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Abstract

This paper studies the effectiveness of self-reporting as an enforcement mechanism

within the context of an oligopoly. Whereas, prior work only considered the effec-

tiveness of self-reporting under perfect competition (e.g. Kaplow and Shavel, 1994).

We show that accounting for market structure identifies an additional benefit to self-

reporting that has not yet been identified in the literature. Specifically, if enforcement

costs are fixed, then it is always optimal to audit firms under a self-reporting regime.

However, in the no-reporting regime, if the level of competition is sufficiently high then

the regulator will find it optimal to cease auditing completely. Additionally, we show

that in the fixed cost case the regulator’s optimal audit probability under self-reporting

(and the compliance level) is lower than that under no-reporting only if the market if

sufficiently concentrated. If the market is sufficiently competitive this result is reversed.

If enforcement costs are proportional to market size, then the regulator’s optimal audit

probability under self-reporting (and the compliance level) is higher than that under

no-reporting only if the market if sufficiently concentrated. Next, we show that the

effectiveness of self-reporting also depends on the interaction between the level of com-

petition and other market characteristics such as the strength of the product demand.

Finally, we study a social planner who can choose both the optimal regime, auditing

level, and the level of competition N . Here, we show that the level of competition

chosen by a planner will be higher in a self reporting regime than in a no reporting

regime. Thus, our paper shows that market structure affects many of the prior results

identified in the self-reporting literature.
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1 Introduction

Kaplow and Shavell (1994) show that self-reporting is beneficial to a welfare maximizing

regulator because the regulator can save on auditing costs by not having to audit those

firms that confess to having committed a violation. Their paper studies the efficacy of self

reporting for the case with a large number of (atomistic) agents or firms. However, it is

not clear how these results concerning self-reporting extend to cases in which firms behave

strategically. Specifically, in an oligopoly the behavior of one firm to self-report can affect

its competitor’s decision to report or pollute, thereby influencing the effectiveness of self-

reporting mechanisms. The goal of this paper, therefore, is to study the effectiveness of

self-reporting within an oligopoly.

We believe that it is important to study self reporting within oligopolies because self

reporting is becoming widespread in many regulatory settings. For example, the U.S. En-

vironmental Protection Agency (EPA) encourages firms to self-report oil-spills or other en-

vironmental “crimes.” Similarly, in an era of reduced government expenditures, the U.S.

Department of Agriculture has recently adopted self-reporting to regulate firms for compli-

ance with food safety standards. Interestingly, many of these industries are not perfectly

competitive. For example, the EPA utilizes self reporting for firms in the energy indus-

try, which is clearly an oligopoly. Thus, since many regulatory agencies are introducing

self-reporting schemes, we wish to examine how strategic market behavior, and competitive

forces among firms, influences the effectiveness of self reporting.

To study this issue we develop a “Cournot-style” model in which oligopolistic firms

generate a negative externality (pollution) during production. Firms can reduce this harm by

investing in costly pollution abatement. However, since abatement is costly, in the absence of

any regulation firms do not abate. To incentivize abatement firms are audited by a regulator

who can choose either a self-reporting regime, or a non-reporting regime to fine firms for

causing harm.

Within this framework our first result shows that accounting for market structure identi-

fies an additional benefit to self-reporting (besides those already identified in the literature).

Specifically, if enforcement costs are fixed and the market is sufficiently competitive, then

under a no reporting regime the regulator finds it optimal (in a second best sense) to imple-

ment the laissez faire outcome. However, under self-reporting it is always optimal to regulate

the firm. Thus, in other words self-reporting makes regulation optimal for cases where it

would otherwise not be optimal to intervene in the market (under no reporting).

Additionally, we find that many prior results in the self-reporting literature depend

on market competition. First, whether the socially optimal audit probability under self-

reporting is higher or lower than the optimal probability in the no-reporting regime depends

on the level of competition and whether enforcement costs are fixed or proportional to the

industry’s size. If costs are fixed, the optimal audit probability is higher under no reporting
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than under self-reporting only when the industry is sufficiently concentrated. Instead, if

costs are proportional, then for highly concentrated industries the audit probability is lower

under no reporting than under self-reporting. For highly competitive industries, this result

is reversed. Relatedly, when competition is low, introducing self-reporting decreases the

equilibrium level of pollution. While, when competition is intense, introducing self report-

ing increases the equilibrium level of pollution. Thus, we show that whether self-reporting

involves a higher or lower audit probability and increases or decreases the harm (relative to

no-reporting), depends on the level of industry competition.

We also derive some comparative statics with respect to the optimal audit probabili-

ties. When product demand is strong, then the audit probability under the self reporting

regime is higher than the probability under no self reporting even for relatively competitive

industries. Whereas when demand is weak then the audit probability under self reporting

is lower than the probability under no reporting even for relatively concentrated industries.

Similarly, we also find that the relationship between the level of harm and the optimal audit

probabilities depends on the level of competition. Thus, regulators must account for the

level of competition when introducing self reporting auditing regimes.

