuals are intrinsically either conformists or anti-conformists. The co-
efficient of conformism is a real number in [−1, 1], where the extreme values −1 and 1
correspond to pure anti-conformists and pure conformists, respectively. Each agent has an
initial yes/no opinion on a certain issue and at every time step can update his opinion by
taking into account how many individuals share a given opinion. The probability of say-
ing ‘yes’ is monotonic w.r.t. the number of ‘yes’-agents – it increases for conformists and
decreases for anti-conformists. We provide a complete qualitative analysis of convergence
in this framework. The crucial information in determining all terminal classes to which
a society converges is the number of yes/no agents needed to influence an individual’s
opinion. It is determined by the number of left/right zeroes in the agents’ weight vectors.
There exist several different types of terminal classes in the model, and conditions for
their occurrence are determined by relations between the numbers of (anti-)conformists
and the left/right zeroes in the weights vectors of conformists and anti-conformists. In the
long run, the opinion of a society with conformists and anti-conformists always converges
to a terminal class, but never to consensus, contrarily to a conformist society, where con-
sensus can be reached. Moreover, a society with conformists and anti-conformists can be
dichotomous, where one of the two groups say ‘yes’ forever. Cycles and periodic classes as
well as intervals and unions of intervals are also possible terminal classes in the presence
of anti-conformists.

Our framework can explain various phenomena like stable and persistent shocks, large
fluctuations, stylized facts in the industry of fashion, in particular its intrinsic dynamics,
booms and burst in the frequency of surnames, etc. For instance, if fashion were only a
matter of conformist imitation in an anonymous framework, there would be no trends
over time. Our setting can be applied to some existing models, like herd behavior and
information cascades (Banerjee (1992); Bikhchandani et al. (1992)) which have been used
to explain fads, investment patterns, etc.; see Anderson and Holt (2008) for a survey
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of experiments on cascade behavior. Although Bikhchandani et al. (1992) have already
addressed the issue of fashion, the present model takes a different turn, since we assume no
sequential choices and some agents are anti-conformists while others are conformists. In
the model of herd behavior (Banerjee (1992)) agents play sequentially and wrong cascades
can occur. Though it can be rational to follow the crowd, some anti-conformists may
want to play a mixed-strategy: either following the crowd or not. This is particularly true
under bounded rationality. Agents may not be able to know what is rational, for example
because they lack information or do not have enough time or computational capacities.
As a consequence, they may play according to rules of the thumb like counting how many
people said ‘yes’ rather than computing bayesian probabilities. Chandrasekhar et al.
(2016) show in a lab experiment that people tend to behave according to the DeGroot
model rather than to Bayesian updating; see also Celen and Kariv (2004). This is also
consistent with Anderson and Holt (1997) who show that counting is the most salient
bias to explain departure from Bayesian updating.

The rest of the paper is structured as follows. In Section 2 we introduce the model of
anonymous influence with anti-conformist agents. The convergence analysis is provided in
Section 3. Section 4 contains some examples. In Section 5 we present concluding remarks.
The proof of our main results on the possible terminal classes in the model is given in
the Appendix.

2 The model

2.1 Basic assumptions

We consider a society N of |N | = n agents, having to make a yes/no-decision on some
issue. Each agent has a personal initial opinion on the issue, however, by knowing the
opinion of the other agents or by some social interaction with them, the opinion of each
agent may change due to mutual influence. Doing so, there is an evolution in time of the
opinion of the agents, which may or may not stop at some stable state of the society.

We define the state of the society as the vector giving the opinion of each agent in
N . Equivalently, the state of the society is determined by the set S ⊆ N of agents whose
opinion is ’yes’. Our fundamental assumption is that the evolution of the state is ruled by
a homogeneous Markov chain, that is, the state evolves at discrete time steps, the state
at time t depends only on the state at time t − 1, and the transition matrix giving the
probability of all possible transitions from a state S to a state T is constant over time.

These assumptions are basically those underlying (Grabisch and Rusinowska, 2013).
As the number of states is 2n, the size of the transition matrix is 2n × 2n. In order
to avoid this exponential complexity, the latter reference uses a simple mechanism to
generate the transition matrix, inspired by DeGroot (1974). Coding ‘yes’ and ‘no’ by 1
and 0, respectively, the probability pi(S) that an agent i ∈ N says ‘yes’ at next time step,
given the present state S (the set of agents saying ‘yes’), is

pi(S) = Ai(1S), (1)

where 1S is the indicator function of S, i.e., 1S(i) = 1 if i ∈ S and 0 otherwise, and Ai is a
nondecreasing function from [0, 1]n to [0, 1] satisfying Ai(1N) = 1 and Ai(1∅) = 0 (called
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an aggregation function1). Supposing that the update of opinion is done independently,
the probability of transition from a state S to a state T is

λS,T =
∏
i∈T

pi(S)
∏
i 6∈T

(1− pi(S)), (2)

with pi(S) given by (1).

2.2 Anonymous influence

The most common example of aggregation function, used for example in DeGroot (1974),
is the weighted arithmetic mean

Ai(x) =
n∑
j=1

wijxj,

where x = (x1, . . . , xn) and the wij’s are weights on the entries, satisfying wij ≥ 0 and∑n
j=1w

i
j = 1. Here, wij represents to which extent agent i puts confidence on the opinion of

agent j. It depicts a situation where every agent knows the identity of every other agent,
and is able to assess to which extent he trusts or agrees with the opinion or personal
tastes of others.

In many situations however, like opinions and comments given on the internet, the
identity of the agents is not known, or at least, there is no clue on the reliability or
kind of personality of the agents. Therefore, agents can be considered as anonymous, and
influence is merely due to the number of agents having a certain opinion, not their identity.
The natural aggregation function for this situation is the ordered weighted average (OWA)
(Yager, 1988):

OWAw(x) =
n∑
j=1

wjx(j), (3)

where the entries x1, . . . , xn are rearranged in decreasing order: x(1) ≥ x(2) ≥ · · · ≥ x(n),
and w = (w1, . . . , wn) is the weight vector defined as above. Hence, the weight wj is not
assigned to agent j but to rank j, and thus permits to model quantifiers. For example,
taking w1 = 1 and all other weights being 0 models the quantifier “there exists”. Indeed,
it is enough to have one of the entries being equal to 1 to get 1 as output. In our context,
it means that only one agent saying ‘yes’ is enough to make your opinion being ’yes’
for sure. Similarly, “for all” is modeled by wn = 1 and all other weights being 0, and
means that you need that all agents (including you) say ‘yes’ to be sure to continue to
say ‘yes’. Intermediate situations can of course be modeled as well: by letting wk = 1 and
wj = 0 for all k 6= j, one obtain a model where k ‘yes’ among the n agents are needed
to ensure that the concerned agent will say ‘yes’ at next time step. Moreover, soft or
fuzzy quantifiers can be modeled as well: “approximately half” could be represented by
the following weight vector (with n = 10):

w =
(
0 0 0 1

8
3
8

3
8

1
8

0 0 0
)
.

1 Traditionally, the domain of an aggregation is [0, 1]n or any interval of R to the power n. In our study, however,
only the vertices {0, 1}n are used.
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The above model using OWA as an aggregation function has been fully studied in
Förster et al. (2013), in particular concerning convergence of opinion in the long run.
Generally speaking (see, e.g. Kemeny and Snell (1976); Seneta (2006)), we recall that for
a Markov chain with set of states E and transition matrix Λ and its associated digraph
Γ , a class is a subset C of states such that for all states e, f ∈ C, there is a path in Γ
from e to f , and C is maximal w.r.t. inclusion for this property. A class is terminal or
absorbing if for every e ∈ C there is no arc in Γ from e to a state outside C. A terminal
class C is periodic of period k if it can be partitioned in blocks C1, . . . , Ck such that for
i = 1, . . . , k, every outgoing arc of every state e ∈ Ci goes to some state in Ci+1, with the
convention k + 1 = 1. When each C1, . . . , Ck reduces to a single state, one may speak of
cycle of length k, by analogy with graph theory.

