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Abstract

We study the design of approval rules when experimentation must be delegated
to an agent with misaligned preferences. Our motivating example looks at how the
FDA can design approval rules a function of the outcome clinical trials. In these
clinical trials, the agent (the drug company) must pay a cost for experimentation and
may have information about the likelihood that the state is high (the drug is good).
We study this question in a dynamic learning framework and look at how the level
of commitment the regulator can place on the agent changes the structure of the
optimal approval rule, both when the agent has private information about the payoff
relevant state and when he does not. When the mechanism must satisfy only ex-ante
participation constraints, the optimal approval rule becomes a stationary threshold
(similar to the problem with no agency concerns). However, when the mechanism
must satisfy interim, participation constraints, the approval threshold will no longer be
stationary change over time. We find the optimal approval rule and show that it moves
downward monotonically. Surprisingly, the approval threshold only moves downward
as a function of the minimum of the regulator’s beliefs. When the agent possess private
information about the state, we find that the agent with high information may receive a
fast-track: his approval threshold is initially low (the fast-track) but takes a jump up if
the regulator’s beliefs fall too low. These dynamics are to our knowledge new and help
us understand how approval rules change over time.
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for helpful conversations and suggestions as well as seminar participants at NYU.
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1 Introduction

In many real world economic situations, decision makers face a tradeoff between making
a decision and waiting for more evidence. For example, when deciding whether or not to
approve a drug, the FDA can mandate that companies conduct clinical trials to determine
the efficacy and any side-effects the drug may have. Typically, learning in these trials is
slow, as the drug may affect the patients health only with a great deal of noise. In deciding
when to approve a drug, the FDA must trade off the need for haste (in order to alleviate the
suffering of those currently afflicted) and the need to discretion (in order to prevent the
use of harmful drugs). Finding the optimal balance between these two has large welfare
implications.

Given their importance, the design of clinical trials has developed an extensive litera-
ture. One observation, which is missing in the existing literature, is that there is often a
misalignment of incentives between those with decision making authority and those with
private prior information which may inform the decision. For example, a company may
spend a long time developing a drug prior to the start of a clinical trial and will posses a
more informed prior about whether the drug is good or not. It is natural to think that the
FDA would like to elicit this information from the company. However, the misalignment of
incentives will prevent straightforward elicitation: the company, which doesn’t internalize
the externality imposed by the approval of bad drugs, wants to get its drug approved while
the FDA only wants to approve the drug if it is good. This brings us to the mechanism
design question: is it possible for the FDA to set an approval rule which incentivizes the
companies to truthfully reveal their information?

In this paper, we will study the design of approval mechanisms in a dynamic framework
with learning. We look at how a regulator can design stopping and approval decision rules
(without monetary transfers) which incentivize an agent to truthfully reveal his private
information about some payoff relevant state of nature. The players have misaligned
incentives: the regulator only wishes to approve if the state is high and the agent wants
approval regardless of the state and must pay the cost of experimentation. Thus the
regulator has additional incentives to consider when designing his optimal stopping rule:
in addition to the tradeoff between haste and discretion, the regulator must also consider the
preservation of the agent’s incentives to truthfully reveal information. We also examine how
these mechanisms change under different levels of commitment on the part of the agent.
We look at two-sided commitment (where the agent can commit to keep experimenting as
long as the regulator directs him to) and one-sided commitment (where the agent may quit
experimenting and take his outside option at any time). We find that the two commitment
structures lead to qualitatively different mechanisms.
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Under two-sided commitment, the optimal stopping mechanism takes the form of
static threshold rules: approve if the evidence reaches an upper threshold and reject if
the evidence reaches a lower threshold. These static thresholds qualitatively mirror the
standard single agent optimal stopping problem. We find that the agency problem can
easily be turned into a single decision-maker problem (introducing distortion terms for
incentive constraints) and solved accordingly.

With one-sided commitment, the story is much different. In addition to satisfying
ex-ante participation and incentive constraints, the regulator must also satisfy interim par-
ticipation constraints after every history. We show that one-sided commitment, threshold
rules (as in the case with two-sided commitment) are not optimal: once the agent is about
to quit, the regulator has an incentive to lower the approval threshold to keep the agent
experimenting. Given the complexity of determining the stopping rule that the agent will
use in response to the stopping rule used by the regulator, finding the optimal mechanism
can seem daunting. However, we are able to solve for the optimal mechanism by identifying
regions over which the regulator uses threshold rules. We find that the stopping rule used
by the regulator is highly path dependent but still tractable and is, to our knowledge, novel
in the optimal stopping literature.

We first derive the optimal mechanism when there is no private information. Even
in this setting, threshold rules are not optimal. More complex stopping rules allow the
regulator to incentivize the agent to continue experimenting more than when the regulator
uses simple threshold rules. We show how the optimal mechanism can be written as a
function of the current belief and the minimum over the realized path of beliefs up to
the current time. We show how the approval threshold takes a stochastic, but monotonic,
path downwards. Interestingly, this implies that, as a function of the approval time, the
probability of Type I error is not constant, as it is in the single decision maker problems. We
also are able to show that the assumption of commitment by R is not crucial: this mechanism
can be implemented as an equilibrium even when R cannot commit to a stopping rule.

When we give private information to the agents, we find that the optimal mechanism
takes the form of a “fast-track” menu option. Low types are offered a mechanism which
is qualitatively similar to the case with no adverse-selection: the approval threshold is
monotonically decreasing. However, high types are given a very different mechanism. They
are offered an initial approval threshold which is lower than the initial approval threshold
offered to low types. However, they also face a “failure” threshold. If the failure threshold
is reached, the project is not rejected but the the approval threshold takes a discrete jump
upward. This result shows how adverse selection creates a backloading of costly distortion
for the high type. By introducing a higher approval threshold, the regulator hurts both his
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and the agents payoffs. However, a deviating low type will view this distortion as more
likely, thereby creating a wedge in the effect of the distortion on payoffs. This wedge allows
the regulator to create separating contracts even without transfers.

In Section 2 we will discuss related literature and then introduce the model in Section 3.
Section 4 will cover the optimal mechanism where there are no information asymmetries
while Section 5 will derive the optimal mechanism when there are information asymmetries.

2 Literature

The setting of our paper ties into a large literature on the problem of hypothesis testing.
Wald (1947) is the seminal work on the study of sequential testing and began a rich literature
in mathematics and statistics. Peskir and Shiryaev (2006) provide a textbook summary and
history of the problem. Moscaroni and Smith (2001) also examine a similar framework but
they look at the optimal policy in a large class of sampling strategies. Unlike our paper,
this literature focuses on the problem of a single-decision maker. While some papers study
the optimal stopping problem under constraints, the participation constraints our problem
will impose are new and yield very different solutions.

Our paper is also related to the bandit experimentation literature. Bolton and Harris
(1999), Keller, Rady and Cripps (2005), Keller and Rady (2010,2015), Strulovici (2010),
Chan et al. (2015) and many others have analyzed the strategic interaction among experi-
menting agents. Typically, they focus on equilibrium experimentation levels and often find
equilibrium strategies in cutoff rules. In our paper, we will endow one player (the regulator)
with commitment power, which will drive the optimality of more complex stopping rules.

A recent literature has developed around the incentivization of experimentation in
bandit problems. Garfagnini (2011) studies equilibrium levels of experimentation when a
principal must delegate experimentation to an agent. Guo (2016), one of the closest papers
to our own, looks at a bandit problem in a principal-agent model when the agent possesses
private information about the probability that the bandit is “good.” Like our model, Guo
finds optimal mechanisms when monetary transfers are infeasible and the agent has private
information about a payoff-relevant state of the world. Besides the technical differences
between our settings, (Guo examines the optimal mechanism for eliciting information in
a bandit model while we consider the optimal mechanism in a stopping problem, and in
our model the misalignment between principal and agent preferences is more severe), we
consider the case in which the agent has the ability at any time to quit experimenting. Our
two-sided commitment model corresponds to Guo’s commitment structure, and like her
model, we find that threshold rules are optimal with two-sided commitment. Grenadier
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et al. (2015) model a situation in which a principal must elicit an agent’s information
about the optimal excise time of an option. Like our model, they study the case when the
principal cannot make monetary transfers and the agent has private information (in their
case, his payoff to excising the option).

Kruse and Strack (2015) look at an optimal stopping problem in a principal-agent frame-
work in which the principal sets transfers in order to incentivize an agent to use particular
stopping rules. They find that, under some conditions, transfers which only depend on the
stopping decision implement cut-off rules and all cut-off rules are implementable by such
transfers. Maddsen (2016) also studies a principal-agent stopping problem with transfers
in the case of the quickest detection problem.

Orlov et al. (2016) also look at the dynamic revelation of information between a
regulator and agent. Unlike our model, they look at the nature of equilibrium when, on
top of a public news process, the agent has the ability to design information structures to
reveal some private information ala Kamenica and Gentzkow (2011).

Liu, Halac and Kartik (2016a, 2016b) also look at different ways of incentivizing experi-
mentation, both in the framework of a contest and a contract. Our paper differs in that we
are not allowing for monetary transfers, and instead look at how the probability of future
approval can be used to incentivize agents. The incentivization of experimentation using
monetary transfers from a moral hazard viewpoint has also been studied by Bergemann
and Hege (1998,2005) and Horner and Samuelson (2013).

The study of the FDA approval process has also been studied theoretically and emprici-
cally. Carpenter and Ting (2007) looks at a theoretical model of drug approval when the
drug companies are better informed about the state fo their drug. They study the resulting
equilibria of a discrete time model. They find that the length of experimentation determines
the comparative static on the effect of firm size on the amount of Type I and Type II errors.
Carpenter (2004) also studied the effect of firm size on regulatory decisions.

Henry and Ottaviani (2013,2015) also look at a model of regulatory approval when
learning takes place through a publicly observed Brownian motion. In their model, both
the regulator and the agent possess a common prior about the state. They study the
deconstruction of the approval process, when the regulator has the ability to approve and
the agent has the ability to quit. They find that varying the level of commitment and the
possession of authority changes the expected amount of experimentation.
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3 Model

3.1 Environment

Following our motivating example, we will set the model up as the dynamic interaction
between a (female) regulator R and a (male) agent A. A project which is up for approval
is either good (ω =H) or bad (ω = L). The regulator wants to approve only good projects.
The benefit to approving a good project is B and the loss to approving a bad project is K
(for simplicity, we will take B = 1, K = −1). The tension in our model comes from the fact
that there is a misalignment of preferences: the agent wants to have the project approved,
regardless of the state (e.g., the drug company only cares about whether or not its drug is
approved). The agent’s payoff to having the project approved is normalized to 1. The game
takes place in continuous time and both R and A share a common discount factor r > 0.

R’s Payoffs

H L
Approve 1 -1
Reject 0 0

A’s Payoffs

H L
Approve 1 1
Reject 0 0

We will assume that A pays a constant flow cost cA until the game ends and R pays a
flow cost of cR. For simplicity, we assume that cA = c > 0 = cR (none of the results will rely
on cR = 0, but it makes the analysis a bit simpler).

We model the experiments as the observation of a Brownian motion whose drift depends
on whether or not the project is good. While the experimentation is ongoing, the regulator
observes outcomes

Xt = µωt + σWt

where W = {Wt ,Ft ,0 ≤ t <∞} is a standard one-dimensional Brownian motion1 on the state
space (Ω,F , P ) and µL = −µ < 0 < µ = µH . For example, if the project is a new drug, we can
think of Xt as the health of the patients during a clinical trial. If the state is a worker’s skill,
then we can think of Xt as the worker’s cumulative output.

By observing Xt, R can update her belief about the state. After observing Xt, the player’s
update their beliefs by Bayes rule to

1Which implies that W0 = 0 so X0 = 0.
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πt =
π0f

H
t (Xt)

π0f
H
t (Xt) + (1−π0)f Lt (Xt)

To simplify the belief updating procedure, we note that we can write the beliefs in terms
of log-likelihoods2 i.e.

Zt = log(
πt

1−πt
)

Putting in our terms for πt, we have

Zt = log(
π0

1−π0
) + log(

f Ht (Xt)

f Lt (Xt)
)

= Z0 +
φ

σ
Xt

where φ = 2µ
σ , which is the signal-to-noise ratio (this describes how informative the signals

are). Since beliefs and the evidence level are isomorphic, we will use them interchangeably
in the following sections. The change in Zt is then given by

dZt =
φ

σ
dXt

We define F Xt = σ ((Xs,Y0) : 0 ≤ s ≤ t) (where Y0 ∼U [0,1] time 0 is used simply to allow
for randomization) to be the augmented natural filtration. A history ht = ω|[0,t] is the
realization of a path of Xt and Y0 .

Note that R receives positive utility from approving at belief Zt if and only if Zt ≥ 0.
We will refer to Zt = 0 as R’s myopic cutoff point-i.e., when she would approve if she were
myopic. Where this myopic cutoff point is determined by the specific payoff of approving
and the state. None of the results will depend on the specific payoffs. Additionally, we
could introduce lower constraints on the approval rule (such as approval can only happen
at Zt > Zc for some Zc) without affecting the main results. Situations such as this may
happen when R faces political constraints that must ensure it maintains a certain standard
of safety.

3.1.1 Remarks

We make several simplifying assumptions in the model, which we motivate below

2We subsequently abuse notation by referring to Zt as beliefs
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• Slow Learning: We choose to model the news process as Brownian motion for both
tractability and its similarity to real-world applications. In our motivating example
where Xt corresponds to patient’s health during a clinical trial, Brownian motion
reflects the gradual nature of learning and the noisiness of health. Even when admin-
istered good drugs, patients health will still sometimes decline. However, the drift
of patients health should be positive for good drugs (i.e. µH > 0). Additionally, the
use of Brownian motion ties into a rich statistics literature on the design of adaptive
clinical trials and hypothesis testing (e.g. Peskir and Sharyaev (2006) for a textbook
treatment).

• Public News: We assume that the signal is publicly observable to both R and A.
This assumption is satisfied in many situations. For example, the FDA can require
companies to publicly register and continuously report the outcome of the trial.
Assuming the news process is public allows to avoid R and A’s beliefs diverging,
which would make the model intractable.

• Payoffs: We assume that only A pays a flow cost. This might correspond to the cost
of administering the trial (e.g., producing drugs, paying doctors to administer the
drugs), which are not small and are important economic determinants of companies’
testing decisions see (DiMasi (2014)).

3.2 Mechanism

We now move on the mechanism that R must design. We will assume that transfers are
infeasible. For example, the FDA cannot make transfers to incentivize companies to reveal
their private information. Instead, they have the ability to set approval standards. Our
question of interest is to understand how they can optimally design approval standards to
elicit the private information of the firm. More formally, we allow R to design a stopping
mechanism:

Definition 1. A stopping mechanism is a pair (τ,dτ ) such that τ is an F Xt -measureable
stopping rule and dτ is an F Xt measureable decision rule which takes value 0 or 1.

We will denote T to be the set of F Xt -measurable stopping rules and D to be the set of
F Xt -measurable decision rules.

We will endow R with perfect commitment power, allowing us to focus on direct
revelation stopping mechanism. The decision to approve or reject is irrevocable3 . The

3This simplifies the model. In terms of real world applicability, we note that continued monitoring post-
approval by the FDA is typically very weak and rarely results in approval revocation (see Carpenter (20??))
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utility of R is given by

J(τ,dτ ,Z0) = E[e−rτ (πτ − (1−πτ ))dτ |Z0] = E[e−rτ
eZτ − 1
1 + eZτ

dτ |Z0]

and the utility of A is given by

V (τ,dτ ,Z0) = E[e−rτdτ −
∫ τ

0
e−rtcdt|Z0] = E[e−rτdτ −

1− e−rτ

r
c|Z0]

Before moving on the general analysis, we first define some notation that will be useful
in the following analysis. We begin with a salient subclass of mechanisms, in which the
regulator approves if her beliefs ever reach B and rejects in her beliefs ever reach b.

Definition 2. A static threshold is a pair number (B,b) ∈ R2 such that b < B and τ = inf {t :
Xt < (b,B)}.

We will refer to B as the static approval threshold and b as the static rejection threshold.
We will use the notation τ(c) = inf {t : Xt = c} where c ∈ R. Then a static threshold
mechanism τ can be written τ = τ(B)∧ τ(b).

This is a focal class of stopping rules, are tractable and easily implemented. Suppose
that R approves the drug if the evidence Zt ever reaches B and rejects the drug it ever
reach b. An important determinant of the utility from these threshold mechanisms is the
expected discounted probability that beliefs cross the threshold B before crossing b. The
formula for this discounted probability (see Stokey (2009)) when the state is good is given
by

Ψ (B,b,Z) = E[e−rτdτ |ω =H,Z0 = Z] =
e−R1(Z−b) − e−R2(Z−b)

e−R1(B−b) − e−R2(B−b)

and the discounted probability that the beliefs cross b before ever crossing B if ω =H is

ψ(B,b,Z) = E[e−rτ (1− dτ )|ω =H] =
eR2(B−Z) − eR1(B−Z)

eR2(B−b) − eR1(B−b)

where R1 = 1
2 (1−

√
1 + 8r

µ′ ) and R2 = 1
2 (1 +

√
1 + 8r

µ′ ) for µ′ = 2µ
σ2 .

We will generally drop the dependence of Ψ ,ψ on B,b,X when the choice of B,b,X
is clear. Notationally, we will define Ψi := Ψ (B(Zi),b(Zi),Xi),ψi := ψi(B(Zi),b(Zi),Xi). For
derivatives, we will also use the notation Ψb := ∂Ψ

∂b and ΨB := ∂Ψ
∂B (with similar notation for

the derivatives of ψ and the derivatives of Ψ ,ψ with respect to B,b).
Doing a bit of algebra (see Henry and Ottaviani (2015)) allows us to show that the

discounted probability that B is crossed before b if ω = L is

Ψ (B,b,Z)eZ−B
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and the the discounted probability that b is crossed before B if ω = L is

ψ(B,b,Z)eZ−b

This allows us to rewrite the utility of R,A when (τ,dτ ) takes a threshold form when
X0 = 0

J(τ,dτ ,Z0) =
1

1 + eZ0
(Ψ (B,b,Z0)(eZ0 − e−B))

V (τ,dτ ,Z0) = −c
r

+
1

1 + eZ0
(Ψ (B,b,Z0)(eZ0 + e−B)(1 +

c
r

) +
c
r
ψ(B,b,Z0)(eZ0 + e0−b))

In general, we allow for a wide range of stopping mechanisms which may consist of
continuation regions which may be very complex and will depend on the history of Xt up
until time t. We define a dynamic analogue of the static threshold mechanism below.

