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1 Introduction

The growing debate on the spatial dimension of income inequality in the U.S. has made

it clear that not all cities are equal (Chetty, Hendren, Kline and Saez 2014). Income

inequality in some cities has skyrocketed in the last decades, while remaining relatively

low in others. For instance, the Gini index of disposable equivalent household income

in New York City in 2014 is over 0.5, while it is below 0.4 in other major cities such

as Washington, DC. The differences of income inequality across major U.S. cities can

be explained by the distribution of skills and human capital across the cities (Glaeser,

Resseger and Tobio 2009, Moretti 2013), as well as by the composition of local amenities

(Albouy 2016). Important consequences arise for local policies, for targeting program

participation based on location and for designing the federal redistribution of resources

(Sampson 2008, Reardon and Bischoff 2011).

What this picture fails to show is that not all places in the same city are made equally

unequal. Contributions at the frontier of economics, sociology and urban geography have

recognized that inequality at the local level, i.e. measured among close neighbors, is

generally not representative of citywide inequality in U.S. cities. This is a consequence of

underlying behavior of households who sort across the urban space on the basis of their

income (de Bartolome and Ross 2003, Brueckner, Thisse and Zenou 1999), thus producing

a spatial pattern of income inequality. This paper contributes to the measurement of

spatial income inequality and to assess its long-term implications on economic mobility

and health perspectives of residents in American cities.

The features of spatial inequality at the urban level are accounted for in the literature
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by focusing on differences in incomes within and between neighborhoods, identified by

the administrative partition of the urban space (Shorrocks and Wan 2005, Dawkins 2007,

Wheeler and La Jeunesse 2008, Kim and Jargowsky 2009). Evaluations based on this

approach, however, put the administrative neighborhood and not the individual, who is

responsible for sorting decisions, at the center. The geography of incomes can be better

taken into account by adopting the notion of the individual neighborhood, corresponding

to the set of neighbors living within a certain distance of the individual, thereby placed

at the center of his own neighborhood.1

In this paper, the features of inequality at the urban level are assessed by studying

how incomes are distributed within and across individual neighborhoods. Both within and

between dimensions of inequality arise from differences in income among individuals. More

precisely, inequality within an individual neighborhood arises when the income of an urban

resident is different from the income of her close neighbors. Inequality between individual

neighborhoods arises, instead, from differences in average neighborhood incomes among

all urban residents. The two dimensions account for separate consequences of income

sorting across the urban space and, differently from existing approaches, they do not

stem from a decomposition of citywide inequality. Rather, citywide inequality can be

seen as an asymptotic case of spatial inequality where the role of individual neighborhood

is weakened to the extreme. These points are made clear with an intuitive example, based

1Galster (2001) and Clark, Anderson, Östh and Malmberg (2015) develop this notion in geographic
analysis. On the one hand, individual neighborhoods capture the relevant space where factors such as
the housing market, amenities, preferences and social interactions (Schelling 1969) combine to shape the
sorting of high income and low income people across the city. On the other hand, the notion of individual
neighborhood is used to identify the extent of external effects exerted by neighbors on the individual’s
behavior and income (Durlauf 2004, Sampson 2008, Ludwig, Duncan, Gennetian, Katz, Kessler, Kling
and Sanbonmatsu 2013, Chetty, Hendren and Katz 2016).
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on the spatial distributions of incomes in three hypothetical cities shown in Figure 1.

Consider first the two stylized cities City A and City B. There are three people living

in each city, two poor (P ) and one rich person (R). The two cities display the same overall

income inequality, but differ in the way people are located in the urban space: in City

A the poor persons are close neighbors and the rich person is isolated, while in City B a

poor person lives near the rich one, and the other poor person is isolated. To evaluate

spatial inequality, we first identify individual neighborhoods by drawing circles of given

diameter around each individual, and then we study the income distribution within and

among individual neighborhoods. The size (or equivalently, the degree of inclusiveness)

of the individual neighborhood can vary. When the size is not too large,2 the average

degree of inequality (captured by the extent of income differences) within the individual

neighborhoods is smaller in City A than in City B. This occurs because the rich person

in City A lives isolated and the other two persons are equally poor.

Conversely, when the size of the individual neighborhood is not too large, the inequality

between average incomes observed in each individual neighborhood of City B is smaller

than the inequality observed in City A. This occurs because some income inequality

between the rich and the poor person in City B is averaged out when computing the

mean incomes at the individual neighborhood level.

In this framework, a movement of people across locations of a city might give rise to

2In Figure 1, individual neighborhoods are delimited by intervals centered on each individual. When
each interval includes just one individual, there is no inequality within the neighborhood and inequality
between neighborhoods coincides with citywide inequality. When each individual neighborhood is large
enough to comprise the remaining two individuals, spatial inequality within the neighborhood coincides
with citywide inequality, while inequality between neighborhoods is zero (since average incomes coincide
across individual neighborhoods). All in-between cases, individual neighborhoods are not “too large”,
that is at least one individual neighborhood comprises two individuals.
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Figure 1: Spatial distribution of incomes (vertical spikes) among the poor P , and the rich
R in three linear cities.
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changes in spatial inequality that are not trivial, although citywide income distribution

would not be affected by this displacement. For instance, if individuals R and P living

at the extremes of City A exchange their location, the resulting spatial distribution of

incomes would be that of City B, implying an raise (a drop) in within (between) inequal-

ity.3 Spatial inequality can also be affected by income movements. Consider now City C

in Figure 1. This hypothetical city represents the spatial distribution of R and P people

after a rich-to-poor transfer of income has eliminated income differences between the two

individuals located at the outskirts of the city. Arguably, this transfer reduces citywide

inequality, irrespective of whether the initial distribution is that of City A or of City

B. It also turns out that spatial inequality between individual neighborhoods is reduced

by the transfer. The implications for spatial inequality within individual neighborhoods,

however, are ambiguous. Spatial inequality would have been reduced by the transfer if

the starting configuration were as in City B, whereas it would have been increased if the

starting configuration were as in City A. This highlights that even rich-to-poor income

3This movement reflects the implications of gentrification occurred in the last decades across all major
American cities, where rich people previously isolated in wealthy suburbs moved towards a more densely
populated area of the city, pricing out the poor people who are then marginalized.
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transfer might give rise to divergent patterns of spatial inequality when the location of

the population is taken into account.

In more realistic settings, it is not straightforward to identify the patterns of spatial

inequality when people, incomes, or both change at once. The aim of this paper is to model

and to measure spatial inequality using individual neighborhoods as primitive information,

and to assess its patterns and implications. The first contribution is on the measurement

side. In Section 2, we introduce two new spatial inequality measures, the Gini Individual

Neighborhood Inequality (GINI) indices, that explicitly account for the urban geography of

incomes. The first GINI-type index measures the average level of income inequality within

individual neighborhoods. The second GINI-type index measures instead the inequality

in average incomes between individual neighborhoods. The statistical foundations of the

GINI indices are established building on connections with geostatistics literature. A

methodological appendix develops innovative asymptotic results based on stationarity

assumptions common in this literature. The advantages of the GINI indices are discussed,

and differences with alternative measurement frameworks, such as those involving within-

between decomposition techniques and income segregation indices, are highlighted.

The second contribution of this paper demonstrates the empirical relevance of the

methodology utilizing GINI indices. In Section 3 the pattern of spatial inequality across

the 50 most populated American cities is assessed by making use of a rich income database

constructed from U.S. census data spanning almost four decades. We compute the val-

ues of GINI indices at any meaningful distance threshold (from zero to the size of the

city). Very strong resemblances in patterns of spatial inequality among the 50 cities
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are documented, with high levels of within neighborhood inequality steadily increasing

over time. Patterns of spatial inequality between individual neighborhoods are consistent

across cities and always display a peak in the 90s and a subsequent decline over the follow-

ing 25 years. These findings match with evidence presented in the literature (Hardman

and Ioannides 2004, Wheeler and La Jeunesse 2008), despite being obtained from a sub-

stantially different methodological perspective. Instead of being separate elements of the

Gini index decomposition, the GINI indices capture different aspects of spatial inequality

that turn out to be orthogonal in cross-metros comparisons. This allows to build a tax-

onomy of cities along the dimensions of spatial inequality (see Sections 2.4 and 3.3 for a

discussion).

Changes in spatial inequality are difficult to evaluate on purely normative grounds.

For instance, when negative externalities arise from deprivation and envy (Luttmer 2005),

within neighborhood inequality probably is the relevant dimension to look at to capture

these externalities. A policy aiming to mitigate the incidence of these externalities should

focus on reducing inequalities within the neighborhood, for instance by implementing

local redistribution or by increasing the distance between rich and poor people. On this

premise, the spatial distribution of incomes in City A should be preferred to that of

City B, despite the same citywide inequality. However, the proximity among people of

different social status might raise ambitions and generate opportunities for the poor and

also benefit the rich person (Ellen, Mertens Horn and O’ Regan 2013). In this case,

the spatial distribution in Cities B should be preferred. Evaluations become even more

complex when looking at the implications of neighborhood inequality on lifelong individual
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outcomes. In Section 4 we highlight that separate channels should be driving the long-

term implications of inequality within the neighborhood, which is shown to be negatively

associated with improvements in children’s income prospects (Chetty and Hendren 2016)

while being positively associated with adult health outcomes (Chetty, Stepner, Abraham,

Lin, Scuderi, Turner, Bergeron and Cutler 2016) of people growing up and living in major

American cities. These empirical correlations turn out to be robust with respect to the

most relevant confounding factors. Section 5 concludes summarizing the results.

2 Spatial inequality measurement

2.1 The GINI indices

Given a population of n ≥ 3 individuals, indexed by i = 1, ..., n, let yi ∈ R+ be the income

of individual i and y = (y1, y2, ..., yn) the income vector with average µ > 0. A popular

measure of income inequality is the Gini coefficient, defined as

G(y) =
1

2n(n− 1)µ

∑
i

∑
j

|yj − yi|.

In what follows, information on the income distribution is assumed to come with informa-

tion about the location of each income recipient in the urban space.4 For any individual,

neighbors are identified as the group of people located at most as far as d distance units

from this individual. The Euclidian distance is used to determine the extent of the neigh-

4For the sake of simplicity, we refer to the income-location distribution of individuals on the city map
as an income distribution.
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borhood.5 The set of neighbors located within a distance d from individual i is designated

as di, such that j ∈ di if the distance between individuals i and j is less than or equal

to d. The cardinality of di is denoted nid, that is the number of people living within a

range d from i (including i). The average income of individual i’s neighborhood of length

d, capturing the neighborhood’s affluence, is µid =
∑

j∈di
yj

nid
.

The first spatial inequality index that we consider is the Gini Individual Neighborhood

Inequality within index, indicated by GINIW . It measures the average degree of rela-

tive income inequality within individual neighborhoods. The GINIW index is inspired

by Pyatt (1976), who provides a probabilistic interpretation of the Gini inequality index.

According to Pyatt, the Gini index can be seen as the expected gain accruing to a ran-

domly chosen individual from the income distribution if her income is replaced with the

income of another individual randomly drawn from the same distribution. The GINIW

index assumes that income comparisons are carried over exclusively within individual

neighborhoods of a given size. For each individual i, the average distance between i’s

income and the income of her neighbors is computed and then this quantity is scaled by

the neighborhood average income so that it ranges over the unit interval. This gives:

∆i(y, d) =
1

µid

∑
j∈di

|yi−yj|
nid

.

Given the relevant notion of individual neighborhood parametrized by d, there are 1/nid

chances of drawing a neighbor from i′s neighborhood with whom i can compare her

income. This probability changes across individuals, reflecting the population density of

5For a discussion of the use of multidimensional notions of distance, see Conley and Topa (2002).
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individual neighborhoods. The GINIW index averages the normalized mean income gaps

∆i across the whole population:

GINIW (y, d) =
1

2

n∑
i=1

1

n
∆i(y, d).

The GINIW index hence captures the overall degree of inequality that would be ob-

served if income comparisons were limited only to neighbors located at a distance smaller

than d. The index is bounded, with GINIW (y, d) ∈ [0, 1] for any y and d. Moreover,

GINIW (y, d) = 0 if and only if all incomes within individual neighborhoods of size d are

equal. Notice that this cannot exclude inequalities among people located at a distance

larger than d. Additionally, GINIW (y, d) can take values that are either larger or smaller

than G(y).6 When d reaches the size of the city, spatial inequality coincides with citywide

inequality, that is GINIW (y,∞) = G(y).

The GINIW index captures a relative concept of inequality, since income distances

within each neighborhood are divided by the neighborhood average income. This implies

that even if inequality in relatively small neighborhoods approaches citywide inequality

the distribution of incomes within the individual neighborhood does not necessarily re-

semble that of the city as a whole. In fact, average incomes might substantially differ

across individual neighborhoods. Inequality between individual neighborhoods average

incomes can be valued by the Gini index for the vector (µ1d, . . . , µnd). The elements of

6Consider, for instance, the following distribution of incomes among four individuals:
($0, $0, $1000, $2000). The Gini inequality index of this income distribution is 0.77. Suppose these
individuals are distributed in space such that each of the two poor individuals lives close to a non-
poor person, while the two pairs are far apart one from the other. Then, spatial inequality within the
neighborhoods is maximal (i.e., GINIW (., d) = 1 for d small) and larger than citywide inequality.
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this vector depend upon individuals’ locations and proximity. For instance, if a high-

income person lives near to many low-income people, her income contributes to rising the

mean income not only in the high-income person neighborhood, but also in the individual

neighborhoods of all her low-income neighbors. However, if the high-income person is

located at an isolated point on the urban map, her income does not generate any pos-

itive effect on other people’s average neighborhood income, provided that the notion of

individual neighborhood is sufficiently exclusive. As a consequence, the average value of

the vector (µ1d, .., µnd), designated µd, generally differs from µ. The between dimension

of spatial inequality is captured by the Gini Individual Neighborhood Inequality between

index, GINIB, defined as:

GINIB(y,d) =
1

2n(n− 1)µd

∑
i

∑
j

|µid − µjd|.

As expected, GINIB(y, d) ∈ [0, 1] for any y and d. The index is equal to G(y) at a

zero-distance and whenever all incomes within each individual neighborhood of length d

are equal. GINIB converges to zero when d approaches the size of the city.

A simple and insightful picture of within and between spatial inequality patterns can

be drawn by computing GINI indices for different values of d and plotting their values on

a graph against d (on the horizontal axis). The curve interpolating these points is called

the spatial inequality curve, generated by either the GINIW or the GINIB index. More

precisely, the curve derived from GINIB takes the value of the overall Gini index when

each individual is considered as isolated (that is, when d = 0) and approaches 0 when

each individual neighborhood spans the whole city. The curve originated by GINIW can
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exhibit a less predictable shape. First, it can locally decrease or increase in d according to

the spatial distribution of incomes. Second, when each individual neighborhood is large

enough to include the whole population of the city, then GINIW (y, d) approaches G(y).

Third, the graph of GINIW (y, d) can be flat, meaning that incomes are randomized across

locations and the spatial component of inequality is irrelevant. Fourth, the curve could

increase with d, indicating that individuals with similar incomes tend to sort themselves

in the city. The shape of the spatial inequality curves also suggests the degree to which

citywide income inequality can be correctly inferred from randomly sampling individuals

from the city.7

For a given size of the individual neighborhood, spatial inequality comparisons can

be carried over by looking at the level of the GINI within or between index at the cor-

responding distance threshold. Each of these evaluations generates a complete ranking

of the income distributions, although these rankings may contradict each others. Com-

parisons of spatial inequality curves allow evaluations that are robust vis-à-vis the size of

the neighborhood. We propose to use these curves to carry over robust spatial inequality

assessments.