In our case, states are subsets of agents and therefore classes are collections of sets,
which we denote by calligraphic letters, like C,B, etc. By definition, a terminal class
indicates the final state of opinion of the society. If a terminal class reduces to a single
state S, it means that in the long run, the society is dichotomous (unless S = N or
S = ∅, in which case consensus is reached): there is a set of agents S who say ‘yes’
forever, while the other ones say ‘no’ forever. Otherwise, there are endless transitions
with some probability from one set S ∈ C to another one S ′ ∈ C.

It is an obvious fact that for any type of aggregation function, ∅ and N are terminal
classes. Indeed, the conditions Ai(1N) = 1 and Ai(1∅) = 0 for all i ∈ N imply that
λN,N = 1 and λ∅,∅ = 1, that is, once these states are reached, there is no possibility to
escape from them. However, many other terminal classes are possible. For the anonymous
model, they are of two types:

(i) any single state S ∈ 2N ;
(ii) union of intervals of the type [S, S ∪K], where S,K 6= ∅, N , with [S, S ∪K] = {T ∈

2N | S ⊆ T ⊆ S ∪K}.

For the second case, when the terminal class is reduced to a single interval [S, S ∪K], it
depicts a situation in the long run where agents in S say ‘yes’, those outside S ∪K say
‘no’, and those in K oscillate between ‘yes’ and ‘no’ forever. Interestingly, no periodic
class can occur, although in general for arbitrary aggregation functions cycles can occur
(Grabisch and Rusinowska, 2013).

2.3 Anti-conformism and conformism

As aggregation functions are nondecreasing in each argument, models of influence based
on them are necessarily conformist : if more agents say ‘yes’, your probability of saying
‘yes’ cannot decrease, i.e., you are more or less inclined to follow the trend. However,
it is often observed that some individuals are inclined to go against the trend by some
reactive behavior, which can be modeled by an “anti”-aggregation function, i.e., being
nonincreasing in each argument.

In this paper, we introduce such functions, but limit our study to anonymous models.
In order to consider both conformist and anti-conformist agents in a society, we propose a
generalization of the above mechanism defined by (1) and (3). To this end, we find more
convenient to replace 1 and 0 by 1 and −1, respectively, for the coding of ’yes’ and ’no’.
As usual, cardinalities of sets are denoted by the corresponding lower case, e.g., s = |S|.
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The probability that agent i says ‘yes’ at next time step, given that S is the set of
agents saying ‘yes’ at present time is now given by

pi(S) =
1

2

(
1 + αiOWAwi(1S)

)
=

1

2

(
1 + αi

( s∑
j=1

wij −
n∑

j=s+1

wij

))
, (4)

with αi ∈ [−1, 1], wi is the weight vector of agent i, and the OWA operator is given
by (3). The coefficient αi is called the coefficient of conformism. We easily observe the
following.

(i) The values taken by pi are comprised between 1/2(1− αi) and 1/2(1 + αi).
(ii) If αi > 0, then pi is a monotone function w.r.t. set inclusion, i.e., the bigger the set

S, the higher the probability to say ‘yes’, which indicates a conformist attitude for
agent i. This effect is maximum when αi = 1, and we say then that the agent is purely
conformist. Note that in the latter case (4) is identical to (1) with the OWA operator.
Hence, if αi = 1 for all i ∈ N , we recover the classical (conformist) anonymous model
studied in Förster et al. (2013).

(iii) If αi < 0, then pi is antimonotone w.r.t. set inclusion, i.e., the smaller S, the higher
the probability to say ‘yes’, which means that the agent is anti-conformist. If αi = −1,
then we call i a purely anti-conformist agent.

(iv) If αi = 0, then pi(S) = 1
2

for every S, that is, the agent tosses a coin whatever the
situation is.

Example 1 Let us take n = 4 and the weight vector (0, 0, 1
2
, 1
2
), which can be interpreted

as the soft quantifier “most of”. The probability pi(S) is computed for various αi and
sizes of S in the table below.

pi(S) S = ∅ |S| = 1 |S| = 2 |S| = 3 S = N
αi = 1 0 0 0 0.5 1
αi = 0.5 0.25 0.25 0.25 0.5 0.75
αi = 0 0.5 0.5 0.5 0.5 0.5
αi = −1 1 1 1 0.5 0

One can see that conformist agents tend to say ‘yes’ if most of people do so, while
anti-conformist agents tend to say ‘no’ in this situation.

To facilitate the analysis of the model, we distinguish between three types of agents
and introduce some assumption and notation. We partition the society of agents into

N = N c ∪Na ∪Nm

where N c is the set of (purely) conformist agents with αi = 1, Na the set of (purely)
anti-conformist agents (αi = −1), and Nm is the set of “mixed” agents with αi ∈ ]−1, 1[.
To avoid trivialities we consider that N c, Na 6= ∅, however in the present study we will
bear on the case Nm = ∅ (called the pure case).

Consider a weight vector w =
(
w1 · · · wn

)
of an OWA operator. As our analysis will

reveal, the relevant information in w is merely the number of right and left zeroes, not
the precise value of the weights. We denote by l and r the number of left zeroes and right
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zeroes in w, respectively. Formally, 0 = w1 = · · · = wl 6= wl+1 and wn−r 6= wn−r+1 =
· · · = wn = 0. For example, taking w =

(
0 0.1 0.5 0 0.2 0 0.3 0 0

)
, we have l = 1

and r = 2. Observe that due to the normalization condition of w, we have 0 ≤ l+ r < n.
We make the following assumption: agents in N c may have different weight vectors,

however the number of left and right zeroes is the same for all of them. We denote them
by lc, rc. Similarly, la, ra (respectively, lm, rm) denote the number of left and right zeroes
in the weight vector of agents in Na (respectively, Nm).

We end this section by giving an interpretation of the left and right zeroes. Let us
consider a weight vector with l left zeroes and r right zeroes. We can see from the definition
of OWA that these zeroes eliminate the first l ‘yes’ and the first r ‘no’. Therefore, the
decision of an agent with such a weight vector is based on the number of people saying
‘yes’ and ‘no’, after having eliminated the first l ‘yes’ and r ‘no’. The number of left/right
zeroes indicates how many people the agent needs in order to start being influenced
towards the yes/no opinion. In particular, a non symmetrical weight vector w.r.t. the
number of left and right zeroes means that the agent is biased towards the ‘yes’ or ‘no’
answer, i.e., he needs a different number of people to start being convinced to say ‘yes’
or ‘no’.

2.4 Basic properties of transitions

We study in this section the properties of the transition matrix Λ, with entries λS,T ,
S, T ∈ 2N . We recall that λS,T is given by (2), with pi(S) given by (4).

Our aim is to find under which conditions one has a possible transition from S to T ,
i.e., λS,T > 0. From (2), we have:

λS,T > 0⇔ [pi(S) > 0∀i ∈ T ]&[pi(S) < 1∀i 6∈ T ].

The pure case We start with the case Nm = ∅. We first observe that pi(∅) = 1 if i ∈ Na

and 0 otherwise, and pi(N) = 1 if i ∈ N c and 0 otherwise. Therefore we have in any case
the sure transitions

λ∅,Na = 1, λN,Nc = 1.

Using (4), we find, for any S 6= ∅, N ,

(i ∈ N c) pi(S) > 0 ⇔
s∑
j=1

wcj > 0 ⇔ s > lc (5)

pi(S) < 1 ⇔
n∑

j=s+1

wcj > 0 ⇔ n− s > rc (6)

(i ∈ Na) pi(S) > 0 ⇔
n∑

j=s+1

waj > 0 ⇔ n− s > ra (7)

pi(S) < 1 ⇔
s∑
j=1

waj > 0 ⇔ s > la. (8)

Clearly, the above conditions depend only on the number of left and right zeroes of the
weight vector. Therefore, as announced, the sole knowledge of the number of left and
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right zeroes is suffices for the analysis of transitions, and thus of convergence, as far as
we are not interested in computing the precise values of the transition matrix.