Definition 3. A dynamic threshold is a pair of mappings (B,b) : F Xt → R
2 such that after

history ht, b(ht) < B(ht) the process is stopped if Xt < (b(ht),B(ht)).

A dynamic threshold is a general stopping policy which can depend on the history of
realized beliefs in many different ways. While static thresholds are also dynamic thresholds,
there are many dynamic thresholds which are not static thresholds-e.g., a deadline policy
(in which R waits until time T and approves if XT ≥ BT and rejects otherwise) is a dynamic
threshold policy but not a static one.

4 Symmetric Information

We begin the analysis by studying what the optimal mechanism looks like when there is
symmetric information-i.e., both A and R share the same prior when the news process
begins. Studying the symmetric information case will be useful both for finding the optimal
mechanism with asymmetric information and is of independent interest4. It extends
the canonical hypothesis testing model, which is well-studied in single decision-maker
problems, into a mechanism design framework. This new multi-agent framework will
yields dynamics far different from that of single decision maker problems. How different
depends on the level of commitment we put in the model. We look at the tradeoff between
waiting for evidence and incentivizing A to keep experimenting and derive a novel and
tractable optimal mechanism.

4Henry and Ottaviani (2015) study a model with the same payoff structure as ours, but restrict attention to
the class of static threshold mechanisms.
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4.1 First-Best

We begin by solving for the first best solution for R. Note that R has no experimentation
costs. Therefore he will never find it optimal to reject: since the news process will never
lead R to know for sure that the drug is bad (i.e., Zt can never reach −∞), then the option
value of continuing to experiment is always strictly positive. We can also note that R’s
preferences are time-consistent, her first-best policy must be a threshold rule with b = −∞.
Clearly she must approve an some interior B <∞. If we write out his utility for a fixed B,
we can see that

limb→−∞Ψ
eZ − eZ−B

1 + eZ
= eR1B

eZ − eZ−B

1 + eZ

Taking the derivative with respect to B, we get a first-order condition

0 = R1(1− e−B) + e−B

⇒ B = −log(
R1

−R2
)

Which as we should expect implies that the optimal threshold choice of R is invariant
to the current belief. This threshold mechanism (B,b) = (−log( R1

−R2
),−∞) is the first-best

mechanism for R (and will be optimal in the space of all stopping mechanisms).

4.2 Two-Sided Commitment

We now move to the case when R must consider participation and incentive constraints for
A. We begin by assuming that once A has selected a stopping rule, then experimentation
takes place until R either approves or rejects. This means that R can make A commit to
continue experimentation and A cannot quit early-i.e. both sides can sign a binding contract
that is enforceable.

Definition 4. A mechanism has two-sided commitment if once A has selected (τ,dτ ), experi-
mentation continues until τ .

The mechanism design problem faced by R is given by

sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z0]

subject to

P (τ,dτ ) E[e−rτ (dτ +
c
r

)|Z0]− c
r
≥ 0
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where P (τ,dτ ) is a participation constraint that ensures that the agent finds it optimal
to agree to mechanism.

Our problem takes the form of a constrained optimal stopping problem. A robust
finding from the single decision-maker problem is the optimality of statif-threshold rules
(e.g. Wald (1947), Moscaroni and Smith (2001)). However, it is not ex-ante obvious that
static-threshold rules will be optimal here, our first result establishes that R will offer a
stationary approval and rejection threshold.

Proposition 1. The solution to the symmetric information problem with two-sided commitment
takes the form of a static-threshold policy. If b , −∞, then the optimal approval and rejection
thresholds (B,b) are the solution to the following equations:

ΨB(eZ0 − e−B) + e−BΨ
ΨB(eZ0 + e−B)− e−BΨ + c

r+cψB(eZ0 + e−b)
=

Ψb(eZ0 − e−B)
Ψb(eZ0 + e−B)− c

r+cψe
−b + c

r+cψb(e
Z0 + e−b)

Ψ (eZ0 + e−B) +
c

r + c
ψ(eZ0 + e−b) =

c
r + c

(1 + eZ0)

if b = −∞, then B = log(R2
R1

).

Proof. See Appendix.

This result establishes that the solution under two-sided commitment is qualitatively
the same as in the single decision-maker.

One question of interest is how the approval policies differ across the levels of commit-
ment. Our first result on this question establishes that approval takes place at a lower level
in two-sided commitment.

Corollary 1. If B∗T is the solution to the optimal two-sided commitment problem and B∗F is the
first-best approval level for R, then B∗F ≥ B

∗
T .

Because there is rejection in the two-sided commitment case but not in the first-best
solution, this means that the option value of experimentation is lower in the two-sided com-
mitment case. Since experimentation will continue as long, the value of experimentaiton
decreases relative to approval. This decrease in the option value leads to a lower approval
standard.

Interestingly, the choice of B,b will depend on the initial Z0. This differs from the
single-decision maker problem and the one-sided commitment solution. Unlike in the
single-decision maker problem, the participation constraint at t = 0 means that time zero
beliefs affect the possible selection of mechanisms.
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4.3 One-Sided Commitment

In many applications, the assumption of two-sided commitment is unreasonable. While
the FDA can commit to approval standards, they do not possess the authority to force
a company to continuing experimentation. If over the course of the trial the company
becomes pessimistic that the drug will ever be approved, the company may decide to cut
their losses and end the trial early. The assumption that the FDA can force them to continue
experimenting is beyond the scope of the agency’s authority. We can think of this as the
analogue of a “no forced service” assumption in a standard principal-agent model, in which
the principal can commit to a contract but the agent cannot be prevented from taking an
outside option. We call this commitment structure one-sided commitment.

Definition 5. A mechanism has one-sided commitment if once A has selected (τ,dτ ), after
any history ht, A can quit experimenting and take an outside payoff Q.

For simplicity, we will assume that Q = 0 (since quitting experimentation and rejection
both lead to non-approval, it seems natural that the payoffs will be the same). Since A has
the ability at any time to take an outside option, we must reformulate what participation
constraints mean in the environment with one-sided commitment. Under two-sided com-
mitment, we only had to ensure that the expected payoff at time t = 0 was weakly positive.
With one-sided commitment, we must ensure that A’s continuation payoff is weakly positive
at all t and histories ht until R ends experimentation. We call the constraints this property
imposes to be dynamic participation constraints.

Definition 6. A mechanism (τ,dτ ) satisfies dynamic participation constraints if A after any
history ht, the expected continuation to A from (τ,dτ ) is non-negative:

∀ ht , E[e−r(τ−t)(dτ +
c
r

)|Zt ,ht]−
c
r
≥ 0

Because there is a participation constraint for each history, writing out all the constraints
is infeasible. Another way of stating the dynamic participation constraint is to say that
A never finds it strictly optimal to quit. Following this idea, we can write R’s problem of
choosing a mechanism which satisfies dynamic participation constraints as

(SM) sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z0]

subject to

DP : supτ ′∈T E[e−r(τ∧τ
′)(dτ1τ ′>τ +

c
r

)|Z0] ≤ E[e−rτ (dτ +
c
r

)|Z0]
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where DP is the dynamic participation constraint. We refer to τ ′ as A’s quitting rule. DP
implies that for any quitting rule that A might use, the payoff to potentially quitting early
is weakly less than letting R decide when to end experimentation. We can think of this
as an obedience constraint: A must find it optimal to follow R’s recommendation to keep
experimenting.

This specification of DP is just a rewritten version of the definition of dynamic partici-
pation constraints from an ex-ante perspective. By looking at the supremum over all τ ′ ∈ T
on the left-hand side, we are implicitly including the dynamic participation constraints. To
see that the two are equivalent, note that if there was such a history that A had a strictly
negative expected continuation payoff, then the quitting rule

τ ′ = inf {t : E[e−r(τ−t)(dτ +
c
r

)|Zt ,ht] = 0}

would lead to a strictly higher payoff, violating DP . Similarly, if (τ,dτ ) satisfies dynamic
participation constraints, then it also must satisfy DP since A would never be better off
quitting when he has a non-negative continuation payoff.

Note also that we are specifying in DP that A never quits early. Because R has full
commitment power, this is without loss of generality: if a mechanism allows A to quit after
any history ht, then we could specify another mechanism in which R rejects at the same
moment that A does. This will not change any incentives for A to quit earlier than time t
and hence the expected payoff to R from the two mechanisms will be the same.

Lemma 1. For any stopping mechanism (τ,dτ ) which satisfies dynamic participation constraints,
there exists another stopping mechanism (τ̃ , d̃τ ) that delivers the same payoff to R and under
which A never quits early.

Given the previous result that static threshold mechanisms are optimal under two-sided
commitment, they seem to be a natural guess for the form that the optimal mechanism will
take. However, we will show that the optimal mechanism will never take this form. We
begin by presenting a simple example of the non-optimality of static threshold rules.

Suppose that R is using a static approval threshold of B1 > 0. Since R would always
like to keep experimenting, he will never reject the project before the agent decides to quit.
Let b∗Z(B) be the value at which A will choose to quit experimenting5 when R uses a static
threshold of B and the current beliefs are Z.

b∗Z(B) = argmaxb V (B,b,Z) = Ψ (B,b,Z)
eZ(1 + e−B)

1 + eZ
(1 +

c
r

) +
c
r
ψ(B,b,Z)

eZ(1 + e−b)
1 + eZ

5We show in Lemma 4 that A will find it optimal to quit using a static-threshold strategy when the approval
strategy is also a static-threshold strategy
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Note that b∗Z doesn’t depend on Z; this is a result of the time consistency of V so that the
optimal choice of a point at which to quit doesn’t depend on the current level of Z. We can
show that db∗Z (B)

dB > 0-i.e., A will want to quit earlier when the approval threshold is higher.
This is intuitive since the probability of reaching the approval threshold is lower and the
expected costs are higher.

Let Mechanism 1 by a static-threshold mechanism (B1,b
∗
Z(B1)). The expected payoff to

R from this mechanism will be

Ψ (B1,b
∗
Z(B1),Z0)

eZ0(1− e−B1)
1 + eZ0

Now consider Mechanism 2, in which R uses an approval threshold of B1 until either
Zt = B1 or Zt = b∗Z(B1). If Zt reaches b∗Z(B1), then instead of rejecting, R lowers the approval
threshold to αB1 for some α < 1 such that b∗Z(B1) < αB1. Note that A will now only quit

experimenting if the evidence reaches b∗Z(αB1) (where Z1 = Z0 + φ
σ b
∗
Z(B1) are the beliefs

when the evidence reaches b∗Z(B1)), since the lowering of the approval threshold strictly
incentivizes A to keep experimenting. Under this new policy, the expected payoff to R from
Mechanism 2 is

Ψ (B1,b
∗
Z(B1),Z0)

eZ0(1−−e−B1)
1 + eZ0

+ψ(B1,b
∗
Z(B1),Z0)

eZ0(1 + eb
∗
Z (B1))

1 + eZ0
Ψ (αB1,b

∗
Z(αB1),b∗Z(B1))

eZ1(1 + eb
∗
Z (B1)−αB1)

1 + eZ1

Breaking down the above payoff, the expected payoff if B1 is reached before b∗Z(B1) is
the same as in the original policy i.e.

Ψ (B1,b
∗
Z(B1),Z0)

eZ0 − e−B1

1 + eZ0

However, because she doesn’t reject yet in Mechanism 2, R receives an additional payoff
conditional on the evidence reaching b∗Z(B1) before B1, which is given by

Ψ (αB1,b
∗
Z(αB1),b∗Z(B1))

eZ1(1− eb∗Z (B1)−αB1)
1 + eZ1

This is multiplied by ψ(B1,b
∗
Z(B1),Z0) e

Z0 (1+eb
∗
Z (B1;Z0))

1+eZ0
(the discounted probability that

beliefs hit b∗Z(B1) before B1). Note that Ψ (αB1,b
∗
Z(αB1)) e

Z1 (1−eb
∗
Z (αB1))

1+eb
∗
Z (B1) is strictly positive.

Therefore Mechanism 2 yields a higher payoff for R. Since the choice of B1 was arbitrary,
we can see that static-threshold mechanisms are not optimal.

Heuristically, R is being too stubborn by sticking to the static threshold B1. Once the
evidence has gone low enough, R would be better off by decreasing his approval threshold

15



a bit in order to keep A experimenting: conditional on the evidence reaching b∗Z(B1), R can
achieve a positive continuation value by “cutting some slack” and lowering the approval
threshold some, thereby increasing A’s value of experimentation. An important fact to note
is that since A can only make a single irreversible choice to quit, lowering the approval
threshold if the evidence gets to b∗Z(B1) doesn’t change A’s incentives to quit when the
evidence is still above b∗Z(B1).

Once we have moved out of the realm of threshold rules, conjecturing the form that the
optimal policy will take is difficult. Because the space of stopping rules is so large, it is not
possible to immediately identify a class of mechanisms that the optimal policy will lie in or
know if the optimal policy is feasible to derive. The key tradeoff will be between keeping
a discerning approval threshold and providing incentives for A to keep experimenting.
Our first main result establishes what the optimal mechanism is and shows that it takes
a relatively simple form. In the interest of keeping notation consistent, we will describe
the mechanism in terms of Xt rather than Zt. We define an equivalent version of b∗Z for the
process measured in terms of Xt as

b∗(B) := argmaxb V (τ(B), τ(b),0)

We get that the optimal mechanism turns out to depend on the realized path of Xt only
through the current minimum of the evidence path MX

t :=min{Xs : s ∈ [0, t]} and consists
of two regimes:

• Stationary Regime: The mechanism begins with a static approval threshold B1 which
lasts until Xt reaches B1 or b∗(B1).

• Incentivization Regime: Once Xt first hits b∗(B1), the stopping rule is given by a
dynamic approval threshold B(MX

t ) which decreases as MX
t decreases in order to

incentivize A to keep experimenting when beliefs get too low.

As in the example above, R decreases the current threshold in order to incentivize A to
keep experimenting; the decrease is gradual, just enough to keep A from quitting.

Define
B(X) :=min{B : b∗(B) = X}

i.e. B(X) is the lowest static approval threshold such that A would quit optimally when the
evidence reaches X. Formally, the result is given in the following theorem.

Theorem 1. The optimal stopping mechanism under symmetric information is given by the
stopping rule τ = τ(B(MX

t ))∧ τ(b∗(0)) and dτ = 1(Xτ = B(MX
t )) where B(MX

t ) is defined as
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Figure 2: The graph above corresponds to the changing approval threshold for a particular
realization of Xt. The upper dashed line corresponds to the current approval threshold.
This approval threshold will stay at the same level until X crosses the current minimum of
the process, which is given by the bottom dashed line.

B(MX
t ) =

B1 MX
t ∈ [b∗(B1),0]

B(MX
t ) MX

t ∈ [b(0),b∗(B1))

where B1 := argmaxB J(B,b,X0), b(Z0) := −Z0
σ
φ

When the MX
t > b

∗(B1), we will say that the mechanism is in a stationary regime (more
generally, we will call any area in which the approval threshold is locally static a stationary
regime).When MX

t < b
∗(B1), we will say the mechanism is in a dynamic regime. We note

several features of the optimal mechanism:

• Monotonicity: The approval threshold only drifts downward: the approval threshold
only changes in order to provide incentives to keep A from quitting, which can only
happen when the approval threshold decreases. The times at which the current
approval threshold decreases are stochastic (since they are a function of Mt).
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Figure 3: The dashed line gives the approval threshold as a function of M and the solid line
marks the 45 degree line. The dashed line is initially constant in M during the stationary
regime while it decreases in M for the incentivization regime. The lines coming up from
the 45 degree line illustrate a sample path of X which is approved when X = 0.7.

• Agent Indifference: Whenever the evidence level is at Xt = MX
t , the agent will be

indifferent between quitting and continuing. R would like to keep the approval
threshold from decreasing and will thus wait until A is indifferent between quitting
and continuing, which occurs at Xt =MX

t .

• Starting Belief Invariance: Because the level of evidence is isomorphic to beliefs, we
can alternatively write the approval threshold in terms of what beliefs R approves at.
If we do this transformation, then the optimal mechanism is invariant to what initial
beliefs Z0 are. This property, which is common in single-decision maker problems,
is absent if we were to restrict attention to static threshold rules (see Henry and
Ottaviani (2015)).

The rest of this section will be devoted to sketching out the ideas of the proof (a full
proof can be found in the Appendix). The optimal mechanism describes the best way to
balance out the desire for more learning and the need to incentivize A to experiment longer.
The problem of agent incentivization in continuous time has developed a growing literature
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in recent years. Our approach differs from the standard continuous-time approach (e.g.,
Sannikov (2007) when transfers are feasible and Fong (2007) where transfers are not
feasible) where agent-continuation payoffs are formulated as a state variable in an HJB
equation. Because both A and R are not perfectly informed, the HJB approach would
require carrying both a state variable of agent continuation and current beliefs, turning
the problem into that of solving a partial differential equation. Instead, we decompose the
mechanism design problem into several regions over which we use Lagrangian techniques
to find the optimal mechanism. The Lagrangian approach allows to more easily derive the
qualitative features of the optimal mechanism and allow us to restrict attention to a class of
mechanism over which we can derive the quantitative features. In contrast to the model
of Sannikov (2007), the moral hazard component is much simpler in our model (in our
model the agent can only decide at each point in time whether or not to quit), but the tools
available to the mechanism designer are more sparse (since we rule out transfers and the
decisions of R and A are irreversible). The Lagranian approach will also be well-suited to
the asymmetric information case.

We would like to convert this constrained problem SM (our primal problem) into an
unconstrained form (our dual problem) using Lagrangian techniques. The key technical
difficulty lies in the fact that when checking DP , we must consider all possible quitting
rules τ ′ which A might use. For an arbitrary stopping rule (τ,dτ ), we might try to solve for
the optimal τ ′ which Awould use. However, even for simple time-dependent stopping rules
(e.g. using a deadline), solving for τ ′ is difficult and cannot be calculated in closed-form.
Given the richness of the set of available (τ,dτ ), which may be history-dependent, solving
for τ ′ is infeasible. Moreover, to use Lagrangian techniques we will need to restrict attention
to a finite number of constraints. This means we will need to find a finite number of quitting
rules which will approximate the set of binding constraints. Given the dimensionality of
the space of quitting rules, it is not immediately clear how to do this.