It is worth relating these findings to the existing literature on self reporting. Kaplow

and Shavell (1994) and Malik (1993) both find that the audit probability may be higher

under self reporting versus no reporting, however, they do not determine analytically the

exact conditions under which this will occur. By introducing market structure into this

framework, we show that this outcome is determined by the level of competition and other

market characteristics. Our findings are also related to Innes (1999, 2001) who finds two

other benefits from self reporting (besides saving on audit costs). First, if firms can engage

in clean up activities, then under self reporting firms always engage in clean up, whereas,

under no reporting firms only clean up when they are caught. Since clean up is welfare

improving, self reporting improves welfare for this additional reason. Second, if firms can

invest in costly detection avoidance, then under self reporting there is less avoidance. Since

avoidance is wasteful, self reporting enhances welfare.

Our results concerning competition are related to a growing body of research that studies

the interaction between competition and law enforcement. Daughety and Reingenaum (2006)

study the impact of various liability regimes on a firm’s decision to reduce its pollution

levels. Using an analytic framework similar to ours (oligopolistic firms generating a harm),

they find that whether “strict liability” or “negligence rules” yields more compliance and

less pollution, depends on the level of competition. Similarly, Dechenaux and Samuel (2015)

study a regulator’s decision to conduct surprise on announced inspections. They find that

whether an announced inspection is preferred to a surprise inspection (in reducing pollution)

depends on the level of competition. Thus, this paper contributes to the literature that

studies the interaction between competition and regulatory enforcement.

The rest of this paper is organized as follows. Section 2 sets up the basic model as
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well as the market equilibrium. Section 3 studies the welfare maximization problem under

self reporting and no-reporting. Section 4 conducts an analysis of the solutions to these

problems, and section 5 concludes. All proofs are provided in the appendix.

2 The model

Consider a market with N ≥ 1 oligopolistic firms that each produce qi units of a product.

The total market quantity Q =
N∑
i=1

qi. The cost of producing each unit is c, and there are no

fixed costs of producing qi. Firms sell products to consumers with quasilinear utility function

U(q, q0; a) = u(q, a) + q0 where good 0 is the numéraire, with p0 = 1. We assume that U

has the Bowley form

U(q, q0; a) =
N∑
i=1

βqi −
γ

2

(∑
i

q2
i +

∑
i

∑
i 6=j

qiqj

)
+ q0

Maximizing this utility function with respect to a standard budget constraint yields the

linear inverse demand,

P = β − γQ

Where necessary we denote q−i is the sum of all the firms’ quantities other than firm i.

Besides the direct costs, producing qi units imposes a total negative cost (externality)

on society qih. This externality can be abated at the rate ai ∈ (0, 1], so that the harm qih

only occurs with probability (1 − ai). Abatement, however, costs k(ai) per unit where we

assume that
ka2i
2

. Since abatement is costly, and the harm does not affect a firm’s profits, a

firm will not choose to abate unless there is some regulation. That is the laissez faire level

of abatement aLF = 0.

To incentivize abatement a welfare maximizing regulator audits the firm with probability

ρ and fines it if it discovers that the firm has caused harm. Specifically, when harm occurs

(with probability 1 − ai) in the non-self reporting (φ) regime, the firm is audited with

probability ρφ and is fined F ∈ [0, F ] per unit, were F is the maximal feasible fine. Thus, in

the NSR regime a firm’s profit is,

πi,φ =

[
β − γQ− c− (1− ai)ρφF −

ka2
i

2

]
qi.

In a self reporting regime (r) if harm occurs the firm self reports the occurrence of an

accident with probability τ ∈ [0, 1], in which case it is fined f . In keeping with Kaplow and

Shavell (1993) it is audited with probability ρr when it does not make a report (or reports
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no accident). Thus, a firm’s profit in the SR regime is,

πi,r =

[
β − γQ− c− (1− τ)(1− ai)ρrF − τ(1− a)f − ka2

i

2

]
qi.

Let z = {r, φ} index the two regimes, then the timing of both games is as follows

Stage 1. The regulator chooses ρz and f or F

Stage 2. The firm chooses az and qz

Stage 3. Harm is realized or not

Stage 4. The firm self-reports in a r regime

Stage 5. The regulator audits

We first solve the model in the case of the SR regime. Working backwards, in stage 4

(taking quantities and abatement levels as given) the firm chooses τ to maximize profits,

therefore the derivative of 2 with respect to τ is,

ρr(1− ai)F − (1− ai)f

Since (1− ai) ≥ 0, if ρSRF ≥ f , the τ ∗ = 1, otherwise, τ ∗ = 0.

Clear, choosing ρSRF < f is not optimal since ρ can be lowered (maintaining the equality)

while also improving welfare. Also, ρSRF > f cannot be a solution since in that case firms

would never self report and the equilibrium would be identical to the NSR regime. Thus,

ρSRF = f is optimal so that firms always self report when harm occurs. Thus, 2 reduces to,

πi,r =

[
β − γQ− c− τ(1− a)f − ka2

i

2

]
qi.

The derivative of the first order condition with respect to ai yields the profit maximizing

level of abatement in the SR regime

a∗ =
f

k
=
ρF

k

To ensure an interior solution we make the following assumption.

Assumption 1 The cost of abatement is sufficiently large k > F .

