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Abstract

This paper explores the impact of time inconsistency on the optimal trigger

pricing strategies of a cartel. Time inconsistency on the part of firms is modelled

by using hyperbolic discounting and we focus on β − δ preferences, where β < 1

in order to mimic the effect of the hyperbolic discount parameter. The case where

β = 1 is well known and conforms to firms using exponential discounting. Green

and Porter (1984) and Porter (1983) have shown for this case that trigger price

strategies lead to a cartel in which cartel pricing is separated by periodic price wars

between its members. Overall we find that there is a critical threshold value β(δ),

which is decreasing in δ. For β ≥ β(δ), there exists an optimal trigger strategy

for the cartel featuring lower prices, higher output and periodic price wars. The

duration of the price war increases as β decreases until the cartel collapses at a

point where β < β(δ). Surprisingly, the trigger price decreases as β decreases.
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1 INTRODUCTION

The objective of this paper is to provide a first step towards a behavioural theory of

cartelization by focusing on the situation where participating firms’ time preferences

are quasi-hyperbolic (i.e. β − δ preferences). Firms using quasi-hyperbolic discounting

reveal a tendency towards making choices that are inconsistent over time. They make

choices today that their future self would prefer not to have made, despite using the

same reasoning. To paraphrase Laibson (1997), this dynamic inconsistency happens

because the value of future rewards for the firm is much lower under quasi-hyperbolic

discounting than under exponential discounting. The setting for this paper is the market

environment of Porter (1983) and Green and Porter (1984) in which there is imperfect

public monitoring and firms can only observe a noisy price signal. Within this market

environment, this paper provides a characterization of the optimality properties of the

cartel. Hence, we calculate the values for the trigger price and punishment period length

that maximize the expected industry discounted value, subject to the requirement that

firms have no incentive to deviate from the cooperative output level. The implications

for the setting, the optimal trigger price and punishment period length at their optimal

values are also assessed.

Within the literature on collusion in industrial organization, the major problem with

early formulations of the cartel problem (e.g., Friedman (1971); Osborne (1976)) is that

incentives are perfect and the deterrent mechanisms are never observed. Green and

Porter (1984) and Porter (1983) consider imperfect monitoring and find the trigger price

strategies lead to a cartel in which cartel pricing is separated by periodic price wars

between its members.1 A key contribution of Green and Porter (1984) is to show that it

was possible for periodic price wars to exist within the collusive equilibrium. In partic-

ular Porter (1985) empirically predicts that price wars are more likely under recession.

Although this result has been challenged by Rotemberg and Saloner (1986), the body

of empirical evidence (see, Aiginger (1993) for a discussion of this literature) has sup-

ported Green and Porter (1984). Recent anecdotal and empirical evidence suggests that

cartels are either tolerant of persistent cheating by their members, or at least robust to

persistent price shocks that would provide evidence of cheating (Genesove and Mullin

1Important contributions in this literature include Green and Porter (1984), Rotemberg and Saloner
(1986), Abreu et al. (1986, 1990), Abreu (1988), Bernheim and Whinston (1990), Athey and Bagwell
(2001, 2008), Athey et al. (2004) and Harrington and Skrzypacz (2011).
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(1998, 2001); Marshall et al. (2013)) and motivates the recent theoretical contribution of

Bernheim and Madsen (2017) that studies the mechanism that supports cheating with

cartels.

With regards to the role played by the discount parameters in this model, Porter

(1983) showed that the exponential discount factor δ would not affect the optimal collu-

sive output (although it does impact the duration of punishment phase). However, when

we consider hyperbolic discounting, we find that the collusive output depends on both

β and δ. We show that when β or δ are sufficiently small, the optimal cartel output in-

creases to the Cournot output and the cartel collapses. At this point we find a threshold

value for β; if the hyperbolic discount parameter β falls below this threshold, then prices

and output will converge on the Cournot levels and cartel collapses.