The GINI indices are measures of inequality that account for the spatial association

of unequal incomes.In the following section we establish the GINI indices and the way in

which spatial association is treated in geostatistics literature.

7When the role played by space is negligible, i.e. the spatial inequality curves are rather flat, any
random sample of individuals taken from a given point in the space is representative of overall inequality.
When space is relevant and people locations are stratified according to income, then a sample of neighbors
randomly drawn could underestimate the level of citywide inequality.
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2.2 Spatial inequality and geostatistics

A spatial income distribution can be represented through its data generating process

{Ys : s ∈ S}. This process is a collection of random variables Ys located over the random

field S, which serves as a model of the relevant urban space. The process is distributed

as FS , the joint distribution function combining information on the marginal income

distributions in each location and the degree of spatial dependence of incomes on S.

Through geolocalization, it is possible to compute the distance “||.||” between locations

s, v ∈ S. Let ||s− v|| ≤ d indicate that the distance between the two locations is smaller

than d, or equivalently v ∈ ds. The cardinality of the set of locations ds is nds , while

n is the total number of locations. The observed income distribution y is a particular

realization of the process, where only one income observation i occurs in a given location

s.

Consider first the GINIW index of the spatial process FS . It can be written in terms

of first order moments of the random variables Ys as follows:8

GINIW (FS , d) =
∑
s

∑
v∈ds

1

2nnds

E[|Ys − Yv|]
E[Yv]

.

The degree of spatial dependence represented by FS enters in the GINIW formula through

the expectation terms conditional on S. Consider first the case displaying no spatial

dependence in incomes, that is, the random variables Ys and Yv are i.i.d. for any s, v ∈

S. One direct implication is that GINIW (FS , d) = E[|Ys−Yv |]
E[Yv ]

, which coincides with the

8Biondi and Qeadan (2008) use a related estimator to assess dependency across time in paleorecords
observed in a given location.
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definition of the standard Gini inequality coefficient (see for instance Muliere and Scarsini

1989).

If, instead, spatial dependence is at stake, then the expectation E[|Ys − Yv|] varies

across locations and cannot be identified and estimated from the observation of just one

data point in each location. It is standard in geostatistics to rely on assumptions about the

stationarity of FS (Cressie and Hawkins 1980, Cressie 1991). The first assumption is that

the random variables Ys have stationary expectations over the random field, i.e., E[Yv] = µ

for any v. The second assumption is that the spatial dependence in incomes between two

locations s and v only depends on the distance between the two locations, ||s − v||, and

not on their position in the random field. Here, we consider radial distance measures for

simplicity, so that ||s − v|| = d. This gives E[(Ys − Yv)2] = 2γ(||s − v||) = 2γ(d), where

the function 2γ is the variogram of the distribution FS (Matheron 1963).

The function 2γ(d) is informative of the correlation between two random variables

that are exactly d distance units away one from one other. The slope of the graph

of the variogram function displays the extent to which spatial association affects the

joint variability of the elements of the process. Generally, 2γ(d) → 0 as d approaches

0, indicating that random variables that are very close in space tend to be strongly

spatially correlated and variability in incomes at the very local scale is small. Conversely,

2γ(d) → 2σ2 when d is sufficiently large, indicating spatial independence between two

random variables Ys and Yv far apart on the random field.

Together, the two assumptions listed above depict a form of intrinsic stationarity of

the data generating process (Cressie and Hawkins 1980, Cressie 1991, Chilès and Delfiner
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2012). If, additionally, Ys is assumed to be Gaussian with mean µ and variance σ2, ∀s ∈ S,

it is possible to show that the GINIW index is a function of the variogram, as follows:

GINIW (FS , d) =
∑
s

∑
v∈ds

1√
π

1

nnds

√
γ(||s− v||)

µ
.

With some additional algebra, it is also possible to show that the GINIB index is a

function of the variogram under stationarity and the Gaussian assumptions. Both indices

can hence be described as averages, taken over the space of distances between locations, of

distance-sensitive coefficients of variation. All results are formally derived in the appendix.

The possibility of expressing the GINI indices as transformations of the variogram

leads to two considerations. The first is that the GINI indices measure spatial inequality

as a direct expression of the spatial dependence in the data generating process, represented

under stationarity assumptions by the variogram, without imposing external normative

hypotheses about the interactions between incomes, income inequality and space. The

second consideration is that the empirical counterpart of the variogram sets the basis for

estimating asymptotic standard errors of the GINI indices. These results are used to test

hypothesis on the extent and dynamics of spatial inequality.

2.3 Testing hypotheses about spatial inequality

The empirical estimators of the GINI spatial inequality curves (presented in the appendix)

can be used to test hypotheses about the shape and dynamics of spatial inequality. (i) By

contrasting the level of spatial inequality measured by the GINI curves at a given distance
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d with the overall level of inequality captured by the Gini index, it is possible to assess if,

and to what extent, average income inequality experienced within a neighborhood of size

d is different from the level of inequality in the city. (ii) Moreover, by contrasting the level

of the GINI curves at d and at d′ > d, it is possible to state if, by how much, and at which

speed, local inequality converges with citywide inequality. (iii) Lastly, by comparing the

levels of the GINI curves at distance d registered in different periods within the same city,

it is possible to reach conclusions about the dynamics of spatial inequality.9

In the appendix, distribution free, non-parametric estimators for the GINI indices are

estimated in a general setting where sample information about the process FS is avail-

able.10 Under the intrinsic stationarity and the Gaussian assumptions, asymptotically

valid standard errors for the GINI indices estimators are also derived. We find that the

GINI estimators sampling distribution is asymptotically normal,11 with standard errors

that can be fully characterized by the variogram function.12 Before moving to the empir-

ical section, the novelties and advantages of the methods proposed above are compared

with the existing literature on spatial inequality measurement.

9One is compelled to conclude in favor of spatial inequality only if there is strong evidence against the
null hypothesis that the level of the GINI curve at d is the same as the Gini inequality index, and that
the level of spatial inequality captured by the GINI curves does not change with d. When comparing two
GINI (either between or within) curves, a strong increase or reduction in spatial inequality cannot be
rejected if there is strong evidence against the null hypothesis that the two curves coincide at every d.

10The GINIB index estimator can be computed as a plug-in estimator as in Binder and Kovacevic
(1995) and Bhattacharya (2007), provided individual neighborhood averages are properly estimated. On
the contrary, the GINIW estimator involves comparisons of individual income realizations.

11Standard errors for GINI indices are derived using results for ratio-measures estimators (see
Hoeffding 1948, Goodman and Hartley 1958, Tin 1965, Xu 2007, Davidson 2009) under intrinsic sta-
tionarity and normality (Cressie and Hawkins 1980, Cressie 1985). The latter assumption does not
immediately translate into normality of the GINI estimators, which are highly non-linear functions of the
underlying stochastic process. Rather, on this assumption, we can show that the GINI estimators are
linear in the variogram, implying asymptotic normality.

12A Stata routine implementing the GINIW and the GINIB indices and spatial inequality curves
curves, along with their standard error estimators, is made available by the authors.
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2.4 Discussion

The inequality literature largely agrees that relative inequality indices should satisfy at

least four normatively relevant properties (Atkinson 1970): (i) invariance with respect to

population replication; (ii) invariance to the measurement scale; (iii) anonymity, that is,

invariance to any permutation of the incomes across the income recipients; (iv) the Pigou-

Dalton principle, implying that every rich-to-poor income transfer should not increase

inequality. While properties (i) and (ii) have desirable implications for the measurement of

spatial inequality and are satisfied by the GINI indices,13 anonymity strongly conflicts with

the idea that location matters in spatial inequality evaluations.14 Consider, for instance,

the income distribution in Figure 1 in the Introduction. The spatial configuration of

incomes in City B can be obtained from that in City A by permuting the incomes of the

individuals living at the margins of the city. Anonymity, which judges City A and City

B as equal from a citywide inequality perspective, does not extend to spatial inequality,

which instead rises in the within dimension and decreases in the between dimension after

the permutation.

For the reasons mentioned above, anonymity should be weakened in spatial inequality

comparisons. One method, predominant in the literature, is to constraint spatial inequal-

ity assessments to comparisons involving inequality between neighborhoods, originating

from a well-defined partition of the city into administrative areas, such as urban blocks,

13Direct implications of these properties are that populations of different size and different average
incomes can be made comparable. Replication invariance, in particular, guarantees that replacing single
individuals by equally-sized groups in given locations does not affect spatial inequality. Both proper-
ties are satisfied by the GINI indices by standardizing income gaps by individual neighborhood-specific
population counts and average incomes.

14Anonymity would not be a concern if incomes and locations were both permuted across individuals.
Rather, we refer to anonymity as permutations of incomes alone.
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census tracts, etc. Some contributions (Shorrocks and Wan 2005, Dawkins 2007, Wheeler

and La Jeunesse 2008) have proposed the use of measures of inequality and earning volatil-

ity. Some authors have focused on a particular aspect of spatial inequality, called income

segregation (by analogy with racial segregation), which is insensitive to the overall income

distribution in the city and rather captures how rich and poor people sort unevenly across

neighborhoods. In this spirit, Kim and Jargowsky (2009) suggested breaking down overall

inequality in the components associated to within and between neighborhoods variabil-

ity in incomes, and to assess spatial segregation as the share of citywide inequality due

to the between component. Reardon and Bischoff (2011) focus instead on the degree of

disproportionality of rich and poor individuals across neighborhoods.

The above approaches retain anonymity at two levels: first, among individuals living in

the same neighborhood; second, in terms of average incomes across neighborhoods. Con-

sequently, measures of spatial inequality consistent with this approach put the emphasis

on the neighborhood as the unit of analysis, and are hence subject to the Modifiable Areal

Units Problem (MAUP, see Openshaw 1983, Wong 2009), which arises from “scaling” and

“zonation” issues. To overcome the scaling issue, some authors have proposed assessing

inequality between neighborhoods at different scales of aggregation of the initial partition

(Hardman and Ioannides 2004, Shorrocks and Wan 2005, Wheeler and La Jeunesse 2008).

With a less refined partition of the urban space, the size of the neighborhood increases and

extends anonymity to a larger number of people within the neighborhood. To avoid the

zonation issues, Dawkins (2007) has proposed measures that account for the dependence

of income segregation on the spatial arrangement of administrative neighborhoods.
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The approach based on the GINI indices differs from this literature in using individual

neighborhoods as primitives. In fact, individual neighborhoods do not originate from

a partition of the urban space, but rather can display some degree of overlapping: the

fact that individual k is in the neighborhood of individual i and of individual j does not

imply that i and j are also neighbors. This logic discards anonymity within individual

neighborhoods regardless of their size (permuting the incomes of any two neighbors might

have substantial implications for other individual neighborhoods) and proves robust in

relation to the issue of zonation. Furthermore, considering individual neighborhoods of

different size, the degree of inclusiveness of individual neighborhoods can increase without

strengthening anonymity within the neighborhoods.

Anonymity (also called symmetry) is a necessary condition for Schur-convexity, a

mathematical property satisfied by all inequality indices consistent with the Pigou-Dalton

transfer principle (see Marshall and Olkin 1979, p.54). By weakening anonymity, both

rich-to-poor redistribution and relocation policies switching the position of poor and rich

people across the city (without affecting citywide inequality) may give rise to unpre-

dictable implications for spatial inequality, who are likely amplified by the behavioral

responses of people who can sort across space along the income dimension (Durlauf 2004).

Contrary to standard practice in the literature, which breaks down citywide inequality

into a within and between component, the GINI indices capture two distinct aspects of

spatial inequality: the average inequality within individual neighborhoods and the degree

of inequality in average incomes between individual neighborhoods. These two aspects

are not necessarily intertwined, for any selected neighborhood size. Consequently, our
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GINIW
Low High

GINIB High Polarized city Unstable city
Low Even city Mixed city

Table 1: Taxonomy of cities by spatial inequality.

methodology offers one additional degree of freedom compared to the traditional between-

within decomposition techniques, where a high degree of within inequality mechanically

involves low between inequality and vice-versa, for given citywide inequality. Building on

these arguments, cities can be classified according to between and within dimensions of

spatial inequality. Table 6 highlights four types of cities.

Low levels of the GINIW and GINIB indices mean that inequality within individual

neighborhoods is low and that neighborhoods resemble each other in terms of income

composition. This setting mirrors the homogeneous social structure of an “even city”

characterized by relatively low citywide income inequality and strong income mixing (for

a broader discussion of the Just City, see Fainstein 2010). In some situations, low GINIB

index values can be paired with high levels of the GINIW index. This case identifies

cities with mixed neighborhoods comprising people with different incomes (hence citywide

inequality) who are evenly spread across the urban space. The “mixed city” model is a

recurrent typology widely discussed in the urban planning literature (Sarkissian 1976)

that can be conceptualized both as the outcome of gentrification processes (Lees 2008),

and a stimulus for socio-economic opportunities for the residents (Musterd and Andersson

2005, Manley, van Ham and Doherty 2012).

High levels of the GINIB index occur in presence of citywide inequality and spatial
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sorting patterns that separate poor from rich people across the urban space. The image of

a “divided city” provided in the recent Habitat (2016) report (chapter 4) and anticipated

in van Kempen (2007) evokes the implicit social tensions in the urban fabric arising

because of strong differences in incomes across neighborhoods. We further distinguish

two cases within the “divided city” typology. The first type of cities, where high values of

the GINIB index are paired with low levels of the GINIW index, is that of a “polarized

city” with rich and poor people separated both in income and spatial dimensions.15 The

second type, the “unstable city”, displays high levels of both GINI indices. In this case,

high income heterogeneity within the neighborhood suggests that dimensions other than

income (such as ethnicity) play a significant role (Boal 2010, Scholar 2006, Deaton and

Lubotsky 2003) and might amplify the implications of income inequality in the sorting

process.

In the following section the extent of these traits of spatial inequality and their effects

on individual outcomes are investigated. The case of Chicago, IL, serves to illustrate

the spatial dimension of inequality in a large U.S. metropolitan area. We also provide

stylized facts about patterns of spatial inequality across the 50 largest U.S. cities, which

are grouped into four distinct categories depending on the spatial inequality they display.

15Duclos, Esteban and Ray (2004) describe polarization through the concept of alienation between
groups, here captured by the size of the individual neighborhood in relation to a relevant attribute, such
as income. Alienation is stronger when groups are more homogeneous and cohesive (i.e., the lowest is
inequality within the individual neighborhood) and more diverse (i.e., there is a high degree of inequality
between neighborhoods).

21



3 Spatial inequality in U.S. cities: 1980-2014

3.1 Data

We use information on incomes distributions within U.S. cities over four decades, drawing

on the census files of the U.S. Census Bureau for 1980, 1990 and 2000. Information

about population counts, income levels and family composition at a very fine spatial

grid is taken from the decennial census Summary Tape File 3A.16 Due to anonymization

issues, the STF 3A data are given in the form of statistical tables representative at the

block group level, the finest available statistical partition of the American territory. After

2000, the STF 3A files have been replaced with survey-based estimates of the income

tables from the American Community Survey (ACS), which runs annually since 2001 on

representative samples of the U.S. resident population. We focus on the 2010-2014 5-years

Estimates ACS module. Sampling rates in ACS vary independently at the census block

level according to 2010 census population counts, covering on average 2% of the U.S.

population over the 2010/14 period. As far as we know, ACS 2010/14 wave has not yet

been used for empirical analysis of urban inequality.