Substituting the value for a∗ into the profit function yields

πi,r =

[
β − γQ− c− f +

f 2

2k

]
qi.
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Let mi be the firm’s full marginal cost, then using the fact that f = ρF ,

mi = c+ ρF − (ρF )2

2k
,

Then (maximizing profits with respect to quantity) the firm’s quantity in a symmetric equi-

librium is,

q∗r =
β −mi

γ(N + 1)
,

and profits are,

π∗r = γ(q∗)2

Turning the φ regime. It is straightforward to observe that since f = ρφF , equations 2

and 2 are identical except that ρr is replaced by ρφ in 2. Hence the expressions for a∗, q∗φ,

and πφ will be identical given some ρ{ρr, ρφ}.

3 Welfare Analysis: constrained social planner

With this framework we now study the planner’s welfare maximizing fines and audit prob-

ability. Here we assume that the regulator is a constrained social planner who takes the

market size N as given. Further, the regulator acts as a“Stackelberg leader” that takes the

firms’ behavior as given. Thus, given the fines, the audit probability, and the regime, firms

choose the symmetric Cournot oligopoly quantities and level of abatement derived in the

previous section. The cost of enforcement for the regulator is given by g(.) where,

g(ρ) = ρzg
∑

j
qδj,za

1z=SR
j,z ,

where δ = [0, 1]. If δ = 0 then costs are fixed in the sense that firm size does not affect

enforcement costs, if ρ = 1 then costs are linear in firm size. Otherwise, they are concave in

firm size.

In a self reporting regime, the regulator chooses ρ and F to maximize,

Wr = q0 + βQ∗ − γ

2
(Q∗)2 −Q[c+ k(a) + (1− a)h]− ρgNqγa.

while in a non-self reporting regime the regulator’s welfare is,

Wφ = q0 + βQ∗ − γ

2
(Q∗)2 −Q[c+ k(a) + (1− a)h]− ρgNqγ,

where γ = 1 is the case where costs are proportionate to market size Q = qN and γ = 0 the

case where costs are fixed. In these two welfare functions, note that difference in costs in

the two welfare functions is critical to the well-known result that self reporting is optimal.
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Under self reporting the regulator only needs to audit the firm whenever no accident has

occurred (with probability a). Under a no self reporting regime, the regulator must always

audit.

Before proceeding to analyze the social optimal choices, we make the following assump-

tions to our model for any regime z = {r, φ}.

Assumption 2 The parameters in our model possess the following properties.

a. Demand is sufficiently strong; that is,

β − c > k

so that full abatement is feasible (for the firm).

b. h > β − c

c. hF − kg < kF .

d. The fine F < w where w is the wealth of a given firm.

Assumption 2 a is straightforward. For quantity (and hence profits to be positive) qz > 0

when a = 1. Substituting a = 1 into the function for quantity yields qz = 2(β−c−k)
γ(N+1)

> 0 or

β − c− k > 0. 2 (b) is assumed so that society would prefer no industry to an unregulated

industry; that is, Wz (0) < q0. This implies

Wz (0) = q0 −
N [β − c] {2h [1 +N ]− [β − c] [2 +N ]}

2γ [1 +N ]2
.

Hence, if

h > max
N

2 +N

1 +N
[β − c] =

3

2
[β − c] > β − c

or h > β − c, society prefers regulation to the laissez faire outcome.

Assumption 3 (c)implies that for the regulator, full abatement is not socially optimal.

To ensure this,

∂Wz

∂ρz

∣∣∣∣
ρ=k/F

=

[
N

1 +N

]
[2 [β − c]− k] [Fh− k [F + g]]

2γk

At a = 1 the above expression must be negative, or

h <
k

F
[F + g]

which implies that hF − kg < kF .
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Given these assumptions the regulator chooses ρ and F to maximize

Wz

subject to the constraint that ρz ≤ k/F (for az = 1 when ρz = k/F and it is never optimal

to raise ρz once az = 1)

Under these results, our first step is to establish a result concerning the optimal fine in

the φ regime.

Lemma 1 Regardless of the cost structure, in the no reporting regime, the optimal fine is

maximal.

Given this result, for the rest of this paper we assume that the fine F is the maximal fine

F .

3.1 δ = 0 Case

We first analyze the case where the enforcement costs are fixed with respect to firms’ size.

Later we offer a discussion of the case where δ = 1. The optimal audit probability is

characterized in the following proposition.

Proposition 1 The optimal audit probabilities in the two regimes are,

ρφ = max

{
0,
F {h [1 +N ]− k} {2 [β − c]− k} − 2γgk [1 +N ]2

F 2N {2 [β − c]− k}

}

ρr =
{2 [β − c]− k} {h [1 +N ]− k}

FN {2 [β − c]− k}+ 4γg [1 +N ]2
.

Further, if enforcement costs are fixed, that is γ = 0, then there exists an N ′ > 1 such that

for all N > N ′, a regulator chooses ρφ = 0, aφ = 0. However, ρr > 0 for all N .

The previous proposition shows that when enforcement costs are fixed, then if markets are

sufficiently competitive, a regulator will not choose to regulate. Since ρφ = 0, aφ = 0. That is,

the laissez faire outcome is optimal in a second-best sense for a sufficiently large N . However,

under self-reporting, ρr > 0 is optimal for any N . Thus, self-reporting “allows” the regulator

to regulate even in circumstances where it would otherwise not be optimal to regulate.

