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Abstract

Dynamic spatial theory has been a fruitful approach in understanding eco-

nomic phenomena involving time and space. However, this new field has opened

a set of questions still unresolved in the literature. For instance, the identification

of the temporal and spatial social optimal allocation of economic activity has not

been ensured yet in economic growth. By means of a monotone method we study

in this paper the optimal solution of spatial Ramsey-type models. The iterative

nature of this approach also allows us to present a new algorithm to simulate the

optimal trajectories of the economy. We provide two economic illustrations of our

method. Firstly, in order to investigate the importance of capital mobility in eco-

nomic growth, we consider the spatial Ramsey model. We point out the spatial

dynamic implications in social welfare and income inequality. Secondly, under

fairly general assumptions, we analytically prove the existence of a unique social

optimum in this framework. We also apply the outcome to the spatial growth

model and to a set-up for optimal land-use planning, concluding that these prob-

lems are well-posed.
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1 Introduction

A recent strand of the literature on spatial economics has introduced diffusion mecha-

nisms in order to understand the allocation of economic activity across time and space.

This approach turned out to be useful for explaining a new set of spatial-dynamic

phenomena, such as the mobility of production factors (Boucekkine et al., 2013a; and

Fabbri, 2016), the dissemination of technology (Desmet and Rossi-Hansberg, 2009, 2014

and 2015), the spatial allocation of natural resources (Brock and Xepapadeas, 2008),

or the spread of pollution due to the economic activity (Camacho and Perez-Barahona,

2015). However this framework has come across serious methodological issues, without

conclusive answers from either the economic or the mathematical literature. The aim

of our paper is to contribute in this regard, providing a general analytical tool to study

the solution of spatial Ramsey-type models.

Spatial Ramsey-type models are based on the spatial generalization of the Ramsey-

Cass-Koopmans model, first presented in Brito (2004) and Boucekkine et al. (2009).

This framework considers a forward-looking decision maker that chooses the optimal

levels of control variables for a given spatial region and time span. In this problem the

social planner also takes into account how the state variables geographically spread.

The local level of consumption is the usual example of control, with capital or pollution

as state variables. This is indeed an optimal control problem, where the evolution law

of the state variables is represented by means of partial differential equations (hereafter

PDE). In these equations the partial derivatives, with respect to space and to time,

describe the spatio-temporal motion of the corresponding state variable.

The benchmark of this type of set-up is the spatial growth model, which adds spa-

tial structure to the standard Ramsey model. In this framework the policy maker takes

into account the welfare or utility of all the individuals distributed in space, considered

over a certain period of time. Moreover capital is assumed to be mobile across loca-

tions, where the corresponding spatio-temporal law of motion is a non-linear parabolic

PDE. Considering this approach, Boucekkine et al. (2013a) and Fabbri (2016) point out

the role played by space in economic growth, which significantly affects the dynamical

properties of the economy. Boucekkine et al. (2013a) specifically show that, despite

constant returns to capital, transitional dynamics can arise in the AK growth model

when we incorporate the spatial structure. In environmental economics, Camacho and

Perez-Barahona (2015) provide another example of spatial Ramsey-type models. This

paper studies the optimal use of land, encompassing land use activities (e.g., produc-

1



tion, housing or pollution abatement) and environmental degradation. They focus on

the spatial externalities of land use management as drivers of spatial patterns: land

is immobile by nature, but local actions affect the whole space since pollution flows

across locations resulting in environmental damages. Their stylized model manages to

reproduce a great variety of spatial patterns related to the interaction between land use

activities and the environment. In particular, in line with Costello and Polasky (2008),

they also show that the spatial connectivity (due to the dispersal process), together with

the particular characteristics of each location, can economically justify the creation of

(temporal or permanent) biological reserves.1

From a general perspective, spatial Ramsey-type models have been useful for describ-

ing the dynamic interaction of economic agents that are spatially distributed. Neverthe-

less, this framework has opened serious methodological questions. Within the context

of social interactions, Mossay and Picard (2015) and Blanchet et al. (2016) notice im-

portant difficulties in ensuring the existence and uniqueness of equilibrium when we

incorporate space into the problem. Considering the spatial Ramsey-type framework,

papers such as Boucekkine et al. (2009), Boucekkine et al. (2013a,b) and Camacho

and Perez-Barahona (2015) identified as well this issue when including both time and

space dimensions: although a set of necessary conditions can be provided for a general

problem, neither the existence nor the uniqueness of solution has been proven so far.2

In this paper we generalize the spatial Ramsey set-up. We then introduce a monotone

method, based on Pao (1992), in order to analyze the solution of this type of models.