To make some progress, we will have to restrict attention to a class of quitting rules,
which we call threshold quitting rules.

Definition 7. A threshold quitting rule is a number τ(Xi) ∈R such thatA quits experimenting
if and only if Xt ≤ τ(Xi).

In order to use the Lagrangian approach, we need to restrict attention to a finite number
of constraints. Let XTN = {Xi}Ni=0 such that Xi+1 = Xi + Y

N for some Y ∈R− small enough (we
will verify later that the mechanism ends in rejection before Xt reaches Y ).

We can rewrite the mechanism design problem as RSMN
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sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z0]

subject to

RDPN ∀XT ∈ XTN E[e−r(τ∧τ
′)(dτ1τ ′>τ −

c
r

)|Z0] ≤ E[e−rτ (dτ +
c
r

)|Z0]

It is important to emphasize that it is not obvious that dropping non-threshold con-
straints is without loss. For many stopping policies R could use, the best response of A will
not be to use a threshold policy. For example, if R were to wait until date T and approve
if and only if XT > B, then the optimal quitting rule A would use would in fact not be a
threshold policy but would be a time-dependent curve τ ′ = inf {t : Xt = f (t)}. Since we
allow for arbitrarily complex history-dependent stopping rules, the quitting rule which is
A’s best response to an arbitrary τ will also be a complex history-dependent quitting rule.

Since we have dropped a number of constraints (i.e., all non-threshold quitting rules),
the solution to RSMN will provide an upper bound on the value to R of the full problem
SM. Thus if our solution to RSMN satisfies the constraints of SM, then the solution to
RSMN solves the SM. Note that we are not restricting the solution of RSM to be a threshold
policy. Instead, we are only checking that A has no incentive to deviate to a threshold
quitting rule rather than following R’s recommendation.

We can now use Lemma 18 from the Appendix in order to transform our primal problem
RSMN into the dual problem. We can construct an associated Lagrangian with Lagrange
multipliers {λ(Xi)}i ∈Rn−

L = E[e−rτ (dτ
eZτ − 1
1 + eZτ

|Z0]

+
∑
i

λ(Xi)[E[e−r(τ∧τ(Xi ))(1(τ < τ(Xi))dτ +
c
r

)|Z0]−E[e−rτ (dτ +
c
r

)|Z0]]

For an appropriate choice of {λ(Xi)}i , the solution to the associated Lagrangian will
solve the primal problem RSM ′ and we will have compelementary slackness conditions

∀ i, λ(Xi)[E[e−r(τ∧τ(Xi ))(1(τ < τ(Xi))dτ +
c
r

)|Z0]−E[e−rτ (dτ +
c
r
|Z0]] = 0

We will decompose the problem into the region in which A has positive continuation
value and the region in which A has a continuation value of zero. We denote this contin-
uation value for R of the mechanism which delivers a continuation value of zero to A by
H(Xt), which is defined formally as
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H(Xt) = sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Zt]

subject to

RDP (τ,dτ ) ∀Xi ∈ XTN s.t.Xi < Xt E[e−r(τ∧τ(Xi ))(dτ1(τ(Xi) > τ)− c
r

)|Zt] ≤ E[e−rτ (dτ +
c
r

)|Zt]

P K(0) E[e−rτ (dτ +
c
r

)|Zt] =
c
r

where we have added a promise keeping constraint P K(0) which ensures that the expected
utility of A for continuing until R rejects is zero. We postpone deriving the mechanism
which delivers H or what values the function H takes.

With the problem in an unconstrained form, we can use techniques from the single
decision-maker stopping problem to find the optimal policy which solves the dual problem.
The following Lemma allows us to establish the optimality of a “local” static-threshold rule:
the approval threshold stays constant until some lower threshold is reached.

Lemma 2. For all N , the solution to RSMN is a static threshold approval policy until Xt reaches
the first binding constraint X1 for the first time. The continuation value for R at τ(X1) is H(X1).

Lemma 2 establishes the optimality of the initial stationary regime in RSMN : This
result doesn’t contradict our earlier result that static thresholds are non-optimal: as we
show below, the mechanism in the second regime will not turn out to be a static threshold
mechanism. A key thing to note is that the value of H is independent of the history up
until time τ(X1). What happens after τ(X1) is completely bundled into the value H and
therefore doesn’t affect the choice of R before τ(X1) except through the value of H .

We must now solve for the optimal mechanism in the second regime (i.e. that which
solves the problem which deliver H(X1)).

Lemma 3. As N →∞, the stopping rule in the second regime is given by the dynamic approval
threshold τ = τ(B(Mt))∧ τ(b∗(0)) and dτ = 1(τ = τB(Mt)) where B(Mt) = B(Mt).

The proof of the Lemma mirrors that of Lemma 2. The difference is that when we are
trying to solve for the optimal mechanism which deliver R payoff H(X1) (and A a payoff of
zero), we have added a promise keeping constraint to dynamic participation constraints.
The difficulty lies in that we are evaluating promise keeping at 0, which is a boundary
condition (since A can never be given a payoff less than 0). To apply the techinques we used
to prove the “local” optimality of static-threshold rules in Lemma 19, we can setup and
solve an appropriate approximating problem in which we replace P K(0) with a promise

21



keeping constraint to deliver A a utility of ε. We define a relaxed problem dropping all non-
threshold quitting constraints and again use a Lagrangian approach to find that threshold
approval rules are “locally” optimal-i.e., the optimal policy will again be a static threshold
policy Bε2 until Zt reaches Bε2 or some bε2, where A receives zero expected utility conditional
on reaching bε2. Repeating the same approximation at b2, we can derive a series of threshold
{bεi } such that the approval threshold is static and a function of the lowest bi which has been
reached. By taking ε→ 0, we get the optimal mechanism which solves for H(X1) when
using the constraint set XTN . We can then take N →∞ and show that the bis get arbitrarily
close. In the limit MX

t is equal to the highest bi which has not been reached.
Having derived the solution to RSMN , we need to check that the solution to the relaxed

problems solves the full problem SM as N →∞.

Lemma 4. Let (τN ,dNτ ) be the solution to RSMN and (τ,dτ ) = limN→∞ (τN ,dNτ ). Then (τ,dτ )
is a solution to SM.

The Lagrangian approach helps us see the qualitative features of the optimal mechanism,
that the current approval threshold is a function only of MX

t . In order to derive the exact
form of B(MX

t ), we have to do a bit more work outside of the Lagrangian formulation.
To understand why B(Mt) = B(MX

t ), we first argue that B(Mt) is an upper bound on
B(Mt). Imagine that B(Mt) > B(Mt)+α (for some α > 0) and assume that B(Mt) is continuous.
Suppose that Zt =Mt. We know that when Zt =Mt, it must be that A is indifferent between
continuing and quitting. Therefore the expected payoff to A is the same as if he decided to
quit whenever his beliefs reach Zt − δ. Since A’s utility is strictly decreasing in the approval
threshold, the payoff that A expects from waiting to quit until Mt − δ is bounded above by
a static threshold mechanism with approval threshold Bm =min{B(M) :M ∈ [Mt ,Mt − δ]}.
This utility given by the upperbound is V (Bm,Mt − δ,Mt). However, we can note that

V (Bm,Mt − δ,Mt) + k < V (B(Mt),Mt − δ,Mt) ≈ 0

Since the current approval threshold is drifting monotonically downward, it is clear
that there should be some point at which it will stop. Since R will get a negative payoff for
approval at any Z < 0, it will be optimal to stop the downward drift only when B(Mt) = 0,
which is equivalent to rejection at Z = b∗(0). Clearly the approval threshold should never
drift below zero (since R would be guaranteeing herself a negative payoff) and should never
stop strictly above zero (since the option value of continuing experimentation by decreasing
the approval threshold is still strictly positive).

The optimal mechanism leads to an interesting result that the approval threshold drifts
downward with MX

t . This means that for lower MX
t , the probability of Type I error is

increasing.
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Proposition 2. There exists T , T̄ such that for all t1 < T and t2 > T̄ , the probability of type I
error conditional on approval at time t1 is less than the probability of type I error conditional on
approval at time t2.

The result stands in contrast to the single-decision maker problem in which the prob-
ability of type I error is constant across approval times. It also gives us some observable
predictions. It tells us that projects that are approved rapidly should be expected to be
good more often than projects that take a long time to be approved. In many contexts this
fits a natural intuition. If an assistant professor receives tenure very quickly, he is more
likely to be judged to be of high quality than if he took a long time to receive tenure.

4.4 No Commitment

We also consider the case in which R cannot commit to the approval rule. First, we need
specify what quitting means in this environment. We consider several set-ups for what
happens when the agent stops experimenting:

• 1. A can irrevocably quit experimenting at any time t and R can approve at any time
after the agent quits.

• 2. A can irrevocably quit experimenting at any time t and R cannot approve after A
has quit.

• 3. A can temporarily stop experimenting at any time. While A is not experimenting,
A pays no flow cost and R can approve at any time.

We might naturally wonder how much is gained by allowing the principal to commit to
the approval rule. If we restrict attention to Markov Perfect Equilibrium using the belief Zt
as the state variable (as is standard in the literature), then the answer is quite a lot.

Proposition 3. There exists a pair (B,b) such that R only at time τ(B) and A quits at time
τ(b). In set-up 1., B > 0 while in set up 2, B = 0 and b = b∗(0) and A quits experimenting
when Zt < (b,B). The value of experimentation to R is strictly less than under one- or two-sided
commitment.

Set-up 1 corresponds to the model of Kolb (2016). Note that in set-up 2, R doesn’t
benefit from experimentation at all: if she approves, she is either approving at Zt = 0 (which
is her myopic threshold) or is approving immediately at Z0. The agent is able to benefit
from quitting as soon as he knows that R will approve in the subsequent subgame.
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However, the restriction to Markov Perfect Equilibrium has a lot of bite. As the follow-
ing proposition shows, if we allow for general Nash equilibrium, we find that the optimal
mechanism under one-sided commitment can be implemented without commitment. Com-
mitment, in the case of symmetric information and one-sided commitment, is not needed
in order to implement R’s second-best mechanism.

Proposition 4. Under set-up 3, the optimal mechanism under one-sided commitment can be
implemented as an equilibrium.

Note that the optimal mechanism under one-sided commitment is “renegotiation-
proof.” Since the threshold is only decreasing downward and A strictly prefers a downward
movement of the threshold, A would never agree to another mechanism which raised the
threshold.

4.5 Comparison of Commitment Structures

The reduction of commitment from two- to one-sided commitment leads to very different
mechanisms. Because R doesn’t have to consider dynamic participation constraints under
two-sided commitment, she is able to “smooth” out distortions. The Lagrangian approach
makes it clear how the static nature of the constraints makes the solution a threshold based
policy.

Borrowing financial options terminology, we can see that under two-sided commitment,
the optimal mechanism satisfies the record-setting news principle-i.e., a decision (either
approval or rejection) happens only at the infimum or supremum of the realized path of Xt.
However, dynamic participation constraints in the one-sided commitment case lead to a
loss of the record-setting news principle. Since the approval threshold is decreasing over
time, it will happen with positive probability that approval happens at an Xt < sups Xs.

5 Asymmetric Information

We now allow for πA to to take on a binary realization πA ∈ {π`,πh} where π` < πh.
Translating into log-likeliehood space, we will call the case when A begins with prior
Z0 = Z` = log( π`

1−π` ) the low type of A (who we refer to as `) and when A begins with the
prior Z0 = Zh = log( πh

1−πh ) as the high type of A (who we refer to as h). We let p(Zi) be the
ex-ante probability of type Zi .

We split time t = 0 into three “instances”: {0−,0,0+}. At time t = 0−, A is given a signal
which conveys some information about the state. Without loss of generality, we assume
that the signal is equal to his posterior about ω, i.e., his the signal s = πA. We will focus
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on the case when πA ∈ (0,1). In many applications this is the more realistic assumption
than πA ∈ {0,1}. R knows that A receives a signal, but the realization of the signal is private
information to A. Then, at time t = 0, A can send a message m ∈M = {h,`} to R, after which
R can publicly commit to a mechanism. Finally, at time t = 0+ a public news process begins.
We can think of this public news process as the outcome of some noisy experiments that R
requires A to perform (e.g., conducting clinical trials).

We now redefine a stopping mechanism to account for the private information of the
agent.

Definition 8. A stoppingmechanism is a menu {(τ i ,diτ )}i=h,` such that τ i is an F Xt -measureable
stopping rule and diτ is an F Xt measureable decision rule which takes value 0 or 1 and R imple-
ments (τ i ,diτ ) when she receives message m = i.

Definition 9. A stopping mechanism is incentive compatible if for all i,

E[e−rτ
i
(diτ +

c
r

)|Zi] ≥ E[e−rτ
j
(djτ +

c
r

)|Zi]

With asymmetric information, there are two competing forces at play, R must balance
two contrasting goals. She must design a menu which is discerning and not too likely
to approve low types. On the other hand, she would like to approve high types more
quickly. However, these two forces will typically be in competition: offering higher approval
standards for low types than high types makes it more attractive for low types to claim to be
high types. How can R design a mechanism that allows him to approve high types quicker
while still disincentivizing low types from claiming to be high types? As we will see, the
degree of commitment (one- or two-sided) is crucial for determining the best way to do this.
Under two-sided commitment, R can threaten low types with prolonged experimentation
as the evidence becomes negative which will be enough to dissuade deviation. However,
with one-sided commitment such a threat is no longer credible: the low type always has his
outside option available. Instead, R will sometimes offer a fast-track mechanism, in which
h is initially given a lower approval threshold, but also a high “failure” threshold. If the
evidence reaches the “failure” threshold first, then the approval threshold jumps up, from
which it slowly drifts back down as a function of MX

t . This jump in the approval threshold
acts a punishment to dissuade ` from claiming to be h. That the optimal mechanism
here depends only on Mt here is interesting: a similar mechanism to that which works
to incentivize A in the symmetric case also serves to disincentivize A from misreporting
his type. The mechanism also shows how R “backloads distortions.” The lower approval
threshold makes imitating h more attractive for `. In order to dissuade `, R creates the
probability of a one-time increase in the approval threshold. Because ` and h have different
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beliefs about the probable path of Xt, ` views the increase as more likely than h does.
Therefore, R can introduce the distortions (increasing the approval threshold) in such a
way as to decrease `’s payoffs differentially than h’s payoffs.

When we are considering the effects of A misreporting his type, the beliefs, the beliefs
of A and R will be different. Note that because initial beliefs enter linearly into Zt, after any
realization of Xt, the beliefs of A and R (when A misreports his type) will be different by
∆z := Zh −Z`.

5.1 Two-Sided Commitment

Formally, R’s problem under two-sided commitment is given by

sup(τ i ,diτ )i=`,h

∑
i=`,h

E[e−rτ
i
diτ
eZτi − 1

1 + eZτi
|Zi] · p(Zi)

subject to

P (Zi) E[e−rτ
i
(diτ +

c
r

)|Zi] ≥
c
r

IC(Zi ,Zj ) E[e−rτ
i
(diτ +

c
r

)|Zi] ≥ E[e−rτ
j
(djτ +

c
r

)]Zi]

Proposition 1. The optimal mechanism under two-sided commitment is a menu of static-
threshold stopping rules.

The assumption of two-sided commitment is the same as in Guo (2016). Even though
the problems being considered are somewhat different, we find that threshold rules are
optimal (similar to her results).

With two-sided commitment, we actually find that the h type’s incentive constraint
is the binding one. Because R can make ` commit to experiment past the threshold at
which `s expected continuation value becomes negative, R can punish ` by increasing
experimentation on for low beliefs (which also increases R’s utility). This force is strong
enough so that R can always find a way to dissuade ` from claiming to be h.

Proposition 2. The high type is always made to experiment longer-i.e., bh > b`. If bh , −∞, then
IC(Zh,Z`) and P (Z`) are binding.

5.2 One-Sided Commitment

We must reforumlate the standard participation and incentive constraints to dynamic
nature of incentives under one-sided commitment. To do this we will need to define a
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dynamic version of incentive compatibility in the same nature as we defined dynamic
participation constraints. Incentive constraints for type i’s value of reporting to be type j
must take into account that i also considers the value of a deviation where he may choose
to quit early.

With this in mind, we write the mechanism design problem with asymmetric informa-
tion as

(AM) sup(τ i ,diτ )i=`,h

∑
i=`,h

E[e−rτ
i
diτ
eZτi − 1

1 + eZτi
|Zi] · p(Zi)

subject to

DP (Zi) supτ i′ E[e−r(τ
i∧τ i′ )(diτ1(τ i ≤ τ i

′
) +

c
r

)|Zi] ≤ E[e−rτ
i
(diτ +

c
r

)|Zi]

DIC(Zi ,Zj ) supτ i′ E[e−r(τ
j∧τ i′ )(djτ1(τ j ≤ τ i

′
) +

c
r

)|Zi] ≤ E[e−rτ
i
(diτ +

c
r

)|Zi]

We include supτ ′ inDIC(Zi ,Zj ) to convey the fact that i is comparing correctly declaring
his type to be i to the maximum payoff he could get from reporting to be type j.

We begin by looking at what the optimal mechanism is when DIC(Z`,Zh) is binding
and DIC(Zh,Z`) is slack. That this would arise seems intuitive: the incentives of R and A
are more closely aligned when A’s beliefs are higher. As we will show later, this intuition is
correct if Zh is high enough.