The units of analysis are households with one or more income recipients. The focus is

on the gross household income distribution. There are two available sources of information

that can be used to model the income distribution at the block group level. The first set of

tables displays aggregate income at the block group level. The second set of tables shows

16The Census STF 3A provides cross-sectional data for all U.S. States and their subareas in hierarchical
sequence down to the block group level (the finest urban space partition available in the census). The
geography of the block group partition changes over the decades to keep track with demographic changes
within the Counties of each State.
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instead counts of households per income interval at the block group level.17 There are 17

income intervals in the census 1980, 25 in the census 1990 and 16 in the census 2000 and in

the ACS. In all cases, the highest income bracket is not top-coded. We use a methodology

based on Pareto distribution fitting as in Nielsen and Alderson (1997), to convert tables of

household counts across income intervals into a vector of representative incomes for each

income interval, along with the associated vector of households frequencies corresponding

to these incomes.18 Estimates of incomes and household frequencies vary across block

groups, implying strong heterogeneity within the city in block-group specific household

gross income distributions.

The STF 3A files and the ACS also provide tables of household counts by size (scoring

from 1 to 7 or more household members) for each block group. To draw conclusions about

the distribution of income across block groups that differ in households demographics, we

construct equivalence scales that are representative at the block group level (the square

root of average household composition in the block group level, obtained from households

counts information). We can hence convert the representative incomes at the block group

17The ACS estimates of population counts should be interpreted as average measures across the 2010-
2014 time frame. The survey runs over a five years period to guarantee the representativeness of income
and demographic estimates at the block group level.

18The procedure consists in fitting a Pareto distribution to the grouped data (population shares and
income thresholds) and then estimating references incomes within each interval. For income intervals
below the median, the estimated reference income is the midpoint of the interval. For other intervals,
estimates are obtained under the constraint that estimated average income at the block-group level should
coincide with the observed average income in the data. Estimated medians for top income intervals are
used as reference incomes, and empirical population counts as weights. Fitting methods consist in GMM
(preferred) and quantile estimation as in Quandt (1966). Alternative estimation methods draw instead
from the log-normality assumption, as in Wheeler and La Jeunesse (2008). Incomes estimates based on
the preferred method display an MSA-year level average correlation of 95.2% with quantile fitting income
estimates (MSA-years population weighted correlations range between min = 76% and max = 98.9%,
with 95% of the correlations larger than 89.3%), and 90.4% average correlation with log-normal fitting
income estimates at the block group level (MSA-years population weighted correlations range between
min = 45.6% and max = 97.1%, with 95% of the correlations larger than 85.1%).
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City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

Chicago (IL) 1980 3756 1122 1.630 13794 5798 20602 0.434 11.351
1990 4444 1217 2.029 21859 9132 32316 0.461 11.903
2000 4691 1173 1.625 41193 16076 61667 0.473 11.533

2010/14 4763 1060 1.575 55710 20022 89856 0.486 13.452

Table 2: The household equivalent gross income distribution in Chicago, IL

level into the corresponding equivalized incomes by scaling the estimated reference income

values by the block group-specific equivalence scale.

Income reference levels, population frequencies associated to these levels and equiv-

alence scales are estimated separately for each block group of a city in each census and

ACS years. All block groups are georeferenced, and measures of distance between the

block groups centroids can therefore be constructed. All income observations within the

same block group are assumed to occur on its centroid. To identify the relevant urban

space, defining the extension of a city, we resort to the Census definition of a Metropolitan

Statistical Area (MSA) based on the 1980 Census definition.19 For each city-year pair

we therefore obtain an income database consisting of strings of incomes and frequency

weights at each geocoded location on the map. Thus, weighted variants of the GINI in-

dex estimators can be used to evaluate facts about spatial inequality at various distance

scales.
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3.2 Spatial inequality in Chicago, IL

The extent of the Chicago metro area, based on 1980 definition of Chicago primary

MSA, comprises Cook County, Du Page County and McHenry County surface.20 Table

2 provides summary information of the household population and the respective income

distribution in Chicago.21 Average equivalent household income increased fourfold over

1980-2014 in nominal terms, corresponding to a 73% increase in real terms. Table 2 shows

that the top 10% to bottom 10% income ratio sharply increased from 11.53 in 2000 to

almost 13.5 in the 2010/2014 period, indicating increased dispersion at the tails of the

distribution. The relative gap between the low income (bottom 20%) and high income

households (top 20%) has increased at a constant yet lower pace. The citywide Gini index

increased from 0.43 to 0.48 over the same period.

Values of the GINIW and the GINIB indices are computed for 1980, 1990, 2000 and

2010/2014 waves to assess the evolution of equivalent household income across individual

neighborhoods. At distance zero up to approximately 0.2 miles, the GINIW index cap-

tures the average inequality in estimated income levels within block groups. Data confirm

substantial income inequality within block groups in 2000,22 with the Gini index fluctuat-

19The U.S. counties defining the MSAa in 1980 can be found at this link:
http://www.census.gov/population/metro/files/lists/historical/80mfips.txt. The 1980 Census defini-
tion of MSA guarantees comparability of estimates across urban areas that are expanding or shrinking
over the 35 years considered in this study.

20For some of the block groups of 1980 Census it is not possible to establish geocoded references. Hence,
these units cannot be included in the index computation and might have an impact on the estimation of
the GINI patterns. Reardon and Bischoff (2011) and other contributions have demonstrated, however,
that the impact of this kind of missing information is negligible on overall trends of inequality within the
100 largest U.S. Commuting Zones.

21Throughout the four decades considered in this study, the block group partition of Chicago has
become finer, with the number of block groups increasing 1000 units. This change keeps track of the
demographic boom in Chicago, implying a roughly stable demographic composition in each block group
(around 1100 households on average).

22For this year block group level estimates of inequality are collected in the census tables.
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Figure 2: Spatial GINI indices of income inequality for Chicago (IL), 1980, 1990, 2000
and 2010/14

(a) GINIW (b) GINIB

Note: Authors analysis of U.S. Census and ACS data.

ing between 0.2 to above 0.6, and standing at 0.4 when averaging across Chicago’s block

groups. This explains the relatively high intercept of the GINIW curves shown in Figure

2.(a). Inequality slightly decreases as the neighborhood size reaches two miles and then

quickly rises to reach its city-wide level when the size of the neighborhood is larger than

20 miles. Comparing the GINIW curves of the different decades, within neighborhood

inequality appears to increase over time, for any size of the neighborhood.

The between individual neighborhood inequality curves from 1980 to 2010/14 are plot-

ted in Figure 2.(b). For individual neighborhoods of narrow size, the GINIB index values

are generally smaller than 0.3. As expected, between neighborhood inequality decreases

with the size of the neighborhood, but in a very smooth manner. For neighborhoods

smaller than two miles, the GINIB index is generally larger than 0.25. It decreases to

0.1 only for neighborhoods of at least 16 miles range. Overall, this pattern is robust
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across Census years. Contrasting the GINIB curves over the last three decades, it can be

noted that between inequality is on the rise up to 1990, decreases in 2000 and stabilizes

thereafter.

Are these patterns statistically significant? Estimates for small size individual neigh-

borhoods might in fact be biased by the approximations used to estimate block-group

level income distributions. To assess significance, we first compute empirical estimators

of the variograms based on geolocalized income data, and then derive standard errors

and confidence intervals of the GINI within and between indices at pre-selected distance

thresholds. Confidence bounds are drawn for each spatial inequality curve, and dominance

relations across spatial inequality curves are tested making use of t-statistics at selected

distance ranges.23 Overall, we find evidence of the following patterns of spatial inequality

in Chicago: i) for neighborhoods of small size (below 2 miles), the GINIW index ranges

from 0.41 in 1980 to 0.45 in 2010/2014, and increases slightly with the size of the neigh-

borhood; ii) the GINIB index decreases smoothly with neighborhood size and reaches 0.1

only for relatively large (more than 10 miles) neighborhoods, hence indicating persistence

of inequality across the urban space; iii) the GINIW index is constantly on the rise over

the period considered at any distance threshold, although there is little statistical evidence

supporting these changes; iv) the GINIB index is on the rise during 1980-1990, it slightly

(yet significatively) declined in 2000 and has remaind stable thereafter. The changes we

23To do so, we compute all pairwise differences in spatial inequality curves across all the decades under
analysis. These differences, measured at pre-determined distance abscissae (along with the associated
confidence bounds), are then plotted on a graph. If the horizontal line passing from the origin of the
graph (indicating the null hypothesis of no differences in spatial inequality at every distance threshold)
falls within these bounds, we conclude that the gap in the spatial inequality curves under scrutiny are
not significant at standard confidence levels. For a detailed description of results, see online appendix B.
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describe are robust over the entire domain of the neighborhood size parameter.

The spatial inequality patterns described above could be explained, on the one hand,

by the changes in the citywide income distribution observed over the part 35 years. As

shown in Table 2, the citywide Gini index of gross equivalent household income in Chicago

was on the rise over the period and relative income gaps between the top and bottom

income quintile grew considerably, while the top-to-bottom income decile ratio remained

stable over 1980-2000 and increased afterward. If the spatial arrangement of households

were completely random, the income distribution observed within any individual neigh-

borhood would reflect the citywide income distribution, and the distributional changes

in the citywide distribution would spread evenly over the urban space. However, this

scenario is inconsistent with observed patterns of the spatial inequality between neigh-

borhoods curve, which should rather be flat. One alternative explanation relies on the

fact that households are stratified in space according to their incomes, with clusters of

rich, medium class and poor households. This spatial configuration would give rise to sub-

stantial inequality within individual neighborhood of average size, if clusters are evenly

distributed across the urban space.

The patterns described above reciprocally reinforce their implications for spatial in-

equality. In fact, changes in citywide inequality between 1980 and 2000 were driven by

divergent growth of income along the income distribution, with rich and poor people

moving far apart on the income distribution. This distributional change might produce

effects that are consistent with patterns of between individual neighborhood inequality,

which was on the rise until the Nineties, if, on average, high income households get richer
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in those neighborhoods where high income households are over-represented and where

middle class households’ income grew at a slower pace.

Since 2000, income inequality between individual neighborhoods has fallen despite

growing citywide inequality, suggesting a role for changes in the spatial distribution of

rich and poor households in Chicago. Spatial inequality between neighborhoods decreases

when rich households move closer to the middle class households, pricing out poor house-

holds from neighborhoods historically occupied by the poor, who are then obliged to move

farther away. This change could generate increasing inequality within individual neigh-

borhoods, leveraging on the increasing disparity in incomes between rich households and

the rest, and simultaneously could reduce inequality between individual neighborhoods.

This configuration provide robust empirical evidence of the consequences of local and city-

wide income distribution of recent waves of gentrification in major US cities documented

in Ehrenhalt (2012).24 This phenomenon -the movement of wealthy, skilled people from

suburbia to inner city- is referred to as the Great Inversion and is accompanied by the

reconcentration of income poverty in suburbs, far away from central business districts and

from the wealthy and the middle-class households (Kneebone 2016). The two demographic

phenomena seem to have dominated the dynamics of urban evolution in major U.S. cities

(including Chicago) since 2000. The GINIB index consistently show that spatial inequal-

ity has decreased (irrespectively of the underlying individual neighborhood size) despite

the increasing divide of top and bottom deciles of Chicago income distribution after 2000.

24Oversimplifying, this type of change in the spatial distribution of households and incomes can be
intuitively associated with the gentrification process exemplified in Figure 1, where a rich and isolated
person in City A moves towards the densely populated area of the city, forcing the poor to relocate
elsewhere (as in City B).
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Figure 3: Inequality within individual neighborhood for 50 largest U.S. metro areas

(a) Census 1980 (b) Census 1990

(c) Census 2000 (d) ACS 2010/2014

Note: Authors analysis of U.S. Census and ACS data.

In what follows, we provide new robust evidence that the patterns described above

by investigating the extent and the evolution of spatial inequality in the 50 largest US

metropolitan areas.
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Figure 4: Inequality between individual neighborhoods for 50 largest U.S. metro areas

(a) Census 1980 (b) Census 1990

(c) Census 2000 (d) ACS 2010/2014

Note: Authors analysis of U.S. census and ACS data.

3.3 Stylized facts about spatial inequality in U.S. cities

Figures 3 and 4 show spatial inequality curves for the years 1980, 1990, 2000 and 2010/2014.

There are 50 curves in each plot, one for each city.25 The patterns of the curves shown

25Data on demographic size of the 50 largest U.S. MSA are from the Census Bureau and can be down-
loaded from: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk.
The list of cities, ordered by their size, can be found in table 6 in the online appendix C. We stick
to the 1980 Census definition of metropolitan statistical areas for each of these cities to define the rele-
vant urban space. In this way, within-city patterns of spatial inequality can be meaningfully compared
across decades.
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in the figures indicate three basic facts. First, spatial inequality within and between in-

dividual neighborhoods was larger in 2010/2014 than in 1980, at every distance abscissa.

Second, the patterns of spatial inequality displayed by the between and within curves of

the 50 largest U.S. cities are similar to those recorded for Chicago. The GINIW index

estimates are high even for small distances and rapidly converge to the citywide level

of inequality. The GINIB index estimates fluctuate around 0.3 and smoothly converge

to zero for substantially large (more than 15 miles) individual neighborhoods. The bold

dark curves in the figure represent a fifth degree polynomial fit of the relation between

the values of GINI within and between indices and the neighborhood size. The shape of

this curve is remarkably consistent with spatial inequality curves identified for each city.

The third and final fact is that there is substantial heterogeneity in the levels of spatial

inequality across the 50 cities. This heterogeneity does not reflect heterogeneity in city-

wide inequality observed across the 50 cities when the neighborhood size is smaller than

10 miles. For individual neighborhoods of larger size, heterogeneity in individual neigh-

borhood inequality turns out to have only an “intercept” dimension, meaning that the

degree of heterogeneity around the common trend is uniform across the distance spectrum

over which GINI indices are calculated, while the distance gradient on spatial inequality

is similar across cities. The intercept dimension of heterogeneity may be explained by dif-

ferences in fundamentals across cities, such as the distribution of skills across local labor

markets (Baum-Snow and Pavan 2013, Moretti 2013), rather than by city-specific char-

acteristics that might have relevant implications for the sorting patterns of low and high

income households. Differences in gradients may represent city specific spatial patterns
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Figure 5: Spatial inequality in major U.S. metro areas (average), 1980, 1990, 2000 and
2010/14

(a) GINIW (b) GINIB

Note: Authors analysis of U.S. census and ACS data. Year-specific polynomial fittings of GINIW and
GINIB across 50 largest U.S. metro areas.

in the distribution of rich and poor households. We associate shrinking heterogeneity of

city-specific spatial inequality patterns around the common trend with convergence in

fundamentals across the cities.