Moreover, the iterative nature of this approach also allows us to present a new algorithm

to find numerically the optimal trajectories of the economy. We underline the value of

our method with two economic illustrations. One is numerical, the other is analytical.

For the numerical illustration we investigate the importance of capital mobility in

economic growth. In order to address this question we apply the spatial growth model,

where capital can flow across locations and agents are continuously distributed in the

1Biological objectives, such as biodiversity conservation, typically give ground for expanding natural

reserves. However, without explicitly including the spatial dimension, this is not the case in standard

economics.
2One can then say that the problem is ill-posed in the sense of Hadamard (1923). Not being able

to ensure the existence of solution is obviously problematic. The concern about non-uniqueness is

not less important because it frequently implies indeterminacy of equilibrium in dynamic contexts. In

this regard, many economists consider that models with indeterminacy are undesirable (among others,

Kehoe et al., 1990; and Acemoglu, 2009).
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space.3 Barro et al. (1995) present an open-economy neoclassical growth model, without

explicitly including spatial structure. Under perfect capital mobility, which is defined

as the absence of institutional barriers to spatial capital flows, they observe that transi-

tional dynamics occurs if capital is irreversible together with the presence of adjustment

costs (see also Barro and Sala-i-Martin, 2004). We find in our paper that, for plausible

values of the parameters, geography can be naturally considered as an adjustment cost

for capital. More specifically the spatial structure, which is explicitly represented in

our set up by the diffusion process, allows the neoclassical growth model with perfect

capital mobility and irreversibility to avoid immediate adjustment. In terms of social

welfare, the model shows that capital mobility is beneficial. When capital is mobile the

economy manages to reduce the negative effect of decreasing returns to scale. Capital

moves indeed to locations where it is less abundant (and, consequently, with higher

shadow price), so the global impact of decreasing returns to scale reduces. Finally, our

method also allows us to study the effect of capital mobility on the evolution of (spatial)

income inequality. We assume that locations are spatially heterogenous with respect to

their initial levels of capital and, consequently, income inequality arises. The simulations

show that capital mobility significantly reduces the Gini coefficient of the economy at

anytime. In fact, improving capital mobility reduces the importance of the initial condi-

tions because capital diffuses to locations with lower initial endowment. This outcome

is in line with the observation made by Galor (1996) or Quah (1996a,b).

Regarding the analytical application, we study the existence and uniqueness of the

social optimum in spatial Ramsey-type models. Under fairly general assumptions our

method allows us to prove the existence of the unique optimal solution when the time

horizon is finite. To the best of our knowledge this is the first paper dealing with the

existence and uniqueness of the solution to an optimal control problem governed by a

non-linear parabolic PDE. The practicality of this outcome mainly reduces to ensure the

existence of upper and lower solutions. These are a sort of boundaries to the Pontryagin

conditions that characterize the social optimum. In our paper we apply this result to

the spatial growth model and to the environmental economics example of Camacho and

Pérez-Barahona (2015). We conclude that the solution of these two models exists and is

unique, so these problems can be considered as well-posed. With this property in hand,

we can thus provide appropriate tools for policymaking, and for the implementation of

the social optimum in particular, that involves time and spatial dimensions.

3For the importance of considering a continuum of locations see, for instance, Desmet and Rossi-

Hansberg (2009 and 2010) and Thisse (2010).
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The paper is structured as follows. Section 2 describes a general spatial version

of the Ramsey model. Section 3 presents the result of existence and uniqueness of

social optimum. In Section 4 we apply our approach to the two examples of spatial

Ramsey-type models, introducing as well the numerical method. Finally, we present

our conclusions in Section 5.

