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Abstract

Successes of law enforcement in apprehending offenders are often publicized events.

Such events have been found to result in temporary reductions in offending, or “residual

deterrence”. We provide a theory of residual deterrence which accounts for the incentives

of both enforcement officials and potential offenders. Our theory rests on the costs of

reallocating enforcement resources. In light of these costs, we study the determinants of

offending such as the role of public information about enforcement and offending.
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1 Introduction

An important rationale for the enforcement of laws and regulations concerns the deterrence

of undesirable behavior. The illegality of actions, by itself, may not be enough to dissuade

offenders. Instead, the perceived threat of apprehension and punishment seems to play an

important role (see, for instance, Nagin (2013) for a review of the evidence).

One factor that is salient in determining the perceived risk of punishment is past en-

forcement decisions, especially the extent of past convictions. Block, Nold and Sidak (1981)

provide evidence that bread manufacturers lower mark-ups in response to Department of Jus-

tice price fixing prosecutions in their region. Jennings, Kedia and Rajgopal (2011) provide

evidence that past SEC enforcements among peer firms deter “aggressive” financial reporting.

Sherman (1990) reviews anecdotal evidence that isolated police “crackdowns”, especially on

drink driving, lead to reductions in offending that extend past the end of the period of inten-

sive enforcement.1 All these instances appear to fit a pattern which Sherman terms “residual

deterrence”. Residual deterrence occurs when reductions in offending follow a period of active

enforcement.

In the above examples, the possibility of residual deterrence seems to depend, at first in-

stance, on the perceptions of potential offenders about the likelihood of detection. It is then

important to understand: How are potential offenders’ perceptions determined? What affects

the extent and duration of residual deterrence (if any)? This paper aims at an equilibrium

explanation of residual deterrence based on both the motives of enforcement officials (for con-

creteness, the “regulator” in our model) and potential offenders (the “firms”). In particular,

we provide a model in which convictions sustained by the regulator against offending firms

are followed by prolonged periods of low offending, which we equate with residual deterrence.

Our theory posits a self-interested regulator which gains by apprehending offending firms

but finds inspections costly. Since firms are deterred only if the regulator is inspecting, the

theory must explain why the regulator continues to monitor firms even when they are unlikely

to offend. Our explanation hinges on the regulator’s costs of allocating and reallocating

resources to inspection activities, that is, on switching costs. We show how such costs can

manifest in the episodes of residual deterrence that follow the apprehension of an offending

firm.

1In further examples, Shimshack and Ward (2005) find that a fine against a paper mill for non-compliance

with water polluting standards deters non-compliance of firms in the same state in the following year. Chen

(2015) finds some limited evidence that recent executions deterred English desertions in World War I (although

executions of Irish soldiers spurred Irish desertions).
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There are several reasons to expect switching costs in practice. It is costly for a regula-

tor to understand a given market, costs which are, however, mitigated by recent experience

monitoring that market (hence, monitoring a given market for two consecutive periods should

be less costly than for two non-consecutive ones). Switching an enforcement agency’s focus

may require personnel changes, or technology changes,2 which can be costly both to instigate

and to reverse. On a shorter time scale, switching activites requires coordination of various

personnel and this coordination imposes administrative costs.3

We study a dynamic version of a simple workhorse model – the inspection game. In this

model, a long-lived regulator faces a sequence of short-lived firms. Committing an offense is

only worthwhile for a firm if the regulator is “inactive”, while being active is only worthwhile

for the regulator if an offense is committed. In our baseline model (Section 3), the only public

information is the history of previous “convictions”; that is, the periods where the regulator

was inspecting and the firm committed an offense. This corresponds to a view that the most

salient action an enforcement agency can take is to investigate and penalize offending. It is

through convictions that firms learn that the regulator has been active (say, investigating a

particular instance of price fixing or cracking down on financial mis-statements by one of its

peers).

In the model described above, equilibrium follows a repetition of static play; i.e., past

convictions do not affect the rate of offending. Things are different once we introduce the

cost of reallocating resources. We show that equilibrium then features reputational effects

driven by the switching costs: a conviction is followed by several periods during which the

firms do not offend. We identify this pattern as residual deterrence. Thus, equilibrium in our

model involves reputation cycles, with each cycle characterized by a conviction, a subsequent

reduction or total cessation of offending, and finally a resumption of offending at a steady

level. We also show that the switching costs are necessary to generate residual deterrence,

since the episodes of residual deterrence disappear as switching costs shrink.

The model permits a rich analysis of comparative statics. This is facilitated by the

fact that the equilibrium process for convictions, as well as firms’ strategies, are uniquely

determined. The only source of multiple equilibria is that the regulator may condition its

switching on privately-held and payoff-irrelevant past information.

We illustrate how the model may be used to evaluate the effect of the penalty incurred

2Consider, for instance, a police force switching its focus from speed infractions to drink driving violations.
3There may also be “psychological costs” of changing the current pattern of activity (see, e.g., Klemperer,

1995), or reputational concerns that frequent switching might suggest a “lack of focus” or lack of confidence

about the appropriate allocation of regulatory resources.
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by a convicted firm on firms’ offending. The direction of this effect need not be obvious and

can depend on the horizon of interest. While in the short run, the direction of the effect is as

expected, it can be reversed in the long run. In particular, a permanent increase in the penalty

leads to a higher long-run average rate of offending. This perhaps counterintuitive result is

a consequence of the equilibrium behavior of the regulator. As in the static inspection game,

the regulator responds to an increase in penalties by inspecting less often (in order that firms

are still willing to offend). However, this means fewer convictions, and hence fewer reputation

cycles and fewer episodes of residual deterrence. While this finding could potentially explain

the difficulty in discerning a deterrence effect from increased penalties in empirical work (see

Nagin (2013) for a review), we also point out how our prediction is sensitive to details of the

model.

Further comparative statics are possible with respect to the costs of switching to and from

inspection. The duration of residual deterrence is increasing in these switching costs, while

the rate of offending after residual deterrence has ceased is also increasing in these costs. The

long-run average rate of offending is in turn determined jointly by the length of deterrence and

rate of offending after deterrence. We find that the long-run average offense rate is always

increasing in the cost of switching to inspection, whereas it may increase or decrease in the

cost of switching from inspection. Hence, it can be either higher or lower than in the model

without switching costs.

Before presenting the model, it is worth clarifying up front a few important modeling

choices. First, our baseline model posits that firms have identical preferences for offending.

This simplifies the analysis and leads to the stark conclusion that the firms’ beliefs as to the

probability of inspection are constant in every period and equal to the equilibrium inspection

probability in the static inspection game. This observation highlights that episodes of residual

deterrence in our model need not involve fluctuations in firms’ beliefs. However, we generalize

(in Section 4.1) by allowing for ex-ante identical firms to have heterogeneous (and privately

observed) preferences for offending. In this case, firms’ beliefs do fluctuate in a predictable

fashion over the cycle: the perceived probability of detection following a conviction is high,

while this probability falls in the absence of convictions in accordance with Bayes’ rule. That

is, in the absence of convictions, firms place increasing weight on the possibility that the

regulator has switched to being inactive. Our extended model is thus able to explain time-

varying perceptions of the likelihood of detection (the intuition is nonetheless close to our

baseline model, which provides a useful starting point).

A second important modeling choice is that the only public information about past play
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is the history of convictions. In practice, additional information may be available about the

offending of firms and the inspection activities of the regulator. We extend the model to

consider both possibilities separately (Section 4.2 studies the case where additional noisy sig-

nals of firm offending are available, while Section 4.3 allows for noisy signals of the regulator’s

inspecting). Allowing for noisy signals of firm behavior can bring our model closer to the

applications mentioned above. When there is a possibility of price fixing, for instance, high

prices might be a noisy signal of firm offending. We would then predict that firms set lower

prices following a conviction, simply because they are less likely to fix prices. In this sense,

the model directly accounts for the findings of Block, Nold and Sidak (1981). Moreover, our

findings are an important robustness check; residual deterrence persists in the settings with

richer information, although the implications for equilibrium offense and switching probabili-

ties must of course be accounted for.

Another important modeling choice is the regulator’s concern for obtaining convictions,

as opposed, for instance, to deterrence itself. This specification seems to make sense in many

settings, since the allocation of enforcement resources often rests on the discretion of personnel

influenced by organizational incentives. For instance, Benson, Kim and Rasmussen (1994, p

163) argue that police “incentives to watch or patrol in order to prevent crimes are relatively

weak, and incentives to wait until crimes are committed in order to respond and make arrests

are relatively strong”. While explicit incentives for law enforcers to catch offending are often

controversial or illegal, even quite explicit incentives seem relatively common.4 Nonetheless,

we are also able to extend our baseline model to settings where the regulator is concerned

directly with deterrence, rather than convictions (see Section 4.4). Again, we exhibit equilibria

featuring reputation cycles. The regulator in this case may be incentivized to inspect precisely

because it anticipates residual deterrence following a conviction.

The rest of the paper is as follows. We next briefly review literature on the economic

theory of deterrence, as well as on reputations. Section 2 introduces the baseline model,

Section 3 solves for the equilibrium and provides comparative statics, and Section 4 provides

extensions. Section 5 concludes. The Appendix A contains the proofs of results in Section

3, and of Proposition 2 in Section 4.1, while the Appendices B and C prove all other results.

4Perhaps the best-known example in recent times is the Ferguson Police Department’s focus on generating

revenue by writing tickets; see, for instance, the Department of Justice Civil Rights Division 2015 report

‘Investigation of the Ferguson Police Department’. Note that the model we introduce below can explicitly

account for this revenue-raising motive for inspections, for instance by setting the regulator’s reward for a

conviction equal to the firm’s penalty.
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1.1 Literature Review

At least since Becker (1968), economists have been interested in the deterrence role of policing

and enforcement. Applications include not only criminal or delinquent behavior, but also the

regulated behavior of firms such as environmental emissions, health and safety standards and

anticompetitive practices. This work typically simplifies the analysis by adopting a static

framework with full commitment to the policing strategy. The focus has then often been on

deriving the optimal policies to which governments, regulators, police or contracting parties

should commit (see, among others, Becker (1968), Townsend (1979), Polinsky and Shavell

(1984), Reinganum and Wilde (1985), Mookherjee and Png (1989, 1994), Lazear (2006),

Bassetto and Phelan (2008), Bond and Hagerty (2010), and Eeckhout, Persico and Todd

(2010)).

In practice, however, there are limits to the ability of policy makers to credibly com-

mit to the desired rate of policing. First, policing itself is typically delegated to agencies

or individuals whose motives are not necessarily aligned with the policy maker’s. Second,

announcements concerning the degree of enforcement or policing may not be credible (see

Reinganum and Wilde (1986), Khalil (1997) and Strausz (1997) for settings where the prin-

cipal cannot commit to an enforcement rule, reflecting the concerns raised here). Potential

offenders are thus more likely to form judgments about the level of enforcement activity from

past observations. To our knowledge, formal theories of the reputational effects of policing

are, however, absent from the enforcement literature. Block, Nold and Sidak (1981) do in-

formally suggest a dynamic theory. They view enforcement officials as committed to playing

a fixed inspection policy over time, with potential offenders updating their beliefs about this

policy based on enforcement actions against peer firms.56 Relative to Block, Nold and Sidak,

our theory allows the regulator to choose its enforcement policy strategically over time.