By combining these conditions and their negation in various ways, one can see that
we can have transitions to ∅, N,Na, N c and any of their subset or superset. Table 1
summarizes the possible transitions, adding also those from S = ∅ and S = N . Let

0 ≤ s ≤ lc lc < s < n− rc n− rc ≤ s ≤ n

0 ≤ s ≤ la Na T ∈ [Na, N ] N

la < s < n− ra T ∈ [∅, Na] T ∈ 2N T ∈ [Nc, N ]

n− ra ≤ s ≤ n ∅ T ∈ [∅, Nc] Nc

Table 1. Possible transitions from S ∈ 2N in the pure case

us introduce Z = (lc, rc, la, ra) the vector giving the number of left and right zeroes
in the weight vectors of conformist and anti-conformist agents (in this order), and let
us write pZi to emphasize the dependency of pi on these parameters (and similarly for
λS,T ). Equations (5) to (8) show striking symmetries when interchanging conformists and
anti-conformists, as well as when interchanging left and right zeroes. Z being given, we
introduce the reversal of Z, Z∂ := (rc, lc, ra, la), which amounts to reversing the weight
vectors, and the interchange of Z, Z ′ = (la, ra, lc, rc), which amounts to interchanging
conformists with anti-conformists. Considering these operations, we observe the following
symmetries:

(i) Interchange:

pZi (S) > 0 for i ∈ N c ⇔ pZ
′

i (S) < 1 for i ∈ Na

pZi (S) < 1 for i ∈ N c ⇔ pZ
′

i (S) > 0 for i ∈ Na

(idem with Na, N c exchanged)
(ii) Reversal:

pZi (S) > 0 for i ∈ N c ⇔ pZ
∂

i (N \ S) < 1 for i ∈ N c

pZi (S) < 1 for i ∈ N c ⇔ pZ
∂

i (N \ S) > 0 for i ∈ N c

(idem with Na, N c exchanged)
(iii) Interchange and reversal:

pZi (S) > 0 for i ∈ N c ⇔ p
(Z∂)′

i (N \ S) > 0 for i ∈ Na

pZi (S) < 1 for i ∈ N c ⇔ p
(Z∂)′

i (N \ S) < 1 for i ∈ Na

(idem with Na, N c exchanged)

The second case is of particular interest and leads to the following lemma.

Lemma 1 (symmetry principle) Let S, T ∈ 2N , and Z = (lc, rc, la, ra). The following
equivalence holds:

λZS,T > 0⇔ λZ
∂

N\S,N\T > 0.
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Proof. Letting λZS,T > 0 means that for every i ∈ N \ T , 0 ≤ pZi (S) < 1, and for every
i ∈ T , 0 < pZi (S) ≤ 1. Using the equivalences in (ii), we find that for every i ∈ N \ T ,
0 < pZ

∂

i (N \ S) ≤ 1 and for every i ∈ T , 0 ≤ pZ
∂

i (N \ S) < 1. But this means that
λZ

∂

N\S,N\T > 0.

The mixed case The mixed case can be easily analyzed provided the weight vector of
mixed agents is a suitable convex combination of the weight vectors of conformist and
anti-conformist agents. Suppose that every conformist agent has weight vector wc and
every anti-conformist agent has weight vector wa. Consider a mixed agent i ∈ Nm with
αi ∈ ]−1, 1[, with weight vector wm given by

wm =
αi + 1

2
wc +

1− αi
2

wa. (9)

Then one can check from (4) that

pi(S) =
αi + 1

2
pc(S) +

1− αi
2

pa(S),

where c, a are any conformist and anti-conformist agents, respectively. This can be inter-
preted as: a mixed player i plays randomly either as a conformist or an anti-conformist,
with probability 1+αi

2
for conformist. Under this assumption, we can easily derive the

conditions for pi(S) to be 0 or 1, using (5) to (8):

(i ∈ Nm) pi(S) = 0 ⇔ n− ra ≤ s ≤ lc (10)

pi(S) = 1 ⇔ n− rc ≤ s ≤ la, (11)

For all other cases, 0 < pi(S) < 1.
An important remark is that these conditions do not depend on the particular α of i:

it means that under the assumption (9), the (qualitative) analysis of transitions can be
done without knowing the α of each mixed player, and they can also be different for each
player.

Now, from the above conditions it is easy to rewrite Table 1 for the mixed case. Finally,

0 ≤ s ≤ lc lc < s < n− rc n− rc ≤ s ≤ n

0 ≤ s ≤ la T ∈ [Na, Na ∪Nm] T ∈ [Na, N ] N

la < s < n− ra T ∈ [∅, Na ∪Nm] T ∈ 2N T ∈ [Nc, N ]

n− ra ≤ s ≤ n ∅ T ∈ [∅, Nc ∪Nm] T ∈ [Nc, Nc ∪Nm]

Table 2. Possible transitions from S ∈ 2N in the mixed case

if S = ∅, then λS,T > 0 for every T ∈ [Na, Na ∪ Nm], and if S = N , then λS,T > 0 for
every T ∈ [N c, N c ∪Nm]. Table 2 presents possible transitions from S ∈ 2N in the mixed
case.

3 Convergence of the model in the pure case (Nm = ∅)

This section is devoted to the study of terminal classes. Unlike the case of a model with
only conformist agents, their study appears to be extremely complex, even in the pure
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case. We introduce some useful notation. We write S → T if a transition from S to T
is possible, i.e., λS,T > 0, and S

1→ T if λS,T = 1 (sure transition). We extend the latter
notation to collections of sets: letting S, T be two nonempty collections of sets in 2N , we
write

S 1→ T ⇔ ∀T ∈ T , ∃S ∈ S s.t. λS,T > 0 and ∀S ∈ S,∀T 6∈ T , λS,T = 0.

We observe the following basic facts:

(F0) ∅ 1→ Na, N
1→ N c (as already observed).

(F1) If S 1→ T , S ′ 1→ T ′ and S ⊂ S ′, then T ⊆ T ′.
(F2) Applying (F0) and (F1), we find that in a transition S → T , ∅ ∈ S implies Na ∈ T

and N ∈ S implies N c ∈ T .

(F3) Consider S 1→ T1
1→ · · · 1→ Tp, with p ≥ 2. If S ⊆ T1, then S ⊆ T1 ⊆ · · · ⊆ Tp.

(F4) 2N is a possible terminal class. Indeed, take lc = rc = la = ra = 0. From Table 1 we

immediately see that for any S 6= ∅, N we have S
1→ 2N . Since the power set of the set

of states is the “default” terminal class when no other can exist, we exclude it from
our study and do not consider transitions to 2N .

(F5) From Table 1, we see that we have to deal only with the sets ∅, Na, N c, N and the
intervals [∅, N c], [∅, Na], [Na, N ], [N c, N ] (2N being excluded by (F4)), i.e., only these
can be constituents of a terminal class. We put

B = {{∅}, {Na}, {N c}, {N}, [∅, N c], [∅, Na], [Na, N ], [N c, N ]}

the set of collections relevant to our study. Intervals not reduced to a singleton are
called nontrivial intervals.

(F6) S ⊆ 2N is a terminal class if and only if S 1→ S and S is connected (i.e., there is a
path (chain of transitions) from S to T for any S, T ∈ S).

(F6) will be our unique tool to find aperiodic terminal classes, while periodic classes are

of the form S1
1→ · · · 1→ Sp, with S1, . . . ,Sp ⊂ 2N and being pairwise disjoint (no common

set between Si,Sj), and S1 ∪ · · · ∪ Sp must be connected.
Since Nm = ∅, we have na = n − nc, where na = |Na| and nc = |N c|. Hence, the

model is entirely determined by lc, rc, la, ra, nc, n. We recall that these parameters must
satisfy the following constraints:

0 ≤ la + ra < n

0 ≤ lc + rc < n

0 < nc < n.

Based on these facts, we can show the main result of this section.