Let V` be the utility that ` gets from truthfully declaring his type. Then our problem of
determining the optimal high type mechanism is given by

(AMh) sup(τ i ,diτ )i=`,h E[e−rτdτ
eZτ − 1
1 + eZτ

|Zh]

subject to

DP (Zh) supτ ′ E[e−r(τ∧τ
′)(dτ1(τ ≤ τ ′) +

c
r

)|Zh] ≤ E[e−rτ (dτ +
c
r

)|Zh]

DIC(Z`,Zh) supτ i′ E[e−r(τ∧τ
′)(djτ1(τ ≤ τ ′) +

c
r

)|Z`] ≤ V` +
c
r

We will perform a similar proof technique as in the symmetric information case. First,
we will drop all but a finite number of threshold quitting rules (XTN ) from DP and DIC.
This allows us to define a relaxed version of AMh which we call RAMh

N .
As in the symmetric mechanism, we can decompose the mechanism into two parts: the

optimal mechanism up until the time at which, if ` had deviated and declared himself to
be h to R, ` would decide to quit (`’s time of first indifference) and the optimal mechanism
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which induces ` to quit at that point. The optimal mechanism which induces ` to quit will
not necessarily be reject and thus the expected payoff of the optimal mechanism which
induces ` to quit when the evidence reaches Xt will have a positive value Hh(Xt) given by

Hh(Xt) = sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Zt]

subject to ∀Xi ∈ {Xj ∈ XTN : Xj < Xt}

RDP (τ,dτ ) E[e−r(τ∧τ(Xi ))(dτ1(τ(Xi) > τ) +
c
r

)|Zt] ≤ E[e−rτ (dτ +
c
r

)|Zt]

P K(0) E[e−r(τ∧τ(Xi ))(dτ1(τ(Xi) > τ) +
c
r

)|Zt −∆Z ] ≤ c
r

By using a similar approach as in Lemma 19, we arrive at the conclusion that static
threshold strategies solve AMh.

Lemma 5. The solution to RAMh
N is given by a stationary threshold Bh1 until Xt reaches either

Bh1 or bh1. If Xt = bh1, then the optimal stopping rule after τ(bh1) is the solution to Hh(X1).

Once bh1 is reached, R must induce ` to quit. There are many ways in which the optimal
mechanism could induce ` to quit while still providing incentives for h to experiment. For
example, the mechanism could set a high static threshold above B(Xt ,Zt −∆z). Since h is
more optimistic about the state (and thus believes that approval is more likely), this could
be done in such a way as to strictly induce ` to quit and h to experiment.

It is important to note that while the mechanism must induce ` to quit, the payoff
relevant beliefs are those of h. It may be that by inducing ` to quit, the mechanism will be
setting a stricter approval policy that R would like to given that the true beliefs are h. If
this is the case, then we would like to “loosen” the approval policy over time while making
sure to do in such a way as to not violate the earlier incentives for ` to quit. We verify that
this intuition is correct in the following Lemma. First though, we define some notation:

b∗i (B,X) := argmaxb V (B,b,X,Zi)

Bi(X) := min{B : b∗i (B,X) = X}

b∗h(B,Xt) (b∗`(B,Xt)) is the threshold at which a high (low) type would quit when facing a
static approval threshold is B, the current evidence level is Xt and A’s beliefs are Zh (Z`).
Bi(X) is the lowest approval threshold which would induce type i to quit at evidence level
X.
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Lemma 6. The optimal mechanism which solves Hh(Xt) when the current evidence is Xt is given
by a dynamic threshold policy τ = τ(Bh(MX

t ))∧ τ(b(Zh)) and dτ = 1(τ = τ(Bh(MX
t ))) where

Bh(MX
t ) =


B`(M

X
t ) MX

t ∈ [b∗`(B
2
h,M

X
t ),Xt]

B2
h MX

t ∈ [b∗h(B2
h,M

X
t ),b∗`(B

2
h,M

X
t ))

Bh(MX
t ) MX

t ∈ [b∗h(−Z0σ
φ ,MX

t ),b∗h(B2
h,M

X
t )]

When DIC(Zh,Z`) is slack, B2
h is the same as in the symmetric case with belief Zh

This second stage of the optimal mechanism consists of several regimes:

• Punishment Regime: After exiting the initial stationary regime, the mechanism
enters a “punishment” regime which punishes any ` type which claims to be h. The
fact that Bh(MX

t ) = B`(M
X
t ) ensures that ` does indeed want to quit. R would like

to decrease the approval threshold as quickly as possible and we show that B`(M
X
t )

provides the best way to do this while maintaining prior incentives for ` to quit.

• Second Stationary Regime: When MX
t = b∗`(B

∗,MX
t ) the approval threshold is at a

point at which R would optimally choose when she knows A to be the high type. At
this point, R can keep the approval threshold constant, which still provides satisfies
the prior incentives for ` to quit.

• Incentivization Regime: IfMX
t = b∗h(B∗,MX

t ), then hmust be incentivized to continue
experimenting. As in the symmetric case, the optimal way to do this is to set the
approval threshold to be Bh(MX

t ).

Because R rejects only when the evidence reaches reach b∗h(
−Z0σ
φ ,MX

t ) (i.e., when the
approval threshold is at the point such that Zt = 0), this implies that there is no distortion
at the end of experimentation. DICs for h never cause R to reject earlier that would be
optimal in the absence of incentive constraints. This comes about because the ` always has
more pessimistic beliefs that h and thus there is always a way to deliver incentives for ` to
quit that don’t involve rejection.

Having found what the optimal mechanism is for h, we must also explore what the
optimal mechanism for ` is. We will consider when DIC(Zh,Z`) is not binding. Suppose
that the mechanism must deliver utility V` to the low type correctly declaring his type.
Then the mechanism design problem is given by
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sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z`]

subject to

DP (Z`) supτ ′∈T E[e−r(τ∧τ
′)(dτ1τ ′>τ −

c
r

)|Z`] ≤ E[e−rτ (dτ +
c
r

)|Z`]

P K(V`) E[e−rτ (dτ +
c
r

)|Z`] = V`

Except for the additional promise keeping constraint P K(V`), this is identical to the
symmetric information mechanism. We should expect that the optimal mechanism for `
is qualitatively the same as the symmetric information mechanism, which turns out to be
correct.

Lemma 7. The optimal mechanism for ` satisfies P K(V`,Z`) when DIC(Zh,Z`) is slack is given
by a dynamic approval threshold B`(Mt), which is defined as

Bh(MX
t ) =

B`1 MX
t ∈ [b∗`(B

`
1,M

X
t ),0)

B`(M
X
t ), MX

t ∈ [b∗`(−
Z0σ
φ ,MX

t ),b∗`(B
`
1,M

X
t ))

for some B`1 ∈R and B`1 is less than it would be in the symmetric information case.

Both ` and h receive an initial stationary regime. Qualitatively, the features of the
second stage are mostly determined by the initial static phase. We are interested in how
these static phases compare for h,`. Is it that h is offered a lower approval threshold than `?
While it seems intuitive, lowering the approval threshold also introduces other distortions
into the mechanism through the DIC constraints. Additionally, the earlier ` is rejected, the
lower the optimal approval threshold is for `.

Theorem 2. When DIC(Z`,Zh) is binding and DIC(Zh,Z`) is slack, the optimal mechanism is
given by a stopping rules τi = τ(Bi(MX

t ))∧ τ(b(Zi)) and diτ = 1(τ = τ(Bi(MX
t ))) where Bi(MX

t )
are as in Theorem 1. Let (Bi1,b

i
1) be the thresholds of the stationary regimes. Then Bh1 ≤ B

`
1 and

bh1 > b
`
1 if Bh1 < B

`
1.

• Low Type Monotonicity: The mechanism for ` closely resembles that of the symmet-
ric mechanism in that the approval threshold will only drift downwards.

• High Type Jump: If bh1 > b
`
1, then the approval threshold for h takes a jump upwards

when Xt reaches bh1 for the first time, after which it is monotonically decreasing in
MX
t . This jump upward occurs in order to incentivize a deviating ` type to quit.
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• No Distortion At The End: R never rejects (for either type) at an evidence level higher
than she would in the symmetric mechanism.

• Some Distortion At The Start: The stationary approval threshold is at least as high
as it would be in the symmetric mechanism. If R were to decrease Bh1 to B∗h, then the
punishment regime would have to be more likely to satisfy DIC(Z`,Zh).

We refer to the mechanism given to h when bh1 > b
`
1 as a fast-track mechanism. We

can think of h as being offered a two stage trial: the first trial (a fast-track) is given a low
approval threshold, but also a “failure” threshold. If the failure threshold is reached first,
then the trial is declared a failure. However, instead of rejecting, R allows h to immediately
begin a new trial, only now h is given a higher approval threshold.

This fast-track mechanism illustrates the tradeoffs that must be made under one-sided
commitment: in order to grant h a lower approval threshold, R must deter deviations by
` by increasing the failure threshold. This lower approval threshold is more likely to be
reached by h than `, which allows R to profitably backload distortions in the “failure”
threshold.

B

b

Z` Zh

B`

b`

Bh

bh

` deviation

We now illustrate some of the ideas behind why the optimal mechanism must take this
nested form. For ` when declaring himself to be ` or h, his utility is completely determined
by the initial static thresholds. We know that b`1 = b∗`(B

`
1)-i.e., R keeps the stationary regime

until the point at which ` reaches his point of first indifference. We begin by noting that if
Bh1 > B

`
1, then we cannot have DIC(Z`,Zh) binding. The reason for this is clear: since the

static approval threshold is higher (which strictly reduces utility to `), ` must gain from
experimenting longer on the low end of beliefs when claiming to be h. But since ` when
truthfully declaring his type is allowed to experiment up until the point at which he would
choose to quit, there is nothing to be gained (relative to truthfully declaring his type) for `
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from claiming to be h. If Bh1 < B
`
1, then it must be that bh < b`. Otherwise ` could profitably

deviate by claiming to be h and quitting when beliefs drift down from initial beliefs by b`.
In this way, ` is able to maintain the same lower width as truthfully declaring himself to be
` while also achieving a lower approval threshold Bh.

Theorem 2 assumes that DIC(Zh,Z`) is slack and DIC(Z`,Zh) is binding. This will
not always be the case: there are examples in which DIC(Zh,Z`) must bind. This comes
about due to the incentivization regime for `. This incentivization regime decreases the
approval threshold enough to keep ` indifferent. Since h has a higher belief than ` after
observing Xt, h (when reporting to be `) will still have positive continuation value when in
`’s incentivization regime, creating incentives for h to imitate `. However, we can show that
if Zh is high enough, then the incentives of R and h are sufficiently aligned and DIC(Z`,Zh)
binding is sufficient for DIC(Zh,Z`) to be slack.

Proposition 5. For each Z`, ∃Z̄ such that ∀Zh > Z̄, DIC(Zh,Z`) is slack and DIC(Z`,Zh) is
binding in the optimal mechanism.

Although numerical examples show that DIC(Zh,Z`) will be slack for Zh which are not
limiting cases, it will still be the case that for some Zh, we will have DIC(Zh,Z`) binding in
the optimal solution. This comes about because of the incentivization regime: by lowering
the approval threshold for `, R also makes `’s mechanism more attractive to h. As we will
show, under the assumption that Z` < 06, we can verify that the optimal mechanism will
look very similar to that of Theorem 2. When both DICs bind, then the optimal mechanism
will introduce distortion into `s mechanism by inducing early rejection.

Lemma 8. The optimal mechanism for ` when Z` < 0 and DIC(Zh,Z`) is binding is given by a
dynamic approval threshold B`(Mt), which is defined as

Bh(MX
t ) =

B`1 MX
t ∈ [br ∨ b∗(B`1,Z`),0)

B(MX
t ) MX

t ∈ [br ,br ∨ b∗(B`1;Z`))

for some (B`1,br ) ∈R2.

When we consider the h mechanism when both constraints are binding, we are simply
adding a P K constraint to deliver some value Vh to h when he correctly declares his type.
This changes very little about the arguments of Lemma 7. In all, we summarize the optimal
mechanism in this case below:

6We assume that Z` < 0 in order to verify that the optimal mechanism doesn’t take an unreasonable form.
The assumption that Z` < 0 is reasonable given our application. Many drugs that make it to clinical trials are
abandoned or not approved (see ???? (?????))
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Theorem 3. The optimal mechanism for ` when Z` < 0 and both DIC constraints are binding is
given by Lemma 8 and the optimal mechanism for h is given by Lemma 6.

There are two main differences between the mechanism when DIC(Zh,Z`) is binding
and when it is slack. When it binds, R may reject ` early (i.e.- br > b(0)) in order to lower
incentives for h to imitate `. Additionally, it may be that the second stationary regime
for h starts below R’s symmetric information solution (so that R can provide additional
incentives for h while maintaining `’s incentive to quit).

Qualitatively, this is very similar to the mechanism when DIC(Zh,Z`) is slack, except
now we have distortion at the bottom by introducing early rejection when the evidence
reaches br . Note that we may have a completely static threshold mechanism if br ≥ b∗(B`1,Z`).
In this case, the solution with DIC(Zh,Z`) binding and no DP (Z`) constraints results in a
solution in which the rejection threshold is high enough that ` never finds it optimal to quit
early.

5.3 Quantitative Derivation

Our qualitative analysis of the optimal mechanism leaves us with very few parameters over
which we must optimize. For high enough Zh, the optimal mechanism is completely pinned
down by the choice of the thresholds of the stationary regime (Bi1,b

i
1)i=h,`. WhenDIC(Zh,Z`)

is binding, we have consider three parameters each for h,`: (Bh1,b
h
1,B

h
2) and (B`1,b

`
1,br ). Given

the richness of the available stopping rules, this reduction is somewhat remarkable and
makes the problem computationally tractable. The choice of these thresholds will pin down
the rest of the mechanism. To find the optimal stationary regime thresholds, we must find
what the continuation value to R is of reaching bi .

Define the function j(Z,M,br) (we will drop br for notational convenience) to be the
expected value of the principal when the current minimum of evidence isM, current beliefs
are Z and the project is rejected when beliefs reach br . Using our previous formulas for
discounted threshold crossing probabilities, it is easy to see that

j(Z,M) = Ψ (B(M),M,Z)
eZ − eZ−B(M)

1 + eZ︸                              ︷︷                              ︸
Expected utility from approval before Zt =M

+ψ(B(M),M,Z)
eZ + eZ−M

1 + eZ︸                          ︷︷                          ︸
Discounted prob. M hit first

· j(M,M)︸   ︷︷   ︸
Continuation value at M

Thus if we can calculate j(M) := j(M,M), the value of j(Z,M) follows immediately. In
order to calculate j(M), we use the principle of normal reflection7: ∂j(Z,M)

∂M |Z=M = 0

7See Peskir and Sharyaev (2006) for a derivation.
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We can then take the derivative with respect to M to get

∂j(Z,M)
∂M

= B′(M)[ΨB
eZ − eZ−B(M)

1 + eZ
+Ψ

eZ−B(M)

1 + eZ
+ψB

eZ + eZ+M

1 + eZ
j(M)]

+Ψb
eZ − eZ−B(M)

1 + eZ
+ψb

eZ + eZ−b

1 + eZ
j(M)

−ψ e
Z−M

1 + eZ
j(M) + j ′(M)ψ

eZ + eZ−M

1 + eZ

Evaluating the above equation at Z =M and using that ∂j(Z,M)
∂M |Z=M+ = 0, we get

j ′(M) = j(M)[
1

1 + eM
−ψb]−

eM − eM−B(M)

1 + eM
Ψb

where we note that Ψ (B(M),M,M) = 0 and ψ(B(M),M,M) = 1. This, coupled with the
boundary condition j(br ) = 0 gives the ODE which describes j(M).

Lemma 9. The value of experimentation when the current evidence level isMX
t and the minimum

is Mx
t is given the unique solution to j ′(MX

t ).

For `, we know that the approval mechanism is strictly decreasing in M and so this
equation gives the value of the incentivization for `.

For h, we know that there may be a second stable regime. In this case, we must solve two
differential equations: one for the value in the punishment regime and one for the value
of incentivization regime. The ODE for the incentivization regime for h is identical to the
ODE for ` with br = b(Zh). For the ODE describing the punishment regime, the differential
equation is identical but the boundary condition is given by

j1(M) = Ψ (B2
h,b

2
h ,M)

eM − eM−B2
h

1 + eM
+ψ(B2

h,b
2
h ,M)

eM − eM−b2
h

1 + eM
j2(M)

Since the incentivization regime for ` gives a positive value for h, we must find an
equation for the value of `’s incentivizaiton regime for h (which we will call v`). By a similar
argument as for j(Z,M), we get a differential equation for v`(M) as

v′(M) = [1−ψBB′(MX ,MZ )−ψb](
c
r

+ v(MZ )))− [ΨBB
′(M) +Ψb]

eM
Z+∆z + eM−B(M)

1 + eMZ+∆z
(1 +

c
r

)

with boundary condition v(br ) = 0.
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Similarly, we must find the value to h from the beginning of punishment regime in the
mechanism for h. A similar argument establishes the differential equation to be as the one
above. We evaluate the boundary condition as the beginning of the second stationary regime.
Since the expected continuation payoff to h upon reaching the beginning of incentivization
regime is zero, we can evaluate the utility to h of the secondary stationary regime using only

the static thresholds. This gives a boundary condition of v(M) = Ψ (B2
h,b

2
h ,M)(1+ c

r ) e
M+eM−B

2
h

1+eM +

ψ(B2
h,b

2
h ,M) cr

eM+eM−b
2
h

1+eM .
This allow us to write out the mechanism design problem as

max(Bi ,bi ,bi )i=h,`

∑
i=h,`

Ψ (Bi ,bi)
eZi − e−Bi

1 + eZi
+ψ(Bi ,bi)

eZi + e−bi

1 + eZi
ji(bi ,bi)

subject to

DIC(Zi ,Zj ) : Ψ (Bi ,bi)
eZi − e−Bi

1 + eZi
+ψ(Bi ,bi)

eZi + e−bi

1 + eZi
vi(bi ,bi)

≥ Ψ (Bj ,bj )
eZi − e−Bj

1 + eZi
+ψ(Bj ,bj )

eZi + e−bj

1 + eZi
vi(bj ,bj )

DP (Zi ,Zj ) : bi ≥ b∗(Bi)

5.4 Comparative Statics

In the symmetric information case, increasing the cost of A unambiguously hurts R, since it
induces R to provide more incentivization and reject at a higher beliefs (∂b

∗(0)
∂c > 0). However,

with asymmetric information this is no longer the case. Additional costs may be of use as a
screening device.

Proposition 6. Under both one- and two-sided commitment, as c→ 0 the optimal mechanisms
for h,` converge to value of the single decision maker problem for R with prior p(Zh)πh + (1−
p(ZH ))π`.

The cost of experimentation to A is necessary for the creation of separating stopping
rules. When c becomes small, it becomes increasingly harder for R to induce ` to quit while
still inducing h to keep experimenting. With the absence of monetary transfers, costly
experimentation provides a tool for screening of types. When information is asymmetric,
increasing the cost forA is always harmful for R (since it inducesA to quit sooner). However,
with asymmetric information, the effect of cost increases is no longer monotonic. In fact,
some costs can be useful in that it allows R to screen types better.
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Proposition 7. The value of the optimal mechanism is non-monotonic in c when A has private
information. WhenA has no information, the value of the optimal mechanism is strictly decreasing
in c.