Consequently, under self-reporting the level of pollution will more closely approximate the

first-best level of pollution.

We now present the following comparative static results with respect to ρφ and ρr.

Proposition 2 The optimal audit probability
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• ρz, for z = {φ, r} is

– strictly decreasing in N and γ and increasing in h and β − c.

– ambiguous with respect to k

• ρφ is ambiguous in F , but ρr is increasing in F .

The comparative statics with respect to h and β− c are intuitive. As the harm increases

the regulator needs to increase the audit intensity. Similarly, when demand is strong (i.e.

β − c large) then quantity produces, and consequently the harm increases. Thus, audit in-

tensity also rises. The effect of competition on the audit probability, however, is particularly

interesting. As competition increases the gain in consumer surplus becomes larger. Since ρ

reduces these gains, the marginal benefit of raising the audit probability falls. Consequently,

the optimal audit probability declines with N . However, the intensity of the effect is differ-

ent under the two regimes so that there exist cases where the audit probability falls more

rapidly under the non reporting regime so that if the market is sufficiently concentrated the

audit probability is higher in the non reporting regime, but when the market is sufficiently

competitive the audit probability is lower in the non reporting regime. We characterize this

result below.

Proposition 3 If

h >
3

4
k +

4gγk

F (2(β − c)− k)
,

then there exists a unique N0 ∈ (1, N
′
) such that

ρφ > ρr ⇔ aφ > ar ⇔> Qφ < Qr ⇔ N < N0.

Proposition 2 highlights the main result of our paper, which is that the qualitative dif-

ference of introducing a self-reporting policy is not trivial. If the market is sufficiently

concentrated, then a regulator that implements self-reporting may introduce a higher level

of crime even though it raises overall welfare because self reporting lowers enforcement costs.

From the perspective of the public this higher level of crime may have more salience than

the corresponding reduction in enforcement costs. If the market is sufficiently competitive,

this result is reversed. Consequently, competition is ”good” for self reporting in the sense

that if markets are sufficiently competitive, the efficiency gains from self-reporting can be

fully realized without raising crime. Indeed, if a regulator were constrained by the notion

that any new policy implemented must lower crime, then self-reporting will be more likely

to occur in very competitive markets.

Kaplow and Shavell (1993) show that in general the audit probability under self-reporting

may be higher lower than the probability under no reporting. Since the fine is always maximal
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it implies that the level of crime may be higher or lower under self reporting than in the

no reporting regime. This proposition “tightens” their result and shows that whether the

audit probability in one regime is higher or lower than in the other depends on the level

of competition (see figures 1 and 2). Further, because of this abatement a, is linear and

increasing in ρ, whether the level of abatement will be higher or lower under the self-reporting

regime relative to no reporting, also depends on the level of competition.

4 Welfare Analysis: Unconstrained social planner

We now assume that the social planner can choose both N as well as ρ in both the φ and

the r regimes. Our main result is summarized in the following proposition.

Proposition 4 Let ρ̂, N̂ denote the socially optimal level of auditing and market size. This

socially optimal policy for an unconstrained social planner possesses the following character-

istics.

• ρ̂φ > ρ̂r

• N̂φ < ρ̂r

Proof. See Appendix This rather strong result shows that a switch from a non reporting

to a self reporting regime will also always increase market size while also reducing auditing.

These leads to two rather surprising results. First, since compliance is increasing in ρ it

implies that this regime switch will result in less compliance. But, second, it will result in a

bigger market size while also raising compliance.

5 Conclusion

Many regulatory agencies are beginning to utilize self-reporting mechanisms to save on en-

forcement costs. In many cases the firms participating in these self-reporting programs

belong to oligopolistic industries. Thus, their choice to self report and comply with regula-

tions strategically depend on their competitors. Consequently, the value to the regulator of

switching to self-reporting may depend on the strategic interactions between firms.

In this paper we show that self inspection regimes are, indeed, affected by strategic market

forces. Specifically, whether the optimal audit probability under self-reporting is higher or

lower than the audit probability under no reporting depends on the level of competition. This

result is interesting in light of Kaplow and Shavell (1994) who find that the audit probability

under the two regimes maybe higher or lower, but do not offer any analytic results regarding

this issue. Here we show that competition determines whether the optimal probability will

be higher or lower in the self-reporting versus the no reporting regime.
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N

k

F

Ρ

Figure 1: Fixed Costs, ρr: - - -, —- : ρφ

Second, we find that the level of compliance may be higher or lower in either regime,

depending on the level of competition. This finding stands in sharp contrast to the prior

literature on self-reporting (Kaplow and Shavell, 1993; Innes 1999) who find that the level of

compliance under self-reporting is always higher than under no reporting. Finally, whether

compliance or the optimal audit probability is higher or lower under self-reporting versus no

reporting also depends on other market characteristics such as the strength of the consumer’s

demand. Taken together, these results suggest that regulators introducing self-reporting need

to consider market forces in the industries into which these policies are being implemented.

Finally, we study the unconstrained social planner’s problem who can choose both the

optimal regime, auditing level, and the level of competition N . Here, we show that the level

of competition N will be higher in a self reporting regime than in a no reporting regime.