The dynamic of spatial inequality identified for Chicago reflects a general trend of

spatial inequality across major U.S. metro areas. Figure 5 sets out polynomial fits of spa-

tial inequality curves for the 50 largest cities generated by the GINI-within and between

indices for 1980, 1990, 2000 and 2010/2014. Average trends confirm the stylized facts

about spatial inequality: spatial inequality within individual neighborhoods of the aver-

age American metro area is high even in small-scale neighborhoods and has been on the

rise over the last 35 years. The spatial inequality curve generated by the GINI-between

index of the average American metro area converges to zero smoothly. Inequality between

individual neighborhoods increased in 1990 and stagnated afterwards. The results support
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Figure 6: Taxonomy of major U.S. metro areas, census 2000

Note: Authors analysis of 2000 U.S. census data. Spatial inequality at the city level is obtained by
averaging the GINI indices values over the distance spectrum with uniform weighting across distance
levels. The maximum distance is set to 20 miles. Metro areas are grouped according to the GINI indices
levels. High/low GINI values are computed with respect to the a polynomial fitting of GINIW and
GINIB values across 50 largest U.S. metro areas.

the previous findings of Wheeler and La Jeunesse (2008), while employing a completely

different methodology. Wheeler and La Jeunesse (2008) considered two different exoge-

nous spatial partitions of US metropolitan areas and reported high and persistent levels

of spatial inequality within block groups. They also pointed out that the major changes

over 1980-2000 were driven by the between component of inequality. This is reflected in

the pattern of the GINI-between index.

We find slight evidence of correlation between spatial GINI indices across the 50 cities,

suggesting that the two indices probably capture different features of cross sectional spa-

tial inequality. The 50 metro areas can hence be grouped accordingly to the taxonomy
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induced by the level of within and between spatial inequality in year 2000, which serve as

benchmark. Figure 6 displays the arrangement of cities across the four categories. The

10 largest American cities can be categorized in three groups. Detroit, for instance, is a

polarized city, with relatively low inequality within the individual neighborhood and high

inequality between neighborhoods. Los Angeles, New York and Chicago are classified as

unstable cities by our taxonomy based on average trends of spatial inequality. Among the

largest cities, San Francisco and Miami fall into the mixed cities category. None of the 10

largest U.S. cities fits in the even city typology.

Spatial inequality, either within or between individual neighborhoods, displays some

positive association with citywide inequality, although evidence is less conclusive in 2000

and in more recent ACS waves. Furthermore, spatial inequality is not associated with

citywide affluence (captured by the average household income in the city).26 We conclude

that the GINI indices capture separate aspects of inequality that, on the one hand, are

rather stable across larger metropolitan areas in the U.S., but, on the other hand, cannot

be anticipated from the sole knowledge of citywide income distribution features.

4 Income inequality in American neighborhoods and

its long-term consequences

The unequal spatial distribution of incomes across the urban space may affect the long-

term prospects of urban residents in different ways. While the extent of spatial inequality

26See the Online Appendix for an in-depth discussion of these correlations.
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between individual neighborhoods is likely associated with sorting motivations and might

have implication on segregation and quality of life of the residents, spatial inequality within

individual neighborhood seems instead related to those mechanisms explaining how the

place where one has grown up or lives has implications for one’s lifelong achievements.

Here, we are specifically interested in assessing the potential role of the neighborhood on

future outcomes. For this reason, we focus on the within neighborhood aspect of spatial

inequality.

Recent literature has highlighted that inequality at the very local scale seems to play a

key role in two important outcomes: prospects for upward mobility of the children raised

in poor families and life expectancy of poor adults. Chetty et al. (2014) have documented

substantial heterogeneity in income mobility prospects across American commuting zones.

Chetty and Hendren (2016) exploit quasi-experimental approximations to identify and es-

timate the causal effect of the neighborhood people were exposed to in young age on their

income mobility prospects in adulthood. Their identification strategy aims at disentan-

gling the causal effect of neighborhood of residence during childhood from implications

related to sorting of people with different income prospects across commuting zones. To

do so, they focus on people whose parents moved across commuting zones during their

childhood, the timing of the move being an exogenous treatment to the children.27 Chetty

and Hendren (2016) estimates are at the metro level reflect the average consequences of

the neighborhood composition in any given metro area. They find that the upward mobil-

27Chetty and Hendren (2016) use administrative data to measure mobility prospects by the fraction of
the difference in earnings of children living in the commuting zone of destination (relative to the earning
of children who did not move from the commuting zone of departure) that a child would attain by moving
in early age during childhood.
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ity estimate for the most disadvantaged children, a measure of the opportunities faced by

these worse-off children, only weakly correlates with citywide income inequality experi-

enced during childhood. There are, nevertheless, many potential mechanisms pointing to

the fact that the socioeconomic composition of the neighborhood, rather than characteris-

tics of the city as a whole, affects future mobility prospects and might. Some mechanisms

have to do with social interactions among neighbors, others with environmental and in-

stitutional factors (see for instance Leventhal and Brooks-Gunn (2000) and Ch. 12 in

Shonkoff and Phillips (2000)). The extent to which these mechanisms produce effects is

likely related to the consequences of the social composition of the neighborhood, which

we believe can be picked up by income inequality observed on the very small geographic

scale rather than at the citywide level. This suggests a pathway of correlation of spatial

inequality within individual neighborhoods among parents and the geography of causal

estimates of upward mobility prospects of their children. In line with Chetty and Hendren

(2016) identification strategy, we propose using the GINIW index to measure the average

degree of income inequality that children of moving families face in the city of destination.

Figure 7 shows the association between income inequality within individual neighbor-

hoods of small size (less than 2 miles) and the long-term implications of the neighborhood

of residence across major U.S. MSAs. Panel (a) displays empirical correlations between

causal neighborhood effects estimated in Chetty and Hendren (2016) and the values of

GINIW index for the sample of cities included in this study. The GINIW index for gross

household equivalent income in 2000 is used to measure spatial inequality in the city of
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destination at the moment the parents move.28 We find significant evidence that causal

neighborhood effects on upward mobility of treated children are negatively associated with

GINIW computed for neighborhoods of relatively small size.29 The negative relation sug-

gests the existence of a Great Gatsby curve (Corak 2013) at the individual neighborhood

level, with cities where low-income parents experience on average less unequal income

composition in their close neighborhood being also the cities where their children have

larger upward mobility prospects.

It has been suggested in the literature that the implications of the neighborhood of

residence extend to individual health outcomes, such as life expectancy. Chetty, Stepner,

Abraham, Lin, Scuderi, Turner, Bergeron and Cutler (2016) use administrative data on

incomes and mortality rates that are representative for the U.S. population for the period

2001-2014, to recover patterns of life expectancy of high and low income people across

U.S. commuting zones. They found sharp differences in life expectancy between low and

high income individuals, irrespective of gender. While life expectancy does not signifi-

cantly vary across commuting zones for high income individuals, geography is a strong

predictor of longevity for the poor. The authors found positive associations between life

expectancy estimates and differences in healthy lifestyle, education and affluence across

U.S. commuting zones. Based on this evidence, it can be conjectured that low income

28Causal neighborhood effects in Chetty and Hendren (2016) are estimated by the percentage gain
(or loss) in income at age 26 attributed to spending one more additional year during childhood in a
given commuting zone. These estimates refer to children born 1980-88 whose parents moved to another
commuting zone in 1996-2012, i.e., when the children was nine or older. Spatial income inequality in
2000 is used to represent the average composition of a neighborhood at the moment of the move.

29This evidence suggests that neighborhood effects on children of poor families are also negatively
associated with the degree of inequality between parental individual neighborhoods. This correlation
might capture the implications of negative externalities of neighbors’ income on child performance. Poor
parents that move to cities with a high values of the GINIB index are more likely to be located in poor
areas of the city, with negative external effects due to the economic status of the local community.
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people benefit from the presence of more educated and affluent neighbors, who might

serve as role models for a healthy lifestyle and consumption (Manley et al. 2012). Panels

(b) of Figure 7 display correlation between the longevity at age 40 for low income males

(from Chetty, Stepner, Abraham, Lin, Scuderi, Turner, Bergeron and Cutler 2016) and

the GINIW index values in the selected sample of cities. The values of GINIW in year

2000 are used to measure inequality in the neighborhood experienced by the population

for which more reliable longevity estimates are available. We find evidence of a positive

association of spatial inequality within the neighborhood and longevity of poor, long-term

residents.

The correlations visualized in Figure 7 are robust and their sign and significance re-

main after controlling for relevant features of the citywide income distribution. There is

a concern in the U.S. that differences in income inequalities registered within the cities

might mask implications of racial composition and racial segregation in the city. Deaton

and Lubotsky (2003), for instance, highlight that the positive association between city-

wide income inequality and mortality found in the literature is indeed confounded by the

effect of racial segregation. Table 3 shows partial effects of spatial inequality on upward

mobility prospects and life expectancy estimates after controlling for the ethnic compo-

sition of the city and the degree of segregation (measured by the dissimilarity index) of

the white population compared to blacks, latinos and asians. Controlling for ethnic size

and composition in the cities does not affect the sign and the significance of the spatial

inequality effects on upward mobility prospects. The sign and significance of the spa-

tial inequality coefficient on life expectancy regression also survives after controlling for
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Indep. var.: Neighborhood effects Life expectancy of the poor
(1) (2) (3) (4) (5) (6) (7) (8)

GINI within -2.727** -2.709** -2.139** -1.964** 33.567** 33.912** 19.129** 10.989
(0.60) (0.60) (0.67) (0.82) (6.63) (6.35) (6.61) (7.08)

% Black -0.002 -0.005** -0.004 -0.047** -0.000 0.006
(0.00) (0.00) (0.00) (0.02) (0.02) (0.02)

% Hispanic -0.004** -0.005** 0.015 -0.002
(0.00) (0.00) (0.01) (0.01)

% Asian 0.004 0.006* 0.132** 0.135**
(0.00) (0.00) (0.03) (0.03)

Ethnic segregation: dissimilarity of Whites wrt:
- Blacks 0.000 -0.025

(0.00) (0.02)
- Hispanics 0.002 0.074**

(0.00) (0.02)
- Asians -0.005 0.001

(0.00) (0.03)
Constant 1.116** 1.143** 0.971** 0.963** 63.035** 63.550** 68.049** 69.431**

(0.26) (0.26) (0.26) (0.27) (2.84) (2.72) (2.58) (2.39)
R-squared 0.310 0.334 0.468 0.494 0.358 0.424 0.607 0.709
N 48 48 48 48 48 48 48 48

Table 3: Spatial inequality within the neighborhood and lifelong individual outcomes
across U.S. cities.
Note: Authors analysis of U.S. Census data. Dependent variables are defined as in Figure 7. Data on eth-
nic composition within MSA and dissimilarity index values for Whites with respect to Blacks, Hispanics
and Asians are taken from the Diversity and Disparities website hosted by Brown University, Residen-
tial Segregation page (see https://s4.ad.brown.edu/projects/diversity/Data/Download1.htm). Significance
levels: ∗ = 10% and ∗∗ = 5%.

citywide racial composition. There is a loss of statical power when controlling also for

racial segregation, although the magnitude of the coefficient of spatial inequality remains

sizable.

Results in Figure 7 suggest that inequality within the individual neighborhood might

be a relevant policy target if the objective is to improve the income prospects of young

people or the life expectancy of poor residents. However, within neighborhood inequality

is associated with opposite effects on people of different age. For children of poor parents

exposed to neighborhood inequality in young age, less inequality within the neighborhood
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is associated with positive and large upward mobility gains. When the degree of income

inequality within the individual neighborhood is larger than the country average, causal

upward mobility estimates at the metro level tend to be small or even negative. This

association seems to reflect the prevalence of social interaction mechanisms, such as social

contagion or collective socialization among peers. Contagion has positive implications

for the future economic prospects of children exposed to an advantageous context, the

effect being stronger if the local social structure is more cohesive. The average income

inequality within the neighborhood, measured in the place of destination at the moment

when treated children move from one metro area to another, might capture aspects of

neighborhood cohesiveness that are relevant for children born in poor families. In places

characterized by low GINIW values, children of poor parents who decide to move across

commuting zones end up in neighborhoods that are on average more cohesive, hence expect

stronger positive neighborhood effects. The effect attenuates as the expected degree of

inequality within the neighborhood rises.

The implications of spatial inequality for life expectancy prospects of long-term resi-

dents are reversed. Being exposed to a mixed income neighborhood seems to increase, on

average, the life expectancy of low-income residents. The correlation might be a direct

consequence of mechanisms that are directly related to the income mix in the neighbor-

hood (which might arise from a wider range of opportunities and role models present in

the neighborhood) or can be fostered by other institutional mechanisms (such as stigma-

tization of bad behaviors or a more balanced presence within the city of services that

promote healthy behaviors and consumption) that seem to be more effective in heteroge-
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neous communities.

5 Concluding remarks

Spatial inequality at the urban level is studied from the perspective of the individual. In-

formation about the income distribution in the neighborhood surrounding each individual

is exploited to derive new spatial inequality measures connected to the Gini index. Inves-

tigating the patterns of spatial inequality in the 50 largest U.S. cities from 1980 to 2014,

new evidence is established: i) inequality within individual neighborhoods is high also for

individual neighborhoods of small size; ii) inequality between individual neighborhoods

is also high and decreases smoothly with the size of the individual neighborhood; iii) in-

equality between individual neighborhoods has risen over the last four decades reflecting

the trends of the “Great Inversion” (Ehrenhalt 2012); iv) spatial inequality is poorly asso-

ciated with citywide average income and inequality; vi) American cities can be classified

into four distinct groups, on the basis of the values of the within and between GINI in-

dices; v) spatial inequality within individual neighborhoods matters for upward mobility

prospects of young people raised in poor families and for life expectancy of low-income

residents in America’s cities.

Results i)-iii) highlight the increasing importance of income sorting. Despite increasing

citywide inequality registered throughout the US largest metro area in recent decades,

income sorting seems not to have mitigated inequality at the local scale. Decomposing

the changes in inequality by skill and labor attachment type might shed light on the

implications for the neighborhood income distribution of households sorting along those

43



dimensions that are more relevant for explaining differences in inequality across cities

(Baum-Snow and Pavan 2013). Result iv) suggests that the income mix among neighbors

is stronger in cities of larger size, which are all clustered in the “Divided City” typology.

Result v) suggests that the desirability of more spatial inequality within the neighborhood

is conditional on the timing when this inequality is experienced. Despite more income mix

in the neighborhood might be beneficial to low-income, long-term adult residents, it is also

significantly associated with smaller and even negative upward mobility gains experienced

by children raised in disadvantaged families. Along these lines, policies that aim at

improving the chances of success of poor American children should prove more effective

by exploiting income targeting to move poor households with young children into cohesive

and wealthy neighborhoods, rather than promoting income-mixed local communities. This

message, based on cross-metro areas evidence, aligns with findings from randomization

studies such as MTO and provides a basis for their generalization.
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Appendix for online publication

A Standard errors and confidence bounds for spatial

inequality measures

A.1 Setting

Let S denote a random field. The spatial process {Ys : s = 1, . . . , n} with s ∈ S is defined

on the random field and is jointly distributed as FS . Suppose data come equally spaced

on a grid, so that for any two points s, v ∈ S such that ||v − s|| = h we write v = s + h.

The process distributed as FS is said to display intrinsic (second-order) stationarity if

E[Ys] = µ, V ar[Ys] = σ2 and Cov[Ys, Yv] = c(h) when the covariance function is isotropic

and v = s + h. Under these circumstances, let V ar[Ys+h − Ys] = E[(Ys+h − Ys)
2] =

2σ2 − 2c(h) = 2γ(h) denote the variogram of the process at distance lag h.

Noticing that E[Ys+h · Ys] = σ2 − γ(h) + µ2, the covariance between differences in

random variables can be written as Cov[(Ys+h1 − Ys), (Yv+h2 − Yv)] = γ(s − v + h1) +

γ(s− v − h2)− γ(s− v)− γ(s− v + h1 − h2) as in Cressie and Hawkins (1980). Let first

assume that the spatial data occur on a transect. Denote s − v = h where h indicates

that the random variables are located within a distance cutoff of h units. It follows that

Cov[(Ys+h1 − Ys), (Yv+h2 − Yv)] = γ(|h + min{h1, h2}|) + γ(|h−max{h1, h2}|)− γ(|h|)−

γ(|h−|h1−h2||), which yields the formula above when h1 > h2. We adopt the convention

that γ(−h) = γ(h) in what follows.