Theorem 1 Assume that Nm = ∅, Na 6= ∅ and N c 6= ∅. There are nineteen possible
terminal classes which are2:

(i) Either one of the following singletons:
(1) Na if and only if nc ≥ (n− lc) ∨ (n− la);

2 We use the standard notation ∨ and ∧ to denote max and min, respectively.
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(2) N c if and only if nc ≥ (n− rc) ∨ (n− ra);

(ii) or one of the following cycles and periodic classes:

(3) Na 1−→ ∅ 1→ Na if and only n− lc ≤ nc ≤ ra;

(4) N c 1−→ N
1−→ N c if and only if n− rc ≤ nc ≤ la;

(5) Na 1−→ N c 1−→ Na if and only if nc ≤ lc ∧ la ∧ rc ∧ ra;
(6) Na 1−→ [∅, N c]

1−→ Na if and only if nc ≤ lc ∧ la ∧ ra and rc < nc < n− lc;
(7) N c 1−→ [Na, N ]

1−→ N c if and only if nc ≤ rc ∧ ra ∧ la and lc < nc < n− rc;
(8) [∅, N c]

1−→ [Na, N ]
1−→ [∅, N c] if and only if rc ∨ lc < nc ≤ ra ∧ la ∧ (n − lc − 1) ∧

(n− rc − 1);

(9) ∅ 1−→ Na 1−→ N c 1−→ ∅ if and only if nc ≤ rc ∧ ra ∧ lc and nc ≥ n− ra;
(10) Na 1−→ N

1−→ N c 1−→ Na if and only if nc ≤ lc ∧ la ∧ rc and nc ≥ n− la;
(iii) or one of the following intervals or union of intervals:

(11) [∅, Na] if and only if (n− lc) ∨ (ra + 1) ≤ nc < n− la;
(12) [N c, N ] if and only if (n− rc) ∨ (la + 1) ≤ nc < n− ra;
(13) [∅, Na] ∪ [∅, N c] if and only if lc ≥ n − ra and nc ∈

(
]rc, n− lc[ ∩ ]la, n− rc[

)
∪((

]la, n− ra[ ∪ ]lc, n− rc[
)
∩ ]0, rc]

)
;

(14) [Na, N ] ∪ [N c, N ] if and only if la ≥ n− rc and nc ∈
(

]lc, n− rc[ ∩ ]ra, n− lc[
)
∪((

]ra, n− la[ ∪ ]rc, n− lc[
)
∩ ]0, lc]

)
;

(15) [∅, Na] ∪ {N c} if and only if lc + rc = n− 1, ra ≥ rc and la < nc ≤ rc ∧ lc;
(16) [N c, N ] ∪ {Na} if and only if lc + rc = n− 1, la ≥ lc and ra < nc ≤ rc ∧ lc.
(17) [∅, N c] ∪ {Na} if and only if la + ra = n − 1, lc ≥ la, nc < n − rc and nc ∈

]rc, n− lc[ ∪ ]lc, rc];
(18) [Na, N ] ∪ {N c} if and only if la + ra = n − 1, rc ≥ ra, nc < n − lc and nc ∈

]lc, n− rc[ ∪ ]rc, lc].
(19) 2N otherwise.

Moreover, if lc + rc = n − 1, then cases (6), (7), (8), (13) and (14) become impossible
while (15) and (16) are specific to this case, and if la + ra = n− 1, then cases (11) and
(12) become impossible, while (17) and (18) are specific to this case.

The proof can be found in the appendix.
According to Theorem 1, nineteen terminal classes representing three different types

are possible in the model. The first one is a singleton which means that in the long run
the society is dichotomous: all anti-conformists end up in saying ‘yes’ (and all conformists
in saying ‘no’, case (1)) or these are all conformists who say ‘yes’ forever (case (2)).

Note that cases (1) till (19) are not exclusive, which can be already seen when con-
sidering cases (1) and (2). Indeed, for a given society, which is represented by the set
of parameters n, nc, la, ra, lc and rc, under some conditions both cases (1) and (2) are
possible, and therefore two different terminal classes might occur, Na and N c. However,
the process will end up in only one of them, depending on the initial conditions.

The second type of possible terminal classes corresponds to cycles and periodic classes
which have also a natural interpretation. For instance, case (3) means that in the long
run, anti-conformists say ‘yes’ at time t, then at time t + 1 nobody says ‘yes’, at time
t + 2 again anti-conformists say ‘yes’, etc. Under case (6), at some step in the long run
all anti-conformists say ‘yes’, in the following step they all say ‘no’ but a fraction of
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conformists might say ‘yes’, then in the next step again all anti-conformists say ‘yes’, etc.
There exist also longer cycles, like the ones described in cases (9) and (10).

The terminal class can also be an interval or a union of intervals. Case (11) corresponds
to the situation where conformists say ‘no’ and anti-conformists oscillate between the two
opinions. Notice that [∅, Na] (case (11)) and [N c, N ] (case (12)) can occur, but [∅, Na] ∪
[N c, N ] is never a terminal class. Under the terminal class (13), in one time step the
process might be in [∅, Na] (conformists say ‘no’ and anti-conformists oscillate) and in
another step the process might be in [∅, N c] (anti-conformists say ‘no’ and conformists
oscillate). The cases (15) – (16) ((17) – (18), respectively) correspond to the situations in
which conformists (anti-conformists, respectively) are not much influenceable, i.e., they
need in total a maximal number of agents (n− 1) to start being influenced towards ‘yes’
or ‘no’ opinion. Under the terminal class (15), in one time step the process might be in
[∅, Na] and in another step the process might be in N c (all conformists say ‘yes’). The
terminal class (19) means that at any time step the yes-coalition can be any subset of
agents.

The analysis for conformists and anti-conformists is not symmetric. However, while
there is no symmetry between “a” and “c” in this framework, there exists symmetry
between S and N \ S as pointed out in Lemma 1.

4 Examples

First, we consider two particular “symmetric” cases of the weight vectors. The first one
concerns a kind of one-side symmetry across conformists and anti-conformists, in the
sense that they ignore the same number of yes/no answers. In this case we have la = lc

and ra = rc (see Example 2 below). The second case is related to symmetry within the
population of conformists or anti-conformists, i.e., when weight vectors are symmetrical
w.r.t. the number of left and right zeros. Formally, this means that la = ra and lc = rc (see
Example 3). As already mentioned before, an interpretation of such symmetrical weight
vectors is that agents are not biased towards the answer ‘yes’ or ‘no’. This assumption
might be relevant for instance when voting for two candidates. However, it might not be
relevant when saying ‘yes’ means ‘adopting a new technology’, where a bias towards a
status-quo or a bias towards technology adoption makes sense. The following examples
follow directly from the results of the previous section.

Example 2 Assume that Na 6= ∅, N c 6= ∅, Nm = ∅, la = lc and ra = rc. If la+ra 6= n−1
then the possible terminal classes are:

– Na if and only if na ≤ la;
– N c if and only if na ≤ ra;

– Na 1−→ N c 1−→ Na if and only if nc ≤ la ∧ ra.
– 2N otherwise.

If la+ra = n−1 then besides the terminal classes listed above, two more terminal classes
are possible:

– [∅, N c] ∪ {Na} if and only na > ra and nc ∈ ]ra, n− la[ ∪ ]la, ra];
– [Na, N ] ∪ {N c} if and only if na > la and nc ∈ ]la, n− ra[ ∪ ]ra, la].
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Hence, if the number of anti-conformists does not exceed the number of left (right) zeroes
in their weight vector, then in the long run the society might be dichotomous with all
anti-conformists (conformists) saying ‘yes’. Note that both Na and N c might occur. For
instance, depending on the initial conditions, if n = 5, na = 1, nc = 4, la = lc = 2,
ra = rc ∈ {1, 2}, then either Na or N c will occur. These two terminal classes exclude,

however, the existence of Na 1−→ N c 1−→ Na which might be the terminal class if the
number of conformists does not exceed the number of left zeroes nor the number of right
zeroes, and means that in one time step all anti-conformists say ‘yes’ and in the following
step all conformists say ‘yes’, etc. Moreover, under the condition la + ra = n− 1, Na and
N c also exclude the existence of [∅, N c] ∪ {Na} and [Na, N ] ∪ {N c}.

Example 3 Assume that Na 6= ∅, N c 6= ∅, Nm = ∅, la = ra and lc = rc. If 2la 6= n − 1
and 2lc 6= n− 1 then the possible terminal classes are:

– Na and N c if and only if na ≤ la ∧ lc;
– Na 1−→ N c 1−→ Na if and only if nc ≤ la ∧ lc;
– [∅, N c]

1−→ [Na, N ]
1−→ [∅, N c] if and only if lc < nc ≤ la ∧ (n− lc − 1);

– [∅, Na] and [N c, N ] if and only if la < na ≤ lc and nc ≥ la + 1;
– 2N otherwise.