Thus, this result offers a new argument in support of self-reporting regimes. Namely, that

they lead to a larger market size.

Appendix Appendix

Appendix.1 Figures

Appendix.2 ρ and F are substitutes.

Here we prove that ρ and F are substitutes w.r.t. Q (or q).

Q∗ =
β − c− ρF + (ρF )2

2k

γ(N + 1)
.
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1 2 3 4 5
N

k

F

Ρ

Figure 2: Variable Costs, ρr: - - -, —- : ρφ

Thus,
dQ∗

dρ
= N

(
1

γ(N + 1)

[
−F +

ρF 2

k

])
Multiplying and dividing the above expression by ρ yields,

N

ργ(N + 1)
(−F +

(ρF )2

k
)

dQ∗

dρ
=
A

ρ

Multiplying both sides of the previous equation by ρ
Q

yields the elasticity,

εQ,ρ =
A

Q

Similarly,
dQ∗

dF
= N

(
1

γ(N + 1)

[
−F +

ρ2F

k

])
Multiplying and dividing the above expression by F yields,

dQ∗

dF
=
A

F

Multiplying both sides of the previous equation by F
Q

yields the elasticity,

εQ,F =
A

Q
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Therefore, the two parameters ρ and Q have identical effects on Q.

Next we turn our attention to x = Q(1 − a)h, the total external harm generated in the

industry. The following calculations show that the effect of ρ and F on x are identical.

dx

dρ
=

(
dQ

dρ
(1− a)−QF

k

)
h

Multiplying both sides of this expression by ρ
x

yields,

εx,ρ =

(
dQ

dρ
ρ(1− a)− QFρ

k

)
h

x
.

Using the expression for dQ/dρ from earlier, we have;(
A

ρ
ρ(1− a)− QρF

k

)
h

x

Now, turning to the elasticity for F .

dx

dF
=

(
dQ

dF
(1− a)−Qρ

k

)
h

Multiplying both sides of this expression by F
x

yields,

εx,F =

(
dQ

dF
F (1− a)− QFρ

k

)
h

x
.

Using the expression for dQ/dρ from earlier, we have;(
A

F
F (1− a)− QρF

k

)
h

x

Hence, the two elasticities are equal.

Appendix.3 Proof of Lemma 1

Note that social welfare can be written as

W (.) =
N + 2

2N
γ(Q∗)2 + (1− ρF

k
)ρFQ− x− g(ρ). (A.1)

Let Φ denote the first two terms of the above expression. Then the first order conditions

are,

ρ :
dQ

dρ
− dx

dρ
≥ g′(ρ). (A.2)
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F :
dQ

dF
− dx

dF
≥ 0. (A.3)

We prove that F is maximal by contradiction. We know that the FOC for ρ must hold

with a strict equality since we assume that we have an interior solution for ρ ∈ (0, 1). Now

suppose that F is also interior, then the FOC for F implies

Φ′(ρF ) =
dx

dF

1

ρ

Substituting the previous expression for φ′(ρF ) into the first order condition for ρ yields,

dx

dF

1

ρ
− dx

dρ
= g′(ρ).

multiplying and dividing by ρ/x yields,

x

x

(
F

ρ

dx

dF
− dx

dρ

)
Or,

x

(
εx,F
ρ
− εx,ρ

ρ

)
= 0.

This implies that the FOC for ρ cannot hold with equality since the RHS g′(ρ) > 0. Hence,

F cannot be interior.

Appendix.4 Proof of Proposition 1

Appendix.4.1 Characterization of ρz

We first characterize the the optimal ρz for z ∈ {φ, r}
Under the boundary restrictions given above there is a unique optimum for ρz satisfying

∂Wz (ρz)

∂ρz
=

[
β − c− γ

2
Qz −

k

2
a2
z − [1− az]h− ρza1z=rz g

]
∂Qz

∂ρz
(A.4)

+

[
−γ

2

∂Qz

∂ρz
+ [h− kaz]

∂az
∂ρz
− g

[
a1z=rz + 1z=rρz

∂az
∂ρz

]]
Qz = 0 (A.5)

These are cubic equations in ρz. Note that the first order condition is satisfied for

ρz = k/F and h = k [1 + 21z=rg/F ]. We expand ∂Wz (ρz) /∂ρz around this point in {h, ρz}
space using
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f (x, y) ≈ f (a, b) + fx (a, b) [x− a] + fy (a, b) [y − b]

+
1

2!

{
fxx (a, b) [x− a]2 + 2fxy (a, b) [x− a] [y − b] + fyy (a, b) [y − b]2

}
to obtain

ρz ≈
F {2 [β − c]− k} {h [1 +N − k]} − gk [1 +N ] {2 [β − c]− 3k}

{
− 2k

2[β−c]−3k

}1z=r

F

{
FN {2 [β − c]− k}+ 2gk [1 +N ]

[
2[β−c]
k

]1z=r}
Appendix.4.2 Existence of N ′

We provide the proof of the second part here. The first order condition (assuming an interior

solution) with respect to ρ in the non reporting regime is:

ρ :
dQ

dρ

2γ(N + 2)

2N
Q− dx

dρ
= g′(ρ).