Consider the limiting cases of c and suppose that Zh >> 0 >> Z` and p` is large. As
c→ 0, the value of the optimal mechanism converges to that of the first-best symmetric
information problem with prior phπh + (1− ph)π`: all information that A possess is wasted.
If we look at low values of µ

σ , then the value of the optimal mechanism goes to zero as
immediate approval is not optimal and it takes a long time for beliefs to change up to a
level at which R would approve. On the other side, as c becomes large, R can always find a
mechanism which separates h and `. R could find a mechanism which rejects ` immediately
but for which h still participates and is approved with positive probability. This will bound
the value of the optimal mechanism above zero.

Additionally, we might wonder whether or not it is beneficial to R for A to have private
information aboutω. On one hand, if R can make use of A’s information, then it is beneficial
to R. On the other hand, private information introduces information rents and can add
distortions into R’s optimal mechanism. Which effect is greater is not ex-ante obvious. To
answer this question, we compare the case of symmetric information to the case in which
A has perfect information about ω. The following proposition shows that asymmetric
information is in fact better for R.

Proposition 8. Suppose that the prior on ω is π0. Then the value to R of optimal mechanism
under asymmetric information in which A learns ω is higher than the value to R of the optimal
mechanism under symmetric informaton.

6 Conclusion

In this paper, we present a model of a hypothesis testing problem with Brownian learning
and agency concerns. We examine how different commitment structures lead to different
approval policies. The mechanism we find under one-sided commitment features a history
dependent approval threshold, yet can still be solved for in a tractable way and can be
written as a function of the minimum of the Brownian motion. We find that the optimal
mechanism when the agent posses no private information takes the form of a monotonically
decreasing approval threshold. This solution to an optimal stopping problem is novel in
the literature and illustrates the use of Lagrangian techniques in stopping problems with
agency concerns. We are able to fully characterize the solution in the problem with no
adverse selection and are able to pin down the solution to the adverse selection problem up
to the choice of a small number of constants.
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We also apply the model to the case when the agent has private information. The
optimal solution takes the form of a fast-track mechanism: high types are offered a low
starting approval threshold, but if the evidence gets too bad, the approval threshold jumps
up, entering a punishment phase in which it drifts back down slowly.

Our findings has implications for the design of clinical drug trials. Companies can be
offered a menu of trials to choose from: a standard option and a fast-track option. The
fast-track option can be implemented using a trial with a low approval threshold and high
“failure” threshold. Conditional on reaching the “failure” threshold, the company must
conduct a new trial in which the regulator requires more evidence prior to approval. By
using a menu of options, the regulator is able to elicit and use the private information of the
firms to approve good drugs more quickly. Given the long delays from drug development
to market place entry, strategies to speed good drug approval can have large welfare
implications.
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7 Appendix

7.1 Properties of V ,J

Lemma 10. b∗(B,Z) is increasing in Z and decreasing in B.

Proof. b∗(B,Z) solves the following first order condition

0 = Ψb
eZ + e−B

1 + eZ
(1 +

c
r

) + [ψb
eZ + eb

1 + eZ
+ψ

eb

1 + eZ
]
c
r

⇒ 0 =
∂Ṽ
∂b

= (R2 −R1)(1 +
c
r

)(eZ + e−B)eB+b

+[(R1e
R1(B+b) −R2e

R2(B+b))(eZ + eb) + (eR1(B+b) − eR2(B+b))eb]
c
r

First we show that ∂b∗(B,Z)
∂B < 0. Taking the derivative of the first order condition with

respect to B, we have

∂2Ṽ
∂b∂B

= (R2 −R1)(1 +
c
r

)(eZ + e−B)eB+b − (R2 −R1)(1 +
c
r

)e−BeB+b

+[(R2
1e
R1(B+b) −R2

2e
R2(B+b))(eZ + eb) + (R1e

R1(B+b) −R2e
R2(B+b))eb]

c
r

=
c
r

(R2
1e
R1(B+b) −R2

2e
R2(B+b))(eZ + eb)− c

r
eb(R1e

R2(B+b) −R2e
R2(B+b))

−(R2 −R1)eb(1 +
c
r

) + (
c
r

(R2e
R2(B+b) +R1e

R1(B+b))(eZ + eb) +
c
r
eb(eR2(B+b) + eR1(B+b)))

where the last line follows from substituting in the first-order condition.
If we group terms with eb, we have (using the fact that R1 +R2 = 1 and R1 < 0 < R2)

= (R2 −R1)(1 +
c
r

) +
c
r

(eR2(B+b)(R2 − 1)2 − eR1(B+b)(R1 − 1)2)

≥ c
r

[eR2(B+b)(R2 − 1)2 − (e−R1(B+b)(R2
1 − 2R1 − 1) + 2R1 − 1]

≥ C[eR2(B+b)(R2 − 1)2 − (eR1(B+b)R2
1 + 2R1(1− eR1(B+b))− 1− eR1(B+b)]

≥ c
r

[eR2(B+b)(R2 − 1)2 − eR1(B+b)R2
1]

=
c
r

(eR2(B+b) − eR1(B+b))(R2 − 1)2 > 0

If we group terms with eZ , a similar manipulation gives us
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(eR2∆ − eR1∆)(R2 − 1)2 > 0

Therefore we must have ∂2Ṽ
∂B∂b < 0.

By the second-order condition, we know that ∂2Ṽ
∂b2 < 0 and so we must have ∂b∗(B,Z)

∂B < 0.

To show that ∂b∗(B,Z)
∂Z > 0, we note that ∂V

∂b is proportional to

(R2 −R1)(1 +
c
r

)(eZ + e−B)eB+b + [(R1e
R1(B+b) −R2e

R2(B+b))(eZ + eb) + (eR1(B+b) − eR2(B+b))eb]
c
r

which is negative as b→∞. Since V is single-peaked in b, it must be that b∗(B,Z) is
finite.

Lemma 11. For each Z, ∃BZ such that b∗(B,Z) = 0 ∀B ≥ BZ and b∗(B,Z) is finite for all B > 0.

Proof. Suppose not. Then for all B we must have b > 0 (since b∗(B,Z) is decreasing in B) and
hence the first order conition must hold.

(R1 −R2)(1 +
c
r

)(eZ + e−B)eB+b = [(R1e
R1(B+b) −R2e

R2(B+b))(eZ + eb) + (eR1(B+b) − eR2(B+b))eb]
c
r

As B→∞, we have

(R1 −R2)(1 +
c
r

)eZ+B+b ≈ [−R2e
R2(B+b)(eZ + eb)− eR2(B+b)eb]

c
r

⇒ R1((1 +
c
r

)eZ+B+b − eR2(B+b) c
r

) ≈ R2((1 +
c
r

)eZ+B+b − eR2(B+b) c
r

)

which is clearly a contradiction since R1 < 0 < R2.
To show that b∗(B,Z) is finite, we note that as b→∞, the first-order condition becomes

(R1 −R2)(1 +
c
r

)(eZ+B+b + eb) ≈ [−R2e
R2(B+b)(eZ + eb)− eR2(B+b)eb]

c
r

⇒ R1((1 +
c
r

)eZ+B+b − eR2(B+b) c
r

) ≈ R2((1 +
c
r

)eZ+B+b − eR2(B+b) c
r

)
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Lemma 12. J is single peaked in B for a fixed b.

Proof. Fix a rejection threshold b and let the derivative of R’s utility with respect to B be
zero. We can then show that the second derivative is negative, since the second derivative is

∂2J

∂B2 =
(R2

2e
−R2∆ −R2

1e
−R1∆)(e−R1∆ − e−R2∆) + (R2

2e
−R2∆ −R2

1e
−R1∆)2

(e−R1∆ − e−R2∆)2
(1− e−B)

+e−B[
R1e

−R1∆ −R2e
−R2∆

e−R1∆ − e−R2∆
− 1− (R2 −R1)(R2e

R2∆ −R1e
R1∆)

(eR2∆ − eR1∆)2
H(Zr )(1 + e−b)

≤
(R2

2e
−R2∆ −R2

1e
−R1∆)

e−R1∆ − e−R2∆
(1− e−B)− R1e

−R1∆ −R2e
−R2∆

e−R1∆ − e−R2∆
e−B + e−B[

R1e
−R1∆ −R2e

−R2∆

e−R1∆ − e−R2∆
− 1]

=
(R2

2e
−R2∆ −R2

1e
−R1∆)

e−R1∆ − e−R2∆
(1− e−B)− e−B

=
(R2

2e
−R2∆ −R2

1e
−R1∆)

e−R1∆ − e−R2∆
(eZ − e−B) +

R1e
−R1∆ −R2e

−R2∆

e−R1∆ − e−R2∆
(1− e−B)

=
e−R2∆(R2 − 1)R2 − e−R1∆(R1 − 1)R1

e−R1∆ − e−R2∆
(1− e−B)

≤ 0

where ∆ = B− b and we use the assumption that ∂J
∂B = 0.

Lemma 13. V is single peaked in b.

Proof. We will show that if ∂V
∂b = 0, then ∂2V

∂b2 < 0.
We know that

∂V
∂b

= [(R1−R2)eB+b(eZ+e−B)+C(R2e
R2(B+b)−R1e

R1(B+b)(eZ+eb)−Ceb(eR2(B+b)−eR1(B+b))]
ψ

eR2(B+b) − eR1(B+b)

so
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∂2V

∂b2 = [−(R1 −R2)eB+b(eZ + e−B)−C(R2e
R2(B+b) −R1e

R2(B+b))eb −C(R2
2e
R2(B+b) −R2

1e
R1∆)(eZ + eZ

′−b)

+CeZ
′−b(eR2(B+b) − eR1(B+b)) +Ceb(R2e

R2(B+b) −R1e
R1(B+b))]

ψ

eR2(B+b) − eR1(B+b)

= [−(R1 −R2)eB+b(eZ + e−B)−C(R2
2e
R2(B+b) −R2

1e
R1(B+b))(eZ + eb) +Ceb(eR2(B+b) − eR1(B+b))]

ψ

eR2(B+b) − eR1(B+b)

= [C(R2e
R2(B+b) −R1e

R1(B+b))(eZ + eb)−Ceb(eR2(B+b) − eR1(B+b))

−C(R2
2e
R2(B+b) −R2

1e
R1(B+b))(eZ + eb) +Ceb(eR2(B+b) − eR1(B+b))]

ψ

eR2(B+b) − eR1∆

= [C(R2e
R2(B+b) −R1e

R1(B+b))(eZ + eb)−C(R2
2e
R2(B+b) −R2

1e
R1(B+b))(eZ + eb)]

ψ

eR2(B+b) − eR1(B+b)

which is less than zero because ψ
eR2(B+b)−eR1(B+b) > 0 and

R2e
R2(B+b) −R1e

R1(B+b) < R2
2e
R2(B+b) −R2

1e
R1(B+b)

Lemma 14. V has a single inflection point in X.

Proof. Suppose that ∂V
∂X = 0 which implies that

Need to Finish

Lemma 15. V is strictly decreasing in B.

Proof. if we take the derivative of V with respect to B, we get

∂V
∂B

= Ψ [(
R1e

−R1(B+b) −R2e
−R2(B+b)

e−R1(B+b) − e−R2(B+b)
· e
Z + e−B

1 + eZ
− e−B

1 + eZ
)(1 +

c
r

) +
c
r

(R2 −R1)e−(B+b)

e−R1(b+B) − eR2(b+B)
· e
Z + eb

1 + eZ

⇒ ∂V
∂B

≤ 0

⇐⇒ 0 ≥ [(R1e
−R1(B+b) −R2e

−R2(B+b))(eZ + e−B)− (e−R1(B+b) − e−R2(B+b))e−B](1 +
c
r

)

+
c
r

(R2 −R1)e−(B+b)(eZ + eb)

Focusing on terms with eZ , we have
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[R1e
−R1(B+b) −R2e

−R2(B+b)](1 +
c
r

) +
c
r

(R2e
−(B+b) −R1e

−(B+b))

≤ R1(e−R1(B+b) − e−(B+b))−R2(e−R2(B+b) − e−(B+b))

≤ 0

Focusing on the remaining terms, we have

[(R1e
−R1(B+b) −R2e

−R2(B+b))e−B − (e−R1(B+b) − e−R2(B+b))e−B](1 +
c
r

) +
c
r

(R2e
−(B+b) −R1e

−(B+b))eb

= [(R1 − 1)e−R1(B+b) − (R2 − 1)e−R2(B+b)](1 +
c
r

)e−B +
c
r

(R2e
−B −R1e

−B)

= e−B((e−R1(B+b)(R1 − 1)−R1 − (e−R2(B+b)(R2 − 1) +R2))
c
r

+ [(R1 − 1)e−R1(B+b) − (R2 − 1)e−R2(B+b)])

≤ 0

Hence we can conclude that ∂V
∂B < 0

We first present a technical lemma which will be of use during the following proofs.

Lemma 16. Let Zt be a solution to dZt = µ(Zt)dt+σ (Zt)dWt, where Wt is a standard Brownian
motion. Then for the problem

sup(τ,dτ ) E[e−rτ (dτg1(Zτ ) + (1− dτ )g2(Zτ ))|Z0]

There exists a solution of the form τ = inf {t : Zt < (Zr ,Za)]} with dτ = 1Zτ=Zi for Zi = Za or
Zi = Zr .

Proof. We can note that conditional on stopping, it will be optimal to choose dτ = 1 ⇐⇒
g1(Zτ ) ≥ g2(Zτ ). We can define g(Zτ ) =max{g1(Zτ ), g2(Zτ )} and rewrite the optimal problem
as

supτ E[e−rτg(Zτ )|Z0]

Because the process Zt is Markov and we have exponential discounting (and hence time
consistency), the principle of optimality tells us that Zt is a sufficient state variable for the
optimal policy from time t onward.

Let us define the value function when current beliefs are Z as

U (Z) := supτ E[e−rτg(Zτ )|Z]
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As is standard, we can describe τ be a continuation region C = {Z :U (Z) > g(Z)} and a
stopping region D = {Z :U (Z) = g(Z)}. Although the continuation region could take a non-
interval form (e.g., C = [Z1,Z2]∪ [Z3,Z4] where Z1 ≤ Z2 ≤ Z3 ≤ Z4), we are only concerned
with the continuation region around Z0. Since the diffusion process is continuous, for
any C which depends only on Z, there is another continuation region C′ = (Z ′1,Z

′
2) which

delivers the same expected value when starting at Z0 (where Z ′1 = supZ{Z ∈ ∂C : Z ≤ Z0} is
the highest boundary of C which is below Z0 and Z ′2 = infZ{Z ∈ ∂C : Z ≥ Z0} is the lowest
boundary point of C above Z0). Therefore, there is an optimal stopping policy in the form
of a threshold strategy around Z0.

Lemma 17 (Duality). Let {φi}ni=1 and Φ be bounded F Xt measurable functions and define C :=
{(τ,dτ ) : E[φi(τ,ω,dτ )|Z0] ≤ 0 ∀i = 1, ...,n}. Suppose that ∃(τ,dτ ) such that E[φi(τ,ω,dτ )|Z0] <
0 ∀i = 1, ...,n. Then there is no duality gap, i.e.

sup(τ,dτ )∈C E[Φ(τ,ω,dτ )|Z0] = infλ∈Rn
−
sup(τ,dτ )E[Φ(τ,ω,dτ )|Z0] +

n∑
i=1

λiE[φi(τ,ω,dτ )|Z0]

and the infimum is obtained by some finite λ ∈ Rn−. Additionally, we have complementary
slackness conditions:

∀i, λi ·E[φi(τ,ω,dτ )|Z0] = 0

Proof. See Balzer and Janben (2002) or Dokuchaev (1996).

7.2 Symmetric Information

7.2.1 Two-Sided Commitment

We begin with a proof of proposition 1.

Proposition 1. The solution to the symmetric information problem with two-sided commitment
takes the form of a static-threshold policy. If b , −∞, then the optimal approval and rejection
thresholds (B,b) are the solution to the following equations:

ΨB(eZ0 − e−B) + e−BΨ
ΨB(eZ0 + e−B)− e−BΨ + c

r+cψB(eZ0 + e−b)
=

Ψb(eZ0 − e−B)
Ψb(eZ0 + e−B)− c

r+cψe
−b + c

r+cψb(e
Z0 + e−b)

Ψ (eZ0 + e−B) +
c

r + c
ψ(eZ0 + e−b) =

c
r + c

(1 + eZ0)

if b = −∞, then B = log(R2
R1

).
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Proof. We start by proving the conditions of Lemma 18 are met. To see this, note that the
stopping policy τ = ε and dτ = 1 will keep the participation constraint slack for ε small
enough. The other conditions of Lemma 18 are easily checked.

By applying Lemma 18, we can use a Lagrangian in order to turn the primal problem:

sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z0]

subject to

P : E[e−rτ (dτ +
c
r

)|Z0]− c
r
≥ 0

into the dual problem

L = E[e−rτdτ
eZτ − 1
1 + eZτ

|Z0] +λ[
c
r
−E[e−rτ (dτ +

c
r

)|Z0]]

= E[e−rτ (dτ (
eZτ − 1
1 + eZτ

−λ)−λc
r
|Z0]−λc

r

By Lemma 17, we can verify that the solution is of a threshold form. Let (B,b) be the
approval and rejection threshold respectively. Then we know that the primal problem must
solve

L = Ψ
eZ0 − eZ0−B

1 + eZ0
+λ[

c
r
−Ψ eZ0 − eZ0−B

1 + eZ0
(1 +

c
r

)−ψe
Z0 − eZ0−b

1 + eZ0

c
r

]

Taking first-order conditions are rearranging yields the equality in the proposition.

Now we move to the proof of Corollary ??

Proof. TBF

7.2.2 One-Sided Commitment

We begin the proof of Theorem 1 by first solving the relaxed problem RSM ′.