One would expect that present bias causes firms to place more weight on their im-

mediate payoff, thus the cartel would require stricter punishment by increasing either

the punishment period length or trigger price. Our results only partially agree with this

intuition. We find it is better for the cartel to increase the punishment period length

when β < 1, so that the length of the optimal punishment period is always larger than

under exponential discounting. However, somewhat surprisingly, we find that the opti-

mal trigger price will always be lower than under exponential discounting. This occurs

because the optimal trigger price relative to the optimal price of the cartel is a fixed

ratio. Hence, the optimal trigger price is proportional to the price (and output) set by

the cartel. And, as mentioned above, because the output chosen by the cartel depends

negatively on β, this implies that the both the cartel price level and trigger price will

increase as β → 1, so as to converge on the optimal levels determined in Porter (1983).

Within the repeated game literature, there are three related papers. The closest to

our paper is Chade et al. (2008), which focuses on quasi-hyperbolic discounting in a re-

peated game setting. They adapt the approach of Abreu et al. (1986, 1990) to show the

existence of a Strotz-Pollack equilibrium, as characterized in Peleg and Yaari (1973), by

using an effective discount rate to give a recursive structure. They provide a character-

ization that identifies when the Strotz-Pollack equilibrium coincides with the sub-game

perfect equilibrium. Obara and Park (2014) is slightly more general than Chade et al.

(2008), as they examine generalized time preferences in a repeated game setting (with

quasi-hyperbolic discounting as a special case). They show for quasi-hyperbolic dis-

counting that cooperative equilibria can be supported by a stick-and-carrot strategy.

2



Our approach is different from these two papers in both setting and scope. Chade et al.

(2008) and Obara and Park (2014) both focus on repeated games in an abstract setting.

They focus exclusively on the perfect monitoring case, but ours examines an environ-

ment where there is imperfect public monitoring similar to Porter (1983) and Green and

Porter (1984). The third paper is by Peeters (2004) and examines time inconsistency and

cooperation within a stochastic game. The approach is abstract and is focused on for-

malizing and extending the analysis contained in O’Donoghue and Rabin (1999), where

there are agents that exhibit naive and sophisticated optimizing behavior; its approach

is therefore unrelated to this paper.

By contrast, our paper focuses on the optimal cartel problem under Nash reversion

for quantity setting firms in an oligopoly. Within this context we are able to determine

optimal output and punishment length. Because Porter (1983) and Green and Porter

(1984) use exponential discounting and are a special case of our model, we are also

able to benchmark off their results and we can show the impact of present bias on the

optimal cartel strategy. Our equilibrium conforms with the definition of a Strotz-Pollack

equilibrium ,as contained in Chade et al. (2008). The underlying idea with the Strotz-

Pollack equilibrium, due to Strotz (1956) and Pollack (1968), is that agents pick a plan

q∗ with the property that, for each time period t, q∗t is the best action in that time period.

The assumption is that all future actions chosen shall also be optimal. Thus, the plan

q∗ can, in principle, be determined by means of a backwards recursion. This idea, which

is taken from the literature on intertemporal savings behavior was extended by Chade

et al. (2008) to analyse the effect of time inconsistency in repeated games.

The paper is structured as follows. Section two sets up the model and provides pre-

liminary results concerning the existence of cartel equilibria. Section three provides first

order conditions determining the optimal Nash reversion strategy for the cartel. Section

four provides supporting propositions and a numerical example that demonstrates the

impact of a change in present bias.

2 THE MODEL

The market is composed of N oligopolistic firms producing a single homogenous commod-

ity. The industry output vector in the tth time period is denoted by q̄t = (q1,t, . . . , qN,t),

where qi,t denotes the tth period output of firm i and the bar denotes that q̄t is a vector.
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Total industry output in period t is denoted by Qt =
∑N

i=1 qi,t. As there is no prod-

uct differentiation firms face a common market price, which is determined by the linear

inverse demand function

p(Qt) = a− bQt, a, b > 0.

The observed market price p̂t is determined by the inverse demand function and a mul-

tiplicative shock θt:

p̂t = p(Qt)θt,

The multiplicative shock is assumed to be an independent and identically distributed

stochastic process {θt}∞t=1, with mean µ, density function f and cumulative distribution

F . It is assumed that f and F are continuously differentiable and F (0) = 0 and F (∞) =

1 and that F has positive support on its domain.