Substituting the value of ρ this expression simplifies to,

qN

(
F (h− k + ρF

k

)
− F (ρF − k)(1− a)h

γk
= gN

To show the existence of N
′

it is sufficient to show that at ρ = 0 the LHS of the previous

equation is strictly greater than the LHS < RHS. At ρ = 0, then LHS is,

qN

(
F (h− k)

k

)
+
Fh

γ
=

β − c
N + 1

NF (h− k) + Fhk

while the RHS is gN . Further, both the LHS and the RHS are monotonically increasing in

N . Clearly, as N → ∞, the RHS approaches +∞ while the LHS is finite and approaches

(β − c)F (h − k) + Fhk. Thus, there exists an N
′ ∈ (0,+∞) such that for all N > N

′
the

LHS < RHS. That is, ρφ = 0 for all N ≥ N
′
.

The expression for N ′ may be derived explicitly. Set z = φ and ρφ = 0. Then foc gives

F̄Φ (0)− gN ′ = 0. So

N ′ =
F

g
Φ′ (0) .
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Appendix.4.3 ρr > 0

To show that ρr > 0 it is sufficient to show that the RHS of the first order condition is

strictly less than the LHS of the first order condition at ρ = 0. The RHS of the first order

condition is 0 at ρ = 0 is

β − c
N + 1

NF (h− k) + Fhk > 0for allN.

However, the RHS =0 at ρ = 0. Hence, ρr > 0∀N .

Alternative, way of thinking about this: ρr > 0 as N →∞
From the foc under SR we have F̄Φ′

(
ρrF̄

)
− 2ρrF̄ gN/k = 0. Hence

2Ngρr = kΦ′
(
ρrF̄

)
Suppose ρr = 0, then it must be that 0 = kΦ′ (0), equivalently Φ′ (0) = 0. But this is a

contradiction as Φ′ (0) > 0 at an interior maximum. Hence ρr 6= 0. As ρr cannot be negative

it follows that ρr > 0.

Appendix.5 Proof of Proposition 2

∂ρz
∂N

=
ΦρN − Φρ

N
2gFN
k

1z=r − Φρρ

∂ρz
∂g

= − g [2a]1z=r

2gFN
k

1z=r − Φρρ

∂ρz
∂k

=
Φρk − Φρ

k
1z=r

2gFN
k

1z=r − Φρρ

∂ρz
∂F

=
ΦρF + 2Φρ

F
1z=r

2gFN
k

1z=r − Φρρ

∂ρz
∂z

=
Φρ,z

2gFN
k

1z=r − Φρρ

z = [β − c] , γ, h

We now prove that ΦρN − Φρ
N
< 0. We have

ΦρN−
Φρ

N
=

F

{
[2 + 3N ]

[
ρF
]3 − 3 {h [1 +N ] + k [2N + 1]}

[
ρF
]2

+2k {3h [1 +N ] +N [β − c+ k]} ρF − 2k {[β − c] {h [1 +N ]− k}+ h [1 +N ] k}

}
2γk2 [1 +N ]2
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Hence

ΦρN −
Φρ

N

∣∣∣∣
ρ=0

= −2k {[β − c] {h [1 +N ]− k}+ h [1 +N ] k} < 0;

ΦρN −
Φρ

N

∣∣∣∣
ρ=k/F

= −F [h− k] [2 [β − c]− k]

2γk [1 +N ]
< 0.

To understand the behaviour of ΦρN − Φρ
N

in the interval (0, k/F ) we find

∂
[
ΦρN − Φρ

N

]
∂ρ

∣∣∣∣
ρ=0

=
F

2 {3h [1 +N ] +N [β − c+ k]}
γk [1 +N ]2

> 0

∂
[
ΦρN − Φρ

N

]
∂ρ

∣∣∣∣
ρ=k/F

=
F

2
N [2 [β − c]− k]

2γk [1 +N ]2
> 0

As the derivative ∂
[
ΦρN − Φρ

N

]
/∂ρ is a quadratic equation in ρ it can switch sign at

most once, hence it can only be that ΦρN − Φρ
N

is monotonic on the interval ρ ∈ (0, k/F ).

Accordingly, everywhere on this interval ΦρN − Φρ
N
< 0, so ∂ρz/∂N < 0 for z = φ, r. Similar

reasoning yields Φρρ < 0, Φργ < 0 and ΦρF + 2Φρ
F

> 0. Hence ∂ρz/∂γ > 0 for z = φ, r and

∂ρr/∂F > 0. It can also be shown that

Φρ,[β−c] =
FN

{
h− k +N

[
h− ρzF

]}
γk [1 +N ]2

≥ FN [h− k]

γk [1 +N ]
> 0;

Φρh =
FN

{
3
[
ρF
]2 − 6kρF + 2k [β − c+ k]

}
2γk2 [1 +N ]

≥ FN {2 [β − c]− k}
2γk2 [1 +N ]

> 0.

hence ∂ρ[β−c]/∂γ > 0 and ∂ρh/∂γ > 0 for z = φ, r. We cannot unambiguously determine

the sign of Φρk − Φρ
k

as although

∂
[
Φρk − Φρ

k

]
∂ρ

∣∣∣∣
ρ=0

=
3N {[β − c] {h [1 +N ]− k}+ h [1 +N ] k}

γk [1 +N ]2
> 0

we have

∂
[
Φρk − Φρ

k

]
∂ρ

∣∣∣∣
ρ=k/F

= −N {2 [β − c]− k} {k [3 + 4N ]− 3h [1 +N ]}
2γk [1 +N ]2
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which cannot be signed uniquely with the conditions in Assumption 2. Thus, ∂ρh/∂k is

ambiguous in sign both with and without self reporting. A similar analysis applies to ΦρF

which is again ambiguous in sign.