Lemma 18. For allN , the solution to RSMN is a static threshold approval policy until Xt reaches
the first binding constraint X1 for the first time. The continuation value for R at τ(X1) is H(X1).
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Proof. We can now convert the constrained problem RSM ′ into the dual form

L = E[e−rτdτ
eZτ − 1
1 + eZτ

|Z0]

+
∑
i

λ(Xi)[E[e−r(τ∧τ(Xi ))(1τ<τ(Xi )dτ +
c
r

)|Z0]−E[e−rτ (dτ +
c
r

)|Z0]]

with appropriate complementary slackness

∀ i, λ(Xi)[E[e−r(τ∧τ(Xi ))(1τ<τ(Xi )dτ +
c
r

)|Z0]−E[e−rτ (dτ +
c
r
|Z0]] = 0

Let X1 =max{Xi : λ(Xi) > 0} be the first binding constraint. We will argue that as long
as Xt has not crossed X1, the optimal policy by R must be a threshold policy. To see this,
define the value of the optimal stopping rule after crossing X1 as

sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z1]

+
∑
Zi,Z1

λ(Zi)[E[e−r(τ∧τ(Xi ))(1τ<τ(Zi )dτ +
c
r

)|Z1]−E[e−rτ (dτ +
c
r
|Z1]]

−λ(X1)E[e−rτ (dτ +
c
r

)|Z1]]

Clearly the solution to this problem is independent of the previous history ht and
hence the value of this objective function above can be written as a function KR(X1) which
depends only on X1. By the principle of optimality, we know that our solution to the
original problem will solve KR(X1) after X1 has been crossed. We can focus on the region
where X1 has not yet been hit and treat KR(X1) as the continuation value for reaching X1.
The solution to our Lagrangian must solve

sup(τ,dτ )E[1τ<τ(X1)[e
−rτdτ

eZτ − 1
1 + eZτ

+
∑
i

λ(Xi)[e
−rτ (dτ +

c
r

)− e−rτ (dτ +
c
r

)]]

+1τ>τ(X1)e
−rτ(X1)[KR(X1) +λ(X1)

c
r

]|Z0]

= sup(τ,dτ )E[1τ<τ(X1)e
−rτ (dτ

eZτ − 1
1 + eZτ

) +1τ>τ(X1)e
−rτ(Z1)[KR(X1) +λ(X1)

c
r

]|Z0]

Because we assume that the filtration is right-continuous, we can assume that the value

of reaching X1 is G(X1) :=max{ eZ
1−1

1+eZ1 ,0,KR(X1)+λ(X1) cr }. The optimization problem is then
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sup(τ,dτ )E[1τ<τ(X1)e
−rτ (dτ

eZτ − 1
1 + eZτ

) +1τ>τ(X1)e
−rτ(X1)G(Z1)|Z0]

Consider a diffusion process with dXt = µ(Xt)dt + σ (Xt)dWt where

µ(Xt) =

 e
Zt−1

1+eZt ·
2µ2

σ2 if Xt > X1

0 if Xt ≤ X1
and σ (Xt) =

4µ2

σ2 if Xt > X1

0 if Xt ≤ X1

and gain functions

g1(Xt) =

 e
Zτ−1

1+eZτ if Xt > X1

G(X1) if Xt ≤ X1
and g2(Xt) =

0 if Xt > X1

G(X1) if Xt ≤ X1

and consider the following optimization problem:

sup(τ̃ ,d̃τ )E[e−rτ̃ (d̃τg1(Xτ ) + (1− d̃τ )g2(Xτ )|Z0]

By applying Lemma 17,, we can conclude that the optimal policy is a threshold policy
with thresholds (B1,b1): approve if Xt ≥ B1, move to H(Xr) if Xt ≤ b1, or move to G(X1) if
X1 > b1 and X1 is hit before B1.

It is easy to see that upon reaching X1, the optimal stopping rule is to stop immediately
since G(X1) ≥ 0 so τ ≥ τ(X1)⇒ τ = τ(X1). This allows us to write out (putting in function
forms for g1, g2) the above optimization problem as

sup(τ̃ ,d̃τ )E[1τ<τ(X1)e
−rτ̃ d̃τ

eZτ − 1
1 + eZτ̃

+1τ̃≥τ(X1)e
−rτ(X1)G(Z1)|Z0]

which is identical to the relaxed problem. Therefore the solution to relaxed problem
must also be a static threshold policy until X1 is reached.

Suppose that in the optimal stopping rule X1 has been reached and the process has
not yet been stopped. The optimal stopping rule from this point on is that which deliver
KR(X1). Looking at the definition of KR(X1), we can see that the optimal stopping rule will
be the same regardless of the time t at which X1 is reached. Since the stopping rule above
X1 is a threshold rule and the stopping rule when X1 has been reached is a doesn’t depend
on when X1 is reached, we can conclude that the continuation payoff when beliefs reach X1

(for the first time) to A from following (τ,dτ ) does not depend on the time t at which X1

was first reached . Let KA(X1) be the continuation payoff to A from stopping rule (τ,dτ )
when Z1 has just been reached for the first time. Because it doesn’t depend on the time at
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which X1 was reached, KA(X1) is a constant. We can write A’s expected utility from (τ,dτ )
as

E[e−rτ (dτ +
c
r

)|Z0] = E[e−r(τ∧τ(X1))(1τ<τ(X1)dτ +
c
r

+1τ≥τ(X1)K
A(X1))|Z0]

= E[e−r(τ∧τ(X1))(1τ<τ(X1)dτ +
c
r

)|Z0] +E[e−r(τ∧τ(X1))1τ≥τ(X1)K
A(X1))|Z0]

By complementary slackness, we know that

E[e−r(τ∧τ(X1))(1τ<τ(X1)dτ +
c
r

)|Z0] = E[e−rτ (dτ +
c
r

)|Z0]

= E[e−r(τ∧τ(X1))(1τ<τ(X1)dτ +
c
r

+1τ≥τ(X1)K
A(X1))|Z0]

= E[e−r(τ∧τ(X1))(1τ<τ(X1)dτ +
c
r

)|Z0] +E[e−r(τ∧τ(X1))1τ≥τ(X1)K
A(X1))|Z0]

⇒ 0 = E[e−r(τ∧τ(X1))1τ≥τ(X1)K
A(X1))|Z0]

= KA(X1)E[e−r(τ∧τ(X1))1τ≥τ(X1)|Z0]

⇒ KA(X1) = 0

Therefore upon reaching the first binding constraint, the continuation value of A must
be zero. This means that the optimal stopping rule once X1 is reached will be the optimal
stopping rule which gives A zero expected utility. This delivers a value of H(X1) and hence
the optimal stopping rule (τ,dτ ) will take the form of an approval threshold B and a lower
threshold b, where reaching the lower threshold shifts the optimal stopping rule that that
which delivers H(b).

We can now show that KR(X1) =H(X1). Since any (τ,dτ ) which satisfies the constraints
of H is admissible in KR, we must have KR(X1) ≥ HR(X1). Let (τ1,d1

τ ) be the optimal
stopping rule for KR(X1). We want to show that (τ1,d1

τ ) is admissible in the maximization
problem of H(X1). From the fact that KA(X1) = 0, we know that (τ1,d1

τ ) satisfies P K(0). To
check that the RDP conditions are met, we note that for Xi < X1 we have

E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)|Z0] = E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ > τ(X1))|Z0]

+E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ ≤ τ(X1))|Z0]

= E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ > τ(X1))|Z0]

+E[e−rτ (dτ +
c
r

)1(τ ≤ τ(X1))|Z0]
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and similarly

E[e−rτ (dτ +
c
r

)|Z0] = E[e−rτ (dτ +
c
r

)1(τ > τ(X1))|Z0]

+E[e−rτ (dτ +
c
r

)1(τ ≤ τ(X1))|Z0]

Therefore, we can rewrite the initial RDP constraint at Z0 as

E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ > τ(X1))|Z0] +E[e−rτ (dτ +
c
r

)1(τ ≤ τ(X1))|Z0]

≤ E[e−rτ (dτ +
c
r

)1(τ > τ(X1))|Z0] +E[e−rτ (dτ +
c
r

)1(τ ≤ τ(X1))|Z0]

⇒ E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ > τ(X1))|Z0] ≤ E[e−rτ (dτ +
c
r

)1(τ > τ(X1))|Z0]

Using the Markov property of Xt and the fact that (τ1,d1
τ ) doesn’t rely on the history up

until τ(X1), we have that

E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ > τ(X1))|Z0] = E[e−rτ(X1)
E[e−r(τ

1∧τ(Xi ))(d1
τ1(τ1 ≤ τ(Xi)) +

c
r

)|Z1]|Z0]

= E[e−rτ(X1)|Z0]E[e−r(τ
1∧τ(Xi ))(d1

τ1(τ1 ≤ τ(Xi)) +
c
r

)|Z1]

and similarly for E[e−rτ (dτ + c
r )1(τ > τ(X1))|Z0]. Together, we get that

E[e−r(τ∧τ(Xi ))(dτ1(τ ≤ τ(Xi)) +
c
r

)1(τ > τ(X1))|Z0] ≤ E[e−rτ (dτ +
c
r

)1(τ > τ(X1))|Z0]

⇒ E[e−rτ(X1)]E[e−r(τ
1∧τ(Xi ))(d1

τ1(τ ≤ τ(Xi)) +
c
r

)|Z1] ≤ E[e−rτ(X1)]E[e−rτ
1
(d1
τ +

c
r

)|Z1]

⇒ E[e−r(τ
1∧τ(Xi ))(d1

τ1(τ ≤ τ(Xi)) +
c
r

)|Z1] ≤ E[e−rτ
1
(d1
τ +

c
r

)|Z1]

Therefore the solution (τ1,d1
τ ) satisfies allRDP constraints and hence is in the admissible

stopping rules for H . Therefore, we conclude that H(X1) ≥ KR(X1), which together with
our previous observation implies that KR(X1) =H(X1).

We have assumed that R approves at B1 and moves to G(X1) at b1 = Z1. In order to
justify this, we note that rejection at both B,b implies immediate rejection (since otherwise
the DP constraint for τ(X0) would be binding). We also note that it will never be optimal
to approve at B and b. We also note that it will never be optimal to approve at both B

and b; if eZ
1−1

1+eZ1 > 0, then immediate approval at t = 0 dominates waiting. To see this, we
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translate B,b into the π belief space as cutoffs (πB,πb). It is standard to show that the
value function of these two cutoffs satisfies J(π0) = (π0(1−π0))2J ′′(π0). Since J(π0) > 0 by
eZ

1−1
1+eZ1 > 0, we must have J ′′(π0) > 0. Let α = πB−π0

πB−πb so that π0 = απB + (1−α)πb. Using the
fact that J(πB) = 2πB − 1 and J(πb) = 2πb − 1, we have

J(π0) = J(απB + (1−α)πb)

< αJ(πB) + (1−α)J(πb)

= α(2πB − 1) + (1−α)(2πb − 1) = 2π0 − 1

Therefore immediate approval is better than waiting.

If eZ
1−1

1+eZ1 < 0, then it is better to move to H(Z1) at Z1 since H(Z1) ≥ 0.

Next, we show that the solution to this relaxed problem is indeed as a solution to the
full problem SM ′.

The result is stated in the next Lemma.

Lemma 3. As N →∞, the stopping rule in the second regime is given by the dynamic approval
threshold τ = τ(B(Mt))∧ τ(b∗(0)) and dτ = 1(τ = τB(Mt)) where B(Mt) = B(Mt).

Proof. We want to now find what the optimal policy is once we have reached the point at
which A is being promised 0 utility. For many values of Z it will not be optimal to let A quit
(see the example, where reducing the approval threshold can lead to higher utility for R).

Suppose that we have just reached the binding constraint Xi . Then R’s problem can be
written as

sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z i]

subject to RDP

PKI(0)

where, in addition to the dynamic participation constraint we add a promise keeping
interval constraint8.

8The use of a promise keeping interval rather than a simple promise keeping constraint (e.g., that expected
utility of A must be equal to x) is done only for technical reasons to allow for the application of Lemma 18. One
can think of P KI in terms of a simple promise keeping constraint and the logic of the proof will go through.
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P KI(x) : E[e−rτ (dτ +
c
r

)|Z i]− c
r
∈ [
x
2
,
3x
2

]

Define the feasible set of (τ,dτ ) which delivers utility in [x2 ,
3x
2 ] when beliefs start at Z0

to be

C(x,Z i) := {(τ,dτ ) : RDP , P KI(x) both hold}

We can then write R’s problem as

sup(τ,dτ )∈C(0,Z i ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z i]

Let (τε,dετ ) = argsup(τ,dτ )∈C(ε,Z i )E[e−rτdτ
eZτ−1
1+eZτ |Z

i] be the solution to these “nearby” prob-
lems and define (τ0,d0

τ ) := limε→0 (τε,dετ ).
We first argue that the limiting stopping rule is indeed optimal. For the sake of

contradiction, suppose that (τ0,d0
τ ) was not optimal. Let (τ∗,d∗τ ) be the optimal stopping

rule in C(0,Z i). Then we know that

E[e−rτ
∗
d∗τ
eZτ∗ − 1
1 + eZτ∗

|Z i] > E[e−rτ
0
d0
τ
eZτ0 − 1
1 + eZτ0

|Z i]

Consider a stopping rule which, at time 0, approves with probability ε and moves to
(τ∗,d∗τ ) with probability 1− ε. Since (τ∗,d∗τ ) ∈ C(0,Z i), this new stopping rule will deliver
utility ε and will be in C(ε,Z i). Since (τε,dετ ) was optimal in the problem with constraint
set C(ε,Z i), we know that

E[e−rτ
ε
dετ
eZτε − 1
1 + eZτε

|Z i] ≥ E[e−rτ
∗
d∗τ
eZτ∗ − 1
1 + eZτ∗

|Z i](1− ε) + ε
eZ

i − 1

1 + eZ i

Taking the limits of both sides as ε→ 0, we have that (using the Dominated Convergence
Theorem)

E[e−rτ
0
d0
τ
eZτ0 − 1
1 + eZτ0

|Z i] ≥ E[e−rτ
∗
d∗τ
eZτ∗ − 1
1 + eZτ∗

|Z i]

which is a contradiction. Therefore, it must be that (τ0,d0
τ ) is optimal.

What does (τ0,d0
τ ) look like? We first have to know what (τε,dετ ) look like. By using a

Lagrangian approach and then applying Lemma 19 (adding the P KI constraints doesn’t
qualitatively change the analysis), we get that (τε,dετ ) consists of a static approval threshold
B until beliefs hit some lower bound b, at which point the stopping rule delivers H(b). As
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ε→ 0, we will have b = X1 :=max{Xj ∈ XT : Xj < Xi}. By Lemma 15, V (B,b,X) has at most

one inflection point in X and ∂2V
∂X2 is bounded away from zero. Therefore, if b was further

below X1, then V (B,b,X1) < 0 for small ε, which would violate the dynamic participation
constraint for τ(X1).

We can repeat this argument for each time the mechanism delivers H(b). This tells us
that the optimal mechanism which delivers 0 utility to A is a series of approval thresholds
{Bi}Ni=1 and lower thresholds {bi}Ni=1 such that

• R approves if and only if beliefs reach Bi where Bi depends only on the highest bi
which has not yet been reached. We can write the current approval belief as BN (MX

t ).

• bi =max{Xj ∈ XT : Xj < bi−1}.

• The expected continuation payoff for A is zero when Xt reaches bi for the first time.

Now we take the limit of the mechanism which solves our relaxed problem as the grid
of thresholds in our constraint set XT approaches the continuum. To show such a limit
exits, we need to show that BN (MX

t ) has uniformly bounded variation for each N .
Define a function B̄(b,X) as the solution to V (B̄(b,X),b,X) = 0. At X = bi , we must have

BN (Xi) = B̄(bi+1,bi). By Lemma ??, B̄(b,X) is a well-defined and using the implicit function
theorem, B̄(b,X) is continuously differentiable. Therefore, we can find a K ∈R+ such that
for all Xi ∈ [X0,Y ] we have |BN (Xi)−BN (Xi+1)| < K |Xi −Xi+1|. For each N , the total variation
in BN (MX

t ) is

N∑
i=1

|BN (Xi)−BN (Xi+1)| ≤
N∑
i=1

K |Xi −Xi+1| = K(X0 −Y )

Since {BN (MX
t )}∞N=1 has uniformly bounded total variation and is uniformly bounded,

we can apply Helly’s Selection Theorem to conclude that B(MX
t ) := limN→∞ BN (MX

t ) exists.
We now want to argue that B(Mt) = B(Mt). Suppose this were not the case. We can apply

the theorem of the maximum to conclude that the optimal stopping rule which delivers
utility ε is continuous in Z0 and, taking the limit as ε→ 0, is continuous in Z0 when it
must deliver utility 0 to A. Thus we can conclude that if B(Mt) < B(Mt)− 2δ for a positive
measure of Mt and some small δ > 0, then B(M ′t) < B(M ′t)− δ for M ′t close to Mt. Therefore
we can assume that there exists an interval [Z0,Z0 −α] over which B(Mt) < B(Mt) − δ for
Mt ∈ [Z0,Z0 −α].
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Let B̄ = max{B(Mt) : Mt ∈ [Z0,Z0 − α]}. Then the utility for A is bounded below by a
stopping rule which uses B̄ as long as Mt ∈ [Z0,Z0 − α]. The utility of this lower bound
when starting at Z0 can be written as

Ψ (B̄,−α,0)(
eZ0 + e−B̄

1 + eZ0
)(1 +

c
r

) +ψ(B̄,−α,0)
eZ0 + eα

1 + eZ0

c
r
− c
r

where we use that if the minimum reaches −α, the continuation payoff must be zero.
Since A’s utility is single peaked in the lower threshold, then for a low enough α, we will
have B̄ < B(Z0)− δ and the above expression will be strictly positive. This is a contradiction,
so it cannot be that b > b∗(B)− δ.

Finally, we should check that (τ0,d0
τ ) is a valid stopping rule and is in C(0,Z0). To verify

that this stopping rule yields zero utility to `, we will show that beliefs will cross the lower
threshold immediately with probability one. To see this, suppose the contrary. Then by
Blumenthal’s 0-1 Law, we know that for A = {∃ε > 0, Zt ≥ Z0 ∀t ∈ [0,ε]}, we have P(A) = 1.
We can rewrite A as A = {∃ε > 0, Wt ≥ − e

Z0−∆z−1
1+eZ0−∆z

µ
σ t ∀t ∈ [0,ε]}. For small t, we must have

Wt ≥ − e
Z0−∆z−1

1+eZ0−∆z
µ
σ t, almost surely. But we know that Wt is distributed N (0, t), therefore with

positive probability we will have Wt < − e
Z0−∆z−1

1+eZ0−∆z
µ
σ t. Therefore, it must be that P(A) = 0,

which implies that for all ε > 0, we have that there is a t ∈ [0,ε) such that Wt < − e
Z0−∆z−1

1+eZ0−∆z
µ
σ t.