Firms are assumed to be symmetric with respect to cost structure, with each firm in

each period facing the cost function

c(qi,t) = c0 + c1qi,t, c0, c1 > 0,

where c0 is the fixed cost and c1 is a constant marginal cost. Hence, the single-period

expected profit function for the ith firm is given by

πi,t(q̄) = [A−B (Q−i,t + qi,t)] qi,t − c0, i = 1, . . . , N,

where Q−i,t =
∑

j 6=i qj,t, A = aµ − c1 and B = bµ. It is assumed that 0 < c1 < aµ.

This assumption and the assumption that b > 0, implies that the constants A and B are

positive.

Let s̄t = (s1,t, . . . , sN,t) denote the tth period Cournot equilibrium output vector.

Then given Q−i =
∑

j 6=i sj (and suppressing t), si maximizes πi(q̄) for firm i. For the ith

firm, the single period Cournot equilibrium output and expected profit is then given by

si =
A

B(N + 1)
, i = 1, . . . , N

and

πi(s̄) =
A2

B(N + 1)2
− c0, i = 1, . . . , N
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It can be seen that the expected profit will be positive if and only if

0 < c0 <
(aµ− c1)2

bµ(N + 1)2
.

We let q̄ = (q1, . . . , qN) denote the single period cooperative output vector. The

output that maximizes the expected joint net return for a single time period is denoted

by r̄ = (r1, . . . , rN) (suppressing the t). It can be shown that this output level is given

by

ri =
A

2BN
, i = 1, . . . , N.

The expected profit for the ith firm is given by

πi(r̄) =
A2

4BN
− c0, i = 1, . . . , N.

When N ≥ 2, the single period cooperative expected profit πi(r̄) for each firm i is always

higher than the single period expected profit πi(s̄) at the Cournot equilibrium.

We will follow Porter (1983) and Green and Porter (1984) and assume that the Cartel

behaves as follows:

1. Initially, at time period t = 0, firms have the choice of forming an industry-wide

cartel or earning a non-collusive profit. Then in subsequent periods:

2. If at time period t the cartel is still active and the observed price p̂t ≥ p̃, where p̃

is the pre-determined trigger price, then at t+ 1 all firms assume that the cartel is

still active and set their current period output in line with Cartel policy.

3. If at time period t the cartel is still active and the observed price p̂t < p̃, then

the market will revert to Cournot output levels for T − 1 periods, with the cartel

resuming in the T th period.

The main departure from Porter (1983) is that firms’ time preferences are hyperbolic, so

that discount rates are much greater in the short-run than in the long-run. This implies

that when β < 1, hyperbolic discounting captures the qualitative property that discount

rates decline (weakly) as the time horizon length increases. In other words the short-run

discount rate, − ln(βδ), is greater than the long-run discount factor δ, where − ln(δ).

The other aspect of hyperbolic preferences is that they are non-recursive; Saez-Marti
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and Weibull (2002) provide a decomposition that demonstrates this point. To provide a

recursive structure to the firm’s optimization problem time inconsistency requires us to

distinguish between two different value functions, the expected value function and the

long-run expected value function. Under the assumption of common long run discount

rate δ and β = 1, they are exactly equal to each other. However, when β < 1, and firms

have a hyperbolic discount rate, they are different.

We will begin by assuming that all firms in the industry face the same long-run

discount factor δ, where 0 < δ < 1. The discounted present value of the long-run

expected payoff by firm i is then given as follows

Vi (q̄) = πi (q̄) + Pr {p̃ ≤ θp(Q)} δVi (q̄)

+ Pr {p̃ > θp(Q)}

[
T−1∑
τ=1

δτπi(s̄) + δTVi (q̄)

]
, (1)

where q̄ denotes the long-run industry output under the cartel. This long-run value

function is the discounted expected payoff given in Porter (1983), which can be rewritten

as

Vi (q̄) =
πi(q̄) + F (p̃/p(Q))

[
(δ − δT )/(1− δ)

]
πi(s̄)

(1− δ) + (δ − δT )F (p̃/p(Q))
(2)

However, under the hyperbolic time preference, firm i’s expected value function Wi(q̄)

will solve the equation

Wi (q̄) = πi (q̄) + Pr {p̃ ≤ θp(Q)} βδVi (q̄)