Our paper is related to the literature on reputations with endogenously switching types;

see for instance Mailath and Samuelson (2001), Iossa and Rey (2014), Board and Meyer-ter-

Vehn (2013, 2014) and, more recently (and independently of our own work) Halac and Prat

5They suggest (footnote 23)“assuming that colluders use Bayesian methods to estimate the probability that

they will be apprehended in a particular period. In this formulation, whenever colluders are apprehended,

colluders estimate of their probability of apprehension increases, and that increase is dramatic if their a priori

distribution is diffuse and has small mean.”
6A similar view is taken by Chen (2015), who suggests that recent executions could temporarily change

the perceived likelihood of being executed for desertion. He argues such effects would be temporary due to

recency biases in decision making. Executions could also affect other parameters in the decision problems of

would-be deserters (possible parameters are presented formally by Bénabou and Tirole (2012)).
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(2014). Closest methodologically to our paper is the work by Dilmé (2014). Dilmé follows

Mailath and Samuelson and Board and Meyer-ter-Vehn by considering firms that can build

reputations for quality (see also Iossa and Rey in this regard), but introduces a switching cost

to change the quality level. The present paper also features a switching cost for the long-lived

player, but the stage game is different to Dilmé’s, requiring a separate analysis.7

A key novelty of our setting relative to the various papers on seller reputation is that the

generation of public information depends on the actions of all players, both the regulator and

firms. This feature is in common with Halac and Prat (2014), who analyze the deterioration

of manager-worker relationships. In their model, a manager can invest in a monitoring tech-

nology, which breaks down stochastically. They find an equilibrium with similar features to

ours in the so-called “bad news” case, where the worker increases his effort immediately after

being found shirking, since he believes that the monitoring technology is unlikely to be broken.

Given our focus on modeling the behavior of enforcement agencies, our analysis deviates from

theirs in several directions. First, our focus is on a regulator whose payoff is a function of

the convictions, not the offense rate. Second, if the crime rate is low, our regulator has the

incentive (and the ability) to stop inspecting due to its (opportunity) cost, and it does so in

equilibrium. Third, we consider the implications of permitting a heterogeneous population of

firms and a rich signal structure for the public information about inspections (see Sections

4.1-4.3). Finally, we analyze the comparative statics with respect to the short and long-run

rates of offending (Section 3.1), which may be of interest for policy.

2 Baseline Model

Timing, players and actions. Time is discrete and infinite. There is a single regulator and

a sequence of short-lived firms who are potential offenders, one per period.

In each period t ≥ 0, the regulator chooses an action bt ∈ {I,W}, where I denotes

“inspect” and W denotes “wait”. The history of such decisions is denoted bt = (b0, ..., bt−1) ∈
{I,W}t. For each period t, the firm simultaneously chooses an action at ∈ {O,N} where O

denotes “offend” and N denotes “does not offend”. Somewhat abusively, we let I = O = 1

and W = N = 0. Thus atbt = 1 if the firm offends while the regulator inspects at date t,

while atbt = 0 otherwise. If atbt = 1, we say that the regulator “obtains a conviction” at date

7Other papers featuring repeated interactions and switching costs are Lipman and Wang (2000, 2009) and

Caruana and Einav (2008). One key difference with respect to our paper is their focus on settings with

complete information.
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t.8

Payoffs. Per-period payoffs are determined at first instance according to a standard

inspection game. If the firm offends without a conviction (at = O and bt = W ), then it earns

a payoff π > 0. If it offends and is convicted (at = O and bt = I), then it sustains a penalty

γ > 0, which is net of any benefits from the offense. Otherwise, its payoff is zero.

If the regulator inspects at date t, it suffers a cost i > 0. It incurs no cost if waiting. In

the event of obtaining a conviction, the regulator earns an additional payoff of y > i. Later, we

consider the possibility that the regulator cares about deterring the firm rather than obtaining

convictions.9

In addition to the costs and benefits specified above, the regulator sustains a cost if

switching action at period t. Hence, the switching cost in period t is Sbt−1bt ; without loss of

generality we assume Sbt−1bt = 0 when bt−1 = bt. Payoffs are then summarized in the following

table.

firm

at = N at = O

regulator
bt = W −Sbt−1W , 0 −Sbt−1W , π

bt = I −i− Sbt−1I , 0 y − i− Sbt−1I ,−γ

Because changes in the regulator’s actions affect payoffs, it is necessary to specify the

regulator’s action in the period before the game begins. For concreteness we let b−1 = W ,

although no results hinge on this assumption.

The regulator’s discount factor is δ ∈ (0, 1), while each firm is short-lived and hence

myopic. That firms are short-lived excludes as a motivation for offending possible learning

about the choices of the regulator.

Information. In each period t, a public signal may be generated providing information

8We will assume that a firm can only be convicted in the period it takes its action at. One way to interpret

this is that evidence of an offense lasts only one period. This seems unambiguously the right assumption

where punishment requires the offender to be “caught in the act”. More generally, it seems a reasonable

simplification, one which has often been adopted, for instance, by the literature on leniency programs for

cartels (see, e.g., Spagnolo (2005) and Aubert, Rey and Kovacic (2006)). One way to relax the assumption

would be to assume that while firms take only one action, they can still be convicted for a limited time

subsequently. We expect residual deterrence would continue to arise in equilibrium in this model.
9Note that, as is well known, there is a unique equilibrium of the stage game without switching costs. In

this equilibrium, the regulator chooses I with probability π/(π+γ), while the agent chooses O with probability

i/y. These probabilities ensure players are indifferent between their two actions (W and I for the regulator

and N and O for the agent).
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on the players’ actions. If a signal is generated, we write ht = 1; otherwise, ht = 0. Moti-

vated by the idea that the activity of an enforcement agency becomes known chiefly through

enforcement actions themselves, we focus on the case where a signal is generated on the date

of a conviction. That is, for each date t, we let ht = atbt ∈ {0, 1}. Players perfectly recall

the signals so that, at the beginning of period t, the date−t firm observes the “public his-

tory” ht ≡ (h0, ..., ht−1) ∈ {0, 1}t. We find it convenient to let 0τ = (0, 0, . . . , 0) denote the

sequence of τ zeros. Thus, for j > 1, (ht,0j) = (h0, ..., ht−1, 0, . . . , 0) is the history in which

ht is followed by j periods without a conviction.

The regulator observes both the public history and his private actions. Thus a private

history for the regulator at date t is h̃t ≡ (ht, bt). A total history of the game is the private

history of the regulator and the actual choices of the firm, ĥt ≡ (h̃t, at), where at ∈ {O,N}t.
Strategies, equilibrium and continuation payoffs. We let the strategy of a date–t

firm be given as follows: For each ht ∈ {0, 1}t, let α (ht) ∈ [0, 1] be the probability that the

date–t firm offends (at date t). We use αt to denote α (ht) when there is no risk of confusion.

A (behavioral) strategy for the regulator assigns to each private history h̃t ∈ {0, 1}t×{I,W}t

the probability that the regulator inspects at h̃t, β(h̃t). We study perfect Bayesian equilibria

of the above game.

For a fixed strategy β of the regulator, we find the following abuse of notation convenient.

For each public history ht, let β(ht) ≡ E
[
β(h̃t)

∣∣ht] be the equilibrium probability that the

regulator inspects at time t as determined according to the strategy β, where the expectation

is taken with respect to the distribution over private histories h̃t with public component

ht. We use βt to denote β(ht) when there is no risk of confusion. Probabilities β(ht), are

particularly useful since (i) the date-t firm’s payoff is affected by h̃t only through β(ht), (ii)

these probabilities will be determined uniquely across equilibria of our baseline model, and

(iii) in many instances, we might expect an external observer to have data only on the publicly

observable signals (that is, convictions). In contrast, equilibrium strategies for the regulator,

as a function of private histories, will not be uniquely determined.

Before beginning our analysis, it is useful to define the continuation payoff of the regulator

at any date t and for any strategies of the firm and regulator. For a regulator history h̃t, this

is

Vt
(
β, α; h̃t

)
= Eβ,α

[
∞∑
s=t

δs−t
(
ybsas − ibs − Sbs−1bs

)
|h̃t
]

.

Under an optimal strategy for the regulator and for a fixed public history, the regulator’s

payoffs must be independent of all but the last realization of b ∈ {I,W}. We thus denote

equilibrium payoffs for the regulator following public history ht and date t− 1 choice bt−1 by
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Vbt−1(h
t).

3 Equilibrium Characterization

We restrict attention to parameters such that equilibrium involves infinitely repeated switch-

ing, as described in the Introduction.

(A1) Double-switching is costly, i.e., SIW + SWI > 0.

(A2) The regulator switches to wait if no offending occurs in the future, i.e., SIW < i
1−δ .

(A3) The regulator has incentives to switch to inspect if the firm offends for sure, i.e., SWI +

δSIW < y − i.

Assumption A1 implies a friction in the regulator’s switching. Assumptions A2 and A3

ensure this friction is not too large, permitting repeated switching to emerge in equilibrium.10

Since firms are myopic, a firm offends at date t only if (1− βt)π − βtγ ≥ 0. Let β∗ ≡ π
π+γ

be the belief which keeps a firm indifferent between offending and not. We begin by using

Assumption A2 to show that the probability of inspection, conditional on the public history,

is never higher than β∗ in equilibrium.

Lemma 1 For all equilibria, at all ht, β(ht) ≤ β∗.

The above property is the dynamic analogue of the equivalent observation for the static

inspection game. If β(ht) > β∗ at some history ht, the firm would not offend, but this would

undermine the regulator’s incentive to inspect, yielding a contradiction. We can use this

(together with Assumption A1) to provide an important observation regarding the regulator’s

expected equilibrium payoffs.

Lemma 2 For all equilibria, for all ht with ht−1 = 0, VW (ht) = 0.

Thus, a regulator who waits in a given period weakly prefers to wait in all subsequent

periods (since this yields a payoff zero). Indeed, the proof proceeds by showing that the

regulator must never have strict incentives to switch to inspect; such incentives would imply

a contradiction to Lemma 1. We use the result, together with Assumption A3, to show the

following.

10If SIW > i
1−δ , the regulator never finds it optimal to switch from inspect to wait (irrespective of firms’

offending decisions). If SWI + δSIW > y − i, one can show that the regulator never switches from wait to

inspect in equilibrium (since b−1 = W , the regulator never switches).
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Lemma 3 For all equilibria, for all ht, β(ht) ≥ β∗.

The idea is simply that if β(ht) < β∗ at any history ht, the date-t firm would offend with

certainty at date t, but (given A3 and Lemma 2) this would give the regulator a strict incentive

to inspect, irrespective of the action taken in the previous period. But this contradicts

β(ht) < β∗.

Lemmas 1 and 3 together imply that firms are necessarily indifferent between offending

and not, i.e. βt = β∗ for all t. The indifference of the firm is analogous to the finding for the

stage game without switching costs (where the regulator’s equilibrium inspection probability

is β∗). As we find in Section 4.1, the indifference property is particular to a model where

firms are homogeneous in their payoffs and penalties for offending. A more realistic model

which allows for firm heterogeneity not only yields firms with strict incentives to offend or

not, but also inspection probabilities βt which vary with time. The latter seems to offer a

more plausible evolution of perceptions concerning the risk of detection. However, the baseline

model of this section is easier to solve while yielding many of the key insights, and is therefore

a natural place to start.

Given that firms are indifferent to offending, our task is to find any collection of offense

probabilities α(ht) which yield the optimality of a regulator strategy consistent with β(ht) =

β∗, for all ht. We will show that this collection is unique. We begin by determining the

range of expected continuation payoffs for the regulator VI (ht) following an inspection, as

summarized in the following lemma.

Lemma 4 For all equilibria, for all ht, VI(h
t) ∈ [−SIW , SWI ]. If ht−1 = 1, then VI(h

t) =

−SIW . If ht−1 = 0 and α(ht−1) > 0, then VI(h
t) = SWI .