If 2la = n − 1 or 2lc = n − 1, then some of the terminal classes listed above become
impossible, but new possibilities appear. In particular, if 2la = 2lc = n − 1 then the
possible terminal classes are:

– Na and N c if and only if na ≤ la;

– Na 1−→ N c 1−→ Na if and only if nc ≤ la;
– [∅, N c] ∪ {Na} and [Na, N ] ∪ {N c} if and only if na > la and nc ∈ ]la, n− la[;
– 2N otherwise.

Note that while both Na and N c might occur, they exclude the existence of the remaining
terminal classes. Similarly, while both [∅, N c] ∪ {Na} and [Na, N ] ∪ {N c} might occur,
other cases become then impossible.

In the following example we analyze the impact of the relative number of conformists/anti-
conformists on the possible terminal classes, in particular, when combining it with the
two kinds of symmetry considered in the previous examples.

Example 4 In a society with at least as many conformists as anti-conformists, the ter-
minal classes from (5) till (10), (15) and (16) listed in Theorem 1 become impossible.
More precisely, cycles when the opinion of conformists might change and some unions of
intervals are excluded.

Assume that there are strictly more conformists than anti-conformists and that the
two kinds of symmetry hold, i.e., la = lc = ra = rc. Then the possible terminal classes
are only Na and N c if na ≤ la, and 2N if na > la. The latter condition means that the
agents are more easily influenceable, since they do not need many agents to start being
influenced.

If n is even and na = nc, and the two kinds of symmetry hold, then 2N becomes the
only possible terminal class.
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Consider now a society with more anti-conformists than conformists. Without impos-
ing additional conditions, we do not exclude any terminal class. In other words, anti-
conformists might make the society more ‘unstable’ in the sense that the opinion of any
of these two groups of society might change over time. Under the two kinds of symmetry,
the society cannot be dichotomous anymore and only two terminal classes become possi-

ble: Na 1−→ N c 1−→ Na if nc ≤ la, and 2N if nc > la. Hence, in a society with a majority of
anti-conformists it is possible that at some step in the long run all anti-conformists say
‘yes’ and in the following step all conformists say ‘yes’, etc. Such a situation would be
impossible in a society with a majority of conformists.

We also examine the impact of more influenceable agents (conformists and anti-
conformists) on possible terminal classes. In the next example we assume that either
anti-conformists or conformists, or all agents, have the weight vectors without zeroes.
This means that these agents start being influenced immediately, i.e., when meeting the
first individual, as they do not ignore any yes/no answer.

Example 5 Assume that Na 6= ∅, N c 6= ∅, Nm = ∅. If la = ra = 0, then the possible
terminal classes are:

– [∅, Na] if and only if n− lc ≤ nc < n;
– [N c, N ] if and only if n− rc ≤ nc < n;
– 2N otherwise.

This means that, roughly speaking, anti-conformists who are more influenceable do not
have a fixed opinion (a fraction of them can say ‘yes’), contrarily to conformists who
always say either ‘no’ or ‘yes’.
On the other hand, if lc = rc = 0, then the possible terminal classes are:

– [∅, N c]
1−→ [Na, N ]

1−→ [∅, N c] if and only if nc ≤ ra ∧ la;
– [∅, N c] ∪ {Na} if and only if la = 0, ra = n− 1, nc ∈ ]0, n[;
– [Na, N ] ∪ {N c} if and only if la = n− 1, ra = 0, nc ∈ ]0, n[;
– 2N otherwise.

Finally, we can conclude that if all agents have the weight vector without zeroes, i.e.,
la = ra = lc = rc = 0, then the only possible terminal class is 2N .

5 Concluding remarks

In the paper we analyzed a process of opinion formation in a society with conformists
and anti-conformists. We focused on anonymous influence meaning that an individual
can change his initial opinion but the change depends on the number of agents with a
certain opinion and not on their identities. If the number of yes-agents increases, then the
probability that a given agent says ‘yes’ increases if the agent is conformist and decreases
if he is anti-conformist. Every individual has a coefficient of conformism which is a real
number between −1 and 1. We assumed that pure conformists (agents with the coefficient
of conformism being 1) as well as pure anti-conformists (the ones with the coefficient of
conformism being −1) exist. So far we focused on a society without ‘mixed’ individuals
(i.e., agents with the coefficient of conformism belonging to ] − 1, 1[), determined all
possible terminal classes and conditions for their occurrence.
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We observe natural but essential differences between a society formed entirely by
conformists and a society with both conformists and anti-conformists. First of all, while
under anonymous influence a society of conformists can reach consensus as shown in
Förster et al. (2013), no consensus is possible under anonymous influence in a society
of conformists and anti-conformists. On the other hand, while no periodic terminal class
can exists in a conformist society, the presence of anti-conformists makes cycles possible,
and even a number of different cycles and periodic classes might exist in such a society.

Another interesting observation is that the analysis for conformists and anti-conformists
is not symmetric, in the sense that we cannot simply replace “a” by “c” in our study, but
what does hold is the symmetry principe as shown in Lemma 1.

We notice that there always exists a terminal class, since by virtue of Theorem 1 if none
of cases (1) till (14) occurs, the terminal class 2N (case (15)) is possible. However, some
of the conditions stated in Theorem 1 are not exclusive, and as a consequence, sometimes
several different terminal classes can be possible. For instance, if la = lc = ra = rc,

then the possible terminal classes are Na, N c and Na 1−→ N c 1−→ Na, and which of them
will occur in the society will depend on the initial conditions. On the other hand, not all
natural situations can be present in a society with both conformists and anti-conformists.
For instance, as already mentioned, consensus between all society members is impossible
under the coexistence of conformists and anti-conformists. Another example of a final
state of opinion of the society which cannot appear in this framework is the situation
when all anti-conformists say ‘no’ forever and conformists oscillate between ‘yes’ and
‘no’.

In our follow-up research on anti-conformism, first of all, we intend to relax the as-
sumption that a society consists of only pure conformists and pure anti-conformists, and
to allow for the presence of ‘mixed’ individuals in the society. Furthermore, we would
like to relax the anonymity assumption and to study a more general framework of anti-
conformism.
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A Proof of Theorem 1

Our strategy is based on (F6): aperiodic terminal classes are connected collections S such

that S 1→ S. Periodic terminal classes are of the form S1
1→ · · · 1→ Sp with all Si pairwise

incomparable, and S1∪· · ·∪Sp is connected. Consequently, we study all possible kinds of

transition S 1→ T , and check connectedness for each candidate. We distinguish between

“simple” transitions of the type B 1→ B′ with B,B′ ∈ B, and “multiple” transitions

S 1→ T , where S, T are composed with several elements of B, e.g., [∅, Na] ∪ [∅, N c].

A.1 Simple transitions

We focus on transitions of the type B 1→ B′, with B,B′ ∈ B, and look for conditions on
the parameters of the model to obtain such transitions.

Observe that if B′ is a nontrivial interval, it cannot be the union of other elements of

B. Therefore, B 1→ B′ if and only if for any S ∈ B, S
1→ B′′ with B′′ ∈ B and B′′ ⊆ B′,

and there is at least one S ∈ B s.t. S
1→ B′. Let us denote by C[B] the conditions on

s = |S| to have a sure transition from S to B, as given in Table 1. All these conditions
are intervals.