We now introduce one additional distributional assumption: Ys is gaussian with

mean µ and variance σ2. The random variable (Ys+h − Ys) is also gaussian with vari-

ance 2γ(h), which implies |Ys+h − Ys| is folded-normal distributed (Leone, Nelson and

Nottingham 1961) and its first and second moment depend exclusively on the variogram,

having expectation E[|Ys+h − Ys|] =
√

2/πV ar[Ys+h − Ys] = 2
√
γ(h)/π and variance

V ar[|Ys+h − Ys|] = (1− 2/π)2γ(h).
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A.2 GINI indices and the variogram

Under the assumptions above, the GINI indices of spatial inequality in the population

can be written as explicit functions of the variogram. We maintain the assumption that

the spatial random process is defined on a transect, and occurs at equally spaced lags.

For given d, we can thus partition the distance spectrum [0, d] into Bd intervals of fixed

size d/Bd. Each interval is denoted by the index b with b = 1, . . . , Bd. We also denote

with dbi the set of locations at interval b (and thus distant b · d/Bd) within the range d

from location si. The cardinality of this set is ndbi
≤ ndi

≤ n. Under all the prevous

assumptions, the GINIW index rewrites

GINIW (FS , d) =
∑
i

∑
j∈di

1

2nndi

E[|Ysj
− Ysi

|]
µ

=
∑
i

∑
j∈di

1

2nndi

√
4γ(||sj − si||)/π

µ

=
∑
i

1

n

Bd∑
b=1

ndbi

ndi

∑
j∈dbi

1

2ndbi

√
4γ(si + b− si)/π

µ

=
1

2

Bd∑
b=1

(∑
i

ndbi

nndi

)√
4γ(b)/π

µ
. (1)

The GINIW index is an average of a concave transformation of the (semi)variogram

function, weighted by the average density of observed incomes at given distance cutoff b

on the transect. This average is then normalized by the average income, to produce a

scale-invariant measure of inequality. The index can be also conceptualized as an average

of coefficients of variation, where the standard deviation is replaced by a measure of

dispersion that accounts for the spatial dependence of the underlying process.

Similarly, also the spatial GINIB index can be written as a function of the variogram.

This can be shown under the assumption that the process Ys is gaussian, as above, which

implies that µsid = 1
ndi

(
Ysi

+
∑

j∈di
Ysj

)
is also gaussian under the intrinsic stationarity

assumption, with expectation E[µsid] = µ for any i. From this, it follows that the differ-

ence in random variables |µsid−µs`d| occurring in two locations si and s` is a folded-normal
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distributed random variable with expectation E[|µsid − µs`d|] =
√

2/π V ar[µsid − µs`d].

The variance term can be decomposed as follows:

V ar[µsid − µs`d] = V ar[µsid] + V ar[µs`d]− 2Cov[µsid; µs`d]. (2)

Developing the variance and covariance terms we obtain:

V ar[µsid] = V ar

[
1

ndi

(
Ysi

+
∑
j∈di

Ysj

)]
=

1

n2
di

∑
j∈di∪{i}

∑
k∈di∪{i}

E[Ysj
Ysk

]− µ2

=
1

n2
di

∑
j∈di∪{i}

∑
k∈di∪{i}

c(||sj − sk||) (3)

=

Bd∑
b=1

∑
j∈dbi

1

ndi

Bd∑
b′=1

∑
k∈db′i

1

ndi
c(|si + b− (si + b′)|) (4)

= σ2 −
Bd∑
b=1

Bd∑
b′=1

ndbi
ndb′i

n2
di

γ(b− b′), (5)

where (3) follows from the definition of the covariogram, (4) is a consequence of the

assumption that the process can be represented on a transect and, for simplicity, it is

assumed that the set of location at b = 1 is d1i ∪ {i} with cardinality ndbi
, while (5)

follows from the definition of the variogram. Similarly, the covariance term in (2) can be

manipulated to obtain the following:

Cov[µsid; µs`d] =
∑
j∈di

∑
k∈d`

1

ndi
nd`

E[YjYk]− µ2

= σ2 −
Bd∑
b=1

Bd∑
b′=1

ndbi
ndb′`

ndi
nd`

γ(si − s` + |b− b′|), (6)

where the assumption that the process can be represented on a transect allows to write the

variogram as a function of si − s`. Plugging (5) and (6) into (2), and denoting i− ` = m

to recall that the gap between locations si and s` is m, with m positive integer such that

m ≤ B with B being the maximal distance between any two locations on the transect,
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we obtain

V ar[µsid − µs`d] =

Bd∑
b=1

Bd∑
b′=1

2
ndbi

ndb′`

ndi
nd`

γ(si − s` + |b− b′|)−

−
Bd∑
b=1

Bd∑
b′=1

(
ndbi

ndb′i

n2
di

+
ndb`

ndb′`

n2
d`

)
γ(b− b′)

=

Bd∑
b=1

Bd∑
b′=1

2
ndbi

ndb′ i+m

ndi
ndi+m

γ(m+ |b− b′|)−

−
Bd∑
b=1

Bd∑
b′=1

(
ndbi

ndb′i

n2
di

+
ndb i+m

ndb′ i+m

n2
di+m

)
γ(b− b′)

= V (γ, i,m). (7)

Variogram models suggested in the literatures (for a review, see Cressie 1991) guarantee

that V (γ, i,m) > 0. Using (7), we derive an alternative formulation of the GINIB index:

GINIB(FS , d) =
1

2

∑
i

∑
`6=i

1

n(n− 1)

E[|µsid − µs`d|]
µ

=
1

2

∑
i

1

n

B∑
m=1

∑
`∈nmi

1

(n− 1)

E[|µsid − µs`d|]
µ

=
1

2

B∑
m=1

(∑
i

1
n

nmi

(n−1)

√
2V (γ, i,m)/π

)
µ

. (8)

Under stationarity assumptions we can show that the GINIB index of spatial inequality

can be written as an average of coefficients of variations, each discounted by a weight

controlling for the spatial density of income observations.

Formulations of the GINI within and between indices in (1) and (8) clarify the role of

spatial dependence (as modeled by the variogram function) on the measurement of spatial

inequality. Standard errors and confidence intervals of the GINI indices can be calculated

exploiting the variogram properties.
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A.3 Standard errors for the GINIW index

Confidence interval bounds for the GINIW index are derived under three key assumptions:

1) the underling spatial process is supposed to be stationary; 2) the spatial process occurs

on a transect at equally spaced points; 3) the Gaussian law. This allows to build confidence

intervals for the empirical GINIW index estimator of the form ˆGINIW (y, d)± zαSEW d,

where zα is the standard normal critical value for confidence level 1−α (for instance, 95%)

and SEW d is the standard error of the GINIW estimator. For a given empirical income

distribution, the confidence interval changes as a function of the distance parameter se-

lected. Hence, the confidence interval estimator can be used to derive confidence bounds

for the spatial inequality curve originated from the GINIW index. Null hypothesis of

dominance or equality for the spatial inequality curves can be tested by using confidence

bounds, which define the rejection region (alike to statistical tests for strong forms of

stochastic dominance relations, as in Bishop, Chakraborti and Thistle 1989, Dardanoni

and Forcina 1999).

Asymptotic standard errors (SE in brief) are derived for the weighted GINIW index.

We assume that the random field S is limited to n locations. We denote these locations

for simplicity by i such that i = 1, . . . , n. The spatial process is then a collection of n

random variables {Yi : i = 1, . . . , n} that are spatially correlated. The joint distribution

of the process is F . Each location is associated with a weight wi ≥ 0 with w =
∑

iwi,

which might reflect the underling population density at a given location. These weights

are assumed to be non-stochastic. We also assume intrinsic stationarity as before. The

first implication is that, asymptotically, the random variable µid =
∑

j∈di

wj∑
j∈di

wj
Yj is

equivalent in expectation to µ̃ =
∑

i
wi∑
i wi
Yi, i.e., E[µ̃] = µ. The second implication

is that the spatial correlation exhibited by F is stationary in d and can be represented

through the variogram of F , denoted 2γ(d).

An asymptotically equivalent version of the weighted GINIW index of the process

distributed as F where individual neighborhood have size d is

GINIW (F, d) =
1

2µ

n∑
i=1

∑
j∈di

wiwj
2w

∑
j∈di

wj
|Yi − Yj| =

1

2µ
∆W d. (9)
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The GINIW index can thus be expressed as a ratio of two random variables. Asymptotic

SE for ratios of random variables have been developed in Goodman and Hartley (1958)

and Tin (1965). These SE can be equivalently retrieved from the U-statistics estimators

pioneered in Hoeffding (1948) and adopted to derive asymptotic SE for the Gini coefficient

of inequality under simple and complex random sampling by Xu (2007) and Davidson

(2009). We exploit these results to write the asymptotic variance of the GINIW index in

(9) as:

V ar [GINIW (F, d)] =
1

4nµ2
V ar[∆W d] +

(GINIW (F, d))2

nµ2
V ar[µ̃]−

GINIW (F, d)

nµ2
Cov[∆W d, µ̃] +O(n−2), (10)

where the asymptotic SE is SEW d =
√
V ar [GINIW (F, d)] at any d.

To link the variance and covariance terms in (10) and the variogram, the additional

assumptions reported above are introduced. The first assumption is that the process

distributed as F occurs on a transect, as explained before. We use scalars m, b, b′ and

so on to identify equally spaced points on the transect. Second, we assume that Yi is

Gaussian with expectation µ and variance σ2, ∀i. These assumptions are taken from

Cressie and Hawkins (1980). Under these assumptions, the variance of µ̃ writes

V ar[µ̃] =
∑
i

wi
w

∑
j

wj
w
E[YiYj]− µ2

=
∑
i

wi
w

B∑
m=1

∑
j∈dmi

wj

w

∑
j∈dmi

wj∑
j∈dmi

wj
c(||si − sj||) (11)

=
B∑

m=1

(∑
i

wi
w

∑
j∈dmi

wj

w
c(|m|)

)
(12)

= σ2 −
B∑

m=1

ω(m)γ(m), (13)

where (13) is obtained from (12) by renaming the weight scores so that
∑B

m=1 ω(m) = 1,

and by using the definition of the variogram.
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The second variance component of (10) can be written as follows:

V ar[∆W d] =
n∑
i=1

∑
j∈di

wiwj
w
∑

j∈di
wj

n∑
`=1

∑
k∈d`

w`wk
w
∑

k∈d`
wk
E[|Yi − Yj||Y` − Yk|]

−

(∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj
E[|Yj − Yi|]

)2

.

The first component of V ar[∆W d] cannot be further simplified, as the absolute value oper-

ator enters the expectation term in multiplicative way. Under the Gaussian assumption,

the expectation can be nevertheless simulated, since the random vector (Yj, Yi, Yk, Y`)

is normally distributed with expectations (µ, µ, µ, µ) and its variance-covariance matrix

Cov[(Yj, Yi, Yk, Y`)] is:

Cov[(Yj, Yi, Yk, Y`)] =


σ2 c(||sj − si||) c(||sj − sk||) c(||sj − s`||)

σ2 c(||si − sk||) c(||si − s`||)

σ2 c(||sk − s`||)

σ2

 .

Data occur on a transect at equally spaced points, where sj = si + b and sk = s` + b′

for the positive integers b ≤ Bd and b′ ≤ Bd. We take the convention that b′ > b and

we further assume that there is a positive gap m, with m ≤ B between points si and s`.

Using this notation, we can express the variance-covariance matrix as a function of the

variogram

Cov[(Yj, Yi, Yk, Y`)] =


σ2 σ2 − γ(b) σ2 − γ(m− |b′ − b|) σ2 − γ(m+ min{b′, b})

σ2 σ2 − γ(m−max{b′, b}) σ2 − γ(m)

σ2 σ2 − γ(b′)

σ2

 .

The expectation E[|Yi − Yj||Y` − Yk|] can be simulated from a large number S (say,

S = 10, 000) of independent draws (y1s, y2s, y3s, y4s), with s = 1, . . . , S, from the random

vector (Yj, Yi, Yk, Y`). The simulated expectation is a function of the variogram parameters
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m, b, b′ and d and of σ2. It is denoted θW (m, b, b′, d, σ2) and estimated as follows:

θW (m, b, b′, d, σ2) =
1

S

S∑
s=1

|y2s − y1s| · |y4s − y3s|.

With some algebra, and using the fact that E[|Y` − Yi|] = 2
√
γ(m)/π for locations ` and

i at distance m ≤ B one from each other, it is then possible to write the term V ar[∆W d]

as follows:

V ar[∆W d] =
B∑

m=1

Bd∑
b=1

Bd∑
b′=1

ω(m, b, b′, d)θW (m, b, b′, d, σ2)

−4

(
Bd∑
m

ω(m, d)
√
γ(m)/π

)2

. (14)

In the formula, ω(m, b, b′, d) =
∑

i
wi

w

∑
j∈dbi

wj∑
j∈di

wj

∑
`∈dmi

w`

w

∑
k∈db′`

wk∑
k∈d`

wk
while ω(m, d) =∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
are calculated as before.

The third component of (10) is the covariance term. It can be written as a function of

the variogram. To show this, we take as given that the process is defined on the transect

and i and j are separated by b units of spacing while i and ` are separated by m unit of

spacing, as we rely on the following equivalence:

E[|Yj − Yi|Y`] = E[|YjY` − YiY`|] = E[YjY`]− E[YiY`]− 2E[min{YjY` − YiY`, 0}]

= c(||sj − s`||) + µ2 − c(||si − s`||)− µ2 − 2E[min{YjY` − YiY`, 0}]

= γ(m)− γ(m− b)− 2E[min{YjY` − YiY`, 0}]. (15)

The expectation E[min{YjY` − YiY`, 0}] is non-liner in the underlying random variables.

Under the Gaussian hypothesis it can be nevertheless simulated from a large number

S (say, S = 10, 000) of independent draws (y1s, y2s, y3s), with s = 1, . . . , S, from the

random vector (Yj, Yi, Y`) which is normally distributed with expectations (µ, µ, µ) and

variance-covariance matrix Cov[(Yj, Yi, Y`)]. As the process occurs on the transect, the
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variance-covariance matrix writes

Cov[(Yj, Yi, Y`)] =


σ2 σ2 − γ(b) σ2 − γ(m)

σ2 σ2 − γ(m− b)

σ2


for given m, b and d. The resulting simulated expectation is denoted φW (m, b, d, σ2) and

computed as follows:

φW (m, b, d, σ2) =
1

S

S∑
s=1

min{y2sy3s − y1sy3s, 0}.

Based on this result, the covariance term in (10) is:

Cov[∆W d, µ̃] =
∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj

∑
`

w`
w
E[|Yj − Yi|Y`]

−µ
∑
i

wi
w

∑
j∈di

wj∑
j∈di

wj
E[|Yj − Yi|]

=
B∑

m=1

Bd∑
b=1

ω(m, b, d)
[
γ(m)− γ(m− b)− 2φW (m, b, d, σ2)

]
−2µ

Bd∑
m=1

ω(m, d)
√
γ(m)/π. (16)

The weights in (16) coincide respectively with ω(m, b, d) =
∑

i
wi

w

∑
`∈dmi

w`

w

∑
j∈dbi

wj∑
j∈di

wj

and ω(m, d) =
∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
.