Lemma 4 follows after noticing that the regulator cannot have strict incentives to switch,

either from inspect to wait or wait to inspect. The regulator is willing to switch to wait after

a conviction, and to inspect at a history ht such that ht−1 = 0 and α(ht−1) > 0. In particular,

following any ht such that ht−1 = 0 and α(ht−1) > 0, the regulator must switch from wait to

inspect with a probability such that date–t beliefs remain at β∗. Using Bayes’ rule to find

the posterior probability that the regulator inspected at t− 1, we find that the probability of

switching must be ξ satisfying

β∗ (1− α(ht−1))

β∗ (1− α(ht−1)) + 1− β∗︸ ︷︷ ︸
Pr(bt−1=I|ht−1=0)

+ξ
1− β∗

β∗ (1− α(ht−1)) + 1− β∗︸ ︷︷ ︸
Pr(bt−1=W |ht−1=0)

= β∗. (1)
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Here, ξ is the probability of switching from wait to inspect conditional on the public history

(the regulator’s switching probability may, however, vary with the payoff-irrelevant compo-

nents of its private history; i.e., with its decision to inspect at dates before the previous

period).

We can now determine the firms’ strategies. Consider ht such that ht−1 = 0 and α(ht−1) >

0. That the regulator is willing to inspect at t and then follow an optimal continuation strategy

implies

VI(h
t) = −i+

(
1− α(ht)

)
δVI(h

t, 0) + α(ht)
(
y + δVI(h

t, 1)
)

. (2)

The right-hand side is the expected value of continuation payoffs at t given that the regulator

inspects. Using Lemma 4, we have equivalently

SWI = −i+
(
1− α(ht)

)
δSWI + α(ht) (y − δSIW ) . (3)

Thus, we must have α(ht) = α∗, where α∗ = i+SWI(1−δ)
y−δ(SIW +SWI)

is the value solving (3). By

Assumptions A1-A3, α∗ ∈ (0, 1).

Next, we show that the probability of offending can never exceed α∗. Because the regulator

never has strict incentives to switch, Equation (2) holds for any ht, so that (using Lemma 4)

SWI ≥ −i+
(
1− α(ht)

)
δSWI + α(ht) (y − δSIW ) (4)

= −i+ δSWI + α(ht)(y − δ(SWI + SIW )).

Given Assumptions A1-A3, y − δ(SWI + SIW ) > 0, i.e. the right-hand side is increasing in

α(ht). Thus (4) can hold only if α(ht) ≤ α∗.

Finally, consider any public history ht with ht−1 = 1. Suppose that the next date the firm

offends with positive probability is t+ T with T ≥ 0. With an abuse of notation, denote this

probability by α∗0 = α
(
ht−1, 1,0T

)
. Since the regulator must be willing to continue inspecting

at time t (it never strictly prefers to switch to wait), we must have

VI
(
ht
)

= −
T∑
j=0

δji+ (1− α∗0) δT+1VI
(
ht,0T+1

)
+ α∗0δ

T (y + δVI
(
ht,0T , 1

)
).

Equivalently, given Lemma 4, we have

−SIW = −
T∑
j=0

δji+ (1− α∗0) δT+1SWI + α∗0δ
T (y − δSIW ). (5)

It is straightforward to verify that there is a unique solution to this equation such that α∗0 ∈
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(0, α∗] and T is integer-valued.11 In particular, we have

T =

⌊
log

(
i− SIW (1− δ)
i+ SWI (1− δ)

)
/ log(δ)

⌋
. (6)

We now give our equilibrium characterization. Equilibrium can be understood as consist-

ing of two main phases: a “stationary phase” in which the probability of offending remains

at a baseline level, and a “residual deterrence phase” which follows a conviction and during

which the probability of offending is reduced relative to the baseline in the stationary phase.

There is also an “initialization” period, which reflects our assumption that the game starts

with the regulator waiting rather than inspecting.

Proposition 1 An equilibrium exists. Furthermore, under Assumptions A1-A3, the following

holds in any equilibrium:

Step 0. (Initialization) At time 0, the regulator switches with probability β∗ to inspect and the

firm offends with probability α∗. If there is no conviction the play moves to Step 1, and

otherwise it moves to Step 2.

Step 1. (Stationary phase) If the regulator inspects in the previous period, then she keeps in-

specting, and if, instead, the regulator waits in the previous period, then she switches to

inspect with probability ξ given by (1). The firm randomizes, playing O with probability

α∗. If there is a conviction, the play moves to Step 2; and otherwise, it stays in Step 1.

Step 2. (Residual deterrence, following a conviction) In the period following a conviction, the

regulator switches with probability 1 − β∗ to wait. In the subsequent T periods, the

regulator does not switch. Firms do not offend in the T periods following the conviction.

Then, in the period T +1 after the conviction, the firm offends with probability α∗0 ∈
(0, α∗]. If there is no conviction, the play moves to Step 1; and otherwise, it reinitializes

at Step 2.

It is worth reiterating that the equilibrium process for convictions is uniquely determined:

the probability of inspection conditional on the public history is fixed at β∗, and firms’ strate-

gies (which depend only on the public history) are unique. The only reason for multiple equi-

libria is that the regulator’s decision to inspect may depend on payoff-irrelevant components

of its private history; i.e., the decisions to inspect prior to the previous period. Equilibrium

11See the proof of Proposition 4.
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αt

α∗

α∗0
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1

β∗

Figure 1: Example of dynamics of the perceptions of the firms about the likelihood of detection

(β, upper figure) and probability of a crime being committed (α, lower figure) for our base

model. In the upper figure, empty dots correspond to the posterior about the action taken in

the previous period. In both graphs, there is a conviction in periods 3 and 16.

is unique if we restrict attention to switching probabilities that depend only on the public

history.

Equilibrium dynamics are depicted in Figure 1. In the residual deterrence phase which

follows a conviction, firms stop offending for T = 9 periods. There is then one period of

offending with a probability α∗0. If there is no conviction, the stationary phase begins, in

which firms offend with the highest probability, α∗. This gradual resumption of offending

coincides with what Sherman (1990) terms “deterrence decay” — the re-emergence of offending

at a baseline level, in this case with probability α∗.

The evolution of the regulator’s incentives in equilibrium can be understood by considering

how the continuation payoff VI (ht) changes over time. Figure 2 plots this continuation payoff

for an example. Following a conviction, which occurs at t = 3, 16 in the example, the payoff

from inspecting is equal to −SIW , and the regulator is thus indifferent between inspecting

and switching to wait. Given that T in the example, offending ceases at the following dates

and the continuation payoff VI (ht) grows as the resumption of offending grows nearer. While

VI (ht) ∈ (−SIW , SWI), the regulator strictly prefers not to switch irrespective of whether it

played wait or inspect in the previous period. Finally, for any history ht with ht−1 = 0 and

αt−1 (ht−1) > 0, we have VI (ht) = SWI , and the regulator is indifferent between remaining at

13



wait and switching to inspect.

The length of the deterrence phase, and reduced level of offending α∗0, ensure the regulator

is precisely indifferent between continuing to inspect and switching to wait following a convic-

tion. By continuing to inspect following a conviction at date t− 1, the regulator continues to

incur the per-period cost i, but it obtains a conviction at date t+ T with probability α∗0 > 0,

and expects a continuation payoff SWI if reaching date t+ T + 1 without any new conviction.

The payoff from continuing to inspect must be balanced against the cost SIW of switching to

wait, explaining why T is increasing in both switching costs.

If we take the regulator to be very patient, the expression for T in (6) becomes more

parsimonious. In particular,

lim
δ↗1

{
log

(
i− SIW (1− δ)
i+ SWI (1− δ)

)
/ log(δ)

}
=
SIW + SWI

i
,

so as δ ↗ 1, the length of deterrence is determined simply by the ratio of the (sum of)

switching costs to the per-period inspection cost. Good information about these costs hence

permits a straightforward prediction about the length of deterrence.12

t

VI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

SWI

−SIW

Figure 2: Example of dynamics of VI as a function of time. In the graph, there is conviction

in periods 3 and 16.

3.1 Comparative Statics

A natural question is how the firms’ rate of offending depends on the level of penalties. We find

that the effect of a (permanent) change in the penalties depends on the horizon considered. In

12Admittedly, such costs would often be difficult to measure. For instance, it is difficult to know how

regulatory officials perceive the opportunity cost of their time, and this might well differ from easily-observed

measures of personnel costs such as wages.
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the short run, raising penalties can be expected to reduce offending, while lowering penalties

increase it. To illustrate, we consider an unanticipated and permanent change in the penalty

at an arbitrary date t > 1. The effects of an increase and decrease are asymmetric, so they

must be considered separately.

Corollary 1 Suppose there is an unforeseen, but public and permanent, change in the penalty

γ to γnew at the beginning of period t. Then

1. if γnew >
1

1−αt−1
γ or ht−1 = 1, the equilibrium play enters the “residual deterrence phase”

at date t, i.e. there is no offending until period t+ T , and

2. if γnew <
1

1−αt−1
γ and ht−1 = 0, then the equilibrium play is in the “stationary phase” at

date t, i.e. the date-t firm offends with probability α∗ (and offending continues at rate

α∗ until after the next conviction).

The result can be illustrated by considering a history ht such that the date t − 1 firm

offends with probability α∗ (i.e., play has entered the “stationary phase”). Consider then

the effect of a change in the penalty from γ to γnew announced at the beginning of date t.

After observing no conviction at date t− 1, the date-t firm assigns a probability β∗(1−α∗)
β∗(1−α∗)+1−β∗

to the regulator having inspected at date t − 1. If γnew > 1
1−α∗γ, this probability is higher

than β∗new = π
π+γnew

. Lemmas 1-3 above imply that the regulator must be willing to switch

from inspect to wait, in order to guarantee that βt = β∗new. This switching is, in turn, only

incentive compatible for the regulator if the change in penalty is followed by a sequence of T

periods without offending. If, instead, γnew <
1

1−α∗γ, the reverse applies: the regulator must

be willing to switch from wait to inspect, so equilibrium play must be in the stationary phase.

We next turn our focus to long-run effects, and in particular what we term the “long-run

average offense rate”. One finds the ex-ante expected average rate of offending over the first

τ periods, and then takes the limit as τ → ∞. To calculate this, we use that the expected

duration between convictions is T + 1 +
1−α∗0β∗
α∗β∗

. The long-run average offense rate is then

ᾱ =
α∗0 +

1−α∗0β∗
α∗β∗

α∗

T + 1 +
1−α∗0β∗
α∗β∗

=
α∗

1 + β∗(α∗(T + 1)− α∗0)
. (7)

We find the following.

Corollary 2 The long-run average offense rate is increasing in the penalty γ.
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While Corollary 2 may seem counterintuitive, the reason for this result is straightforward.

A higher value of the penalty γ (or a lower value of π) reduces the probability of monitoring

β∗ required such that a firm is indifferent to offending. Provided the regulator’s mixing

probabilities are adjusted appropriately to maintain firm beliefs at the lower level, firms are

content to play the same strategies specified in Proposition 1 to maintain the regulator’s

incentives. Hence, the duration of complete deterrence (T ) remains the same, as does the crime

rate T +1 periods after the previous conviction (α∗0) and subsequently (α∗). Nevertheless, due

to the lower value of β∗, convictions occur less frequently. Episodes of residual deterrence are

thus less frequent.