+ Pr {p̃ > θp(Q)} β

[
T−1∑
τ=1

δτπi(s̄) + δTVi (q̄)

]
. (3)

Upon substitution of Eq. (1) into Eq. (3) we arrive at

Wi (q̄) = (1− β)πi(q̄) + β
πi(q̄) + F (p̃/p(Q))[(δ − δT )/(1− δ)]πi(s̄)

1− δ + (δ − δT )F (p̃/p(Q))
. (4)

The optimal cartel equilibrium is characterised by the trigger price p̃, the length of

the punishment phase T and an output vector q̄∗. To get the optimal cartel quantity, we
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take the first order conditions with respect to qi; we have

[βC + (1− β)C2][A− (N + 1)Bq∗] = β(δ − δT )f [p̃b/(a−Nbq∗)2]∆ (5)

where C ≡ 1− δ + (δ − δT )F (p̃/p(Q)) and ∆ ≡ q∗(A−NBq∗)− A2/B(N + 1)2.

Most of the preliminary propositions in Porter (1983) hold under hyperbolic discount-

ing except for Lemma 4, which requires a more stringent convexity assumption. We state

them as lemmas below:

Lemma 1 For any strictly concave profit function, the single period Cournot output

vector s̄ is an equilibrium quantity vector in cooperative periods for any values of p̃ and

T .

Lemma 2 Given the symmetric linear specification of the demand and cost functions, all

firms which have positive equilibrium output levels will produce exactly the same quantity

in cooperative periods.

Lemma 3 In the symmetric linear structure of this section, a noncooperative equilibrium

is characterized by q∗, p̃, and T satisfying Eq. (5), where q∗ lies within (s/N, s]. We

further conclude that q∗lies within (r, s].2

Lemma 4 If F (θ) is sufficiently convex, then Wi(q̄) is concave in qi, given the symmetric

linear structure of this section.3

3 OPTIMAL CARTEL STRATEGIES

We now derive the optimal cartel quantity by the first order condition, Eq. (5), which

is a function of trigger price and punishment periods, q̄∗ = q̄∗(p̃, T ). For simplicity, as

in Porter (1983), we assume µ = 1 when we derive the equilibrium, so that b = β. With

2Porter (1983) shows that the optimal cartel output is larger than r, the output that maximizes the
joint profit of cartel members. This is because, under exponential discounting, for output levels below
r the incentive to deviate increases and hence the likelihood of invoking the trigger price also increases
without any payoff benefit. In the case of hyperbolic discounting, this logic is maintained.

3Porter (1983) shows that the convexity of F is sufficient to induce the concavity of Eq. (1) via the
linearity of the first order condition given in his paper. Eq. (4) requires an additional restriction on the
convexity of F .
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respect to this locally optimal quantity, the expected value function can be expressed as

follows Wi(q̄
∗(p̃, T ); p̃, T ) = Wi(p̃, T ). To get global optimal cartel strategy, we choose

the trigger price p̃ and punishment period T to maximize W ∗
i (p̃, T ). The optimal pair

(p̃, T ), if they are interior solutions, will satisfy the first order conditions

dW ∗
i

dp̃
=

N∑
j=1

∂Wi

∂qj

∂q∗j
∂p̃

+
∂Wi

∂p̃
= 0 (6)

and
dW ∗

i

dT
=

n∑
j=1

∂Wi

∂qj

∂q∗j
∂T

+
∂Wi

∂T
= 0, (7)

respectively. Adopting the symmetric conditions, these first order conditions can be

rewritten as

(N − 1)
∂Wi

∂qj

∂q∗j
∂p̃

+
∂Wi

∂p̃
= 0 for j 6= i (8)

and

(N − 1)
∂Wi

∂qj

∂q∗j
∂T

+
∂Wi

∂T
= 0 for j 6= i. (9)

To solve Eqs. (8) and (9), we require the following:

∂Wi(q̄
∗)

∂qj
=
−[β + (1− β)C](A−NBq∗)

C
for j 6= i, (10)

∂Wi(q̄
∗)

∂T
=
p∗

2
[β + (1− β)C][A− (N + 1)Bq∗]δT ln δF

C(δ − δT )fp̃b
, (11)

and
∂Wi(q̄

∗)