A consistent estimator for the SE, denoted ŜEW d, is obtained by plugging into (10)

the empirical counterparts of the variogram and the lag-dependent weights, using the

formulas in (13), (14) and (16). These estimators are discussed in section A.5.

A.4 Standard errors for the GINIB index

Confidence interval bounds ˆGINIB(y, d) ± zαSEB d for the GINIB index are obtained

under the same assumptions outlined in the previous section. We assume that the spatial

process {Ys : s ∈ S} is limited to n locations. We index these locations for simplicity by
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i such that i = 1, . . . , n. The spatial process is then a collection of n random variables

{Yi : i = 1, . . . , n} which are spatially correlated. The joint distribution of the process is

F . Each location is associated with a weight wi ≥ 0 with w =
∑

iwi. These weights are

assumed to be non-stochastic.

Under stationary assumptions, the neighborhood averages µid =
∑

j∈di

wj∑
j∈di

wj
Yj and

µd =
∑

i
wi

w
µid are equivalent in distribution to µ̃, and hence µ̃ can be used to assess

V ar[µd], as V ar[µd] = V ar[µ̃]. These equivalences apply as well to µd.

An asymptotically equivalent version of the weighted GINI index for inequality be-

tween individual neighborhoods of the process distributed as F where individual neigh-

borhood have size d is:

GINIW (F, d) =
1

2µ

n∑
i=1

n∑
j=1

wiwj
w2
|µid − µjd| =

1

2µ
∆B d. (17)

We use results on variance estimators for ratios to derive the SE of (17) as follows:

V ar [GINIB(F, d)] =
1

4nµ2
V ar[∆B d] +

(GINIB(F, d))2

nµ2
V ar[µ̃]−

−GINIB(F, d)

nµ2
Cov[∆B d, µd] +O(n−2), (18)

where the asymptotic SE is SEB d =
√
V ar [GINIB(F, d)] at any d. The variance and

covariance terms in (18) are shown to be related to the variogram. We show that this

holds for each of the three elements adding up to (18), under two assumptions. Assume

first that the process distributed as F occurs on a transect, as explained before. We use

scalars m, b, b′ and so on to identify equally spaced points on the transect. Second, assume

that Yi is Gaussian with expectation µ and variance σ2, ∀i.

The variance term V ar[µ̃] in (18) is given as in (12).
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The second variance component in (18) can be written as follows:

V ar[∆B d] =
∑
i

∑
j

wiwj
w2

∑
`

∑
k

w`wk
w2

E[|µid − µjd||µ`d − µkd|]

−

(∑
i

wi
w

∑
j

wj
w
E[|µjd − µid|]

)2

. (19)

The first component of V ar[∆B d] cannot be further simplified as the absolute value oper-

ator enters the expectation term in multiplicative way. Under the Gaussian assumption,

the expectation can be nevertheless simulated. This can be done since the random vec-

tor (µjd, µid, µkd, µ`d) is normally distributed with expectations (µ, µ, µ, µ) and variance-

covariance matrix C of size 4 × 4. The cells in the matrix C are indexed accordingly to

vector (µjd, µid, µkd, µ`d), so that element C12, for instance, is used to indicate the covari-

ance between the random variables µjd and µid. The sample occurs on a transect. We

use scalars b and b′ to denote a well defined distance gap between any location indexed

by {j, i, k, `} and any other location that is b or b′ units away from it, within a distance

range d. We use scalars m to indicate the gap between i and `, so that ` = i + m; we

use m′ to indicate the gap between i and j, so that j = i+m′ and we use m′′ to indicate

the gap between k and `, so that ` = k + m′′. Based on this notation, we can construct

a weighted analog of (6) to explicitly write the elements of C as transformations of the
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variogram. This gives:

C11 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω1(b
′, d)γ(b− b′),

C22 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω2(b
′, d)γ(b− b′),

C33 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω3(b, d)ω3(b
′, d)γ(b− b′),

C44 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω4(b, d)ω4(b
′, d)γ(b− b′),

C12 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω2(b
′, d)γ(m′ + |b− b′|),

C13 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω3(b
′, d)γ(m+ |b− b′|),

C14 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω4(b
′, d)γ(m+ |b− b′|),

C23 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω3(b
′, d)γ(m+ |b− b′|),

C24 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω4(b
′, d)γ(m+ |b− b′|),

C34 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω3(b, d)ω4(b
′, d)γ(m′′ + |b− b′|),

where we denote, for instance, ω1(b, d) =
∑

j
wj

w

∑
j′∈db j

wj′∑
j′∈dj

wj′
and similarly for the

other elements.

The expectation E[|µjd−µid||µkd−µ`d|] can be simulated from a large number S (say,

S = 10, 000) of independent draws (ȳ1s, ȳ2s, ȳ3s, ȳ4s), with s = 1, . . . , S, of the random

vector (µjd, µid, µkd, µ`d). The simulated expectation will be a function of the variogram

parameters m, m′, m′′ and d and of σ2. It is denoted θB(m,m′,m′′, d, σ2) and estimated
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as follows:

θB(m,m′,m′′, d, σ2) =
1

S

S∑
s=1

|ȳ2s − ȳ1s| · |ȳ4s − ȳ3s|.

The summations in V ar[∆B d] run over four indices i, j, k, `. These can be equivalently

represented through summations at given distance lags m,m′,m′′. For instance, we write∑
i
wi

w

∑
j
wj

w
=
∑B

m′=1

∑
i
wi

w

∑
j∈dm′i

wj

w
to indicate that i and j are separated by a lag

of m′ units on the transect. Repeating this for each of the three pairs of indices i, j and

`, k and i, ` we end up with three summations over m′, m′′ and m respectively, where the

aggregate weight is denoted

ω(m,m′,m′′, d) =
∑
i

wi
w

∑
j∈dm′i

wj
w
·
∑
`

w`
w

∑
k∈dm′′`

wk
w
·
∑
i

wi
w

∑
`∈dmi

w`
w
.

The first term of V ar[∆B d],
∑

i

∑
j
wiwj

w2

∑
`

∑
k
w`wk

w2 E[|µid − µjd||µ`d − µkd|], can be writ-

ten as follows:

B∑
m=1

B∑
m′=1

B∑
m′′=1

ω(m,m′,m′′, d)θB(m,m′,m′′, d, σ2). (20)

The second term of V ar[∆B d], we make use of the gaussian assumption and the variogram

properties to express the square of the expectation as a weighted analog of (8), that is

V ar[∆B d] = E

[∑
i

∑
j

wiwj
w2
|µid − µjd|

]2

=

(∑
i

∑
j

wiwj
w2

E[|µid − µjd|]

)2

=

(∑
i

∑
j

wiwj
w2

√
V ar[|µid − µjd|]

√
2

π

)2

=
2

π

(∑
i

wi
w

B∑
m′=1

∑
j∈dmi

wj

w

∑
j∈dmi

wj∑
j∈dmi

wj

√
V ar[|µid − µjd|]

)2

=
2

π

(
B∑

m′=1

∑
i

∑
j∈dmi

ωij(m, d)
√
V ar[|µid − µjd|]

)2

(21)
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where

V ar[|µid − µjd|] =

Bd∑
b=1

Bd∑
b′=1

2ωij(b, b
′, d)γ(m− |b− b′|)− (ωi(b, b

′, d) + ωj(b, b
′, d))γ(b− b′).

Both weighting schemes in (20) and in (21) cannot be easily estimated in reasonable

computation time: they involve multiple loops across the observed locations, so that the

length of estimation increases exponentially with the density of the spatial structure. In

section A.5 we discuss estimators of the weights ωij(m,m
′,m′′, d), ωij(m, d), ωij(b, b

′, d),

ωi(b, b
′, d) and ωj(b, b

′, d) that are feasible, and provide the empirical estimator of the

variance V ar[∆B d].

The third component of (18) is the covariance term Cov[∆B d, µd]. The indices i, j, `

identify three locations and the average income in a neighborhood of size d in each of the

three location is represented by the vector (µid, µjd, µ`d). Under normality and stationarity

assumptions, we can write the covariance term as follows

Cov[∆B d, µd] = Cov[
∑
i

∑
j

wiwj
w2
|µid − µjd|,

∑
`

w`
w
µ`d]

=
∑
`

w`
w
Cov[

∑
i

∑
j

wiwj
w2
|µid − µjd|, µ`d]

=
∑
`

w`
w

∑
i

∑
j

wiwj
w2

E[|µid − µjd|µ`d]−

−
∑
`

w`
w
E[µ`d]

∑
i

∑
j

wiwj
w2

E[|µid − µjd|]

=
∑
`

w`
w

∑
i

∑
j

wiwj
w2

E[|µid − µjd|µ`d]−

−
√

2

π
µ
∑
i

∑
j

wiwj
w2

√
V ar[µid − µjd]. (22)

The first term of (22) is the expectation of a non-linear function of convex combinations of

normally distributed random variables. Under the Gaussian hypothesis, the expectation

E[|µid−µjd|µ`d] can be nevertheless simulated from a large number S (say, S = 10, 000) of

independent draws (ȳ1s, ȳ2s, ȳ3s) with s = 1, . . . , S from the random vector (µid, µjd, µ`d)

which is normally distributed with expectations (µ, µ, µ) and variance-covariance matrix
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C of size 3×3. Let use scalars b and b′ to denote a well defined distance gap between any

observation indexed by {i, j, `} and any other observation that is b or b′ units away from

it, within a distance boundary d. We use scalars m′ to indicate the gap between i and j,

so that j = i + m′; we use m′′ to indicate the gap between i and `, so that ` = i + m′′.

Based on this notation, we obtain a convenient formulation for the covariances of mean

neighborhood incomes that are weighted analog of (6), thus giving:

C11 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω1(b
′, d)γ(b− b′),

C22 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(b, d)ω2(b
′, d)γ(b− b′),

C33 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω3(b, d)ω3(b
′, d)γ(b− b′),

C12 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(m
′ + b, d)ω2(b

′, d)γ(m′ + |b− b′|),

C13 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω1(b, d)ω3(m
′′ + b′, d)γ(m′′ + |b− b′|),

C23 = σ2 −
Bd∑
b=1

Bd∑
b′=1

ω2(m
′ + b, d)ω3(m

′′ + b′, d)γ(|m′ −m′′|+ |b− b′|),

where we denote, for instance, ω1(b, d) =
∑

i
wi

w

∑
i′∈db i

wi′∑
i′∈di

wi′
and similarly for the other

elements. See previous notation for further details. The expectation E[|µjd − µid|µ`d] is

simulated from a number S of independent draws (ȳ1s, ȳ2s, ȳ3s) with s = 1, . . . , S of

the random vector (µjd, µid, µ`d). The simulated expectation will be a function of the

variogram parameters m′, m′′ and d and of σ2. It is denoted φB(m,m′,m′′, d, σ2) and

estimated as follows:

φB(m′,m′′, d, σ2) =
1

S

S∑
s=1

|ȳ2s − ȳ1s|ȳ3s.

This element is constant over m′ and m′′. Hence, we use φB(m′,m′′, d, σ2) as a simulated
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analog for E[|µid−µjd|µ`d], so that the covariance term
∑

`
w`

w

∑
i

∑
j
wiwj

w2 E[|µid − µjd|µ`d]

writes
∑

`
w`

w

∑
i

∑
j
wiwj

w2 φB(m′,m′′, d, σ2), or equivalently

∑
i

wi
w

B∑
m′=1

∑
j∈dm′i

wj

w

B∑
m′′=1

∑
`∈dm′′i

w`

w
φB(m′,m′′, d, σ2),

which is denoted
∑B

m′=1

∑B
m′′=1 ω(m′,m′′, d)φB(m′,m′′, d, σ2).

The second term of (22) is calculated as in (21). Overall, we are now allowed to write

the covariance term as follows:

Cov[∆B d, µd] =
B∑

m′=1

B∑
m′′=1

ω(m′,m′′, d)φB(m′,m′′, d, σ2)

−
√

2

π
µ

B∑
m′=1

∑
i

∑
j∈dmi

ωij(m, d)
√
V ar[|µid − µjd|], (23)

where

V ar[|µid − µjd|] =

Bd∑
b=1

Bd∑
b′=1

2ωij(b, b
′, d)γ(m− |b− b′|)− (ωi(b, b

′, d) + ωj(b, b
′, d))γ(b− b′)

The weights have been already defined in (21). Plugging (13), (20), (21) and (23) into

(18) we derive an estimator for the GINIB index SE. The last section discuss feasible

estimators.

A.5 Implementation

Consider a sample of size n of income realizations yi with i = 1, . . . , n. The income

vector y = (y1, . . . , yn) is a draw from the spatial random process {Ys : s ∈ S}, while for

each location s ∈ S we assume to observe, at most, one income realization. Information

about location of an observation i in the geographic space S under analysis is denoted

by si ∈ S, so that a location s identifies a precise point on a map. Information about

latitude and longitude coordinates of si are given. In this way, distance measures between

locations can be easily constructed. In applications involving geographic representations,
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the latitude and longitude coordinates of any pair of incomes yi, yj can be combined to

obtain the geodesic distance among the locations of i and of j. Furthermore, observed

incomes are associated with weights wi ≥ 0 and are indexed according to the sample units,

with w =
∑

iwi. It is often the case that the sample weights give the inverse probability

of selection of an observation from the population.

The mean income within an individual neighborhood of range d, µid, is estimated by

µ̂id =
∑n

j=1 ŵjyj where

ŵj :=
wj · 1(||si − sj|| ≤ d)∑
j wj · 1(||si − sj|| ≤ d)

so that
∑

j ŵj = 1, and 1(.) is the indicator function. The estimator of the average

neighborhood mean income is instead µ̂d =
∑n

i=1
wi

w
µ̂id. The estimator of the GINIB

index of spatial inequality, denoted ˆGINIB(y, d), is the Gini inequality index of the

vector of estimated average incomes (µ̂1d, . . . , µ̂nd), indexed by the size d of the individual

neighborhood. It can be computed by mean of the plug-in estimators as in Binder and

Kovacevic (1995) and Bhattacharya (2007). The estimator of the GINIW index of spatial

inequality, denoted ˆGINIW (y, d), is the sample weighted average of the mean absolute

deviation of the income realization in location s from the income realization in location

s′, with ||s− s′|| ≤ d. Formally

ˆGINIW (y, d) =
n∑
i=1

wi
w

1

2µ̂id

n∑
j=1

ŵj |yi − yj|,

where ŵj is defined as above.

The estimation of the GINI indices is conditional on d, which is a parameter under

control of the researcher. The distance d is conventionally reported in miles and is meant

to capture a continuous measure of the extent of an individual neighborhood. In practice,

however, one cannot produce estimates of spatial inequality for a continuum of neighbor-

hoods, and so in applications the neighborhood size is parametrized by the product of the

number and size of lags between observations. The GINI indices are estimated for a finite

number of lags and for a given size of the lags. The maximum number of lags indicates the

point at which distance between observations is large enough that the spatial GINI indices
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converge to their respective asymptotic values. For a given neighborhood of size d, we

can then partition the distance interval [0, d], defining the size of a neighborhood, into K

intervals d0, d1, . . . , dK of equal size, with d0 = 0. We always use dk to denote the distance

between any pair of observations i and j located at distance dk−1 < ||si−sj|| ≤ dk one from

the other. The pairs (dk, ˆGINIB(y, dk)) and (dk, ˆGINIW (y, dk)) for any k = 1, . . . , K

can be hence plotted on a graph. The curves resulting by linearly interpolating these

points are the empirical equivalent of the GINI spatial inequality curves.