Observe that all B ∈ B are either singletons {B} or nontrivial intervals [B,B], and
B ⊂ B′ if and only if B = {B′} or {B′}, with B′ = [B′, B′]. Hence:

B 1→ B′ ⇔

{
[b, b] ⊆ C[B′] ∪ C[{B′}] ∪ C[{B′}]
[b, b] ∩ C[B′] 6= ∅,

(12)

with b, b the cardinalities of B,B. Let us apply (12) to all possibilities. When {B′} is a
singleton, the above condition reduces to [b, b] ⊆ C[B′], as given in Table 1. Otherwise,

(i) with B′ = [∅, Na], we obtain [b, b] ⊆ [0, lc] and [b, b] ∩ ]la, n− ra[ ∩ [0, lc] 6= ∅, which
simplifies to

[b, b] ⊆ [0, lc] and [b, b] ∩ ]la, n− ra[ 6= ∅; (13)

(ii) with B′ = [∅, N c], we obtain

[b, b] ⊆ [n− ra, n] and [b, b] ∩ ]lc, n− rc[ 6= ∅; (14)

(iii) with B′ = [N c, N ], we obtain

[b, b] ⊆ [n− rc, n] and [b, b] ∩ ]la, n− ra[ 6= ∅; (15)

(iv) with B′ = [Na, N ], we obtain

[b, b] ⊆ [0, la] and [b, b] ∩ ]lc, n− rc[ 6= ∅. (16)
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This yields Table 3. Observe that the table is symmetric w.r.t. its center by the symmetry
principle (Lemma 1): just exchange r with l. The transitions being sure, all cases on each
line are exclusive.

From Table 3, we can deduce terminal classes reduced to singletons or intervals: they

correspond to transitions S 1→ S in the table, provided they are connected. We obtain:

(i) Na, under the condition nc ≥ (n− lc) ∨ (n− la);
(ii) N c, under the condition nc ≥ (n− rc) ∨ (n− ra);

(iii) [∅, Na], under the condition n− lc ≤ nc < n− la;
(iv) [N c, N ], under the condition n− rc ≤ nc < n− ra.

We check connectedness for (iii) ((iv) follows by symmetry). We see from Table 1 that
every S ∈ [∅, Na] with s ≤ la has a sure transition to Na, while the other ones go to every
set in the interval. Therefore, the interval is connected if and only if Na has a possible
transition to every set in the interval, i.e., we need la < na < n− ra and na ≤ lc, so the
additional condition na < n− ra is needed. In summary:

(i) Na is a terminal class if and only if nc ≥ (n− lc) ∨ (n− la);
(ii) N c is a terminal class if and only if nc ≥ (n− rc) ∨ (n− ra);

(iii) [∅, Na] is a terminal class if and only if (n− lc) ∨ (ra + 1) ≤ nc < n− la;
(iv) [N c, N ] is a terminal class if and only if (n− rc) ∨ (la + 1) ≤ nc < n− ra.

In order to get (terminal) cycles and periodic classes, we study chains of sure transi-

tions of length 2: S1
1→ S2

1→ S3, with S1,S2,S3 being pairwise disjoint, except possibly
S1 = S3. An inspection of Table 3 yields all such possible chains of length 2, summarized
in Table 4. A second table can be obtained by symmetry.

From Table 4, we obtain the following candidates for terminal cycles and periodic
classes, after eliminating doublons and using symmetry:

(i) Na 1→ ∅ 1→ Na, under the condition n− lc ≤ nc ≤ ra;

(ii) N c 1→ N
1→ N c, under the condition n− rc ≤ nc ≤ la;

(iii) N c 1→ Na 1→ N c, under the condition nc ≤ lc ∧ la ∧ rc ∧ ra;
(iv) [∅, N c]

1→ Na 1→ [∅, N c], under the condition nc ≤ lc ∧ la ∧ ra, rc < nc < n− lc

(v) [Na, N ]
1→ N c 1→ [Na, N ], under the condition nc ≤ rc ∧ ra ∧ la, lc < nc < n− rc

(vi) [Na, N ]
1→ [∅, N c]

1→ [Na, N ], under the condition rc ∨ lc < nc ≤ ra ∧ la.

It remains to check connectedness of (iv) and (vi) ((v) is obtained by symmetry). For
(iv), we must check that Na has a possible transition to every set in [∅, N c]. By Table 1,
we must have na ≥ n− ra and lc < na < n− rc, which is true by the conditions in (iv).
We address (vi). We claim that under the conditions in (vi) [Na, N ]∪ [∅, N c] is connected

if and only if Na 1→ [∅, N c] and N c 1→ [Na, N ]. Take any S ∈ [∅, N c]. Then S goes
either to any set T in [Na, N ] or only to Na or only to N . In the first case, similarly,
T goes either to any set S ′ ∈ [∅, N c] (and we are done) or only to ∅ or only to N c. If

T
1→ ∅, then we have T

1→ ∅ 1→ Na 1→ [∅, N c] and we are done. Otherwise we have

T
1→ N c → Na 1→ [∅, N c]. Suppose now that S

1→ Na, then Na goes to any S ′ ∈ [∅, N c]

and we are done. Otherwise, S
1→ N

1→ N c → Na 1→ [∅, N c] and we are done. This proves
sufficiency. Now suppose the condition is not fulfilled. This means that Na goes to either
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∅ or N c (or similar condition for N c). In fact, due to the conditions in (vi) and Table 1,

we have that Na 1→ ∅, but this yields the cycle Na 1→ ∅ 1→ Na.
So in summary, candidates from (i) to (v) are all periodic classes under the specified

conditions, and for (vi), the additional condition that Na 1→ [∅, N c] and N c 1→ [Na, N ]
yields:

(vi’) [Na, N ]
1→ [∅, N c]

1→ [Na, N ] under the condition rc ∨ lc < nc ≤ ra ∧ la ∧ (n− lc− 1)∧
(n− rc − 1).

For cycles and periodic classes of length 3, by combining the possible chains of length
2 of Table 4 with possible transitions of Table 3, we have only one candidate, all other
being eliminated because the collections are not disjoint:

N c 1→ ∅ 1→ Na 1→ N c.

Hence we find, taking into account the symmetry, two additional cycles:

(i) N c 1→ ∅ 1→ Na 1→ N c, under the condition nc ≤ rc ∧ ra ∧ lc, nc ≥ n− ra;
(ii) Na 1→ N

1→ N c 1→ Na, under the condition nc ≤ lc ∧ la ∧ rc, nc ≥ n− la.

We now show that periodic classes of period greater than three cannot exist, which
finishes the study of simple transitions.

Lemma 1. There exists no periodic class of period k ≥ 4.

Proof. Let S be a periodic class. First, observe that if ∅, N are not elements of S, it is
not possible to choose four distinct elements of B \ {{∅}, {N}} such that these elements

are pairwise disjoint. Hence, we suppose that there are transitions B 1→ ∅ and/or B 1→ N
in S. From Table 3, we see that B is necessarily {Na} or {N c}.

We claim that the cycle ∅ 1−→ Na 1−→ N
1−→ N c 1−→ ∅ is impossible. Indeed, by Table 4,

we have ∅ 1−→ Na 1−→ N iff n − la ≤ nc ≤ rc and N
1−→ N c 1−→ ∅ (its symmetric) iff

n− ra ≤ nc ≤ lc. This yields, respectively,

2nc ≥ 2n− la − ra > n

2nc ≤ rc + lc < n,

a contradiction.
Assume that we have a transition to ∅ (the case for N is obtained by symmetry). We

have either Na 1→ ∅ (which is discarded because it leads to the cycle Na 1→ ∅ 1→ Na)

or N c 1→ ∅. Then, the only possible terminal class of the form N c 1−→ ∅ 1−→ Na 1−→ B1
1−→

· · · 1−→ Bp
1−→ N c is the cycle ∅ 1−→ Na 1−→ N c 1−→ ∅, for, either B1 = N , and we obtain the

impossible cycle in the claim above, or B1 contains Na or N c, which is impossible since
elements in S should be pairwise disjoint.

A.2 Multiple transitions

We examine the case of transitions of the form S 1→ B1∪· · ·∪Bp, with p ≥ 2, S ∈ 2N and
formed only from sets in B, B1, . . . ,Bp ∈ B, and all B1, . . . ,Bp are pairwise incomparable
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by inclusion3. The analysis is done in the same way as for simple transitions: the above

transition exists if and only if for every S ∈ S, S
1→ B′ with B′ ∈ B and B′ ⊆ B1∪· · ·∪Bp

and there exist distinct S1, . . . , Sp ∈ S such that Sj
1→ Bj for j = 1, . . . , p, which readily

shows that S cannot be a singleton. More explicitly, using previous notation and denoting
by supp(S) = {|S| : S ∈ S} the support of S, we get:

S 1→ B1 ∪ · · · ∪ Bp ⇔

supp(S) ⊆
p⋃
j=1

C[Bj] ∪
p⋃
j=1

C[{Bj}] ∪
p⋃
j=1

C[{Bj}]

supp(S) ∩ C[Bj] 6= ∅, j = 1, . . . , p.