∂p̃
=
−p∗[β + (1− β)C][A− (N + 1)Bq∗]

Cp̃b
(12)

Totally differentiating the first order condition, Eq. (5), with respect to p̃ and T , we

get
∂q∗

∂p̃
=
p∗{[β + 2(1− β)C][A− (N + 1)Bq∗]p∗ − βb∆η}

p̃bK ′
(13)

and
∂q∗

∂T
=
δT ln δp∗{βp̃b∆f − [β + 2(1− β)C][A− (N + 1)Bq∗]Fp∗

2}
p̃bf(δ − δT )K ′

(14)
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where ∆ = πi(q̄
∗)− πi(s̄),

η = 1 +
f ′

f

p̃

p∗
,

and

K ′ =β

[
B∆(N + 1)p∗

A− (N + 1)Bq∗
+ bN∆(η + 1) + p∗(A− 2NBq∗)

]
− [β + 2(1− β)C] [A− (N + 1)Bq∗]Np∗

Eqs. (10)-(14) can now be compared to those derived in Porter (1983).

Plugging Eqs. (10), (12) and (13) into (8), we get the first order condition for the

cartel trigger price p̃,

0 =(N − 1)(A−NBq∗) {[β + 2(1− β)C] [A− (N + 1)Bq∗] p∗ − βb∆η}

+ [A− (N + 1)Bq∗]K ′ (15)

When β = 1 (i.e., Porter (1983)), Eq. (15) becomes

η(A− 2NBq∗) + {(N + 1)p∗ +N [A− (N + 1)Bq∗]} = 0,

which is independent of the punishment period T . Thus we can derive the the optimal

cartel quantity for the case where β = 1

q∗|β=1 =
A

2NB

[
N + η + (N + 1)a/A

N + 1 + η

]
= r

[
N + η + (N + 1)a/A

N + 1 + η

]
.

However, when β < 1, the optimality condition given in Eq. (15) depends on T . Hence,

we also require the first order condition for punishment period (Eq. (11)) in order to

derive the optimal output.

The first order condition for the optimal punishment period is derived by plugging

Eqs. (10), (11) and (14) into Eq. (9). This leads to

0 =(N − 1)(A−NBq∗)
{

[β + 2(1− β)C] [A− (N + 1)Bq∗] p∗ − βb∆ fp̃

Fp∗

}
+ [A− (N + 1)Bq∗]K ′ (16)
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Comparing Eq. (16) to Eq. (15), it can be seen that η∗ = f(θ∗)
F (θ∗)

θ∗, where θ∗ = p̃∗/p∗. By

definition,

η∗ ≡ 1 +
f ′(θ∗)

f(θ∗)
θ∗ ⇒ f(θ∗)

F (θ∗)
θ∗ − f ′(θ∗)

f(θ∗)
θ∗ = 1. (17)

Observing the last function, we can derive the optimal relation between p̃∗ and p∗ from

cumulative distribution function F . This relationship, between the optimal cartel price

and the optimal trigger price, also holds in Porter (1983), and thus we know the discount

rate has no effect on it. Therefore hyperbolic discounting has no impact on the size of

optimal trigger price relative to the optimal price for the cartel. Hence, the probability

for the optimal cartel switching into a price war remains constant even though the firms

are present biased. Nevertheless, we know that finding the θ∗ satisfying Eq. (17) is

equivalent to finding the extreme point of f(θ∗)θ∗/F (θ∗). Therefore θ∗, as well as η∗,

are derived from the cumulative distribution function and are independent of the cartel

output and punishment period length. The implication of this can now be stated in the

following proposition, which is analogous to Proposition 3.2 in Porter (1983).

Proposition 1 The optimal trigger price p̃∗ will adjust in exactly the same proportion

as p∗ = p(Nq∗).

Eqs. (5), (15) and (17) are required to derive q∗, p̃∗ and T ∗. Unfortunately, when the

firms are hyperbolic discounting, we can not get a brief and intuitive analytical solution

like Porter (1983). However, given a specific cumulative distribution F , we can provide

a comparative static analysis, showing the relationship between the hyperbolic discount

parameter and the optimal output and punishment length for the cartel. After we know

the relationship between optimal cartel price and trigger price, we need only solve for

the optimal cartel quantity and punishment periods. These are solved in turn in the

next section.