A plug-in estimator for the asymptotic standard error of the GINI indices can be

derived under the assumptions listed in the previous sections. The SE estimator crucially

depend on four components: (i) the consistent estimator for the average µ̃, denoted µ̂,

which coincides with the sample average; (ii) the consistent estimator for variance σ2,

denoted σ̂2, which is given by the sample variance; (iii) the consistent estimator for the

variogram; (iv) the estimator of the weighting schemes.

Empirical estimators µ̂ and σ̂2 are standard. The robust non-parametric estimator

of the variogram proposed by Cressie and Hawkins (1980) can be used to assess the

pattern of spatial dependency from spatial data on income realizations. The empirical

variogram is defined for given spatial lags, meaning that it produces a measure of spatial

dependence among observations that are located at a given distance lag one from the

others. Under the assumption that data occur on the transect at equally spaced points,

we use b = 1, . . . , B to partition the empirical spectrum of distances between observed

locations into equally spaced lags, and we estimate the variogram on each of these lags.

This means that 2γ(b) refers to the correlation between incomes placed at distance lags of

exactly b distance units. It is understood that the size of the sample is large compared to

B, in the sense that the sampling rate per unit area remains constant when the partition

into lags becomes finer. This assumption allows to estimate a non-parametric version

of the variogram at every distance lag. Following Cressie (1985), we use weighted least

squares to fit a theoretical variogram model to the empirical variogram estimates. The

theoretical model consists in a continuous parametric function mapping distance into the

corresponding variogram level. In our empirical analysis of spatial inequality in the 50
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largest U.S. metro areas, we choose the spherical variogram model for γ (see Cressie 1985).

We also assume that γ(0) → 0 and that γ(a) = σ2, where a is the so-called range level:

beyond distance a, the random variables Ys+h and Ys with h > a are spatially uncorrelated.

Under the assumption that data occur on a transect, we set the max number of lags B

so that B = 2a. Parameters of the variogram are estimated by fitting via weighted least

squares a parametric variogram model to the non-parametric variogram sample estimates

at pre-determined distance cutoffs. The estimated parameters are then used to draw

predictions for the estimator 2γ̂ of the variogram at each distance cutoff. The predictions

are then plugged into the GINI indices SE estimators. Cressie (1985) has shown that

this methodology leads to consistent estimates of the true variogram function under the

stationarity assumptions mentioned above.

Finally, SE estimation requires to produce reliable estimators of the weights ω. These

can be non-parametrically identified from the formulas provided above. In some cases,

however, computation of the exact weights requires looping several times across obser-

vations. The overall computation time thus increases exponentially in the number of

observations and the procedure becomes quickly unfeasible. We propose alternative, fea-

sible estimator for these weights, denoted ω̂, that are expressed as linear averages. The

computational time is, nevertheless, quadratic in the number of observations as it requires

at least one loop across all observations.

We consider here only the weights that appear in the estimators ŜEW d in (10) and

ŜEB d in (18) that cannot be directly inferred (i.e., are computationally unfeasible) from

observed weights. For a given observation i, define w(b, i) =
∑

j∈dbi
wj for any gap b =

1, . . . , Bd, . . . , B the weight associated with income realizations that are exactly located

b lags away from i. Then, denote w(d, i) =
∑

j∈di
wj =

∑Bd

b=1w(b, i). We construct the

following estimators for the weights appeasing in the GINIW SE estimator:

For (14) : ω̂(m, b, b′, d) =
∑
i

wi
w

w(b, i)

w(d, i)

w(m, i)

w

w(m+ b′, i)

w(m+ d, i)
,

For (16) : ω̂(m, b′, d) =
∑
i

wi
w

w(m, i)

w

w(b′, i)

w(d, i)
,
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To compute these weights, one has to loop over all observations twice, and assign to

each observation i the total weight w(b, i) of those observations j 6= i that are located

exactly at distance b from i. Then, ω̂(m, b, b′, d) and ω̂(m, b′, d) are obtained by averaging

these weights across i’s. The key feature of these estimators is that second-order loops

across observations occurring at distance b′ from an observation at distance m from i

are estimated by averaging across all observations i the relative weight of observations at

distance m+ b′ from i.

For the computation of the GINIB index, one needs to construct the relative weights

by taking as a reference the maximum distance achievable, and not the reference abscissa

d for which the index is calculated. We hence assume that beyond the threshold d,

indicating half of the the maximum distance achievable in the sample, spatial correlation

is negligible and weights can thus be set to zero. We implicitly maintain that d ≤ d. We

then propose the following estimators:

For (20) : ω̂(m,m′,m′′, d) =
∑
i

wi
w

w(m′, i)

w(d, i)

w(m, i)

w(d, i)

w(m+m′′, i)

w(m+ d, i)

For (21) : ω̂ij(b, b
′, d) =

w(b, i)

w(d, i)

w(m+ b′, i)

w(m+ d, i)

For (21) : ω̂i(b, b
′, d) =

w(b, i)

w(d, i)

w(b′, i)

w(d, i)

For (21) : ω̂j(b, b
′, d) =

w(m+ b, i)

w(m+ d, i)

w(m+ b′, i)

w(m+ d, i)

For (21) :
∑
i

∑
j∈dmi

ω̂ij(m, d) =
∑
i

wi
w

w(m, i)

w

By plugging these estimators into (19) we obtain the implementable estimator of the

variance component V ar[∆B d], defined as follows:

V̂ ar[∆B d] =
B∑

m=1

B∑
m′

B∑
m′′=1

ω̂(m,m′,m′′, d)θB(m,m′,m′′, d, σ̂2)−

− 2

π

(
B∑

m′=1

∑
i

wi
w

w(m, i)

w

√
V̂ ar[|µid − µjd|]

)2

(24)
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where

V̂ ar[|µid − µjd|] =

Bd∑
b=1

Bd∑
b′=1

2ω̂ij(b, b
′, d)γ̂(m− |b− b′|)− (ω̂i(b, b

′, d) + ω̂j(b, b
′, d))γ̂(b− b′).

An equivalent procedure, based on analogous weighting scheme, has to be replicated

to determine the empirical estimator for (23).
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B Additional results

B.1 Inference results for spatial inequality curves, Chicago (IL)

Figure 8 shows that the gap in GINIW indices is small over time and never significant,

not even at 10% confidence level. Essentially, there is no statistical support to conclude

that the GINI curves for within spatial inequality have changed across time, a result

which holds irrespectively of the extent of individual neighborhood. We draw a different

conclusion for what concerns changes associated to the spatial inequality curves generated

by GINIB. Pairwise differences across these curves, along with their confidence intervals,

are reported in Figure 9. The differences in inequality curves compared to the spatial

inequality curve of the year 1980 (panels (a), (b) and (c) of the figure) are generally

positive and significant at 5% confidence level. This indicates that spatial inequality

between individual neighborhoods has increased compared to the initial period, roughly

homogenously with respect to the individual neighborhood spatial extension. After that

period, data display very little statistical support to changes in inequality across the 1990’

and 2000’. Spatial between inequality has slightly increased after 1990 (panels (d) and

(e)), while it has remained stable after 2000 (panel (f)). In the latter case, the confidence

bounds of the difference in spatial inequality curves of years 2010/2014 and 2000 fluctuates

around the horizontal axis.

Estimates of the GINI standard errors allow to study the pattern of the spatial in-

equality curves. More specifically, differences in GINIW (d) or GINIB(d) indices are first

computed at various abscissae d. Then, the standard errors of these differences are de-

rived, and finally it is checked if these differences are significantly different than zero.

If they are, we study how spatial inequality evolves with the size of the neighborhood.

In particular, the sign of these differences predicts the direction of the change in spatial

inequality. We refer to five distance thresholds referring to neighborhoods that are very

small (100 meters, 300 meters), relatively large (1km, 5km), and very inclusive neighbor-

hoods (10km, 25km), which include most of the urban space under analysis. The resulting

differences are reported in Table 4. The dip in the spatial inequality curve associated with
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Index Year Differences across distances
300m vs 1km vs 5km vs 25km vs 10km vs 25km vs 25km vs

100m 100m 100m 100m 2km 2km 10km
GINIW 1980 -0.004 -0.012 -0.006 0.015 0.013 0.025 0.012

(0.019) (0.020) (0.020) (0.021) (0.021) (0.023) (0.023)
1990 -0.006 -0.019 0.003 0.037* 0.036 0.051** 0.015

(0.022) (0.022) (0.021) (0.021) (0.022) (0.023) (0.021)
2000 -0.004 -0.016 -0.002 0.035* 0.034 0.050** 0.016

(0.017) (0.017) (0.020) (0.021) (0.021) (0.022) (0.024)
2010 -0.000 -0.004 0.001 0.033 0.019 0.036 0.017

(0.017) (0.018) (0.019) (0.021) (0.021) (0.023) (0.024)
GINIB 1980 -0.020** -0.087** -0.151** -0.239** -0.061** -0.120** -0.059**

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.003)
1990 -0.012** -0.084** -0.171** -0.280** -0.097** -0.160** -0.064**

(0.004) (0.003) (0.004) (0.004) (0.003) (0.003) (0.004)
2000 -0.009** -0.060** -0.130** -0.237** -0.095** -0.152** -0.057**

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
2010 -0.019** -0.083** -0.160** -0.261** -0.084** -0.141** -0.058**

(0.002) (0.002) (0.003) (0.003) (0.003) (0.002) (0.003)

Table 4: Patterns of GINI indices across distance levels
Note: Authors analysis of U.S. Census data. Each column report differences in GINI indices at various
distance thresholds. SE of the distance estimate are reported in brackets. Significance levels: ∗ = 10%
and ∗∗ = 5%.

the GINIW is not statistically significant, since most of the changes in spatial inequality

in very large neighborhoods is substantially equivalent to the spatial inequality observed

for very small neighborhoods (between 100 to 300 meters of size). For 1990 and 2000,

we find a statistically significant increase in inequality when average size neighborhoods

(1km of radius) are compared with very large concepts of neighborhoods. Overall, the

GINIW index pattern is substantially flat when the distance increases beyond 5km. The

pattern registered for the GINIB index is much more clear-cut: generally, the spatial in-

equality curve constructed from the index is decreasing in distance (differences in GINIB

are always negative), and the patterns of changes are also significant at 5%, indicating

strong reliability on the pattern of heterogeneity in average income distribution across

neighborhoods.
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Figure 8: Differences in GINIW estimates over four decades, Chicago (IL)

(a) GINIW 1990 - GINIW 1980 (b) GINIW 2000 - GINIW 1980

(c) GINIW 2014 - GINIW 1980 (d) GINIW 2000 - GINIW 1990

(e) GINIW 2014 - GINIW 1990 (f) GINIW 2014 - GINIW 2000

Note: Authors analysis of U.S. decennial Census data and 2010/14 CS data. The income concept is
equivalent gross annual household income. Confidence bounds at 95% are based on standard error
estimators discussed in the appendix A.
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Figure 9: Differences in GINIB estimates over four decades, Chicago (IL)

(a) GINIB 1990 - GINIB 1980 (b) GINIB 2000 - GINIB 1980

(c) GINIB 2014 - GINIB 1980 (d) GINIB 2000 - GINIB 1990

(e) GINIB 2014 - GINIB 1990 (f) GINIB 2014 - GINIB 2000

Note: Authors analysis of U.S. decennial Census data and 2010/14 CS data. The income concept is
equivalent gross annual household income. Confidence bounds at 95% are based on standard error
estimators discussed in the appendix A.
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Figure 10: Spatial inequality, income inequality and average incomes across U.S. cities.

(a) Within and between GINI, 1980 (b) Within and between GINI, 2010/14

(c) Spatial and citywide inequality (d) Spatial inequality and citywide income

Note: Authors analysis of U.S. Census and ACS data for 50 largest U.S. cities in 2014. Spatial inequality
computed at a distance range of two kilometers. Citywide income inequality and average incomes are
based on block-group level household equivalent gross income estimates. Average income is normalized to
have zero average and unit standard deviation over the weighted selected sample of 50 cities. Gray lines
correspond to sample weighted averages of within and between GINI indices. Vertical spikes identify the
95% confidence bounds of regression predictions.
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B.2 Spatial inequality in the largest U.S. metro areas

Figure 3 and Figure 4 report patterns of spatial inequality measured by GINI within and

between indices for the 50 largest U.S. metro area (as of 2014). At any given distance

abscissa, the graphs display substantial heterogeneity in measured spatial inequality across

the metro areas. We correlate variability observed at a given distance threshold of two

kilometers with characteristics of the city. We find that the GINI within and between

indices capture dimensions of inequality that are not necessarily interconnected. Although

both indices should converge to precise values when the neighborhood size is very small

or very large, the in-between patterns capture different aspects of the joint distribution

of incomes and locations. In panel (a) an (b) of Figure 10 we display the joint pattern

of the two indices computed for the spatial distributions of incomes in the 50 largest

U.S. cities. In this way, we capture substantial heterogeneity both in the geography and

the inequality of urban income distributions. We compute both indices for individual

neighborhoods of size 1km using 1980 Census data and 2010/14 ACS data. As the figure

shows, the two dimensions of spatial inequality seem slightly positively correlated in 1980,

although there is little statistical support for this claim. The 2010/14 ACS data do not

reveal significance correlations of within and between GINI indices.