Appendix.6 Characterizing ρ0

Using the definition ρz (N0)− k/ [2F ] = 0 the implicit function theorem gives

∂N0

∂k
= −

[
∂ρz (N0)

∂N

]−1 [
∂ρz (N0)

∂k
− 1

2F

]
∂N0

∂F
= −

[
∂ρz (N0)

∂N

]−1 [
∂ρz (N0)

∂F
+

k

[2F ]2

]
∂N0

∂z
= −

[
∂ρz (N0)

∂N

]−1
∂ρz (N0)

∂z
z = β, γ, c, h.

Noting that ∂ρz(N0)/∂N we obtain

∂N0

∂k
?

∂N0

∂F
?

∂N0

∂ [β − c]
> 0

∂N0

∂γ
< 0

∂N0

∂h
> 0??

old stuff below here

Subtracting the two focs from each other we get

gN
{

4 [ρzF ]3 − 9k [ρzF ]2 + 4kF [β − c+ k]− 2k2 [β − c]
}

2γk2 [1 +N ]
= 0

The crossing point ρφ = ρr = ρ0 must therefore satisfy

4 [ρ0F ]3 − 9k [ρ0F ]2 + 4kF [β − c+ k]− 2k2 [β − c] = 0 (A.6)

Thus

ρ0 =
31/3 [Ψ (β, c, k)]2 + 9kΨ (β, c, k)− 32/3k {16 [β − c]− 11k}

12FΨ (β, c, k)

where

Ψ (β, c, k) =

{√
3k3

√
{16 [β − c]− 11k}3 + 27k {8 [β − c]− 3k}2 − [3k]2 {8 [β − c]− 3k}

} 1
3

For Ψ (β, c, k) ∈ R must have
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{16 [β − c]− 11k}3 + 27k {8 [β − c]− 3k}2 > 0
√

3k3

√
{16 [β − c]− 11k}3 + 27k {8 [β − c]− 3k}2 − [3k]2 {8 [β − c]− 3k} > 0

these require, respectively,

β − c >
k

2

β − c >
11k

16

second condition is stronger, so need

β − c > 11k

16

(
>
k

2

)
This condition also necessary and sufficient for ρ0F < k.

Now define

Φ (β, c, F, g, k, h, ρ0) = 2k {[h− k] [β − c] + hk} − 2kρ0 {3Fh+ 2g [β − c]}
+2gρ0 [3k − 2ρ0F ] [ρ0F ] + 3 [h+ k] [ρ0F ]2 − 2 [ρ0F ]3

Then

N0 =
Φ (β, c, F, g, k, h, ρ0)

[ρ0F − k]
{

2k [β − c]− 2kρ0F + [ρ0F ]2
}
− Φ (β, c, F, g, k, h, ρ0)

For comparative statics a Taylor Series approximation is needed. Note that if β−c = 3k/8

then

ρ0 =
3k

4F

We expand the lhs of (A.6) around this point in {β − c, ρ0} space using

f (x, y) ≈ f (a, b) + fx (a, b) [x− a] + fy (a, b) [y − b]

+
1

2!

{
fxx (a, b) [x− a]2 + 2fxy (a, b) [x− a] [y − b] + fyy (a, b) [y − b]2

}
to obtain
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ρ0 ≈
{

27k − 32 [β − c]
11k − 16 [β − c]

}
k

4F
.

Equating the approximations for ρφ and ρr we obtain

N0 ≈
2F [h− k] [2 [β − c]− k]− 4gk [β − c− k]

−F [2h− k] [2 [β − c]− k] + 4gk [β − c− k]
.

N0 ≥ 1 if

β − c > k

2

4Fh− 3Fk − 8gk

4Fh− 3Fk − 4gk

Then

ρφ ≷ ρr ⇔ N ≷ N0

Elasticity of Φ and N εΦ,N < 1

Φ can be written in the form Φ = Nqw
(
ρzF̄ , N

)
, where

w
(
ρzF̄ , N

)
= γq

[
N + 2

2

]
− [1− az] [h− ρzF ]

so

∂Φ

∂N
= qw

(
ρzF̄ , N

)
+N

[
qNw

(
ρzF̄ , N

)
+ qwN

(
ρzF̄ , N

)]
=

Φ

N
+N

[
qNw

(
ρzF̄ , N

)
+ qwN

(
ρzF̄ , N

)]
As wN

(
ρzF̄ , N

)
< 0 and qN < 0 we have

N
[
qNw

(
ρzF̄ , N

)
+ qwN

(
ρzF̄ , N

)]
< 0

So

εΦ,N = 1 +
N2

Φ

[
qNw

(
ρzF̄ , N

)
+ qwN

(
ρzF̄ , N

)]
< 1

Appendix.7 Proof of Proposition 4

W = Φ− C
a = ρF̄

k

C = gρN {1− [1− a] τ}
Φ = Nq (ρ,N)w (ρ,N)
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w (ρ,N) = γq
[
N+2