(17)

Let us investigate what the possible candidates for B1∪· · ·∪Bp are. We begin by restricting
to nontrivial intervals and p = 2. From Table 1, we find:

(i) [∅, Na] ∪ [∅, N c] if and only if

supp(S) ⊆ [0, lc] ∪ [n− ra, n] and

{
supp(S) ∩ ]la, n− ra[ ∩ [0, lc] 6= ∅
supp(S) ∩ ]lc, n− rc[ ∩ [n− ra, n] 6= ∅

; (18)

(ii) [∅, Na] ∪ [N c, N ] if and only if

supp(S) ⊆ [0, lc] ∪ [n− rc, n] and

{
supp(S) ∩ ]la, n− ra[ ∩ [0, lc] 6= ∅
supp(S) ∩ ]la, n− ra[ ∩ [n− rc, n] 6= ∅

; (19)

(iii) [Na, N ] ∪ [∅, N c] if and only if

supp(S) ⊆ [0, la] ∪ [n− ra, n] and

{
supp(S) ∩ ]lc, n− rc[ ∩ [0, la] 6= ∅
supp(S) ∩ ]lc, n− rc[ ∩ [n− ra, n] 6= ∅

; (20)

(iv) [Na, N ] ∪ [N c, N ] if and only if

supp(S) ⊆ [0, la] ∪ [n− rc, n] and

{
supp(S) ∩ ]lc, n− rc[ ∩ [0, la] 6= ∅
supp(S) ∩ ]la, n− ra[ ∩ [n− rc, n] 6= ∅

, (21)

the other combinations [∅, Na] ∪ [Na, N ] and [∅, N c] ∪ [N c, N ] being impossible as it can
be checked. This readily shows that p > 2 with nontrivial intervals is impossible since a
forbidden combination would appear in the list.

We consider now that singletons may appear. We begin by noticing that there is no
terminal class of the form {S1, . . . , Sp} with Sj ∈ {∅, N,Na, N c} for all j and p ≥ 2.
Indeed, Table 3 shows that transitions from a set S can only lead to a single T , with no
possibility of multiple transition. Hence, such collections would never be connected.

Let us examine the case S 1→ B1 ∪ {S}, where B1 is a nontrivial interval. With
[∅, Na] ∪ {N} we obtain:

supp(S) ⊆ [0, lc] ∪ ([0, la] ∩ [n− rc, n]) and

{
supp(S) ∩ [0, lc] ∩ ]la, n− ra[ 6= ∅
supp(S) ∩ [0, la] ∩ [n− rc, n] 6= ∅

,

3 The “∪” is understood at the level of collections of sets, i.e., B1 ∪ B2 = {S ∈ 2N | S ∈ B1 or S ∈ B2}.
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which is impossible. With [∅, Na] ∪ {N c} we obtain

supp(S) ⊆ [0, lc]∪([n−ra, n]∩[n−rc, n]) and

{
supp(S) ∩ [0, lc] ∩ ]la, n− ra[ 6= ∅
supp(S) ∩ [n− rc, n] ∩ [n− ra, n] 6= ∅

,

(22)
which is possible. Similarly, we find that [∅, N c] ∪ {N}, [Na, N ] ∪ {∅} and [N c, N ] ∪ {∅}
are impossible, while the following are possible:

(i) S 1→ [∅, N c] ∪ {Na} iff

supp(S) ⊆ [n−ra, n]∪([0, la]∩ [0, lc]) and

{
supp(S) ∩ [n− ra, n] ∩ ]lc, n− rc[ 6= ∅
supp(S) ∩ [0, la] ∩ [0, lc] 6= ∅

,

(23)

(ii) S 1→ [Na, N ] ∪ {N c} iff

supp(S) ⊆ [0, la]∪([n−ra, n]∩[n−rc, n]) and

{
supp(S) ∩ [0, la] ∩ ]lc, n− rc[ 6= ∅
supp(S) ∩ [n− ra, n] ∩ [n− rc, n] 6= ∅

,

(24)

(iii) S 1→ [N c, N ] ∪ {Na} iff

supp(S) ⊆ [n−rc, n]∪([0, la]∩ [0, lc]) and

{
supp(S) ∩ [n− rc, n] ∩ ]la, n− ra[ 6= ∅
supp(S) ∩ [0, la] ∩ [0, lc] 6= ∅

.

(25)

This shows that transitions of the form S 1→ B ∪ {S1} ∪ {S2} are not possible since a
forbidden configuration would appear.

We are now in position to study aperiodic terminal classes.

(i) With S = [∅, Na] ∪ [∅, N c], we find from (18) that

[0, na ∨ nc] ⊆ [0, lc] ∪ [n− ra, n] and

{
[0, na ∨ nc] ∩ ]la, n− ra[ ∩ [0, lc] 6= ∅
[0, na ∨ nc] ∩ ]lc, n− rc[ ∩ [n− ra, n] 6= ∅

which is equivalent to
na ∨ nc > lc ≥ n− ra. (26)

We check connectedness. We begin by a simple observation. We have ∅ 1→ Na, therefore

we must forbid the transitions Na 1→ ∅ and Na 1→ Na. Using Table 1 and (26), we find
that na ∈ ]la, n− ra[ ∪ ]lc, n[. Suppose that na ∈ ]la, n− ra[. From Table 1, we obtain

that Na 1→ [∅, Na]
1→ [∅, Na], hence no connection to [∅, N c] is obtained. Therefore we

are forced to consider na ∈ ]lc, n[, which with (26) leads to

na > lc ≥ n− ra. (27)

From Table 1 again, this implies Na 1→ [∅, N c] when na ∈ ]lc, n− rc[, or Na 1→ N c

when na ∈ [n− rc, n[. We distinguish the two cases.
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1. Suppose na ∈ ]lc, n− rc[, so we have ∅ 1→ Na 1→ [∅, N c]. In order to connect

∅, Na to any set in ]∅, Na[, there must exist S ∈ [∅, N c] such that S
1→ [∅, Na], i.e.,

s ∈ ]la, n− ra[ ∩ [0, lc] = ]la, n− ra[ by (27). This is possible iff nc > la. Let us check
whether N c is connected to any set in the class. From Table 1 and the condition
nc > la, we see that there is a possible transition to ∅, which suffices to prove that N c

is connected to any set in the class, except if nc ∈ [n− rc, n] in which case N c 1→ N c.
Therefore, we must ensure the following condition:

nc ∈ ]la, n− rc[ . (28)

We check similarly whether any other set in the class is connected with the rest. Take
S ∈ ]∅, Na[. If s ≤ lc, there will be either a possible transition to ∅ or to Na, so that
S is connected to any set in the class. If s > lc, S behaves like Na and we are done.

Take now S ∈ ]∅, N c[. If s ≤ la, then S
1→ Na and we are done. If s ∈ ]la, lc], S has a

possible transition to ∅ and we are done. Finally, if s ∈ ]lc, n− rc[, S behaves like N c.
In conclusion, (28) summarizes the condition for connectedness in Case 1.