Therefore, the process crosses the lower boundary almost instantly and the expected payoff
to ` is zero.

To show that (τ0,d0
τ ) is a valid stopping rule, we note that Mt ∈ F Zt = σ (Zt) and that

{τ0 ≤ t} = ∪q∈Q∩[0,t]{Zt ≥ aS(Mt)} ∈ F Zt

Lemma 4. Let (τN ,dNτ ) be the solution to RSMN and (τ,dτ ) = limN→∞ (τN ,dNτ ). Then (τ,dτ )
is a solution to SM.

Proof. We need to verify that after any history ht, the continuation value for A is weakly
positive. Since the solution to the relaxed problem depends only on Xt ,M

X
t , we need only

check that E[e−rτ (dτ + c
r )|Zt]−

c
r ≥ 0.

First consider (Xt ,Mt) in the incentivization regime. By the fact that the continuation
value at Xt =Mt is zero, we know that the utility for A is given by V (B(Mt),Mt ,Xt). Using
the definition of B(Mt), this is weakly positive for all Xt.

Now consider (Xt ,M
X
t ) in the stationary regime. We know that the value for A in this

region is given by V (B1
h,b

1
h ,Xt). Since b1

h = b∗(B1
h,0), we know that V (B1

h,b
1
h ,Xt) will always

be weakly positive for Xt ∈ B1
h.
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Since the dynamic participation constratints are statisfied after all histories, the relaxed
problem RSM solves the full problem SM.

Proposition 2. There exists T , T̄ such that for all t1 < T and t2 > T̄ , the probability of type I
error conditional on approval at time t1 is less than the probability of type I error conditional on
approval at time t2.

Proof. For small T , the probability that Xt dips below b1 and returns to B(MX
t ) is neglig-

ble. Therefore the probability of type I error conditional on approval at t < T will be
approximately 1

1+eZ1 where Z1 = Z0 + ψ
σ B

1.

For large enough T̄ and t > T̄ , the probability that Xt has dipped below b1 is strictly
positive. Therefore there is a strictly positive probability that approval is happening when
Xt reaches B(MX

t ). Therefore the probability of type I error will be strictly below 1
1+eZ1 .

7.2.3 No Commitment

Proposition 3. There exists a pair (B,b) such that R only at time τ(B) and A quits at time
τ(b). In set-up 1., B > 0 while in set up 2, B = 0 and b = b∗(0) and A quits experimenting
when Zt < (b,B). The value of experimentation to R is strictly less than under one- or two-sided
commitment.

Proof. Set-up 1 follows directly from Kolb (2016), so let us focus on the case of set-up 2. Let
us check whether R or A has an incentive to deviate. A has no incentive to deviate. He is
quitting at his optimal level b∗(0) given R’s approval threshold and has no incentive to quit
early since R will not approve at any Zt < 0. Moreover, R will always approve at any Zt ≥ 0
whenever A has quit and so A will always quit experimenting immediately whenever Zt ≥ 0.
R also has no incentive to deviate; if he approves at Zt < 0 he earns a strictly negative payoff
while if he rejects early, he gets a payoff of zero (which is equal to his equilibrium payoffs).
Since A and R have no incentive to deviate, this is an equilibrium.

Proposition 4. Under set-up 3, the optimal mechanism under one-sided commitment can be
implemented as an equilibrium.

Proof. Suppose that R uses the mechanism from the case of one-sided commitment (τ∗,d∗τ )
and A uses the following strategy:

• Experiment until τ∗.
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• If d∗τ = 0, then stop experimenting and do not restart.

• If d∗τ = 1, then stop experimenting and do not restart.

We claim that this is an equilibrium. To see this, let’s first consider the incentives of R
to deviate. Suppose that the equilibrium calls for R to approve at time τ∗. If she doesn’t
approve, then the agent quits experiment at time τ∗ forever. Since no new learning occurs, R
has a strict incentive to approve immediately at τ∗ since Zτ∗ > 0. Suppose R had a profitable
deviation τ ′ such that τ ′ ≤ τ∗ and there is some history such that τ ′ approves strictly sooner
than τ∗.9 Than τ ′ will not violate any DP constraints (approving sooner would only slacken
the DP constraints), contradicting the optimality of τ∗. Therefore no such deviation can
exist.

Next, we consider the incentives of A to deviate from the proposed equilibrium. Note
that under the proposed approval rule, since all the DP constraints hold, A has no incentive
to quit early. If he were to quit early, R would believe that A will restart experimenting
immediately and therefore not find it optimal to approve. Moreover, A has an incentive to
stop experimenting at τ∗ since he believes that R will approve immediately. In the off-path
event that R doesn’t approve, A believes that R will approve in the next instant and has no
incentive to restart experimentation since it is costly and will not increase the probability
of approval.

Since neither A nor R have an incentive to deviate, (τ∗,d∗τ ) is indeed an equilibrium.

7.3 Asymmetric Information

7.3.1 Two-Sided Commitment

TBF

7.3.2 One-Sided Commitment

Lemma 5. The solution to RAMh
N is given by a stationary threshold Bh1 until Xt reaches either

Bh1 or bh1. If Xt = bh1, then the optimal stopping rule after τ(bh1) is the solution to Hh(X1).

Proof. As in the symmetric mechanism case, we define a relaxed problem in which we drop
all but a finite number of threshold quitting rule constraints (given by {Xi}Ni=1). We can
hypothesize that as long as ` continues to experiment, h will also continue to experiment.
Therefore, we relax the problem by dropping all h related participation constraints (we

9R will never find it profitable to reject earlier
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leave a promise keeping constraint in for in which h receives V 2
h if τ = τ(X1)). Since X1 is

the first binding constraint, our relaxed problem is equivalent to

sup(τ,dτ ) E[e−rτ (dτ
eZτ − 1
1 + eZτ

)|Zh]

subject to

RDIC(Z`,Zh) : ∀Xi ∈ {Xi}Ni=1 E[e−r(τ∧τ(Xi ))(1(τ ≤ τ(X1))dτ +
c
r

)|Zh −∆Z ] ≤ c
r

+W`

RDP (Zh) : ∀Xi ∈ {Xi}Ni=1 E[e−r(τ∧τ(Xi ))(1(τ ≤ τ(X1))dτ +
c
r

)|Zh] ≤ c
r

+Wh

P Kh(Vh) : E[e−rτ (dτ
c
r

)|Zh] ≥Wh +
c
r

with associated Lagrangian

L = E[e−rτ (dτ
eZτ − 1
1 + eZτ

|Zh]

+
N∑
i=1

λ`(Xi)[E[e−r(τ∧τ(Xi ))(1τ≤τ(Xi )dτ +
c
r

)|Z0 −∆Z ]− c
r
−V`]

+
n∑
i=1

λh(Xi)[E[e−r(τ(Xi )∧τ)(1τ≤τ(Xi )dτ +
c
r

)|Zh]−Vh]

+λPh [Wh +
c
r
−E[e−rτ (dτ +

c
r

)|Zh]]

One complication we face is that the expectation terms in the Lagrangian are taken
conditioning on different starting beliefs. It is not clear that the previous argument for a
threshold approval rule will apply. However, we can note that

λE[e−r(τ∧τ(Xi ))(1τ≤τ(Xi )dτ +
c
r

)|Zh −∆z] = λ
eZh−∆z

1 + eZh−∆z
E[e−r(τ∧τ(Zi ))(1τ≤τ(Xi )dτ +

c
r

)|ω = 1]

+ λ
1

1 + eZh−∆z
E[e−r(τ∧τ(Zi ))(1(τ ≤ τ(Xi))dτ +

c
r

)|ω = 0]

= λ
1 + eZh

1 + eZh−∆z
[
eZh

1 + eZh
E[e−r(τ∧τ(Xi ))e−∆z(1(τ ≤ τ(Xi))dτ +

c
r

)|ω = 1]

+
1

1 + eZh
E[e−r(τ∧τ(Zi ))(1(τ ≤ τ(Xi))dτ +

c
r

)|ω = 0]]

= λ̃E[e−r(τ∧τ(Xi ))(1(τ ≤ τ(Xi))dτ +
c
r

)
e−∆zeZτ∧τ(Xi ) + 1

1 + eZτ∧τ(Xi )
|Zh]
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where λ̃ := λ 1+eZh
1+eZh−∆z

. Thus by using a modified Lagrange multiplier, we can convert the
Lagrangian into a standard stopping problem, where there is a single expectation. This
allows us to write the Lagrangian as

L = E[e−rτ (dτ
eZτ − 1
1 + eZτ

|Zh]

+
N∑
i=1

λ̃`(Xi)[E[e−r(τ∧τ(Xi ))(1τ≤τ(Xi )dτ +
c
r

)
e−∆zeZτ∧τ(Xi ) + 1

1 + eZτ∧τ(Xi )
|Z0]− c

r
−V`]

+
n∑
i=1

λh(Xi)[E[e−r(τ(Xi )∧τ)(1τ≤τ(Xi )dτ +
c
r

)|Zh]−Vh]

+λPh [Wh +
c
r
−E[e−rτ (dτ +

c
r

)|Zh]]

Let X1 be the first binding constraint for `. Then by the same arguments as in Lemma
19, the value of continuing to R time τ(X1) is given by

KRh (X1) = sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z1]

+
∑
Xi<X1

λ̃`(Xi)[E[e−r(τ∧τ(Xi ))(1τ≤τ(Xi )dτ +
c
r

)
e−∆zeZτ∧τ(Xi ) + 1

1 + eZτ∧τ(Xi )
|Z1]− c

r
−V`]

+
∑
Xi<X1

λh(Xi)[E[e−r(τ(Xi )∧τ)(1τ≤τ(Xi )dτ +
c
r

)|Z1]−Vh]

+λPh [Wh +
c
r
−E[e−rτ (dτ +

c
r

)|Z1]]

It is natural to conjecture that `’s constraints will bind before h’s will. Let us drop all
constraints DP constraints for h above X1 (we will check that this valid below). This allows
us to write the Lagrangian prior to X1 as
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L =E[e−r(τ∧τ(X1))(1(τ < τ(X1))dτ
eZτ − 1
1 + eZτ

+1(τ ≥ τ(X1))KR(X1)

+1(τ < τ(X1))[
N∑
i=1

λ̃`(Xi)(e
−r(τ∧τ(Xi ))(dτ +

c
r

)
e−∆zeZτ∧τ(Xi ) + 1

1 + eZτ∧τ(Xi )
− c
r
−V`)

+
n∑
i=1

λh(Xi)(e
−r(τ(Xi )∧τ)(dτ +

c
r

)−Vh) +λPh (Wh +
c
r
− e−rτ (dτ +

c
r

))]

+1(τ(Xi) ≤ τ)λ̃(X1)e−rτ(X1) c
r
e−∆zeZ

1
+ 1

1 + eZ1 |Z1]

Let KAh := E[e−rτ (dτ + c
r )|Z

1]. We can use Lemma 17 and a similar argument to the
symmetric information case to conclude R uses a threshold strategy in which he approves if
Xt ≥ B and switches to the optimal stopping rule which deliver Hh(X1) if Xt ≤ X1.

From here, it is easy to verify that dropping the h DP constraints above X1 is without
loss. Since h is more optimistic that the state is good, his expected utility when an upper
approval threshold is used is higher than that of `, which is positive by assumption that X1

is the first binding constraint.

Lemma 6. The optimal mechanism which solves Hh(Xt) when the current evidence is Xt is given
by a dynamic threshold policy τ = τ(Bh(MX

t ))∧ τ(b(Zh)) and dτ = 1(τ = τ(Bh(MX
t ))) where

Bh(MX
t ) =


B`(M

X
t ) MX

t ∈ [b∗`(B
2
h,M

X
t ),Xt]

B2
h MX

t ∈ [b∗h(B2
h,M

X
t ),b∗`(B

2
h,M

X
t ))

Bh(MX
t ) MX

t ∈ [b∗h(−Z0σ
φ ,MX

t ),b∗h(B2
h,M

X
t )]

When DIC(Zh,Z`) is slack, B2
h is the same as in the symmetric case with belief Zh

Proof. Lets consider a slightly relaxed problem in which ` must receive less than ε utility
when initial beliefs are Z0. Our constraints are a bounded promise keeping constraint
(BPK`) which ensures that `, for any potential quitting rule, cannot get more than ε utility,
DPh constraints and a promise keeping constraint to verify that we deliver at least V 2

h utility
to h. These can be written as
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BPK`(ε,Z0) : ∀Xk ∈ {Xj}Nj=i E[e−r(τ(Xi )∧τ)(1τ≤τ(Xi )dτ +
c
r

)|Z i −∆Z ]− c
r
≤ ε

DPh(Z i) : ∀Xk ∈ {Xj}Nj=i E[e−r(τ(Xi )∧τ)(1τ≤τ(Xi )(dτ +
c
r

)|Z i] ≤ KAh +
c
r

P Kh(Z i) : E[e−rτ (dτ + (1− dτ )V 3
h +

c
r

)|Zh] ≥ KAh +
c
r

Suppose that BPK`(ε,Z0) is a binding constraint for some ε > 0 (note that this implies
that BPK`(ε′ ,Z0) will be binding for all ε′ ∈ (0,ε)). By applying the same argument as in the
previous Lemma, we have that the optimal mechanism will be a static approval threshold
until the first time that the next binding constraint X2 is reached. When X2 is reached, the
mechanism will solve Hh(X2,KA,2h ) for some KA,2h .

By employing a similar argument to the symmetric information case, we can conclude
that as ε→ 0, the optimal stopping rules converge to one where the approval threshold is
given by B`(M

X
t ).

Suppose that BPK`(ε,Z i) is not binding for all ε > 0 and let (τDIC,ε,dDIC,ετ ) be the
solution to the problem including DIC constraints when BPK`(ε,Z0) is not binding. Define
(τDIC ,dDICτ ) = limε→0(τDIC,ε,dDIC,ετ ). Let (τ ′ ,d′τ ) be the solution to

(τ ′ ,d′τ ) = argsup(τ,dτ )E[e−rτdτ
eZτ − 1
1 + eZτ

|Z i]

such that

DPh(Z i) :∀Xk ∈ {Xj}Nj=i E[e−r(τ(Xi )∧τ)(1τ≤τ(Xi )(dτ +
c
r

)|Z i] ≤ KAh +
c
r

P Kh(Z i) :E[e−rτ (dτh+
c
r

)|Zh] ≥ KAh +
c
r

Note that this problem is identical to that of the symmetric mechanism except for the
addition of the promise keeping constraint. If DIC(Zh,Z`) is not binding, then the promise
keeping constraint will be slack and the optimal mechanism will be equal to the solution
to the problem with symmetric information. When the promise keeping constraint is not
slack, then it is straightforward from our previous work to see that the solution will consist
of a stationary regime (with approval threshold B2) followed by an incentivization regime
with approval threshold Bh(M

X
t ). Once the incentivization regime has begun for h, the

value to R is identical to that of the symmetric information case. Hence the project will
continue until MX

t = b∗h(0).
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Lemma 7. The optimal mechanism for ` satisfies P K(V`,Z`) when DIC(Zh,Z`) is slack is given
by a dynamic approval threshold B`(Mt), which is defined as

Bh(MX
t ) =

B`1 MX
t ∈ [b∗`(B

`
1,M

X
t ),0)

B`(M
X
t ), MX

t ∈ [b∗`(−
Z0σ
φ ,MX

t ),b∗`(B
`
1,M

X
t ))

for some B`1 ∈R and B`1 is less than it would be in the symmetric information case.

Proof. When DIC(Zh,Z`) is slack, the problem of determining `’s mechanism is identical to
that of the symmetric mechanism except for the inclusion of P K`(V`). Following the same
steps as in the symmetric mechanism, we get that the optimal mechanism is a stationary
regime with static thresholds (B1

` ,b
1
` ) followed by an incentivization regime with a dynamic

approval threshold given by B(MX
t ,M

Z
t ) = B(MX

t ,M
Z
t ).

The only step we need to verify is that b1
` = b∗(MX

t ,M
Z
t ). Suppose for the sake of

contradiction that b1
` > b

∗(MX
t ,M

Z
t ). Intuively the DP constraints are slack since ` would

like to keep experimenting at b1
` . However, given our formulation, the DP constraints are

binding since threshold quitting rules τ(X) for X < b1
h are never reached. Hence, to get at

the idea that the DP constraints are not binding, we write down a relaxed version of the
relaxed problem

sup(τ,dτ ) E[e−rτdτ
eZτ − 1
1 + eZτ

|Z`]

subject to

RDP (Z`,ε) : supτ ′ E[e−r(τ
′∧τ)(1(τ ≤ τ ′)dτ +

c
r

)|Z`] ≤ E[e−rτ (dτ +
c
r

)|Z`] + ε

By applying the technique of Theorem 1, we can see that the solution will be a stationary
regime with static-thresholds (B1,ε

` ,b1,ε
` ) followed by an incentivization regime for any ε > 0.

It is easy to show that the Theorem of the Maximum applies here (as it did in the symmetric
mechanism) and we must have limε→0 b

1,ε
` = b1

` . However, for ε > 0 sufficiently small, we
will have all quitting rules slack. Hence, when we turn the problem into a Lagrangian, by
complentary slackness only the objective function will be left and the first-best solution for
R will solve the Lagrangian (and have b1,ε

` =∞). This is a contradiction as we must have
b1ε
` → b1

ε .

Theorem 2. When DIC(Z`,Zh) is binding and DIC(Zh,Z`) is slack, the optimal mechanism is
given by a stopping rules τi = τ(Bi(MX

t ))∧ τ(b(Zi)) and diτ = 1(τ = τ(Bi(MX
t ))) where Bi(MX

t )
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are as in Theorem 1. Let (Bi1,b
i
1) be the thresholds of the stationary regimes. Then Bh1 ≤ B

`
1 and

bh1 > b
`
1 if Bh1 < B

`
1.