2 The general problem

The objective of the policy maker is to maximize the aggregated social welfare in a

bounded region of space Ω ⊂ R over a finite time period [0, T ]. To do so, she chooses

a time trajectory for a variable c in each location, taking into account the dynamics

of a state variable u1. The choice of the control c affects in turn the dynamics of the

state. More precisely, the policy maker maximizes the welfare provided by c, aggregating

felicity over time and space plus a measure the final spatial situation of the economy,

which is represented by a scrap value function Ψ, as follows:

max
c

∫ T

0

∫
Ω

U(c(x, t))g(x, t)dxdt+

∫
Ω

Ψ(u1(x, T ), x)dx (1)

subject to:


u1,t(x, t)− u1,xx(x, t) = f1(u1, c),

limx→δΩ u1,x(x, t) = 0,

u1(x, 0) = u1,0(x) ≥ 0 given.

(2)

We assume in the objective function (1) that U ∈ C2(R+) is measurable, increasing

and concave. The function g(x, t) represents the usual spatial and time discounting. For

instance, following Boucekkine et al. (2013b), one can consider the example g(x, t) =

ξ(x)e−ρt. This functional form assumes that time is exponentially discounted as in the

standard growth model, where ρ > 0 is the time-discount rate. Moreover, function ξ(x)

is assumed to “rapidly decrease” in order to discount space.4 As in Camacho and Pérez-

Barahona (2015), the spatial discounting can represent the importance that the policy

maker gives to each location of the economy. Moreover, the scrap function can also

include space and time discounting since the convergence of the corresponding integral

4Notice that both time and space discounting can be dropped in our set-up since time period and

space are assumed to be bounded. See Section 5 for further remarks about the decision horizon.
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term is required as well. We additionally assume that Ψ ∈ C1(D(u1),Ω), defined on the

domain of u1, is a positive function with bounded derivative Ψ′1 > 0.

The first equation in (2) describes the spatial and time dynamics of the state variable

u1. This is a parabolic PDE, where u1,t denotes the partial derivative with respect to

time and u1,xx is the second partial derivative with respect to space. As pointed out

in the introduction, this expression can represent the spatio-temporal spread of capital

in an economic growth framework. Identifying u1(x, t) with the capital of location x at

time t, k(x, t), the law of motion of capital can be written as

kt(x, t)− kxx(x, t) = I(x, t), (3)

where I(x, t) represents the net investment of a location x at time t. The main difference

with respect to the standard law of motion without space is the term −kxx(x, t). As in

Boucekkine et al. (2009) and Boucekkine et al. (2013a), it reflects that capital flows

from regions with lower marginal productivity of capital (i.e., with abundant capital)

to the higher ones, with relatively less capital. They actually show that equation (3)

can be economically justified as a balance trade equilibrium in a bounded region.

Camacho and Pérez-Barahona (2015) provide another example of this type of equa-

tion in a land use set up, where the dynamics of pollution p(x, t) follows

pt(x, t)− pxx(x, t) = E(x, t). (4)

E(x, t) summarizes the emissions in time t of a single source located at x. The term

−pxx(x, t) above states that a pollutant diffuses from regions where its concentration is

high to regions of lower concentration (Fick’s law of diffusion). Indeed, equation (4) is

the well-known model in physics called the Gaussian plume, which is frequently used to

describe the spread of pollution across locations.

The second expression in (2) is known in the literature as the Neumann boundary

condition. It characterizes the behaviour of u1 in the spatial frontier, assuming that

there is no flow of the state variable (capital, for instance) at locations that are far away

from the origin.5 Finally, the last equation is the initial spatial distribution of u1, which

is assumed to be a known positive function u1,0(x) ∈ C(Ω̄).

In the optimal control literature few papers deal with the existence of unique solu-

tion in this type of problems. Unique solution exists in some particular cases, namely

5This condition can be relaxed by assuming a circular space, so k(0, t) = k(2π, t). For further

discussion see Boucekkine et al. (2013a,b).
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a linear f1(u1, c) (Lions, 1966a,b; and Barbu and Precupanu, 2012) or under specific

non-linearities with very limited interaction between the state and the control variables

(Lions, 1966a,b and 1972; and Ahmed, 1977). Still, using an appropriated maximum

principle, Pontryagin conditions can be associated to general non-linear problems. Fat-

torini (1990) and Raymond and Zidani (1999) prove that the set of Pontryagin conditions

is necessary and sufficient to characterize the solutions of this problem. However, to the

best of our knowledge, we have not found any existence result for this type of dynamical

systems.