4 IMPACT OF PRESENT BIAS

4.1 OPTIMAL CARTEL QUANTITY AND TRIGGER PRICE

In this section we derive the relationship between the optimal cartel quantity q∗ and the

hyperbolic discounting parameter β. According to Lemma 3, the optimal cartel quantity

q∗ must lie within (r, s]. For an interior solution, we find there is negative correlation
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between them. That is, if a firm weights future profit less than its current profit, then the

optimal cartel quantity must increase to maintain cooperation. The reason is intuitive:

we substitute Eq. (17) into Eqs. (5) and (15) and rewrite them as

L(q, T, β) = [βC + (1− β)C2][A− (N + 1)Bq∗]− β(δ − δT )f [θ∗b/p∗]∆ = 0 (18)

and

G(q∗(p̃, T ), T, β) = (N − 1)(A−NBq∗) {[β + 2(1− β)C] [A− (N + 1)Bq∗] p∗ − βb∆η∗}
+ [A− (N + 1)Bq∗]K ′ = 0

(19)

Differentiating L(q, T, β) and G(q∗(p̃, T ), T, β) with respect to β we get

Lβ + Lq
∂q∗

∂β
+ LT

∂T ∗

∂β
= 0 (20)

Gβ +Gq
∂q∗

∂β
+

(
Gq
∂q∗

∂T
+GT

)
∂T ∗

∂β
= 0, (21)

where the subscript denotes the partial derivative. Comparing with Eq. (18), Lβ =

[C−C2][A− (N + 1)Bq∗]− (δ− δT )f [θ∗b/p∗]∆ < 0. Similarly, we know Gβ < 0, GT > 0.

Using the implicit function theorem, we derive

∂q∗

∂β
= −

∣∣∣∣∣ Lβ LT

Gβ Gq
∂q∗

∂T
+GT

∣∣∣∣∣∣∣∣∣∣ Lq LT

Gq Gq
∂q∗

∂T
+GT .

∣∣∣∣∣
(22)

The second-order condition of the maximization problem requires the matrix of the

denominator in Eq. (22) is negative definite, and thus we have Lq < 0, Gq
∂q∗

∂T
+ GT < 0

and ∣∣∣∣∣ Lq LT

Gq Gq
∂q∗

∂T
+GT

∣∣∣∣∣ > 0.

Thus, the sign of the numerator determines the sign of Eq. (22). It is easy to see that

when Lβ
(
Gq

∂q∗

∂T
+GT

)
− LTGβ > 0, then ∂q∗

∂β
< 0. This can be seen in the numerical

simulation shown in Figure 1. A sufficient condition for this to occur is for LT =
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−δT lnδF
p∗

([β + 2(1− β)C] [A− (N + 1)Bq∗] p∗ − βb∆η∗) > 0. This result is now stated

formally in the following proposition:

Proposition 2 When β > β(δ) the optimal cartel quantity q∗ is decreasing in hyperbolic

discounting parameter β. When β ≤ β(δ), the cartel collapses and q∗ = s, where s is the

Cournot equilibrium output.

In Porter (1983), the optimal cartel quantity q∗ is independent of discount factor

δ which is counterintuitive since there is a widely acknowledged negative relationship

between the optimal cartel quantity and the discount factor. When the firms are more

patient (so that δ increases), they can achieve more collusive output (q∗ decreases). Our

results with hyperbolic discounting restore this intuition.

We use a numerical example to show this relation by adopting the same cumulative

distribution used by Porter (1983). Assume F (θ) = [αθ/(α+ 1)]α for 0 ≤ θ ≤ (α+ 1)/α

and α > 0, then f(θ) = αF (θ)/θ, f ′(θ) = (α − 1)f(θ)/θ with E(θ) = 1 and V ar(θ) =

1/α(α + 2). In order to get an interior solution, we set α = 6. We first derive the

optimal θ∗, which we know must satisfy Eq. (17). This equation is satisfied for any θ∗

belonging to the domain [0, 7/6]. Hence, without loss of generality, we will assume that

θ∗ = p̃∗/p∗ = 1. That is, the optimal trigger strategy p̃∗ is equal to the optimal cartel

price without market fluctuation p∗. When the stochastic market fluctuation θ ≥ 1, the

market price p̂ ≥ p̃∗ and firms continue to produce cartel quantities. When θ < 1, p̂ < p̃∗

and firms revert to Cournot quantities. We calculate this possibility is F (1) = 0.3966

under our assumptions. Meanwhile, we can also derive the parameter η∗ = f(θ∗)
F (θ∗)

θ∗ = α.