Figure 10.(c) displays the empirical relation between citywide inequality (measured

by the Gini index) and spatial inequality. The degree of association is visualized by the

slopes of the regression lines. We examine both within and between spatial inequality

for the Census year 1980 and for ACS 2010/14 data, for an individual neighborhood

of size two kilometers. As expected, the citywide Gini index and the GINI indices are

positively correlated. Heterogeneity in GINIB around the regression lines is, however,

substantially larger than heterogeneity in GINIW , thus indicating less reliability in these

latter correlations. In both cases, the degree of association between spatial and citywide

inequality is slightly decreasing over time. Figure 10.(d) shows the association among

GINI indices and city affluence (measured by the normalized average equivalent income

in each city). Results are less clear-cut and we do not detect a remarkable association

between city affluence and GINI spatial inequality, both in the within and the between
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form. This is somehow expected, as the GINI indices capture relative notions of inequality

(thus improving comparability across cities that differ in affluence).
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C Statistics for selected U.S. cities

City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

New York (NY) 1980 6319 1318 1.572 12289 4601 19034 0.474 11.247
1990 6774 1664 2.058 22763 7799 35924 0.507 13.013
2000 6618 1537 1.604 41061 12196 66542 0.549 25.913

2010/14 7182 1140 1.566 56558 19749 92656 0.502 17.323

Los Angeles (CA) 1980 5059 1052 1.615 14697 6167 22248 0.441 10.735
1990 5905 1585 2.012 26434 10509 41048 0.475 12.391
2000 6103 1158 1.690 38844 13720 59767 0.509 19.256

2010/14 6385 1107 1.649 55224 19056 90324 0.505 13.628

Chicago (IL) 1980 3756 1122 1.630 13794 5798 20602 0.434 11.351
1990 4444 1217 2.029 21859 9132 32316 0.461 11.903
2000 4691 1173 1.625 41193 16076 61667 0.473 11.533

2010/14 4763 1060 1.575 55710 20022 89856 0.486 13.452

Houston (TX) 1980 1238 1253 1.624 15419 6900 22718 0.428 10.233
1990 2531 1291 1.994 22827 10203 33287 0.462 11.771
2000 2318 1418 1.667 39231 16619 57539 0.472 10.736

2010/14 2781 2148 1.644 55841 22156 88033 0.484 12.394

Philadelphia (PA) 1980 3978 855 1.650 12651 5589 18557 0.410 10.245
1990 3300 1384 2.001 21816 9601 31606 0.442 11.788
2000 4212 982 1.602 38995 15788 57841 0.454 10.972

2010/14 3819 1124 1.566 56205 21567 89602 0.465 13.174

Phoenix (AZ) 1980 697 1155 1.609 12854 5920 18741 0.401 8.972
1990 1857 961 1.970 21233 9831 30732 0.439 9.803
2000 1984 1222 1.622 37860 17098 54998 0.437 8.541

2010/14 2494 1110 1.590 48194 20218 73509 0.456 10.906

San Antonio (TX) 1980 597 891 1.686 10501 4364 15399 0.451 10.206
1990 1101 890 1.983 17350 7569 25243 0.455 9.903
2000 1065 1189 1.651 31592 13726 45517 0.454 16.081

2010/14 1220 1307 1.623 44773 19048 68074 0.454 11.225

San Diego (CA) 1980 908 1471 1.577 12759 5628 18338 0.412 8.893
1990 1628 1473 1.961 24194 11007 35191 0.434 11.239
2000 1678 1172 1.637 39537 16698 57219 0.451 9.644

2010/14 1789 1546 1.615 55564 21947 88783 0.452 11.978

Table 6: Income and population distribution across block groups, U.S. 50 largest cities

78



Continued
City Year # Blocks Hh/block Eq. scale Equivalent household income
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Dallas (TX) 1980 1141 931 1.620 14614 6759 21494 0.425 9.522
1990 2310 965 1.993 24074 11287 35141 0.454 11.691
2000 2189 1251 1.633 43913 19306 65158 0.464 10.093

2010/14 2696 1251 1.625 54729 23689 84291 0.460 11.163

San Jose (CA) 1980 571 1417 1.633 16762 8441 24258 0.365 7.215
1990 1016 1400 1.954 32120 15598 47103 0.405 8.339
2000 965 1169 1.689 59428 24663 91637 0.433 9.465

2010/14 1071 1427 1.664 82154 30785 137435 0.455 14.295

Austin (TX) 1980 296 1084 1.517 11407 4867 17064 0.440 9.902
1990 718 1345 2.019 18968 8497 27339 0.461 10.522
2000 644 1416 1.569 38993 17418 55766 0.442 9.455

2010/14 899 1662 1.576 55093 23478 85981 0.443 11.403

Jacksonville (FL) 1980 434 1000 1.622 10868 4602 15546 0.428 9.415
1990 628 1509 1.973 19217 8365 27219 0.435 9.512
2000 505 2358 1.590 34398 14528 49341 0.434 8.629

2010/14 688 1757 1.550 46517 18370 71941 0.450 10.883

San Francisco (CA) 1980 1083 1166 1.514 16322 6927 24339 0.424 9.864
1990 1226 1477 2.040 28783 11624 44191 0.467 13.379
2000 1105 1316 1.549 60967 20961 97430 0.494 13.179

2010/14 1210 1328 1.525 85755 28440 145763 0.482 16.858

Indianapolis (IN) 1980 730 1073 1.617 12550 5958 18183 0.388 9.032
1990 1029 1395 1.985 20996 9806 29406 0.425 9.515
2000 944 1395 1.573 37021 16392 52896 0.423 8.317

2010/14 1030 1639 1.568 47262 19870 71036 0.450 10.624

Columbus (OH) 1980 758 1105 1.593 12427 5984 17840 0.394 8.874
1990 1281 1128 1.988 19865 9262 28819 0.427 9.649
2000 1140 986 1.553 35926 16152 51815 0.431 8.848

2010/14 1269 1293 1.560 48270 21115 72778 0.439 11.633

Fort Worth (TX) 1980 640 650 1.615 12873 5870 18794 0.409 9.169
1990 1203 956 1.972 21517 10428 30620 0.424 9.835
2000 1101 1147 1.638 37074 17140 52607 0.429 8.719

2010/14 1326 1294 1.625 50540 21830 75565 0.449 10.553

Charlotte (NC) 1980 346 1169 1.614 11411 5203 16277 0.400 8.864
1990 930 1032 1.959 20366 8961 29519 0.424 9.445
2000 856 1195 1.583 39683 16640 59188 0.451 9.145

2010/14 1172 1299 1.579 47697 19231 74717 0.452 11.757

Detroit (MI) 1980 2184 764 1.638 12853 5587 19246 0.415 10.783
1990 4531 974 1.990 22673 10194 33441 0.445 12.181
2000 3954 963 1.603 40742 17362 59654 0.439 9.817

2010/14 3798 986 1.560 46492 18592 71604 0.456 11.856

El Paso (TX) 1980 218 897 1.759 8525 3572 12373 0.443 9.182
1990 425 1042 1.969 15009 6372 21601 0.456 8.963
2000 418 960 1.750 23862 9095 33972 0.476 16.668

2010/14 511 1142 1.694 33277 13049 51000 0.462 11.060
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Seattle (WA) 1980 1405 885 1.540 14437 6481 21204 0.398 8.514
1990 2255 1004 1.984 22563 10601 31905 0.416 10.514
2000 2473 855 1.568 42386 18650 60276 0.427 8.448

2010/14 2475 1087 1.555 59626 24442 92751 0.438 10.314

Denver (CO) 1980 1054 899 1.575 14283 6866 20352 0.396 8.081
1990 1694 983 2.005 22072 10791 31410 0.432 11.069
2000 1711 1038 1.578 43300 20142 62101 0.425 8.100

2010/14 1908 1230 1.561 58203 24081 90216 0.450 10.751

Washington (DC) 1980 1580 1608 1.619 18273 9281 26315 0.390 8.361
1990 2540 2193 1.968 32091 16818 45700 0.404 7.758
2000 2642 1409 1.603 53263 24898 78715 0.425 8.968

2010/14 3335 1360 1.600 80366 35929 124973 0.420 10.665

Memphis (TN) 1980 478 1021 1.639 11370 4852 16693 0.457 10.804
1990 920 903 1.997 17888 8072 26052 0.471 10.945
2000 783 1153 1.605 33086 13753 47853 0.471 18.640

2010/14 764 1380 1.573 42700 17702 65757 0.465 11.492

Boston (MA) 1980 3662 809 1.622 12696 5417 18790 0.406 10.048
1990 4497 1032 1.997 24633 10314 37112 0.436 12.226
2000 3963 961 1.584 43840 16776 66109 0.458 11.004

2010/14 4082 1058 1.566 64422 23196 105048 0.470 13.712

Nashville (TN) 1980 375 1043 1.605 12416 5382 18373 0.442 10.358
1990 755 1260 1.979 19811 8712 28653 0.442 9.710
2000 723 1374 1.555 36360 15118 52565 0.448 9.000

2010/14 911 1535 1.568 49714 20024 76735 0.452 10.444

Baltimore (MD) 1980 1517 900 1.641 12751 5932 18442 0.400 10.075
1990 1965 1269 1.972 23987 11302 34591 0.426 11.780
2000 1780 1204 1.588 38615 16954 55517 0.431 9.565

2010/14 1932 1182 1.567 59954 25171 93398 0.439 11.158

Oklahoma City (OK) 1980 709 720 1.573 12933 5777 18878 0.419 9.075
1990 1034 854 1.993 17551 7499 26072 0.445 9.616
2000 880 941 1.557 30578 12488 44422 0.447 15.739

2010/14 1015 1021 1.562 45377 18504 68795 0.457 10.504

Portland (OR) 1980 696 1077 1.526 12819 5411 18704 0.404 9.155
1990 1145 1131 1.991 19987 8840 28511 0.424 9.403
2000 1141 1111 1.586 37618 16409 53854 0.417 8.385

2010/14 1374 1211 1.567 49201 19927 74485 0.428 10.490

Las Vegas (NV) 1980 150 2018 1.554 12756 5568 17713 0.406 8.542
1990 318 2570 1.976 20006 8888 27960 0.431 9.310
2000 796 1396 1.620 36442 16095 51823 0.430 8.202

2010/14 1284 1215 1.592 44657 18771 66044 0.442 9.525

Louisville (KY) 1980 582 873 1.592 11451 5036 17218 0.414 9.188
1990 957 938 1.990 18323 7864 27067 0.445 9.771
2000 742 1021 1.542 32264 13213 46595 0.444 15.196

2010/14 840 1087 1.536 45220 17798 69576 0.451 10.739
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Milwaukee (WI) 1980 1125 788 1.606 13629 6277 19823 0.384 8.008
1990 1540 935 1.994 20192 9430 29189 0.420 9.621
2000 1389 883 1.575 36437 15855 52408 0.426 8.692

2010/14 1465 927 1.540 48088 19198 72556 0.452 10.903

Albuquerque (NM) 1980 278 957 1.629 11593 5209 16795 0.413 9.366
1990 430 884 1.992 18125 8120 26181 0.444 9.886
2000 404 941 1.558 33181 13980 47243 0.440 9.523

2010/14 434 1176 1.533 43410 17042 66070 0.461 11.785

Tucson (AZ) 1980 306 810 1.578 10384 4601 15056 0.400 8.130
1990 561 1029 2.000 16834 7279 24236 0.461 9.772
2000 601 1045 1.551 30864 12504 44934 0.460 15.544

2010/14 614 1423 1.534 42082 16637 64100 0.463 11.018

Fresno (CA) 1980 571 1417 1.633 16762 8441 24258 0.365 7.215
1990 532 1044 1.989 18020 7467 26327 0.463 9.649
2000 546 933 1.730 27064 10878 38272 0.471 16.750

2010/14 587 1094 1.714 37117 15473 56226 0.461 11.747

Sacramento (CA) 1980 423 1148 1.529 11659 4941 17097 0.408 9.032
1990 1031 1557 1.968 21357 9535 30607 0.421 10.800
2000 1094 1199 1.616 36344 15452 52005 0.434 9.269

2010/14 1369 1143 1.606 49000 20048 75343 0.435 11.883

Kansas City (MO-KS) 1980 1006 991 1.587 13577 6444 19645 0.393 9.056
1990 1465 1043 1.991 20820 9844 29980 0.426 9.736
2000 1352 1005 1.575 38395 17532 54896 0.426 8.529

2010/14 1468 1111 1.562 50056 21337 76139 0.439 10.496

Atlanta (GA) 1980 840 1150 1.591 11821 4837 17433 0.457 10.792
1990 1962 1650 1.959 24596 11684 35257 0.431 11.546
2000 1639 1826 1.628 43435 19191 63050 0.438 9.395

2010/14 2379 1631 1.598 51857 20271 80941 0.460 12.044

Norfolk (VA) 1980 541 1142 1.666 11265 5156 16109 0.411 9.453
1990 903 1531 1.951 19181 9208 27018 0.405 9.323
2000 892 1189 1.619 32543 15069 45638 0.412 7.757

2010/14 1089 1135 1.572 48576 21406 72037 0.420 9.538

Omaha (NE-IA) 1980 399 814 1.616 12576 5952 17858 0.388 8.192
1990 626 728 1.991 19465 9546 27285 0.424 9.462
2000 650 626 1.584 35338 16484 49614 0.417 7.904

2010/14 745 801 1.570 47979 21411 70100 0.428 9.776

Colorado Springs (CO) 1980 159 961 1.583 11320 5290 16547 0.406 8.194
1990 308 1077 1.970 19034 9441 26299 0.408 9.125
2000 303 1174 1.612 35946 18023 49660 0.391 7.238

2010/14 362 1506 1.590 47967 21394 72013 0.422 9.581

Raleigh (NC) 1980 237 1331 1.563 12403 5620 18069 0.414 9.799
1990 499 1623 1.981 21517 9825 30516 0.421 11.087
2000 430 1545 1.553 40050 16738 57936 0.445 9.987

2010/14 707 1679 1.567 54607 22647 84366 0.444 10.753
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Miami (FL) 1980 1307 2022 1.559 12962 5246 18895 0.444 9.980
1990 1549 3062 2.008 19659 7405 28802 0.477 10.503
2000 638 1987 1.556 35599 14112 51177 0.451 9.572

2010/14 936 1474 1.557 47343 18170 73153 0.457 11.349

Oakland (CA) 1980 1376 1007 1.589 14714 6930 21331 0.397 9.819
1990 1636 1673 1.972 27737 13353 40200 0.428 11.701
2000 1488 1277 1.631 47663 20554 71300 0.443 11.010

2010/14 1676 1289 1.622 68482 27490 110290 0.457 13.566

Minneapolis (MN) 1980 1704 829 1.593 14300 6794 20511 0.383 7.374
1990 2239 1096 1.986 23220 11170 33176 0.411 10.532
2000 2105 1136 1.593 43427 20413 61659 0.408 7.339

2010/14 2244 1231 1.570 57533 24116 88819 0.432 9.900

Tulsa (OK) 1980 340 823 1.546 12889 5475 19014 0.431 9.341
1990 730 779 1.990 18258 7716 26596 0.455 9.883
2000 541 980 1.566 33077 13504 48629 0.446 8.419

2010/14 599 1154 1.566 44777 17354 68006 0.457 10.355

Cleveland (OH) 1980 1654 867 1.631 12466 5551 18359 0.402 9.899
1990 2691 1052 2.005 19509 8388 28706 0.446 10.056
2000 2272 1029 1.563 35221 14392 50973 0.443 9.109

2010/14 2238 1085 1.519 44764 17146 68783 0.460 11.080

Wichita (KS) 1980 289 704 1.576 12717 5768 18455 0.388 8.499
1990 451 896 1.989 19303 8801 27625 0.428 9.526
2000 371 954 1.590 33430 15421 47101 0.414 7.812

2010/14 411 1133 1.575 43162 18600 64259 0.431 9.672

New Orleans (LA) 1980 938 960 1.623 11743 4629 17279 0.456 11.116
1990 1215 1113 2.015 15751 5944 23640 0.484 26.274
2000 974 1009 1.597 29996 10495 43919 0.490 18.694

2010/14 1053 924 1.532 44250 15342 69804 0.481 13.121

Bakersfield (CA) 1980 169 810 1.635 11081 4431 15901 0.423 9.342
1990 374 1170 1.965 18526 8018 26588 0.433 9.347
2000 353 1171 1.723 27908 11092 39953 0.459 16.969

2010/14 450 1319 1.723 38846 16404 59346 0.447 11.251

Tampa (FL) 1980 903 1300 1.515 10663 4430 15388 0.424 8.280
1990 1547 1620 1.980 17140 7176 24448 0.440 9.216
2000 1448 1307 1.530 32815 13303 46343 0.448 8.451

2010/14 2002 1131 1.506 43788 17047 66315 0.460 10.445

82


	Introduction
	Spatial inequality measurement
	The GINI indices
	Spatial inequality and geostatistics
	Testing hypotheses about spatial inequality
	Discussion

	Spatial inequality in U.S. cities: 1980-2014
	Data
	Spatial inequality in Chicago, IL
	Stylized facts about spatial inequality in U.S. cities

	Income inequality in American neighborhoods and its long-term consequences
	Concluding remarks
	Standard errors and confidence bounds for spatial inequality measures
	Setting
	GINI indices and the variogram
	Standard errors for the GINIW index
	Standard errors for the GINIB index
	Implementation

	Additional results
	Inference results for spatial inequality curves, Chicago (IL)
	Spatial inequality in the largest U.S. metro areas

	Statistics for selected U.S. cities