Using the Ekeland (1974) variational principle, we obtain the associated set of Pon-

tryagin necessary conditions as:6

(O)



u1,t(x, t)− u1,xx(x, t) = f1(u1, c),

u2,t(x, t) + u2,xx(x, t) = f2(u1, u2, c),

u2
∂f1
∂c

= −U ′(c)g(x, t),

limx→δΩ ui,x(x, t) = 0, i = 1, 2,

u1(x, 0) = u1,0(x) ≥ 0, given,

u2(x, T ) = Ψ′1(u1(x, T ), x),

where δΩ = Ω̄\Ω̊ is Ω’s frontier and u2 is the corresponding co-state variable (shadow

price). As we will see in the next section, ensuring the existence of unique solution

to the system (O) is far from being obvious due to presence of two coupled non-linear

parabolic PDE, where one of them is time reversed.

Let us also observe that in the literature of spatial economics one finds some prag-

matical ways to tackle the problem and to provide a solution. A linear utility in the

objective function allows Boucekkine et al. (2009) to decouple the Pontryagin condi-

tions, solving each block of PDE separately. Using dynamic programming in Hilbert

spaces, Boucekkine et al. (2013a) overcome the unicity problem in a spatial version of

the AK growth model, where space is a circle and the time horizon is infinite. Finally,

other papers find particular solutions (spatially periodic or time-constant solutions) to

the spatial Ramsey-type model as Brito (2004) or Brock and Xepapadeas (2008).

6See Appendix A for details.
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3 Existence and uniqueness of the solution

We prove in this section the existence of the unique solution to our system of non-linear

PDE of real functions on Ω×[0, T ]. For the ease of presentation, since c can be expressed

as a function of u1 and u2, let us rewrite (O) as:

(I)



u1,t(x, t)− u1,xx(x, t) = f1(u1, u2),

u2,t(x, t) + u2,xx(x, t) = f2(u1, u2),

limx→δΩ ui,x(x, t) = 0, i = 1, 2,

u1(x, 0) = u1,0(x) ≥ 0, given,

u2(x, T ) = Ψ′1(u1(x, T ), x).

This system is a generalization of the set of necessary and sufficient conditions iden-

tified in Boucekkine et al. (2009). We should observe that (I) is composed of a parabolic

PDE for u1, a reversed-time parabolic PDE for u2, together with conditions on the par-

tial derivatives of u1 and u2 at the spatial borders. Besides, u1,0 provides the initial

distribution for u1. Moreover Ψ′1(u1(x, T ), x) determines the final distribution for u2,

which is a function of the final distribution for u1. This last condition ties the final

distribution of the state variable to the final distribution of the associated co-state. As

in Camacho et al. (2008) it reveals that, at the end of the planning horizon, the shadow

price of the state variable equals the marginal social scrap value of the stock.

In this paper we introduce a monotone method based on Pao (1992). These methods

were widely used to prove the existence of solution for systems of PDE, of parabolic

and hyperbolic type, with both boundary and initial conditions (see, among others,

Sattinger, 1972; Changdra et al., 1978; and Bebernes and Schimitt, 1979). Before going

into the details of the proof, let us briefly describe the idea of our method. In a nutshell,

we build two converging sequences of functions that unambiguously encircle the unique

solution to the system. First, we identify an upper and a lower solution of the original

problem (I), which are typically easier to ensure than the solution itself. Starting then

from these solutions, we describe sequences of associated linear problems, which have

unique solution. We finally show that these associated problems converge to the original

one (I) from above (below), starting with the upper (lower) solution.

More formally, let us begin by describing the norms that we will use to size functions

and variables in our method. We mix two norms along the proof: the usual norm in

R2 and the supremum norm. For every u(x, t) ≡ (u1(x, t), u2(x, t)) ∈ R2 and at every
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(x, t) ∈ Ω× [0, T ], the usual Euclidean norm in R2 is defined as

|| u(x, t) || ≡ | u1(x, t) | + | u2(x, t) | .