2. Suppose na ∈ [n− rc, n[, so we have ∅ 1→ Na 1→ N c. We must ensure that N c is

connected to any set in the class. In order to avoid N c 1→ N c and the transitions

N c 1→ Na and N c 1→ ∅ which would lead to cycles, we are left with the cases nc ∈
]la, n− ra[ (yielding N c 1→ [∅, Na]) and nc ∈ ]lc, n− rc[ (yielding N c 1→ [∅, N c]). We
examine both cases.
2.1. Suppose nc ∈ ]la, n− ra[, then we have N c 1→ [∅, Na]. It remains to ensure that
there exists S ∈ ]∅, Na[ which is connected with [∅, N c]. We must have s ∈ ]lc, n− rc[,
always possible under Case 2. So we have established that ∅, Na, N c are connected
with the rest of the class. It remains to check if this is true for the other sets in the
class. Take S ∈ ]∅, Na[. If s ≤ lc, a transition to ∅ of Na is possible, and so we are
done. If s ∈ ]lc, n[, then S → N c, and we are done. Take now S ∈ ]∅, N c[. Then
s ∈ ]0, n− ra[, so that S → Na and we are done. As a conclusion, connectedness
holds when nc ∈ ]la, n− ra[.
2.2. Suppose nc ∈ ]lc, n− rc[, then N c 1→ [∅, N c]. It remains to connect some set S
in ]∅, N c[ to [∅, Na], which is possible iff s ∈ ]la, n− ra[. This is possible under Case
2, so N c is connected to any set in the class. We check for the remaining sets. Take
S ∈ ]∅, Na[. If s ≤ lc, a connection is possible to Na or ∅ so we are done. Otherwise,
a connection to N c is possible and we are done. For S ∈ ]∅, N c[, it works exactly the
same.
In conclusion of Case 2, connectedness is ensured iff nc ∈ ]la, n− ra[ ∪ ]lc, n− rc[.
There does not seem to be a simple way to write the final condition. Here is one
possible: connectedness holds iff lc ≥ n− ra and

nc ∈
(

]rc, n− lc[ ∩ ]la, n− rc[
)
∪
((

]la, n− ra[ ∪ ]lc, n− rc[
)
∩ ]0, rc]

)
.

(ii) Similarly, using (19), S = [Na, N ]∪ [N c, N ] is a terminal class if and only if la ≥ n−rc
and nc ∈

(
]lc, n− rc[ ∩ ]ra, n− lc[

)
∪
((

]ra, n− la[ ∪ ]rc, n− lc[
)
∩ ]0, lc]

)
.

(iii) With S = [∅, N c] ∪ [Na, N ] we find from (20) the condition lc ∨ rc < nc ≤ la ∧ ra.
Let us check connectedneness. Starting from ∅, we have ∅ 1→ Na, and by Table 1

and the above condition we have Na 1→ [∅, N c] if na > lc, and Na 1→ ∅ otherwise.
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Clearly, the latter must be forbidden otherwise a cycle occurs. Therefore, we must

have na > lc. Moreover, we have N c 1→ [Na, N ] if nc < n− rc and N c 1→ N otherwise.

Since N
1→ N c, the latter must be forbidden to avoid a cycle. Therefore, we must

have nc < n− rc. Under these condition, from ∅ or Na or N c, any set can be attained.

Now, taking S ∈ ]∅, N c[, we have S
1→ Na or S

1→ [Na, N ] so that S → Na and we

are done. Lastly, taking S ∈ ]Na, N [, we have S
1→ N c or [∅, N c] and we are done.

As a conclusion, the condition is lc ∨ rc < nc ≤ la ∧ ra and nc < (n − lc) ∧ (n − rc),
but then we obtain the periodic terminal class studied before. Indeed, we see from the

proof that we have necessarily [∅, N c]
1→ [Na, N ]

1→ [∅, N c].
(iv) With S = [∅, Na] ∪ [N c, N ], using (19), we find that la ∨ ra < na ≤ lc ∧ rc. However,

under these conditions, S cannot be connected. Indeed, starting from Na, we have

from Table 1 that for any set S ∈ [∅, Na], we have either S
1→ Na, or S

1→ [∅, Na] or

S
1→ ∅. Therefore, [∅, Na] is not connected with every set in S.

(v) We show that [∅, Na] ∪ {N c} cannot be connected when lc + rc 6= n − 1. Indeed, we

must have N c 1→ [∅, Na], which implies by Table 1 the condition nc ≤ lc. However,
by (22) and the condition lc + rc 6= n− 1, supp(S) must be in two disjoint intervals,
implying that [0, na] ⊆ [0, lc] and nc ∈ [n− rc, n], a contradiction.
We suppose now lc + rc = n − 1 and n − ra ≤ n − rc, so that in (22) the first
condition reduces to the void condition supp(S) ⊆ [0, n], while the second becomes:
lc > la and either na ≥ n − rc (case 1), or nc ≥ n − rc and na ∈ ]la, n− ra[ (case 2).
We check connectedness. N c must be connected to [∅, Na] or ∅ or Na, which implies
nc ≤ lc, contradicting case 2. Therefore only case 1 is possible, so that na ≥ n − rc

and nc ≤ lc. Note that this implies Na 1→ N c, so that we must ensure N c 1→ [∅, Na],

implying la < nc ≤ lc. Finally, for any S ∈ [∅, Na], either S
1→ N c or S

1→ [∅, Na] or

S
1→ Na, hence connectedness holds. In summary, this class exists iff lc + rc = n− 1,

n− ra ≤ n− rc, na ≥ n− rc and la < nc ≤ lc.
(vi) With [∅, N c] ∪ {Na}, we find from (23) and the assumption la + ra 6= n − 1 that

supp(S) must be in two disjoint intervals, which forces n − ra ≤ na < n − rc and

nc ≤ la ∧ lc. We know already that [∅, N c]
1→ Na is a periodic class. Let us show

that this is the only possibility. Indeed, otherwise there should exist S ∈ [∅, N c] such

that S
1→ [∅, N c]. This would imply that lc < s < n − rc, which is impossible by the

condition nc ≤ lc.
Let us consider now that la + ra = n−1 and lc ≥ la, so that in (23) the first condition
simply reduces to the void condition supp(S) ⊆ [0, n], while the second becomes: either

na ∈ ]lc, n− rc[ or nc > lc. Let us check connectedness. We must have Na 1→ [∅, N c]

or Na 1→ N c. The first case happens iff na ∈ ]lc, n− rc[. Then observe that without
further condition on nc, any set in [∅, N c] is connected to either Na, ∅, [∅, N c] or N c.

It suffices then to forbid the transition N c 1→ N c, i.e., nc < n − rc. The second case
happens iff na ≥ n−rc, which forces nc > lc. To ensure that N c is connected to [∅, N c],
we must have lc < nc < n−rc. In summary, this class exists iff la+ra = n−1, lc ≥ la,
and either na ∈ ]lc, n− rc[ and nc < n− rc, or na ≥ n− rc and lc < nc < n− rc.

(vii) The case of [Na, N ]∪{N c} is similar to its symmetric [∅, N c]∪{Na}. The class exists
iff la + ra = n− 1, n− rc ≤ n− ra, and either nc ∈ ]lc, n− rc[ and na > lc, or nc ≤ lc

and lc < na < n− rc.
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(viii) The case of [N c, N ]∪{Na} is similar to its symmetric [∅, Na]∪{N c}. The class exists
iff lc + rc = n− 1, la ≥ lc, nc ≤ lc and n− rc ≤ na < n− ra.

It remains to study the existence of periodic classes. Since the collections must be

pairwise disjoint, the only possibility is the periodic class [∅, Na]∪[∅, N c]
1→ N

1→ [∅, Na]∪
[∅, N c]. But we know that the second transition is impossible since a singleton cannot
lead to a multiple transition. Hence, there is no such periodic terminal classes.
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Na 1→ ∅ 1→ Na n− lc ≤ nc ≤ ra

Nc 1→ ∅ 1→ Na n− ra ≤ nc ≤ lc

∅ 1→ Na 1→ ∅ n− lc ≤ nc ≤ ra

∅ 1→ Na 1→ [Nc, N ]
nc ≤ rc

ra < nc < n− la

∅ 1→ Na 1→ Nc nc ≤ rc ∧ ra

∅ 1→ Na 1→ N n− la ≤ nc ≤ rc

Nc 1→ Na 1→ ∅ n− lc ≤ nc ≤ lc ∧ la ∧ ra

[∅, Nc]
1→ Na 1→ [∅, Nc]

nc ≤ lc ∧ la ∧ ra

rc < nc < n− lc

Nc 1→ Na 1→ Nc nc ≤ lc ∧ la ∧ rc ∧ ra

Nc or [∅, Nc]
1→ Na 1→ N n− la ≤ nc ≤ la ∧ lc ∧ rc

Na 1→ [∅, Nc]
1→ Na nc ≤ la ∧ lc ∧ ra

rc < nc < n− lc

[Na, N ]
1→ [∅, Nc]

1→ [Na, N ] lc ∨ rc < nc ≤ ra ∧ la

Table 4. Conditions for chains of length 2 potentially yielding periodic classes
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