Corollary 2 provides a new answer to an old question raised by Becker (1968) regarding

why maximal penalties may not be optimal.13 In our model, a planner who is concerned

only with the long-run average offense rate, gains by reducing the penalty. As noted in the

Introduction, one should, however, be careful to interpret this result in light of the partial

equilibrium nature of our analysis. In particular, it seems important to explicitly account

for the alternative actions of the regulator when not inspecting a given group of potential

offenders. For instance, consider an alternative model where the regulator must always

inspect, but can rotate inspections (at a cost) among different industries. In such a model, we

expect that raising the penalty uniformly across industries would increase long-run deterrence,

since (contrary to the model of our paper) the total time inspecting remains unchanged. While

such a model seems realistic, it also introduces considerable complexity to the analysis, which

would tend to obfuscate the simple intuitions of the paper.14

Our finding should also be related to the result for a static setting. Tsebelis (1989), for

instance, highlights that, in the one-shot inspection model, the probability of inspection offsets

any change in penalties exactly, so that an increase in the penalty does not affect offending.15

13An alternative theory which has dominated the literature is the idea of “marginal deterrence”, as discussed,

for instance, by Stigler (1970) and Shavell (1992). In this view, not all penalties should be set at their maximum

level. Instead, it may be desirable to set penalties for less harmful acts below the maximum to entice offenders

away from the most harmful acts (which should indeed receive the maximal penalty).
14In the richer model, the regulator’s incentives to switch to inspecting a given industry would depend on

the history of convictions (and hence subsequent deterrence) in other industries. In other words, one would

need to account for the evolution of the value of the regulator’s outside option of monitoring other industries.

By focusing on the decision whether to inspect (rather than where to inspect), the model of the present paper

abstracts from this difficulty.
15The empirical frequencies of choices by players of inspection and matching pennies games in the laboratory

typically respond to the players’ own payoffs, in an apparent contradiction to the Nash prediction (see Nosenzo

et al. (2014) for a recent experiment involving the inspection game). This principle would suggest that higher
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Our result goes further by suggesting a reason why the rate of offending may actually increase.

Our finding hinges on the positive switching cost: if SWI = SIW = 0, then equilibrium play

in the repeated game simply involves a repetition of the static inspection and offense rates.

As one might expect, this is also the limiting behavior as SWI and SIW approach zero.16

Next, we investigate the effects of changes in the switching costs on the long-run average

offense rate.

Corollary 3 The values α∗ and T are increasing in both SIW and SWI . The long-run average

offense rate ᾱ is continuous in (SIW , SWI). Moreover:

1. For generic values of (SIW , SWI),17 ᾱ is increasing in SIW if β∗ < δT+1 and decreasing

in SIW if β∗ > δT+1; hence ᾱ is quasi-concave in SIW .

2. ᾱ is increasing in SWI .

The effect of switching costs on T is discussed above, while the reason α∗ is increasing in

both switching costs is as follows. For a higher value of SWI , the level of offending α∗ must

be greater to incentivize switching from wait to inspect. For a higher value of SIW , the

regulator’s continuation payoff at the date of a conviction (i.e., y − i − δSIW > 0) is lower.

Hence, again, α∗ must be higher for the regulator to be willing to switch to inspect.

The long-run average offense rate ᾱ is, naturally, increasing in α∗ but decreasing in the

length of deterrence T . Consider then Part 1 of the corollary. If β∗ is small, i.e. the

probability of inspection in each period is low, then deterrence phases occur only rarely. If,

in addition, T is not too large, then the long-run average offense rate is close to α∗. Since

α∗ is increasing in SIW , it is unsurprising that the long-run average offense rate ᾱ is then also

increasing in SIW . Conversely, when β∗ is close to 1, deterrence phases occur frequently, and

the length of the deterrence phase T has a greater impact on the long-run average offense

rate. Since T is increasing in SIW , the long-run average offense rate then decreases in SIW .

In Part 2 of the corollary, we find that the long-run average offense rate is necessarily

increasing in SWI . In other words, the effect of SWI on α∗ always dominates. This finding

penalties reduce the frequency of offending, at least in the lab. It is difficult to make predictions about possible

play of our dynamic game in hypothetical experiments, but we expect some features of our equilibrium would

be robust. In particular, to the extent an increase in penalties reduces inspections, the effect should be to

reduce the episodes of residual deterrence, with implications for the overall rate of offending.
16See Appendix B.
17More precisely, for all values (SIW , SWI) except possibly points of discontinuity of T .
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is perhaps of interest for policy: it suggests that lowering a regulator’s cost of commencing

inspection activities may, by itself, reduce the rate of offending.

Corollary 3 indicates that positive switching costs may increase or decrease the long-run

average offense rate relative to the rate for SIW = SWI = 0 (i.e., compared to i/y). This

conclusion is perhaps surprising given that residual deterrence arises only when the switching

cost is positive. The reason for this result is that, as explained above, higher switching costs

increase α∗, the equilibrium rate of offending in the stationary phase. Nonetheless, in case

the regulator’s reward y from a conviction is sufficiently large (precisely, if y > i
1−δ + SWI),

SIW ↗ i
1−δ implies T → +∞, driving the long-run average offense rate to zero.

4 Extensions

4.1 Heterogeneous Firms

Our baseline model establishes a tractable framework for understanding deterrence. A deter-

rence phase provides, in equilibrium, a (weak) incentive for the regulator to stop inspecting

after a conviction. Indeed, reduced offending after a conviction induces the regulator to with-

draw from inspecting in order to save on inspection costs.

The model implies that the perceived threat of apprehension and punishment, measured

by βt, is constant and always equal to β∗. The threat of apprehension is hence the same

irrespective of whether play is in the deterrence phase. Another observation is that deterrence

phases are characterized by a complete cessation of offending, which means that firms learn

nothing about the regulator’s activities during these phases. In this section, we introduce

heterogeneity in firm payoffs and show that both conclusions are overturned.

We show that, when firms’ payoffs are heterogeneous, deterrence phases are characterized

by a high perceived risk of apprehension. The resulting offense rate is low, but still positive.

Hence, the absence of a conviction is evidence that the regulator is not inspecting, and the

perceived likelihood of inspection falls with the time since the last conviction. This means

that deterrence decay in this model coincides with a gradual reduction in the chances of being

caught. We thus provide a rational basis on which beliefs about the likelihood of punishment

decline with the time since the last observed punishment.18

18Compare this, for instance, to Chen’s (2015) suggestion that such changes in beliefs are to be expected on

the basis of so-called “recency biases”, whereby individuals incorrectly overweight recent events in determining

their beliefs.
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We introduce payoff heterogeneity as follows. At the beginning of each period t, the firm

independently (and privately) draws a value πt from a continuous distribution F with full

support on a finite interval [π, π̄], 0 < π < π̄. We maintain Assumptions A1-A3 precisely as

in Section 3.

At a given period t, if the probability that the regulator inspects (conditional on the public

history) is βt, a firm only offends if πt
πt+γ

≥ βt. This implies that the probability of offending

is given by

αt = Pr
(

πt
πt+γ

≥ βt
)

= Pr
(
πt ≥ βt

1−βtγ
)

= 1− F
(

βt
1−βtγ

)
≡ α(βt) , (8)

where our definition of α(·) involves an obvious abuse of notation. Let β̄ ≡ π̄
π̄+γ

, that is,

α(β̄) = 0.

Before providing our characterization result, it is useful to describe how equilibrium is

similar to our baseline model. After a conviction, using an argument similar to that for

Lemma 1, it is easy to see that the regulator must have (weak) incentives to switch to wait.

As before, the regulator prefers to make any switch to wait sooner rather than later, in order

to avoid inspection costs. Also as before, the incentive to switch to wait must result from

some periods of deterrence. Nevertheless, different from our base model, the crime rate is

positive in the deterrence phase and beliefs are updated following the absence of a conviction.

The probability assigned to the regulator inspecting falls gradually until the crime rate is high

enough that the regulator is (weakly) willing to switch from waiting to inspect. The crime

rate then remains fixed until a new conviction occurs. Figure 3 depicts the implied dynamics

of the perceptions of the firms about the likelihood of detection and probability of a crime

being committed.

Proposition 2 In the model with heterogeneous firms, there exists a unique βmax ∈ (0, β̄)

and T ∈ N ∪ {0} such that, in any equilibrium:

Step 0. (Initialization) At time 0 the regulator switches to inspect with probability βmin ≡ α−1(α∗)

(with α∗ = i+SWI(1−δ)
y−δ(SWI+SIW )

as in our baseline model) and the firm offends with probability

α∗. If there is no conviction the play moves to Step 1, and otherwise it moves to Step 2.

Step 1. (Stationary phase) If the regulator inspects in the previous period, then she keeps in-

specting, and if, instead, the regulator waits in the previous period, then she switches to

inspect with a positive probability such that the probability of inspection equals βmin. The

firm randomizes, playing O with probability α∗. If there is a conviction, the play moves

to Step 2; otherwise, it stays in Step 1.
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Step 2. (Residual deterrence, following a conviction) The regulator switches with probability 1−
βmax to wait. In the subsequent T periods, the regulator does not switch, and, as long

as there is no conviction, the firms’ beliefs evolve according to Bayes’ rule. That is, if

there is a conviction at time t− 1 and no conviction in {t, ..., t + j}, for j ∈ {0, ..., T},
then βt = βmax and for each k ∈ {0, ..., j− 1} we have that βt+k+1 is given recursively by

βt+k+1 =
βt+k(1− α(βt+k))

βt+j(1− α(βt+k)) + 1− βt+j
< βt+k . (9)

In this case, the firm in period t + j offends with probability α(βt+j). If there is a

conviction between t and t+ T , Step 2 is reinitialized; if there is no conviction, the play

moves to Step 1 at time t+ T + 1.

t

βt

t

αt

α∗

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1
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βmin

Figure 3: Example of dynamics of the perceptions of the firms about the likelihood of detection

(β, upper figure) and probability of a crime being committed (α, lower figure) for the random

firm payoffs case. In the upper figure, empty dots correspond to the posterior about the action

taken in the previous period. In both graphs, there is a conviction in periods 3 and 16.

We now briefly describe how one obtains the value of βmax and βmin (see the Appendix

for details). First note that, as in our baseline model, Lemma 2 applies: The regulator’s

continuation payoff following wait is zero. This must be the case, since the regulator can

obtain zero by simply continuing to wait. A strictly positive payoff would imply a strict

preference for switching to inspect, which, as we explain above, is inconsistent with firm

preferences for offending (such offending is, of course, essential for the switch to inspect to be
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profitable). This pins down the continuation value of inspecting after a conviction (equal to

−SIW ) and during the stationary phase which follows the deterrence phase (equal to SWI).

The same argument as for our baseline model shows that the rate of offending during the

stationary phase is equal to α∗ (again equal to i+SWI(1−δ)
y−δ(SWI+SIW )

), which implies βmin = α−1(α∗).

Now consider the payoff following a conviction; i.e., consider VI (ht) with ht−1 = 1. We

examine the effect on this payoff of changing βmax, keeping βmin fixed. For each value of βmax,

consider beliefs βt+j updated according to Bayes’ rule, as in (9). As βmax → β̄, the number

of periods j for βt+j to reach βmin after a conviction tends to infinity, and the crime rate

during the deterrence phase tends to 0. This implies that VI (ht) approaches −i
1−δ < −SWI . If,

alternatively, βmax → βmin (so the number of periods of deterrence tends to 0), the value of

inspecting VI (ht) converges to SIW . Thus, it is easy to see that there is a unique intermediate

value of βmax such that VI (ht) = −SWI , and thus such that the regulator is indifferent between

continuing to inspect and switching to wait.