We also make use of the supremum norm || · ||0, defined for any u ∈ R2:

|| u ||0 ≡ sup
(x,t)∈Ω×[0,T ]

|| u || .

As pointed out above, the dynamics of u2 is described by a reversed-time parabolic

PDE. So one of the key ingredients of the proof is to reverse time in the second PDE in

(I). We define in this regard the variables w1 and w2 as

w1(x, t) ≡ u1(x, T − t),

w2(x, t) ≡ u2(x, T − t).

Therefore, the dynamics of w2 is described by a parabolic PDE with a known initial

distribution Ψ′1(w1(x, 0), x): w2,t(x, t)− w2,xx(x, t) = −f2(w1, w2),

w2(x, 0) = Ψ′1(w1(x, 0), x).
(5)

We aim at extending the monotone method of Pao (1992), considering in our paper

systems of mixed types of parabolic PDE. In order to do so, we need to define adequate

upper and lower solutions. We say that two functions û = (û1, û2) and ũ = (ũ1, ũ2) are

upper and lower solutions to (I) if they satisfy for every t:

ũ1,t(x, t)− ũ1,xx(x, t)− f1(ũ1, ũ2) ≤ 0 ≤ û1,t(x, t)− û1,xx(x, t)− f1(û1, û2),

û2,t(x, t) + û2,xx(x, t)− f2(û1, û2) ≤ 0 ≤ ũ2,t(x, t) + ũ2,xx(x, t)− f2(ũ1, ũ2),

limx→δΩ ûi,x(x, t) = 0, limx→δΩ ũi,x(x, t) = 0, i = 1, 2,

(6)

with ũ1 ≤ û1, ũ2 ≤ û2, and

ũ1(x, 0) < u1(x, 0) < û1(x, 0),

ũ2(x, 0) < u2(x, 0) < û2(x, 0),
(7)

for all x ∈ Ω.7

7We say that a function m is larger than another function m′ in Ω× [0, T ], i.e., m ≥ m′, if and only

if m(x, t) ≥ m′(x, t) for all (x, t) ∈ Ω× [0, T ].
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Due to the presence of a reversed-time parabolic PDE, considering (5), the PDE

condition for û2 and ũ2 in (6) becomes

w̃2,t(x, t)− w̃2,xx(x, t) + f2(w̃1, w̃2) ≤ 0 ≤ ŵ2,t(x, t)− ŵ2,xx(x, t) + f2(ŵ1, ŵ2). (8)

That is to say, ŵ2 and w̃2 are, respectively, the upper and lower solution of the corre-

sponding parabolic PDE, as it is usually defined in the literature. Moreover,

w̃2(x, 0) < Ψ′1(u1(x, T ), x) < ŵ2(x, 0).

Notice that ũi, ûi, i = 1, 2, are required to be C(Ω̄ × [0, T ]) ∩ C1,2(Ω × [0, T ]), that is,

the are continuous in Ω̄× [0, T ], continuously differentiable in t and twice continuously

differentiable in x for all (x, t) ∈ Ω× [0, T ].

Having established the definition of lower and upper solutions, let us also define the

set of continuous functions between ũ and û as

< ũ, û >≡ {(u1, u2) ∈ C(Ω× [0, T ]) : (ũ1, ũ2) ≤ (u1, u2) ≤ (û1, û2)} .

The interest of < ũ, û > is that it defines the precise space where solutions will be

confined, i.e., all solutions are limited from below by ũ and from above by û (see Theorem

2 at the end of this section).

As usual in this literature, we need to impose boundedness conditions on initial

distributions and functions f1 and f2 in order to avoid explosive solutions:

Assumption 1. u1,0(x) ∈ C(Ω̄) is measurable. The initial distributions verify that
ũ1(x, 0) < h1e

h2|x|2

u1(x, 0) < h1e
h2|x|2

û1(x, 0) < h1e
h2|x|2

and

{
ũ2(x, 0) < h1e

h2|x|2

û2(x, 0) < h1e
h2|x|2

for some positive constants h1, h2 with h2 <
1

4T
.