Proof. We know that b1
` = b∗(B1

` ,Z`). Because ` receives zero expected utility conditional
on reaching b1

h, `’s expected utility is given by V (B1
` ,b

1
` ,Z`). First we want to show that

Bh ≤ B`. Suppose that DIC(Z`,Zh) is binding. For the sake of contradiction, suppose that
Bh > B`. The utility that ` gets from claiming to be h is bounded above by maxb V (B1

h,b,Z`).
Because b1

` = b∗(B1
` ,Z`), then the utility ` gets from truthfully reporting his type is given by

maxb V (B1
` ,b,Z`). By Lemma 16, we know that V is strictly decreasing in B. Therefore, we

have maxbV (B1
h,b,Z`) < maxbV (B1

` ,b,Z`), which contradicts DIC(Z`,Zh) binding.
Now suppose that br > b

1
` . Again let B1

h > B
1
` . Now consider the alternative mechanism

in which ` is given a stationary regime with B̃1
` = B1

h and b̃1
` = b1

h (with rejection at b̃1
` ).

Because this is not optimal, we must have

Ψ (B1
` ,br ,0)

eZ` − e−B1
`

1 + eZ`
≥ Ψ (B̃1

` , b̃
1
` ,0)

eZ` − e−B̃1
`

1 + eZ`
⇒ Ψ (B1

` ,br ,0) > Ψ (B̃1
` , b̃

1
` ,0)

Thus the probability of approval when ω =H in the stationary regime is higher for `
when reporting ` rather than h in the stationary regime. But, because the B1

` < B̃
1
` , we also

have that the probability of approval when ω = L in the stationary regime is higher for `
when reporting ` rather than h. But since the expected costs are lower in the stationary
regime for ` than h, we cannot have DIC(Z`,Zh) binding since the probability of approval
is higher and costs are lower. Therefore, we must have B1

h ≤ B
1
` .

Suppose that B1
h < B

1
` . Then we must have b1

` < b
1
h; if we had b1

h ≤ b
1
` , then ` could choose

to report h and quit if the evidence reaches b1
` . This deviation is identical to lowering the

approval standard for `, which strictly increases utility for `. Therefore, in order to not
violate DIC(Z`,Zh), we must have b1

h < b
1
` .

Proposition 5. For each Z`, ∃Z̄ such that ∀Zh > Z̄, DIC(Zh,Z`) is slack and DIC(Z`,Zh) is
binding in the optimal mechanism.

Proof. First we establish that ∃Zh such that DIC(Z`,Zh) binding implies that DIC(Zh,Z`)
is slack. As Zh → ∞, we have that the probability of approval conditional on the state
being H (ph(dτ = 1|H)) approaches 1 in the optimal mechanism for h. This is due to
the fact that as Zh → ∞, we have that R will never reject. For a fixed Z`, we will have
ph(dτ = 1|H) > p`(dτ = 1|H). Therefore, the optimal mechanism must give h a lower
expected
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Let αi = E[e−rτ
i |ω =H] be the expected discounted time till τ when ω =H . As Zh→∞,

we have that E[e−rτ (dτ + c
r )|Zh] ≈ αi(1 + c

r ) since p(dτ = 1|H)→ 1. Similarly αi approximates
the utility to R.

Suppose that we solve the optimal mechanism dropping DIC(Zh,Z`). Since R could
always offer the `s mechanism to h, we must have αh ≥ α`. This will imply that DIC(Zh,Z`)
is slack. Since dτ = 0 with positive probability under `, we have that the utility to h for
claiming to be ` is strictly below α`(1 + c

r )− ε for some ε > 0.
By applying the Theorem of the Maximum to πh and taking πh→ 1, we get that as long

the limiting mechanism is bounded away from immediate approval, there is a Z̄ such that
for all Zh > Z̄, we have α(Zh) ≥ α(Z`)− δ.

Lemma 8. The optimal mechanism for ` when Z` < 0 and DIC(Zh,Z`) is binding is given by a
dynamic approval threshold B`(Mt), which is defined as

Bh(MX
t ) =

B`1 MX
t ∈ [br ∨ b∗(B`1,Z`),0)

B(MX
t ) MX

t ∈ [br ,br ∨ b∗(B`1;Z`))

for some (B`1,br ) ∈R2.

Proof. Since h will always have a higher belief than `, we can conjecture that h will never
quit as long ` still finds it optimal to experiment. This leads us to define a relaxed problem
in which we replace DIC(Zh,Z`) with

RDIC(Zh,Z`) : E[e−rτ (dτ +
c
r

)|Z` +∆z] ≤ Vh

It is easily verified using the technique of Theorem 1 that the optimal mechanism will
take the form of a stationary threshold rule followed by an incentivization regime. We
can then verify that RDIC(Zh,Z`) is sufficient for DIC(Zh,Z`). Since DIC(Zh,Z`) binds,
rejection will take place before b(Z`).

Suppose that br < b∗(B
`
1,Z`). We want to show that the stationary regime lasts until

b1
` = b∗(B1

` ,Z`). Suppose not: then by following a similar relaxation of DP as in Lemma
3, we can conclude that the optimal mechanism will be a stationary regime until br , a
contradiction. Therefore we must have br ∨ b1

` ≤ b
∗(B1

` ,Z`).
The only remaining step is verifying that R rejects when beliefs reach br and approves

when beliefs reach B`(MX
t ) (if we prove this, then it will imply that h will never quit before

` would quit because h is more optimistic about the probability of approval). This is not
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immediate: for example, if R must deliver zero utility to both h,` when beliefs are Zt > 0,
then approving after waiting until time T = 1

−r log( c
r+c ) would deliver zero utility to both

h,` and would be strictly better than rejection.
However, we can rule such a case out because Z` < 0 which implies that br < 0. Suppose

that we have reached the last binding quitting constraint for `. Then the problem R faces is

sup(τ,dτ ) E[e−rτ (dτ (
eZτ − 1
1 + eZτ

− (
∑
i

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

))− c
r

(
∑
i

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

)))|Zt]

where λ`,λh are the promise keeping and RDIC constraints and λ`(Xi) are the DP
constraints.

We begin by noting that it cannot be that R rejects at both B,b, since this would violate
the DIC constraints of `.

Suppose that R chooses to approve at Zτ = br . Then because ebr−1
1+ebr < 0, we must have∑

i λ`(Xi) + λ` − λh e
∆eZτ+1
1+eZτ < 0. If R also approves at the upper threshold B, then we can

apply a similar argument to that of Lemma 19 to conclude that immediate approval
would be better than waiting. Intuitively, if

∑
i λ`(Xi) + λ` − λh e

∆eZτ−1
1+eZτ < 0, then R views

experimentation as costly. Since approval will happen with probability one, there is no
benefit to experimentation costs since the same decision is made regardless of the outcome
of experimentation.

Next, we rule out the situation in which R rejects at B and approves at b. Suppose that
at least one DP constraint for ` has been reached and we have reached the final binding
constraint XN for `. Then, right before this DP threshold has been reached, R must have
been using an upper approval threshold of some B. Suppose that after b has been reached, R
begins to use upper threshold B′ but now rejects at B′. Note that after XN has been reached,
the continuation value upon reaching XN is always the same as the continuation value the
first time it has been reached (since R uses locally stationary threshold rules). Let τ be
the stopping mechanism approving at threshold B and let τ ′ be the stopping mechanism
rejecting at threshold B′. By optimality of B before XN has been reached, we have that

E[e−rτ (1(τ = τ(XN ))(V (XN ) +λ(XN )
c
r

)

+1(τ = τ(B))(
eZτ − 1
1 + eZτ

− (
∑
i

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

))− c
r

(
∑
i

λ`(Xi)−λh
e∆eZτ + 1
1 + eZτ

)))|Zt]

≥ E[e−rτ
′
(1(τ ′ = τ(XN ))(V (XN ) +λ(XN )

c
r

)− c
r

(
∑
i

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

)))|Zt]
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and when evaluated after XN has been reached, we have

E[e−rτ (1(τ = τ(XN ))(V (XN ))

+1(τ = τ(B))(
eZτ − 1
1 + eZτ

− (
∑
i

λ`(Xi +λ`)−λh
e∆eZτ + 1
1 + eZτ

))− c
r

(
∑
i

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

)))|Zt]

≤ E[e−rτ
′
(1(τ ′ = τ(XN ))(V (XN ))− c

r
(
∑
i

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

)))|Zt]

Adding these two together, we have that E[e−rτ1(τ = τ(XN ))λ(XN ) cr ] ≥ E[e−rτ
′
1(τ ′ =

τ(XN ))λ(XN ) cr ]. Since B and B′ are thresholds, we must have that B′ < B (since λ(XN ) < 0).
But since it was optimal to approve at B, we must have

eZτ − 1
1 + eZτ

− (
∑
i<N

λ`(Xi) +λ` −λh
e∆eZτ + 1
1 + eZτ

> 0

But then adding −λ(XN ) to gain function when we reach XN , we increase the gain function
for approving. Therefore, for it to be optimal to approve at B but reject at B′, we must have
that

eZτ − 1
1 + eZτ

+λh
e∆eZτ + 1
1 + eZτ

is increasing in Z. But then the fact that approval happens at br implies that the gain
function is positive at br and it would be optimal to approve at br , a contradiction. Therefore,
we cannot have rejection at B′.

Assume that no DP (Z`) constraints are binding. We can solve a relaxed problem in
which we only put in IC(Z`,Zh) and IC(Zh,Z`). As argued in Proposition ??, the solution to
this problem will take the form of an upper threshold B` and a lower threshold b`. We need
to show that the optimal policy doesn’t involve approval at b`.

Suppose that the optimal policy involved rejection at B` and approval at b`. Then the
utility of hwill be lower than the utility of `. However, when declaring to be type h, we have
that the utility of h is higher than the utility of `. If V ji is the utility of type i declaring to be
type j, the above statement implies that V `h < V

`
` = V h` < V

h
h , a contradiction of DIC(Zh,Z`)

binding.
Now suppose that the optimal policy involves approval at both B` and b`. LetZ(b`) (Z(B`))

be the belief of ` at b` (B`). Approval at b` and B` implies that
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eZ(b`) − 1
1 + eZ(b`)

−λ` +λh
e∆eZ(b`) + 1
1 + eZ(b`)

> 0

eZ(B`) − 1
1 + eZ(B`)

−λ` +λh
e∆eZ(B`) + 1
1 + eZ(B`)

> 0

Note that if we take the derivative of eZ−1

1+eZ −λ` +λh
e∆eZ+1
1+eZ , we get

eZ

(1 + eZ )2 [2 +λh(e∆ − 1)]

which is always positive or always negative. Therefore, we must have that eZ−1

1+eZ −λ` +

λh
e∆eZ+1
1+eZ > 0 for all Z ∈ [b`,B`].
Now let us formulate the the problem in terms of π. V (π) be the solution to

V (π) = E[e−rτ (2πτ − 1−λ` +λh((e∆ − 1)πτ − 1)) +
c
r

(−λ` +λhλh((e∆ − 1)πτ − 1))|π]

As is well known, the infintessimal generator of π is L = µ
2σ2π

2(1−π)2 ∂2

∂π2 and so we
can write V (π) as the solution to

rV (π) =
µ

2σ2π
2(1−π)2 ∂2

∂π2V
′′(π)

with boundary conditions given by

V (πB) = (2πB − 1−λ` +λh((e∆ − 1)πB − 1)) +
c
r

(−λ` +λhλh((e∆ − 1)πB − 1))

V (πb) = (2πb − 1−λ` +λh((e∆ − 1)πb − 1)) +
c
r

(−λ` +λhλh((e∆ − 1)πb − 1))

Since V (π) > 0, it must be that V ′′(π) > 0. Let α = π−πb
πB−πb . Then we have that

V (π) = V (απb + (1−α)πB) < αV (πB) + (1−α)V (πb)

= α((2πb − 1−λ` +λh((e∆ − 1)πb − 1)) +
c
r

(−λ` +λhλh((e∆ − 1)πb − 1)))

+ (1−α)(2πB − 1−λ` +λh((e∆ − 1)πB − 1)) +
c
r

(−λ` +λhλh((e∆ − 1)πB − 1)) = 2π − 1−λ` +λh((e∆ − 1)π − 1)) +
c
r

(−λ` +λhλh((e∆ − 1)π − 1)

where the last line is the payoff to immediate approval, a contradiction of the optimality of
τ . Therefore, we cannot have approval at both B,b.
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This leads to the conclusion that we must have approval at B and rejection at b. From
this, it is easy to see that DP` being satisfied implies that h has no incentive to quit early.
Therefore, dropping the quitting constraints for h was without loss and our solution is
optimal.

Lemma 9. The value of experimentation when the current evidence level isMX
t and the minimum

is Mx
t is given the unique solution to j ′(MX

t ).

Proof. Let j(Z,M) be given by

j(Z,M) = Ψ (B(M),M,Z)
eZ − eZ−B(M)

1 + eZ
+ψ(B(M),M,Z)

eZ + eZ−M

1 + eZ
j(M)

which is the solution to the Dirichlet problem (for Z ∈ (M,B(M)))

LZj(Z,M) = rj(Z,M)

j(B(M),M) = B(M)

j(M,M) = j(M)

and j(M) is the solution to the differential equation (derived using the principle of
normal reflection ∂j(Z,M)

∂M |Z=M = 0)

j ′(M) = j(M)[
1

1 + eM
−ψBB′(M)−ψb]−

eM − eM−B′(M)

1 + eM
[ΨBB

′(M) +Ψb]

with boundary condition j(M) = 0.
We first argue that there is a unique solution to the differential equation for j ′(M). To

do this, we need to establish that is Lipschitz continuous in j(M) and continuous in M.
Once this is established, the Picard-Lindelof Theorem completes the argument.

Lipschitz continuity is clear. Continuity inM follows from the continuity of B(M),B′(M).
Now we want to argue that j(Z0,M0) = E[e−rτdτ

eB(Mτ )−1
1+eB(Mτ ) |Z0,M0] where τ = τ(B(Mt))∧

τ(M). By applying Ito’s Lemma to j(Z,M), we have

e−rtj(Zt ,Mt) = j(Z0,M0) +
∫ t

0
e−rs[σ

∂j(Zs,Ms)
∂Z

dBs +
∂j(Zs,Ms)
∂Zs

µ(Zs)ds

+
∂2j(Zs,Ms)

∂Z2
σ2

2
ds − rV (Zs,Ms)ds+

∂j(Zs,Ms)
∂Ms

dMs]

= j(Z0,M0) + St +
∫ t

0
e−rt[LZV (Zs,Ms)− rV (Zs,Ms)]ds
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where we use the fact that ∂j(M,M)
∂M = 0 and ∆Ms = 0 when Zs >Ms and we define St to be

St =
∫ t

0
e−rt

∂j(Zs,Ms)
∂Zs

dBs

which is a continuous local martingale.
We now note that LZV (Zs,Ms)− rV (Zs,Ms) = 0 for all Zs ∈ (Ms,B(Ms)). Therefore, we

can reduce the above equation for e−rtj(Zt ,Mt) to

e−rτ j(Zτ ,Mτ ) = j(Z0,M0) + Sτ

where τ = τB(Mt) ∧ τM . When the process is stopped, the value j(Zτ ,Mτ ) is always equal

to 1(Zτ = B(Mt))
eB(Mτ )−1
1+eB(Mτ ) . Therefore, we have that

e−rτ1(Zτ = B(Mt))
eZτ − 1
1 + eZτ

= e−rτ j(Zτ ,Mτ ) = j(Z0,M0) + Sτ

Taking expectations of both sides, we have

E[e−rτ1(Zτ = B(Mt))
eZτ − 1
1 + eZτ

|Z0] = j(Z0,M0) +E[St |Z0]

It follows from Doob’s optimal sampling theorem that E[St |Z0,M0] = 0. Noting that
E[e−rτdτ

eB(Mτ )−1
1+eB(Mτ ) |Z0,M0] = E[e−rτ1(Zτ = B(Mt))

eZτ−1
1+eZτ |Z0], we can conclude that j(Z0,M0) =

E[e−rτdτ
eB(Mτ )−1
1+eB(Mτ ) |Z0,M0]

Proposition 6. Under both one- and two-sided commitment, as c→ 0 the optimal mechanisms
for h,` converge to value of the single decision maker problem for R with prior p(Zh)πh + (1−
p(ZH ))π`.

Proof. Consider the case of c = 0. Let αi = E[e−rτi1(diτ = 1)|ω = 1]and β = E[e−rτi1(diτ =
1)|ω = 0] be the discounted probability of approval for type Zi when ω = 1 and ω = 0
(respectively). In order to preserve incentive compatibility, we must have

πhαh + (1−πh)βh ≥ πhα` + (1−πh)β`
π`α` + (1−π`)β` ≥ π`αh + (1−π`)βh

By optimality of τh, τ`, we also must have
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πhαh − (1−πh)βh ≥ πhα` − (1−πh)β`
π`α` − (1−π`)β` ≥ π`αh − (1−π`)βh

Adding the equations using π`, we get α` ≥ αh. Doing the same with πh, we get that
αh ≥ α`. Therefore we must have αh = α` and therefore βh = β`. Therefore, it is without loss
to offer both types the same mechanism. An application of the Theorem of the Maximum
gives us the result as stated in the Proposition.

Proposition 7. The value of the optimal mechanism is non-monotonic in c when A has private
information. WhenA has no information, the value of the optimal mechanism is strictly decreasing
in c.

Proof. Suppose that πh ≈ 1 and π` ≈ 0.
We examine a limiting case where the signal to noise ratio µ

σ → 0 and c→ 0. We claim
that the value of the optimal mechanism is zero. By Lemma ??, we know that the value of
the optimal mechanism converges to that of a single decision maker. As µ

σ → 0, learning
becomes impossible and the expected time to approval becomes infinitely long.

Next, we want to show that for c large enough, ` will drop out immediately and h will
be approved with strictly positive probability. To do this, we propose a testing rule which
approves if and only if Xdt > Xc, where Xc is set such that

−cdt + (1− rdt)
∫ ∞
Xc

1

2
√
σ2dtπ

e−
(x+µdt)2

σ2dt dx = 0

This will be solved for some Xc < 0 (so that h is approved more than half the time) and h

will choose to experiment since
∫∞
Xc

1
2
√
σ2dtπ

e−
(x+µdt)2

σ2dt dx <
∫∞
Xc

1
2
√
σ2dtπ

e−
(x−µdt)2

σ2dt dx. In this case,

the value of the project to R is bounded below by p(Zh)
2 > 0. Therefore, the value for high c is

higher than the value for low c.
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