Finally, it is worth reiterating that the forces in the model with heterogeneous firms

are closely related to those in our baseline model. In fact (as we show in Appendix B),

equilibrium converges to that in the baseline model as the distribution F over the rewards π

becomes degenerate. This also establishes that comparative statics for the baseline model

continue to apply to heterogeneous firms, provided this heterogeneity is not too great.

4.2 Imperfectly Observed Offenses

A notable feature of our motivating examples is that firms’ actions generate noisy information

about whether they have broken the law. For instance, a firm engaging in price fixing would

be expected to set higher prices than a non-price fixing firm, but the legality of a firm’s pricing

cannot be perfectly inferred based on prices alone. The simplest way to model this possibility

is to introduce a noisy signal of firm offending which emerges after the regulator and firm’s

simultaneous actions. We then find that equilibrium is much the same as characterized in

Proposition 1.

In addition to the public signals of past convictions, we assume that, at the end of each

period t, there is some public signal µt ∈ (µ, µ) about the action of the firm. The signal is

distributed according to Fat , for at ∈ {N,O}. Fat is absolutely continuous with PDF fat ,

which is positive on the entire support. Moreover, fO(·)/fN(·) is strictly increasing and has

R++ as its image.

Firms’ beliefs as to the probability of inspection must now be calculated accounting for

signals both of convictions and the signal µt. Let β′t be the posterior about the action of the
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regulator at time t− 1 being I calculated at the beginning of period t (i.e., after period t− 1

signals are observed, but before the regulator switches in period t). Following a conviction at

date t− 1 we have β′t = 1. Otherwise, β′t is given by Bayes’ rule, that is

β′t
1− β′t

=
βt−1

1− βt−1

(1− αt−1)fN(µt−1)

(1− αt−1)fN(µt−1) + αt−1fO(µt−1)
. (10)

We will find that equilibrium play is as specified in Proposition 1, with the exception

of the regulator’s randomizations. These must be adjusted to maintain the probability of

inspection equal to β∗ following every history. Thus, the regulator still switches to wait with

probability 1− β∗ following a conviction. Its switching following no conviction is determined

by (10), taking βt−1 = β∗. Note then that (given no conviction at t − 1) we have β′t ≤ β∗,

with a strict inequality if and only if αt−1 > 0. Hence, either αt−1 = 0 and the regulator does

not switch, or αt−1 > 0 and it switches from wait to inspect with probability ξ (β′t), where

ξ (β′t) satisfies

β′t + ξ (β′t) (1− β′t) = β∗. (11)

We summarize these observations in the following corollary to Proposition 1.

Corollary 4 Proposition 1 remains the same in the model with signals of the firms’ offending,

with the exception of the switching probability specified in Step 1 (which is now given by (11)).

It is worthwhile to point out the relationship between the strength of the signal that the

firm offended at date t − 1, µt−1, and the probability the regulator switches to inspect at

date t (assuming no conviction occurred at date t − 1). When µt−1 is large (it is likely the

firm offended), fN (µt−1)
fO(µt−1)

is small, and so the posterior belief β′t falls by more. In essence, the

absence of a conviction is more informative about the regulator’s failure to inspect when it is

more likely that the firm has offended. This means that the probability the regulator switches

from wait to inspect, ξ (β′t), is larger when µt−1 is large.

4.3 Imperfectly Observed Inspections

To date we assumed that inspections become public only when the short-lived firm is offending.

However, information about inspection activities sometimes becomes available from sources

other than convictions. For instance, regulators are often required to disclose information

about their activities which may provide noisy information to firms.19 We thus now consider

19For instance, the SEC is required to present a Congressional Budget Justification each year, which indicates

levels of expenditure on different activities as well as some broad performance indicators.
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a setting where there are public signals which are (partly) informative about the regulator’s

actions, in addition to the public signals which are (perfectly) informative about convictions.

As in the previous section, in addition to the public signals of past convictions, we assume

that, at the end of each period t, there is some public signal µt ∈ (µ, µ) about the action of

the regulator. The signal is distributed according to Fbt , for bt ∈ {I,W}. Fbt is absolutely

continuous with PDF fbt , which is positive on the entire support. Moreover, fI(·)/fW (·) is

strictly increasing and has R++ as its image.

As before, β′t is the updated belief following the date t−1 signals but before any switching

at date t. So, if there is a conviction in period t − 1, we have β′t = 1. Instead, if there is no

conviction in period t− 1, β′t is given by

β′t
1− β′t

=
βt−1

1− βt−1

(1− αt−1)
fI(µt−1)

fW (µt−1)
,

where αt−1 is the probability of offending at t− 1, and µt−1 is the realized signal of the firm’s

offending.

For simplicity, in this section we focus our analysis on Markov perfect equilibria (MPE),

with the Markov state at time t being bt−1 and β′t. Let βt = β(β′t) be the probability of

inspection at date t given the beginning-of-period-t posterior β′t. We say that an MPE is

monotone if β(·) is weakly increasing, which seems to us an appealing restriction on the class

of equilibria.

Proposition 3 In the model with imperfectly observed inspections, there exists a unique

monotone Markov perfect equilibrium. In such an equilibrium, there exist β̄ ≥ β∗ such that

1. if β′t ≤ β∗ then the regulator keeps inspecting if bt−1 = I and, if bt−1 = W , switches

to inspect with a probability such that βt = β∗. In this case the firm offends with some

probability α∗∗.

2. if β′t ∈ (β∗, β̄] then the regulator does not switch, so βt = β′t, and the firm does not

offend.

3. if β′t > β̄ then the regulator keeps waiting if bt−1 = W and, if bt−1 = I, it switches to

wait with a probability such that βt = β̄.

(a) If β̄ = β∗ the date−t firm offends with some probability α∗∗0 ∈ [0, α∗∗), and

(b) if β̄ > β∗, then the date−t firm does not offend.
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Figure 4: Example of dynamics of the perceptions of the firms about the likelihood of detec-

tion (β, upper figure) and probability of a crime being committed (α, lower figure) for the

imperfectly observed inspections case. In the upper figure, empty dots correspond to the pos-

terior about the action taken in the previous period (β′). In both graphs, there is a conviction

in periods 3 and 16.

Figure 4 depicts the equilibrium dynamics in the presence of public signals. When the

posterior β′t is very high (either because of a signal (in period 6) and or because of a conviction

(periods 4 and 17)), the payoff from inspecting is very low, since the expected time needed

for crime to resume (and have the possibility of obtaining a payoff y) is large. As a result, the

regulator switches to wait (with some probability) in order to save inspection costs. When,

instead, β′t is small, the probability of crime is positive, so inspecting becomes attractive.

In this case, the regulator switches to inspect so that the perception of the firms about the

likelihood of detection is β∗, in order that the probability of crime is positive but not 1. For

intermediate values of β′t, the difference in the continuation payoffs of inspecting and waiting

is not enough to compensate switching in either direction, so the regulator does not change

its action.

4.4 General Payoffs

So far we have considered a regulator motivated directly by its concern for apprehending

offenses. As noted in the Introduction, such an assumption may be reasonable in light of the

regulator’s implicit rewards or career concerns. A more socially minded regulator, however,

24



might have preferences for deterring offenses. To examine this possibility, we consider a more

general payoff structure as follows.

firm

at = N at = O

regulator
bt = W −Sbt−1W , 0 −L− Sbt−1W , π

bt = I −i− Sbt−1I , 0 y − L− i− Sbt−1I ,−γ

Here L is the regulator’s loss as a result of an offense, while y again is its reward for

apprehending an offense (when L = 0, the model is identical to that in Section 3). We make

no a priori restriction on the signs of L and y. We continue to impose Assumptions A1 and

A2.

The following proposition describes a sufficient condition under which an equilibrium as

in Proposition 1 exists (by this, we mean that there exist values T , α∗0 and α∗ such that the

play described in Proposition 1 is an equilibrium).

Proposition 4 In the model with general payoffs, there is an equilibrium which permits the

same characterization as in Proposition 1 for some α∗ ∈ (0, 1), α∗0 ∈ (0, α∗] and T ∈ {0} ∪ N
if

L > − (y − i− SWI − δSIW )
1− δ

δ
(

1− i−(1−δ)SIW

i+(1−δ)SWI

) . (12)

Furthermore, if (12) holds, the values α∗, α∗0 and T are unique.

Condition (12) is analogous to Assumption A3 for the general payoffs case (note that it is

the same when L = 0). Intuitively, it ensures that the regulator has sufficient incentives to

switch to inspect. When L is large, this incentive is greater, because the deterrence motive is

greater. Thus we indeed find that the conditions for the existence of equilibria with residual

deterrence are relaxed when L > 0 relative to our baseline model.

Proposition 4 establishes that equilibrium dynamics with residual deterrence can be found

also when the regulator cares about deterring offenses. This is not merely a robustness exercise,

and extends our equilibrium construction to a different class of economically relevant settings.

A particularly interesting case is where the regulator is motivated by deterrence alone; that

is, a regulator whose payoff is lowered by L > 0 whenever there is an offense, but for which

y = 0. Note that, here, the unique equilibrium of the stage game without switching costs is

(W,O); that is, the presence of the regulator does not deter crime. Still, in the repeated game

25



with switching costs, if L is large enough, there exist equilibria where the regulator inspects

only because after a conviction there are some periods of residual deterrence.

Note that, unlike the analysis for the baseline model (and many of the other results above),

the uniqueness result in Proposition 4 follows only after restricting attention to equilibria of

the form in Proposition 1 and to values such that α∗0 ≤ α∗ < 1. To see why this restriction

is important, consider the case above where y = 0. In this case, there is another equilibrium

in which the firms always offend with probability one, and the regulator never inspects (and

where, following any conviction, the regulator switches to “wait” with probability 1). This

suggests the existence of still further, non-stationary, equilibria, although we make no attempt

to characterize the multiplicity.

Finally, it is interesting to note that there is a certain equivalence between equilibria in

the setting where the regulator is motivated by deterrence, and the one in our baseline model

(where L = 0).

Corollary 5 Fix parameter values (π, γ, i, SIW , SWI) as specified in the model set-up. Fix a

pair of values (y, L) satisfying Equation (12). The values α∗, α∗0 and T for the equilibrium

specified in Proposition 4 also characterize an equilibrium in the model with parameters (y′, 0),

where

y′ = y + δL

(
T∑
s=1

δs−1α∗ + δT (α∗ − α∗0)

)
,

and with remaining parameters (π, γ, i, SIW , SWI) unchanged.

The result shows that any equilibrium described in Proposition 4 corresponds to an equi-

librium of the baseline model, described in Proposition 1, once the reward for convicting a

firm is correctly specified. In particular, this reward should be comprised of two terms: the

direct benefit y from a conviction, and the reduction in offending that occurs in the deterrence

phase following the conviction (this is α∗ in the T periods following the conviction, while it is

α∗−α∗0 in period T+1 after the conviction). The result justifies our initial focus on the model

where the regulator is not motivated by deterrence, and is also suggestive of how one might

extend many of our results above to accommodate a regulator’s preference for deterrence (at

least after appropriately restricting the class of equilibria).

5 Conclusions

We have studied a dynamic version of the inspection game in which an inspector (a regulator,

police, or other enforcement official) incurs a resource cost to switching between the two
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activities, inspect and wait. We showed that this switching cost gives rise to “reputational”

effects. Following a conviction, offending may cease for several periods before resuming at

a steady level. This effect may be present whether the inspector is motivated by obtaining

convictions (as in our baseline model of Section 3) or “socially motivated” in the sense that

it values deterrence itself (as in Section 4.4). In an extension to the baseline model where

potential offenders are heterogeneous (Section 4.1), the risk of apprehension follows a plausible

pattern, being the highest immediately after a conviction and then decaying gradually. We

thus provide a fully-fledged theory of deterrence decay.