Assumption 2. There exist bounded functions ai = ai(x, t), ai = ai(x, t), ci = ci(x, t)

and ci = ci(x, t), with i = 1, 2, such that for every u, v ∈< ũ, û >, where u = (u1, u2)

and v = (v1, v2), (f1, f2) satisfies

−a1(u1 − v1)− a2(u2 − v2) ≤ f1(u1, u2)− f1(v1, v2) ≤ a1(u1 − v1) + a2(u2 − v2),

−c1(u1 − v1)− c2(u2 − v2) ≤ f2(u1, u2)− f2(v1, v2) ≤ c1(u1 − v1) + c2(u2 − v2),

for u1 ≥ v1 and u2 ≥ v2. Furthermore, functions a1 and c̄2 are Hölder continuous in

Ω× [0, T ].
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We restrict fi domain to sets in which Assumption 3 below is verified. We denote

these reduced domains for f1 and f2 by J1 and J2, respectively.

Assumption 3. For every u, v ∈< ũ, û >, either f1 is increasing in both u1 and u2 and

a1 ≥ 0, or a2 ≤ 0. Similarly, either f2 is decreasing in both u1 and u2 and c̄2 ≥ 0, or

c̄1 ≤ 0.

Finally, we include some continuity assumptions on functions fi:

Assumption 4. For i = 1, 2, functions fi are Hölder continuous in J1 × J2 for some

subset J1 × J2 ⊆ R2.8

Defining functions M1 and M2 as

M1 ≡ max{| a1 |, | a2 |, | a1 |, | a2 |},
M2 ≡ max{| c1 |, | c2 |, | c1 |, | c2 |},

functions f1 and f2 are Lipschitz continuous since Mi = Mi(x, t) are bounded in Ω ×
[0, T ]. That is to say, there exist bounded functions Mi = Mi(x, t) in Ω × [0, T ] such

that

| fi(u1, u2)− fi(v1, v2) |≤Mi | u− v |,

for any u, v in < ũ, û >.

With functions a1 and c̄2 from Assumption 2, we build functions F1 and F2 as

F1(x, t, u1, u2) ≡ f1(u1, u2) + a1(x, t)u1,

F2(x, t, u1, u2) ≡ f2(u1, u2)− c̄2(x, t)u2.
(9)

By Assumptions 2 and 4, functions Fi are Hölder continuous in Ω × [0, T ]× < ũ, û >,

for i = 1, 2. Furthermore, we also define two linear operators of u1 and u2, L1 and L2,

as
L1u1 ≡ u1,t − u1,xx + a1u1,

L2u2 ≡ u2,t + u2,xx − c̄2u2.

Introducing the functions Fi and the operators Li defined above, we can rewrite the two

PDE in (I) as

Liui = Fi(u1, u2),

in Ω× [0, T ] for i = 1, 2.

8Our results can be easily extended to functions fi that depend on x and t, i.e., fi(x, t, u1, u2). In

this case, fi would be Hölder continuous in Ω× [0, T ]× J1 × J2.
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As pointed out before, the PDE corresponding to u2 is parabolic after reversing time

(see Equation 5). So we define an alternative operator to L2 in order to consider only

parabolic PDEs:

L′2w2 ≡ w2,t − w2,xx + c̄2w2.

Taking then the operator L′2, the PDE in (5) becomes

L′2w2 = −F2(w1, w2).

This new writing turns out to be extremely useful in the upcoming Theorem 1. It

allows us to consider sequences of single linear parabolic PDE that we will use in order

to prove the existence of the unique solution for (I). As we briefly explained before,

this theorem begins by building two monotonic sequences of functions. We set up,

on the one hand, a non-increasing sequence of continuous functions of time and space

{ūk1, ūk2}k∈N and, on the other hand, a non-decreasing sequence of continuous functions

{uk1, uk2}k∈N. Without loss of generality, we establish {ūk1}k∈N initiating the sequence with

the upper solution {û1, û2}. At every step, we generate ūk1 taking (ūk−1
1 , ūk−1

2 ). Then,

with w̄k1(x, t) = ūk1(x, T − t) and (w̄k−1
1 , w̄k−1

2 ), we will obtain w̄k2 . The step ends when

we reverse time again to obtain ūk2(x, t) = w̄k2(x, T − t). We can repeat this procedure

at infinitum to build our sequence. Regarding the sequences {uk1}k∈N and {uk2}k∈N, we

follow a similar strategy, initiating the process with the lower solution {ũ1, ũ2}. We then

prove that these sequences uniformly converge:

lim
k→∞

ūki = ūi and lim
k→∞

uki = ui, i = 1, 2.