Figure 1 shows how the optimal cartel quantity changes with the hyperbolic dis-

counting parameter β and the long run discount rate δ. Here we are setting A = a = 2,

B = b = 1, and N = 2 and focus on the relationship between the two discount rates

and optimal cartel quantity. We can see from Figure 1 that when δ is held constant q∗

is decreasing in β.

To understand why this relationship holds, we set δ = 0.93 to focus on the hyperbolic

discounting parameter β. This relationship between q∗ and β is shown in Figure 2, where

s denotes the static Cournot output. It can be seen that as the hyperbolic discount

parameter β → 1, the optimal output q∗(β)→ q∗, where q∗ is the optimal output for the

cartel under exponential discounting (abusing notation). There is a threshold level β(δ)

12



Figure 1: Optimal cartel quantity under different discount rate: q∗(β, δ)

(at δ = 0.93, the threshold β(δ) = 0.359); for β ≤ β(δ) the cartel can not support any

output that is ’more collusive’ than the Cournot equilibrium output and thus it collapses.

There is one further implication from Proposition 1 relating to the trigger price that

needs to be discussed. Recall from Proposition 1 that the optimal trigger price p̃ will

adjust in exactly the same proportion as p∗ = p(Nq∗). This implies that p̃ will adjust

in response to changes in every parameter (including possibly β and δ). Proposition 2

states that there is a positive relationship between q∗ and β. Hence, combining these

two propositions we can see that there will also be a positive relationship p̃ and β. This

is expressed formally in the following corollary.

Corollary 1 The optimal trigger price p̃ increases in both β and δ when β > β(δ).

As we know, unilaterally increasing trigger price would increase the chance of pun-

ishment. When firms’ preferences are present biased, one would expect a larger p̃∗ to

strengthen the punishment. However, our results show that the trigger price decreases

when β decreases. The reason is that the optimal cartel output q∗ increases and the

cartel price p∗ decreases when β decreases. This implies that the cartel must lower p̃∗ in

order to maintain the likelihood of punishment at a constant level, a restriction implied

by Proposition 1.

13



Figure 2: Optimal cartel quantity under different hyperbolic discounting rate:
q∗|δ=0.93(β)

4.2 OPTIMAL CARTEL PUNISHMENT LENGTH

In this subsection, we derive the relationship between the optimal cartel punishment

duration T ∗ and β. We know an interior solution q∗ only appears when β > β(δ). Thus

the interior optimal punishment period T ∗ is realized only when β > β(δ). Adopting the

same method in Section 4.1, we derive

∂T ∗

∂β
= −

∣∣∣∣∣ Lq Lβ

Gq Gβ

∣∣∣∣∣∣∣∣∣∣ Lq LT

Gq Gq
∂q∗

∂T
+GT

∣∣∣∣∣
(23)

The second-order condition for maximization requires that the matrix contained in the

denominator of Eq. (23) is negative definite. This implies that Gq
∂q∗

∂T
+GT < 0 and since

GT > 0, we have Gq
∂q∗

∂T
< 0. From Eq. (9) we have ∂q∗

∂T
< 0 and thus we know Gq > 0.

As shown above, Lq < 0, Lβ < 0 and Gβ < 0, this implies that LqGβ −LβGq > 0, which

implies that ∂T ∗

∂β
< 0. Therefore, the optimal punishment length T ∗ is decreasing in the

hyperbolic discount parameter β. We now formally state this as a proposition.
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Proposition 3 When β > β(δ), the optimal punishment period length T ∗ is decreasing

in hyperbolic discounting parameter β.