While our model is stylized — the inspector faces a sequence of myopic offenders — we

believe it is empirically relevant. The model provides predictions for both the enforcement

authority’s and the firms’ behavior, although neither of these may be directly observable to an

empirical researcher. For this reason, current empirical studies have often sought to measure

deterrence effects by focusing on what are presumably noisy signals of offending (see, e.g.,

Block, Nold and Sidak, 1981, and Jennings, Kedia and Rajgopal, 2011). Our findings are in

line with these studies. For instance, Section 4.2 presents a model where noisy signals of firm

offending are public information. An observer of these signals would conclude that offending

is less likely following a conviction.
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Appendix A: Proofs of the Main Results

Proof of Lemma 1. We argue by contradiction. Suppose that there exists a date

t ≥ 0 and a public history ht such that the firm strictly prefers not to offend, i.e. β(ht) > β∗.

We let τ ≥ 1 be the value such that each firm strictly prefers not to offend at dates t up

to t + τ − 1, but (weakly) prefers to offend at date t + τ . Suppose first that τ = +∞, i.e.,

that all firms that arrive after t abstain from offending. In this case, by Assumption A2, the

regulator optimally plays W from date t onwards. This contradicts the optimality of firm

abstention, so it must be that τ < +∞. Next, note that β(ht, 0τ−1) > β∗ and β(ht, 0τ ) ≤ β∗.

This implies that there exists a private history h̃t+τ−1 = (ht,0τ−1; bt+τ−1) for the regulator

where it plays inspect at date t+ τ − 1 and then switches to wait at date t+ τ with positive

probability (i.e., β(ht, 0τ ; bt+τ−1, I) < 1). However, the alternative choice of waiting at both

dates saves i−SIW (1− δ) in costs without affecting convictions or the firms’ information. By

Assumption A2, this saving is strictly positive; i.e. there exists a strictly profitable deviation

for the regulator, contradicting sequential optimality of the regulator’s strategy.

Proof of Lemma 2. Assume otherwise, so there is a history such that ht−1 = 0

and VW (ht) 6= 0. Since the option of waiting forever gives the regulator a payoff of 0, it is

necessarily the case that VW (ht) > 0. By assumption (i.e., by definition of VW ), the regulator

waited in period t− 1. The fact that VW (ht) > 0 implies that, after this history, the regulator

strictly prefers to switch from wait to inspect at some date s ≥ t after a public history

hs = (ht,0s−t). This is the case because the payoff of the regulator is bounded, and if it

waits forever it obtains a payoff of 0. By Assumption A1, the regulator must also strictly

prefer to continue inspecting (rather than switch to wait) after hs;20 i.e., inspecting is strictly

20Suppose instead that the regulator is willing to switch from inspect to wait following hs. This implies

−SIW + δVW (hs, 0) ≥ −i+ (1− α (hs)) δVI (hs, 0) + α (hs) (y + δVI (hs, 1)) .
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preferred to waiting at hs irrespective of the regulator’s private actions bs. Hence, we must

have β(hs) = 1 > β∗, contradicting the finding in Lemma 1.

Proof of Lemma 3. Lemma 2 implies the following. In equilibrium, the regula-

tor’s continuation payoff, gross of present-period switching costs (i.e., ignoring present-period

switching costs), is equal to zero whenever it plays the action wait. This follows because

the regulator receives zero (gross of switching costs) in the period it plays wait, while its

continuation payoff for the following period is also zero by Lemma 2.

Now, suppose for a contradiction that there exists a date t ≥ 0 and a public history ht such

that β(ht) < β∗, so that the firm offends with certainty at date t. There must exist a private

history for the regulator h̃t = (ht; bt) such that it waits at date t. By the previous argument,

its continuation payoff from date t onwards, ignoring any date-t switching costs, must equal

zero. However, by instead inspecting at date t and then waiting at t + 1 the regulator can

guarantee itself a payoff at least y− i−SWI − δSIW , which is strictly positive by Assumption

A3.

Proof of Lemma 4. Suppose first that VI(h
t) > SWI for some ht. Given Lemma 2,

the regulator must have strict incentives to switch from wait to inspect following ht in case

bt−1 = W , or (given A1) strict incentives to continue inspecting at date t in case bt−1 = I.

Such strict incentives are inconsistent with β(ht) = β∗ < 1. Similarly, VI(h
t) < −SIW implies

strict incentives to wait at date t, which is inconsistent with β(ht) = β∗ > 0.

Next consider the payoff following a conviction, i.e. at ht with ht−1 = 1. In this case, the

regulator must be indifferent between inspect and wait. This indifference is necessary for the

regulator to randomize – at ht, it switches from inspect to wait with probability 1 − β∗ (as

noted above, this switching probability is conditional on the public history alone; the switching

probability conditional on the regulator’s private history will not be uniquely determined).

Together with Lemma 2, this implies that the regulator’s expected payoff from date t onwards

is VI (ht) = −SIW .

Finally, following ht such that α(ht−1) > 0 and ht−1 = 0, the regulator switches from wait

to inspect with positive probability (as explained in the main text). Thus, the regulator must

be indifferent between switching from wait to inspect. This, together with Lemma 2, then

However, because the regulator strictly prefers to switch from wait to inspect, we have

−SWI − i+ (1− α (hs)) δVI (hs, 0) + α (hs) (y + δVI (hs, 1)) > δVW (hs, 0) .

Adding the previous expressions, we find −SIW − SWI > 0, in violation of Assumption A1.
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implies that VI(h
t) = SWI .

Proof of Proposition 1. Follows from Lemmas 1-4 and the arguments in the text.

Proof of Corollary 1. If ht−1 = 1 the result is clear, given that the continuation play

is unique in our model. So, consider a history with ht−1 = 0. The posterior of a firm at time t

about the action of the regulator at time t− 1 is β′t ≡
(1−αt)β∗

(1−αt)β∗+1−β∗ . Suppose that the penalty

changes from γ to γnew at the beginning of date t, with all other parameters unchanged. Let

β∗new ≡ π
π+γnew

< β∗.

1. If γnew > 1
1−αt−1

γ then simple algebra shows that β′t > β∗new. Proposition 1 prescribes

that βt = β∗new, so the regulator should be willing to switch to wait. As a result,

VI(h
t) = −SIW , and equilibrium play enters the “residual deterrence phase” at date t.

2. If γnew < 1
1−αt−1

γ then β′t < β∗new. In this case, since βt = β∗new by Proposition 1, the

regulator should be willing to switch to inspect. This implies that VI(h
t) = SWI , so

equilibrium must be in the stationary phase at date t.

Proof of Corollary 2. An increase in γ (or a decrease in π) decreases β∗ and therefore

the probability that the regulator inspects. The values α∗ and α∗0 remain unchanged. Also,

the duration T of the phase after a conviction during which firms abstain remains unchanged.

These observations, together with (7), imply the result.

Proof of Corollary 3. Let ~S ≡ (SWI , SIW ). Let α∗0(~S), α∗(~S), ᾱ(~S) and T (~S)

denote, respectively, the corresponding (unique) values of α∗0, α∗, ᾱ and T for a given value

of ~S satisfying Assumptions A1-A3. Note from their expressions that α∗(·) is continuous and

increasing in both SIW and SWI , while T (·) and α∗0 (·) are right-continuous in SIW and SWI .

Let’s first show that ᾱ(·) is continuous. If T (·) is continuous at ~S, then it is easy to

see that α∗0(·) and α∗(·) are also continuous at ~S, so ᾱ(·) is continuous at ~S. For a generic

function f , let f
(
~S−
)

denote its limit from the left at ~S.21 Note that if ~S is such that

21By this we need the limit of any strictly increasing sequence (~S)n converging to ~S using the usual order

in R2, that is, (x1, y1) > (x2, y2) if and only if x1 ≥ x2, y1 ≥ y2 and at least one of the inequalities is strict.

32



T (~S) = T (~S−) + 1 , then α∗0(~S−) = 0, while α∗0(~S) = α∗. Therefore

ᾱ(~S−) =
α∗(~S−)

1 + β∗((T (~S−) + 1)α∗(~S−)− α∗0(~S−))

=
α∗(~S)

1 + β∗T (~S)α∗(~S)

=
α∗(~S)

1 + β∗((T (~S) + 1)α∗(~S)− α∗0(~S))

= ᾱ(~S).

Assume that ~S is such that α∗0(~S) ∈ (0, α∗(~S)). Then, there exists ε > 0 such that T (~S ′)

is constant for all ~S ′ in an ε-neighborhood of ~S. This implies that ∂
∂S′w

ᾱ(~S ′)|~S′=~S can be

computed holding T constant, for w ∈ {IW,WI}. In this case we have

∂ᾱ(~S)

∂SIW
= A(i+ (1− δ)SWI)(δ

T+1 − β∗) , (13)

∂ᾱ(~S)

∂SWI

= A

(
i− SIW (1− δ)

)(
δT+1 +

δTy
i

1−δ − SIW
− β∗

)
. (14)

where T ≡ T (~S) and A > 0 is a (long) algebraic expression. Equation (13) implies Part 1 of

the corollary: ∂ᾱ(~S)
∂SIW

> 0 if β∗ < δT+1 and ∂ᾱ(~S)
∂SIW

< 0 if β∗ > δT+1.

To see Part 2 of the corollary, note that, by Equation (6), δT ≥ i−SIW (1−δ)
i+SWI(1−δ) . Then, using

this and Assumption A3, we have

δT+1 +
δTy (1− δ)

i− SIW (1− δ)
> 1,

so that ∂ᾱ(~S)
∂SWI

> 0 irrespective of β∗ ∈ (0, 1). The result then follows because ᾱ is continuous

in ~S.

Proof of Proposition 2.

In order to prove Proposition 2, we first note that Lemmas 1-4 apply similarly in the

random-payoffs case. Lemma 1 can be reformulated to: “For all equilibria, at all ht, β(ht) <

β̄.” The reader can check that all arguments in the proof remain the same in this case. As a

consequence, Lemma 2 is also valid (since its proof only requires β(ht) < 1 from Lemma 1).

In a similar fashion, Lemma 3 can be rephrased as: “For all equilibria, for all ht, β(ht) > β ≡
π

π+γ
.” Finally, the first two claims in Lemma 4 trivially remain the same.

We next establish that the smallest probability of inspection at any public history is βmin,

attained when the continuation payoff from inspecting is SWI .
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Lemma 5 In any equilibrium, β(ht) ≥ βmin ≡ α−1(α∗) for all ht, with equality when VI(h
t) =

SWI .

Proof. Given that βt ∈ (β, β̄) for all t, after any history there is a time where, if there

has still been no conviction, the regulator switches with positive probability from wait to

inspect. That is, for each ht, there exists a finite τ such that the regulator switches from wait

to inspect at (ht,0τ ).

We can now prove the first part of our result by induction. Consider an equilibrium and a

history ht where the regulator switches with positive probability from wait to inspect at t+ τ

for the first time after t if there is no conviction at dates t up to t+ τ − 1. If τ = 1 we have

VI(h
t) = −i+ αt(y + δVI(h

t, 1)) + (1− αt)δVI(ht, 0)

= −i+ αt(y − δSIW ) + (1− αt)δSWI .