2

]
− [1− a]

[
h− ρF̄

]
q (ρ,N) = 1

γ[1+N ]

{
β − c− a

2

[
2k − ρF̄

]}
NR: τ = 0

SR: τ = 1

The focs for ρ,N can be written as

Φρ − Cρ = 0

ΦN − CN = 0

where

Cρ = gN {1 + [2a− 1] τ}
CN = gρ {1− [1− a] τ} > 0

1. expression for N ′

Set ρ = 0 and τ = 0. Then foc for ρ gives Φρ (0, N ′) − gN ′ = 0. So N ′ given implicitly

by

N ′ =
1

g
Φρ (0, N ′) .

2. ρ > 0 as N →∞ under SR

From the foc under SR (τ = 1) we have Φρ (ρ,N)− 2ρF̄ gN/k = 0. Hence

2NF̄gρ = kΦρ

(
ρF̄ ,N

)
Suppose ρ = 0, then it must be that 0 = kΦρ (0, N), equivalently Φρ (0, N) = 0. But this

is a contradiction as Φρ (0, N) > 0 at an interior maximum (Φρ (0, N) > 0 is a condition for

an interior maximum). Hence ρ 6= 0. As ρ cannot be negative it follows that ρ > 0.

3. Φρ is increasing and strictly concave in N at the optimal level of enforcement (i.e.,

the ”indirect” benefit function is increasing and strictly concave in N)

We have (globally)
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ΦρN = [qwρ + qρw] +N [qwρN + qρwN + qNwρ + qρNw]

=
Φρ

N
+N [qwρN + qρwN + qNwρ + qρNw]

ΦρNN = 2 [qρ +NqρN ]wN + 2 [qNwρ + qρNw + qwρN ]

+N [qρwNN + qNNwρ + 2qNwρN + qρNNw + qwρNN ]

Then (globally)

qρN = − 1

1 +N
qρ

qN = − q

1 +N

qNN =
2q

[1 +N ]2

qρNN =
2qρ

[1 +N ]2

wρN = − γqρ
2 [1 +N ]

wNN =
γqNN

2

wρNN = γqρN +
2 +N

2
γqρNN

wN =
γqN

2

So (globally)

ΦρN =
1

1 +N

[
Φρ

N
− γNqqρ

]
ΦρNN =

2

[1 +N ]2
{γ [N − 1] qqρ − [wqρ + qwρ]}

=
2

[1 +N ]2

{
γ [N − 1] qqρ −

Φρ

N

}
Then, at the optimal level of enforcement,

Φρ

N
=
Cρ
N

> 0

Hence, the result follows.
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4. εΦρ,N < 1 at the optimal level of enforcement

Φρ is strictly concave in N at the optimal level of enforcement, from 3. Hence, for all

N1 < N2, Φρ (ρ,N2) − [N2 −N1] ΦρN (ρ,N2) > Φρ (ρ,N1). Setting N1 = 0 and noting that

Φρ (ρ, 0) = 0 (as Φρ (ρ,N) = Cρ (ρ,N) = gN {1 + [2a− 1] τ}) we have that Φρ (ρ,N2) −
N2ΦρN (ρ,N2) > 0 for all N2, which implies 1− εΦρ,N > 0.

5. ∂ρ
∂N

< 0 at the optimal level of enforcement; ∂N
∂ρ

< 0 at the optimal level of competition

The foc for ρ is Φρ − Cρ = 0 so

∂ρ

∂N
=
−WNρ

Wρρ

Then, using 4,

−WNρ =
Φρ

N
− ΦρN =

Φρ

N

[
1− εΦρ,N

]
> 0

so

∂ρ

∂N
=

Φρ
N

[
1− εΦρ,N

]
Wρρ

< 0

The foc for N is ΦN − CN = 0 so

∂N

∂ρ
=
−WNρ

WNN

=
Wρρ

WNN

∂ρ

∂N
< 0

6. ∂N
∂τ

> 0 at the optimal level of competition

The focs for N can be written as ΦN − gρ {1− [1− a] τ} = 0. Then

∂N

∂τ
= −gρ [1− a]

WNN

= −gρ [1− a]

WNN

> 0.

7. ignore

8. ∂ρ
∂τ
< 0 at a social optimum

We have (from 14) that 2a− 1 > 0. So, (from foc ρ),

∂ρ

∂τ
=
gN [2a− 1]

Wρρ

< 0.

9. ρ > ρ0 and N < N0 at a social maximum

From foc for ρ

2a− 1 > 0⇔ ρ > ρ0 ⇔ N < N0
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10. N̂φ < N̂r < N0

We first prove N̂r > N̂φ. The total effect on N of an increase in τ is given by (chain rule)

dN

dτ
=
∂N

∂τ
+
∂ρ

∂τ

∂N

∂ρ
> 0

Hence N̂r > N̂φ. Final part of inequality follows from 9.
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