From Eqs. (5) and (15) we can plot T ∗ under different β and δ and adopt the same

parameter values that were employed in Section 4.1. This plot is shown in Figure 3.

The dotted line on the contour plot is β(δ). This is the critical value that demarcates

interior and corner solutions. If β ≥ β(δ), then there is an interior solution where the

cooperative equilibrium is more profitable than the Cournot equilibrium. In this region,

for fixed δ, it can be seen that T ∗ decreases as β → 1. The region β < β(δ) is where

the corner solution T ∗ = 0 is realized. In this region, punishment is not feasible since

cooperative profits are always less than those generated under the Cournot equilibrium.

Figure 3: Optimal punishment period under different discount rate: T ∗(β, δ)

The reason why T ∗ is increasing in β when β < 0.359 in Figure 3 is that the optimal

cartel quantity exceeds Cournot quantity which leads to lower profit relative to punish-

ment periods. That is, ∆ = πi(q̄
∗)−πi(s̄) < 0. For the first-order condition, ∂Wi

∂T
turns to

be positive since Cournot punishment is more profitable. Therefore the relation between

T ∗ and β converts from negative to positive. According to Lemma 3, q∗ > s could be

abandoned since its profit is even less than Cournot competition. When q∗ > s, firms

would rather take q∗ = s as the corner solution.

15



Figure 4: Optimal punishment periods under different hyperbolic discounting rate:
T ∗|δ=0.93(β)

We will now discuss the corner solution when β < 0.359. From Section 4.1, we know

no cartel quantity which is less than the Cournot quantity s can be supported in the

equilibrium when β < 0.359. This implies that when hyperbolic discounting degree is

large enough, the optimal cartel quantity will be the Cournot quantity. Thus for Eq. (9),

(N − 1)
∂Wi

∂qj

∂q∗j
∂T

+
∂Wi

∂T
= 0,

where ∂Wi

∂T
= 0, since punishment profit is equal to the cooperative profit;

∂q∗j
∂T

= 0 since

the cooperative quantity is equal to the Cournot quantity, which is independent of T .

Therefore, Eq.(16) holds for any T . Hence, there is no point in choosing punishment

periods T since punishment stage is equivalent to cooperative stage in this case. The

optimal cartel strategy degenerates to be static Cournot strategy.

5 Conclusion

This paper explores the impact of time inconsistency on the trigger pricing strategies

of cartels under imperfect public monitoring. Dynamic time inconsistency on the part

of firms is modelled by using hyperbolic discounting and we focus on the case where
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firms are present biased, so that β < 1. The case where β = 1 is well known and

conforms to firms using exponential discounting. Green and Porter (1984) and Porter

(1983) have shown for this case that trigger price strategies lead to a cartel in which

cartel pricing is separated by periodic price wars between its members. They show that

the cartel has to balance two effects: the increase in marginal profit from restricting

output and the increase in the marginal loss brought on from increasing the possibility

of causing Cournot punishment in subsequent periods. Porter (1983) shows that the

optimal punishment period length is decreasing in discount factor δ. For the interior

solution, both the optimal cartel output q∗ and the optimal trigger price p̃ are shown to

be independent of δ.

In our paper we show that this result depends on β. When β decreases, the marginal

profit from restricting output is dominated by the marginal loss effect. The optimal

cartel quantity q∗ does increase to rebalance these two effects. This restores the widely

acknowledged negative relationship between the optimal cartel quantity and the discount

factor. We also show that there is a threshold value β(δ), which is decreasing in δ. For

β > β(δ), there exists an optimal trigger strategy for the cartel featuring lower prices,

higher output and periodic price wars. We find that as β increases, the duration of

the price war T ∗ also decreases and converges on the T ∗ predicted under exponential

discounting. However, when β ≤ β(δ), the cartel will collapses.

Consistent with Porter (1983), we find that neither β nor δ have any effect on the

probability of detecting deviations from cartel pricing. However, we show that the op-

timal trigger price which depends on the price and output decreases as β or δ decrease.

This is different from Porter (1983) and occurs because the output chosen by the cartel

depends negatively on β. This implies that the price level and trigger price will increase

as β → 1 so as to converge on the optimal levels determined in Porter (1983).
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