(Here, VI(h
t, 0) = SWI follows because (by assumption that τ = 1) the regulator is willing to

switch to inspect at (ht, 0), and because VW (ht, 0) = 0 (by the claim in Lemma 2).) Note that

α∗ solves the previous equation when VI(h
t) = SWI . If VI(h

t) < SWI , we have that αt < α∗,

that is, βt > βmin. Now consider τ > 1. As is obvious from Bayes’ rule (Equation (9)), when

there is no switch from wait to inspect at dates t up to t+ τ − 1 and there are no convictions,

βt+s+1 < βt+s for any s ∈ {0, ..., τ − 1}.22 This proves the first part of our result.

Now consider any ht for which VI(h
t) = SWI . In this case, we have:

SWI = −i+ α(ht)(y − δSIW ) + (1− α(ht))δVI(h
t, 0).

Note that α∗ solves this equation when VI(h
t, 0) = SWI . If VI(h

t, 0) < SWI , we have that

α(ht) > α∗, that is, β(ht) < βmin. However, this contradicts our previous argument, so

β(ht) = βmin.

Lemma 5 establishes the following. Consider any history ht such that the regulator

switches with positive probability from wait to inspect at t + τ for the first time after t

if there is no conviction at dates t up to t + τ − 1. Then the regulator must switch with

positive probability from wait to inspect at all histories (ht,0s) for all s ≥ τ (at these histories,

β (ht,0s) = βmin; and so the absence of switching would imply beliefs that fall below βmin).

22Equation (9) applies to histories where there is no switching and no convictions. One can appropriately

modify the updating rule to account for switches from inspect to wait, concluding still that βt+s+1 < βt+s for

any s ∈ {0, ..., τ − 1}.
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Now consider any history ht with ht−1 = 1. Given that βt ∈ (β, β̄), the regulator must

switch from inspect to wait at t, and hence VI(h
t) = −SIW . As argued above, there exists τ

such that the regulator switches from wait to inspect for the first time at t + τ for (ht,0τ ).

For s = τ − 1, we have

VI(h
t,0s) = −i+ αt+s(y − δSIW ) + (1− αt+s)δSWI

and αt+s ≤ α∗, implying that VI(h
t, 0s) ≤ SWI . Considering there are no switches from

wait to inspect until t + τ , and using updating, note that, for s ∈ {0, . . . , τ − 2}, we have

αt+s = α (βt+s) < α (βt+s+1) = αt+s+1. Similarly, we can show inductively that VI(h
t, 0s) <

VI(h
t, 0s+1). It follows that VI(h

t) = −SIW only if ht−1 = 1; i.e., switches from inspect to

wait occur only immediately after a conviction.

The only part of the proposition left to prove pertains to the uniqueness of βmax and

T . Let’s first define, for each βmax ≥ βmin, the function ṼI(β
max) to be the expected payoff

of the regulator following a conviction in a putative equilibrium in which the probability of

inspecting following a conviction is βmax. That is, let

ṼI(β
max) ≡

T (βmax)∑
t=0

At(β
max)

(
− i+ α

(
β̃t(β

max)
)
(y − δSIW )

)
δt

+AT (βmax)(β
max)

(
1− α(β̃T (βmax)(β

max))
)
δT (βmax)+1SWI (15)

where β̃t(β
max) is the result of applying t times the Bayes’ rule (using equation (9) with

β0 = βmax), T (βmax) ≡ min{s|β̃s(βmax) < βmin} − 1 indicates the number of periods that it

takes for β to pass βmin (less one), and At(β
max) ≡

∏t−1
s=0

(
1− α(β̃s(β

max))
)

is the probability

of reaching date t without any conviction (recalling that date 0 is the first date following a

conviction).

Given that, for each t, β̃t(β
max) is increasing in βmax, each α

(
β̃t(β

max)
)

is decreasing

in βmax. It is thus easy to see that ṼI(·) is strictly decreasing. It is also easy to see

that ṼI(·) is continuous. Finally, given that limβmax→β̄ ṼI(β
max) = − i

1−δ < −SIW and

limβmax→βmin ṼI(β
max) = SWI , there is a unique βmax which guarantees the indifference condi-

tion ṼI(β
max) = −SIW . �

Appendix B: Other omitted proofs

This section proves Corollaries 4-5 and Propositions 3-4.
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Proof of Corollary 4. The arguments made in Section 2 remain applicable, with the

exception of the regulator’s probability of switching from wait to inspect following periods

with a positive probability of offending, which is discussed in the main text.

The applicability of the arguments in Lemma 1 deserves some comment. If firms strictly

prefer not to offend from date t to date t + τ − 1, but then the date−t + τ firm is weakly

willing to offend, we argued it must be that the regulator switches from inspect to wait with

positive probability at t + τ . Importantly, this conclusion continues to hold when there are

direct signals about the firms’ offending. In particular, since firms do not offend from date

t to date t + τ − 1, it is still the case that firms learn nothing about the regulator’s decision

to inspect during these periods (the signals of the firms’ offending are irrelevant, since firms

choose not to offend with probability 1). Hence, the date−t + τ firm’s willingness to offend

still necessitates that the regulator switches from inspect to wait at date t + τ , which we

argued in the proof of Lemma 1 must be a suboptimal strategy.

Proof of Proposition 3. Abusing notation, let Vbt−1 (β′t) be the regulator’s expected

continuation payoff at date t, after playing action bt−1 at t − 1, when the belief about the

regulator having inspected at t− 1 (given ht) is β′t (as specified in the main text).

We first note that Lemma 2 still holds. Indeed, its proof is based on the fact that, at any

period t, we have βt < 1, and arguments analogous to those for Lemma 1 imply β(ht) < 1 for

all ht, where ht is the history of all public signals to date t− 1. Therefore, VW (ht) = 0 for all

ht. It follows that the analogue of Lemma 3 also holds. As a result, the analogues of the first

two statements in Lemma 4 hold.

Lemma 3 implies that VI(β
′
t) = SWI for β′t < β∗. Also, if β′t > β∗, we have VI(β

′
t) < SWI .

To see the latter, note that otherwise we would have βt > β∗, so αt = 0. Hence,

SWI = −i+ δEt[VI(β′t+1)|β′t, I].

Since by the first part of Lemma 4 VI(β
′
t+1) ≤ SWI , the previous equation implies SWI ≤

−i/(1− δ) < −SIW , contradicting Assumption A1. Finally, for a given monotone MPE, it is

clear that VI(·) is decreasing. The reason is that

VI(β
′
t) = E

[
− 1− δτ(β′t)

1− δ
i+ δτ(β′t)SWI

∣∣∣∣β′t, I]
where τ(β′t) is the smallest value of τ such that β′t+τ < β∗. The restriction to monotone MPE

guarantees that τ(β′t) is increasing in β′t in the sense of first-order stochastic dominance. The

fact that the distributions FI and FW are continuous, and that the image of fI/fW is R++,

implies that VI(β
′) is continuous in β′.
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We now claim that VI(β
′) = −SIW if β′ is close enough to 1. Indeed, the analogue of

Lemma 4 implies that VI(β
′) ≥ −SIW . Since VI (·) is decreasing, our claim is not true only

if VI(β
′) > −SIW for all β′ < 1. Nevertheless, in this case clearly limβ′→1E[τ(β′)] = ∞, so

limβ′→1 VI(β
′) = − i

1−δ < −SIW , which is a contradiction.

Let β̄ ≡ inf{β′|VI(β′) = −SIW}. Fix some t and β̃t ∈ [0, 1]. For a sequence of signals

(µt+s)s≥1, let (β̃t+s)s≥1 be a sequence defined by

β̃′t+s = min

{
β̄ ,

fI (µt+s−1) β̃′t+s−1

fI (µt+s−1) β̃′t+s−1 + fW (µt+s−1) (1− β̃′t+s−1)

}
. (A.1)

This corresponds to the posterior about the action of the regulator if the firms do not offend,

the regulator does not switch her action if β̃′t ≤ β̄ and, when β̃′t > β̄, the regulator switches

to wait so that the posterior after switching is β̄.

For β̃′t = β′, consider beliefs which evolve according to (A.1) and define τ̄(β′; β̄) and

τ ∗(β′; β̄) are, respectively, the first (stochastic) times at which the process satisfies β̃′t+s > β̄

and β̃′t+s < β∗. Let τ(β′; β̄) ≡ τ̄(β′; β̄) ∧ τ ∗(β′; β̄). We can then define

VI(β
′; β̄) ≡ E

[
− 1− δτ(β′;β̄)

1− δ
i+ δτ(β′;β̄)

(
Iτ∗(β′;β̄)=τ(β′;β̄)SWI − Iτ̄(β′;β̄)=τ(β′;β̄)SIW

)∣∣∣∣β̃′t = β′, I

]
VI(β

′; β̄) is the payoff of the regulator at time t if bt−1 = I, β′t = β′ and β′t+s follows Equation

(A.1) from s = 1 to s = τ
(
β′; β̄

)
. It is clear that the right-hand side of the previous equation

is strictly decreasing in β̄ and β′, and that limβ̄→1 VI(β̄; β̄) < −SIW (since, as β̄ → 1, it takes

an arbitrarily large amount of time until a firm offends). We have two cases:

1. Assume first limβ̄↘β∗ VI(β̄; β̄) < −SIW . This implies that there is no equilibrium with

β̄ > β∗. Then, if an equilibrium exists, it must be that if β′t > β̄ = β∗ then βt = β̄.

Let β∗1(α) ≡ β∗(1−α)
β∗(1−α)+1−β∗ be the posterior before the signal realization and after no

conviction at time t if βt = β∗ and the t-firm offended with probability α. Note that

β∗1(0) = β∗ and β∗1(1) = 0. For each α ∈ (0, 1), let µ∗(α) ∈ (µ, µ) be the unique value

such that

β∗ =
fI(µ

∗(α))β∗1(α)

fI(µ∗(α))β∗1(α) + fW (µ∗(α))(1− β∗1(α))
.

Intuitively, if βt = β∗, the crime rate is αt and no conviction is observed then the posterior

after no conviction is β∗1(αt). Thus, if µt > µ∗(αt) then β′t > β∗, and if µt < µ∗(αt) then

β′t < β∗. Note that µ∗(·) is strictly increasing, that is, the higher is the crime probability

(α), the lower is the posterior after no conviction (β∗1(α)), so a stronger signal about

inspection is needed to bring the posterior back to β∗.
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Finally, let p∗(α) ≡ FI(µ
∗(α)) be the probability that β′t ≤ β∗ if βt−1 = β∗, αt−1 = α, the

regulator inspects, and there is no conviction at date t−1. Note then that the regulator’s

expected continuation payoff if inspecting at date t is SWI if β′t < β∗ (in order that the

regulator is willing to switch from wait to inspect). Similarly, the regulator’s expected

continatuation payoff at date t + 1 is SWI if β′t+1 < β∗ and −SIW if β′t+1 > β∗. Her

expected continuation payoff at date t+ 1 following a conviction is y − δSIW . Putting

these observations together, we have

SWI = −i+ αt(y − δSIW ) + (1− αt)δ
(
p∗(αt)SWI − (1− p∗(αt))SIW

)
. (A.2)

Let µ̂ be such that fI(µ̂) = fW (µ̂), and note that µ∗(0) = µ̂. If αt = 1, the right-hand

side of Equation (A.2) is higher than SWI (by Assumption A3). If, instead, αt = 0, then

the right hand side lower than SWI .
23 Since p∗(·) is continuous, a solution for αt exists.

Uniqueness can be obtained by noticing that (A.2) can be rewritten as follows

p∗(αt) = −αty − i− SWI − δSIW
δ(SWI + SIW )(1− αt)

.

The left hand side of the previous equation is strictly increasing in αt, while it is easy

to see (using A1 and A3) that the right hand side is decreasing in αt, so αt = α∗∗ is

unique. From instead considering the possibility that β′t > β∗, we have

−SIW = −i+ αt(y − δSIW ) + (1− αt)δ
(
p∗(αt)SWI − (1− p∗(αt))SIW

)
. (A.3)

In the Equation (A.3), αt = 1 implies that the right hand side is y− i− δSIW > SWI >

−SIW (where the first inequality is A3 and the last inequality is A1). If, instead, αt = 0,

the right hand side equals limβ̄↘β∗ VI(β̄; β̄) which, by assumption, is lower than −SIW ,

so a solution for αt exists. Uniqueness of αt = α∗∗0 can be proven similarly as for α∗∗.

Now, equation (A.3) can be rewritten as

p∗(αt) = −αty − i− SWI − δSIW
δ(SWI + SIW )(1− αt)

− SWI + SIW
δ(SWI + SIW )(1− αt)

.

As before, the left hand side of the previous expression is strictly increasing in αt, while

the right hand side is decreasing. Also, since the right hand side is lower than in the

expression above, we have α∗∗0 < α∗∗.

23To see this, note that the right-hand side of (A.2), evaluated at αt = 1, is

SWI − {(1− δp∗ (0)) (SWI + SIW ) + i− SIW (1− δ)} .

This is less than SWI by Assumptions A1 and A2.
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2. Assume now that limβ̄↘β∗ VI(β̄; β̄) ≥ −SIW . In this case there exists some (unique)

β̄ = βmax such that VI(β
max, βmax) = −SIW . Assume β′t < β∗. In this case, αt satisfies

SWI = −i+ αt(y − δSIW ) + (1− αt)δ Et[VI(β′t+1; βmax)|I, βt=β∗, αt, atbt=0]︸ ︷︷ ︸
≡g(αt)

.

In the previous equation, the right hand side is increasing in αt. Indeed, if αt increases

to αt + ε, the increase of the right hand side

ε(y − δSIW − δg(αt + ε)) + (1− αt)δ(g(αt + ε))− g(αt))).

The first term above is positive since g(αt + ε) < SWI (and using Assumption A3). The

second term is positive because VI is decreasing and, if βt−1 = β∗, for any signal µ, β′t

is smaller when αt is bigger. Also, when αt = 1 then the right hand side is higher than

SWI (by Assumption A3), while if αt = 0 then the right hand side is clearly lower than

SWI , since VI(β
′
t+1; βmax) is bounded above by SWI . Hence, a unique αt = α∗∗ exists.

Proof of Proposition 4. We look for an equilibrium for which VW
(
ht,0T+1

)
and

VI
(
ht,0T+1

)
are independent of ht, and denote these values respectively by V T+1

W and V T+1
I .

Similarly, we look for an equilibrium for which VW (ht, 1) and VI (ht, 1) are determined inde-

pendently of ht and denote these values respectively by V 0
W and V 0

I . Independence of these

values from ht allows us to write

V T+1
W =α∗(−L) + δV T+1

W , (A.4)

V T+1
I =α∗(y − L− i+ δV 0

I ) + (1− α∗)(−i+ δV T+1
I ). (A.5)

Also, the continuation values immediately following a conviction are given by:

V 0
W=δTα∗0(−L) + δT+1V T+1

W , (A.6)

V 0
I =

1− δT

1− δ
(−i) + α∗0δ

T (y − L− i+ δV 0
I ) + (1− α∗0)δT (−i+ δV T+1

I ). (A.7)

Finally, the indifference conditions for the regulator are

V T+1
W =V T+1

I − SWI (A.8)

V 0
W=SIW + V 0

I . (A.9)
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We want to show that there exists (T, α∗, α∗0) ∈ (N ∪ {0}) × (0, 1) × (0, 1) with α∗0 ≤ α∗

(and the corresponding V 0
W , V 0

I , V T+1
W and V T+1

I ) that satisfy the equations (A.4)-(A.9).

Using all equations except (A.6) and (A.7), one can write V 0
W , V 0

I , V T+1
W and V T+1

I in

terms of just α∗. Using the previous expressions in (A.6) and (A.7), we obtain an expression

which is independent of L, and which is equivalent to Equation (5) for our base model:

δT =
α∗

δα∗ + α∗0(1− δ)
i− (1− δ)SIW
i+ (1− δ)SWI

.

It is immediate to verify that if T (possibly not natural) satisfies the previous equation for

α∗0 = 0, then T + 1 satisfies the same equation for α∗0 = α∗. Also, given that α∗0 ∈ (0, α∗],

the previous equation implies that T is given by the Equation (6), as in our baseline model.

Finally, since δT is strictly decreasing in α∗0 in the previous expression, the solution for α∗0 and

T for a given α∗ is unique.

It only remains to show that there exists α∗ ∈ (0, 1) solving (A.4)-(A.9). Now, using the

expressions for V 0
W , V 0

I , V T+1
W and V T+1

I in equations (A.6) and (A.7), we obtain an expression

which is independent of α∗0, which is given by

0 = f(α∗) ≡
(
i+(1−δ)SWI+α

∗δ(SIW+SWI)
)(
i−α∗L+(1− δ)SWI

)
−α∗ (y − L)

(
i+(1−δ)SWI

)
.

It is easy to verify that f(·) (which is a second order polynomial) satisfies f(0) > 0. So, a

sufficient condition for a solution to f(α∗) = 0 for α∗ ∈ (0, 1) to exist is f(1) < 0, which leads

to the equation stated in the proposition.

Proof of Corollary 5. Take the unique (T, α∗, α∗0) ∈ (N ∪ {0}) × (0, 1) × (0, 1) with

α∗0 ≤ α∗ (and the corresponding V 0
W , V 0

I , V T+1
W and V T+1

I ) that satisfy the equations (A.4)-

(A.9). These values satisfy

−SIW = V 0
I − V 0

W

= −
T∑
j=0

δji+ α∗0δ
T
(
y + δ

(
V 0
I − V T+1

W

))
+ (1− α∗0) δT+1

(
V T+1
I − V T+1

W

)
= −

T∑
j=0

δji+ δTα∗0y + α∗0δ
T+1

(
V 0
W − SIW − V T+1

W

)
+ (1− α∗0) δT+1SWI ,

where the first equality is (A.9), the second follows from (A.6) and (A.7), and the third follows

from (A.8) and (A.9). Then notice that

V 0
W − V T+1

W = δTα∗0 (−L)−
(
1− δT+1

)
V T+1
W

= δTα∗0 (−L) +
(
1− δT+1

) Lα∗
1− δ
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=
T−1∑
j=0

δjα∗L+ δT (α∗ − α0)L (A.10)

where the first equality follows from (A.6) and the second from (A.4). The final equality is

a simple expansion. Putting the two together yields

−SIW = −
T∑
j=0

δji+ α∗0δ
T (y′ − δSIW ) + δT+1SWI (1− α∗0) ,

which is Equation (5). This means that T and α∗0 from the model with parameters (y, L)

must also be the equilibrium parameters for the model with parameters (y′, 0), provided such

an equilibrium exists.

To verify existence, and verify that α∗ is the same in both models, we note that

SWI = V T+1
I − V T+1

W

= −i+ α∗y + δα∗
(
V 0
I − V T+1

W

)
+ δ (1− α∗)

(
V T+1
I − V T+1

W

)
= −i+ α∗y + δα∗

(
V 0
W − SIW − V T+1

W

)
+ δ (1− α∗)SWI

= −i+ α∗ (y′ − δSIW ) + δSWI (1− α∗)

where the first equality is (A.8), the second follows from (A.4) and (A.5), the third uses (A.8)

and (A.9), and the final equality uses (A.10). This is Equation (3), establishing that α∗

from the model with parameters (y, L) is also the equilibrium parameter in any equilibrium

of the model with parameters (y′, 0). Since both (3) and (5) hold for appropriate values

(T, α∗, α∗0), an equilibrium for the model with parameters (y′, 0) indeed exists, as established

in Proposition 1.

Appendix C: Two additional results

This Appendix provides two additional results, mentioned in the main text of our paper. First,

we establish a sense in which, as switching costs vanish, equilibrium play simply involves a

repetition of the equilibrium in the static inspection game.

Proposition 5 (Zero switching costs) Suppose, contrary to the assumptions of the model

set-up, that Sbt−1bt = 0 for all bt−1, bt ∈ {I,W}. Then there is a unique equilibrium in public

strategies. The probability of inspection at any public history ht is β∗, while the probability

of offending is i
y
. That is, equilibrium involves the repetition of the equilibrium for the static

model.
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Proof. Clearly, there is no history ht at which the regulator has strict incentives to inspect

(otherwise, there would be no offending at ht). Therefore, the regulator’s continuation payoff

is 0 after any history.

It is also clear that, in any equilibrium, the firm must be weakly willing to offend at each

history ht. Otherwise, the regulator has a strict incentive not to inspect at some history ht,

but then the firm has a strict incentive to offend. If the firm has strict incentives to offend,

this means that the regulator has weak incentives not to inspect, i.e.

0 ≥ y − i+ δ0,

which is a contradiction. So, the firm is indifferent whether to offend; i.e. β = β∗. Finally,

the offense probability that makes the regulator indifferent is i
y
.

Next, consider the model of Section 4.1. We would like to understand how equilibrium

behavior compares to that in our baseline model of Section 3. In particular, does equilibrium

behavior in the random payoff model approach that in the baseline model as payoff uncertainty

becomes small? To answer this question, fix a continuous distribution F with support on

[π, π̄]. Define G (π;κ) = F
(
π + π̄−π

κ−π (π − π)
)

, which has support on [π, κ]. Thus, as κ

approaches π, the model approaches the baseline case with π = π. We show the following:

Corollary 6 (Continuity in model with heterogeneous preferences) Consider the dis-

tribution over rewards for offending given by G (·;κ). As κ↘ π, the probability of an offense

at ht, α(ht), converges to its value for the model with deterministic payoffs, i.e. for π = π, as

given in Proposition 1.

Proof of Corollary 6. Fix an equilibrium as in Proposition 1, when the firms’ payoffs

are deterministic and given by π, and let the equilibrium parameters be α∗, α∗0 and T . The

result follows from considering the expected payoff to a regulator who continues inspecting

after a conviction when the probability of inspection following a conviction is βmax. This

expected payoff is given, in any putative equilibrium, by ṼI (βmax), as defined in Equation

(15). This payoff must equal −SIW in equilibrium.

Consider a public history ht with ht−1 = 1, and consider the subsequent offense probabil-

ities ακt+j in case there is no further conviction, for j ∈ {0, . . . , T − 1}, where κ indexes the

distribution G. As κ↘ π, we must have ακt+j ↘ 0 for all j ∈ {0, . . . , T − 1}. Suppose not,

and hence suppose T ≥ 1. Then (given the equilibrium construction in Proposition 2, and the

fact that the equilibrium probability of offending conditional on the public history is uniquely

42



determined), the posterior probability that inspection occurred at date t + T − 1, given no

further convictions since date t−1, must be less than βmin. This follows from the construction

of equilibrium in Proposition 2, and from applying Bayes’ rule, as in (9). It is then easy to

see that ṼI (βmax) > −SIW , which is inconsistent with equilibrium. Similarly, one can show

that we cannot have ακt+j ↘ 0 for all j ∈ {0, . . . , T}, as otherwise ṼI (βmax) < −SIW . Indeed,

the only possibility consistent with ṼI (βmax) = −SIW , is ακt+T → α∗0 as κ ↘ π, which (using

(9) and the equilibrium construction) implies ακt+j = α∗ for all j ≥ T + 1.
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