Finally we show that L−1F possesses the contraction property, where we define the

diagonal matrix L ≡ diag(L1,L2) and the transpose of the vector of Fi functions F ≡
(F1, F2)′. So the limits of the above sequences coincide and define the unique solution

of (I).

Following these steps, Theorem 1 states that problem (I) has a unique solution in

Ω× [0, T ] under the assumptions established before:

Theorem 1. Under the Assumptions 1-4, the problem

u1,t(x, t)− u1,xx(x, t) = f1(u1, u2),

u2,t(x, t) + u2,xx(x, t) = f2(u1, u2),

limx→δΩ ui,x(x, t) = 0, i = 1, 2,

u1(x, 0) = u1,0(x) given,

u2(x, T ) = Ψ′1(u1(x, T ), x),

(10)
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has a unique solution (u1, u2) in Ω × [0, T ]. Moreover, u = (u1, u2) is the limit of

the monotonic sequence {uk1, uk2}k∈N, where uk2(t, x) = wk2(x, T − t). The sequence

{uk1, wk2}k∈N is generated as
L1u

k
1 = F1(uk−1

1 , uk−1
2 ), limx→δΩ u

k
1,x(x, t) = 0, ∀t ≥ 0,

L′2wk2 = −F2(wk−1
1 , wk−1

2 ), limx→δΩw
k
2,x(x, t) = 0, ∀t ≥ 0,

(11)

for all k = 1, 2, ... We can choose between two sets of initial conditions and initial

distributions. The first set (Ŝ) of conditions below generates a non-increasing sequence,

whereas the second set (S̃) generates a non-decreasing sequence:

(Ŝ)


(u0

1, u
0
2) = (û1, û2),

uk1(x, 0) = Υ
k
û1(x, 0) + (1− Υ

k
)u1(x, 0),

wk2(x, 0) = ψ
k
ŵ2(x, 0) + (1− ψ

k
)Ψ′1(wk−1

1 (x, 0), x);

(S̃)


(u0

1, u
0
2) = (ũ1, ũ2),

uk1(x, 0) = ζ
k
ũ1(x, 0) + (1− ζ

k
)u1(x, 0),

wk2(x, 0) = φ
k
w̃2(x, 0) + (1− φ

k
)Ψ′1(wk−1

1 (x, 0), x),

with 0 < ζ < Υ < 1 and 0 < φ < ψ < 1.

Proof. See Appendix B.

We have proven so far that, once a pair of lower and upper solutions is identified, there

exists a unique solution u to our original problem between them. A natural question

arises, wondering about how many solutions one could find below (above) the specific

lower (upper) solution. The answer is that, under the assumptions of the model, we

will not find any. So the unique solution of the problem will be unambiguously located

between the pair of lower and upper solutions, i.e., u ∈< ũ, û >. We state this final

result in the following theorem:

Theorem 2. Let Assumptions 1-4 hold, and ũ and û be lower and upper solutions to

problem (I). Let us further assume that:

i) either f1 is increasing in u1 and u2, with a1 ≥ 0; or a2 ≤ 0,

ii) either f2 is decreasing in u1 and u2, with c̄2 ≥ 0; or c̄1 ≤ 0.
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If u is a solution to (I) then u ∈< ũ, û >.

Proof. See Appendix C.

4 Applications

Let us apply our method to two examples of spatial-Ramsey type models. We consider

first the spatial growth model originally introduced by Brito (2004) and Boucekkine

et al. (2009). The second example is based on the optimal land-use framework of

Camacho and Pérez-Barahona (2015). In both models ill-posedness had not been solved

this far, even under the case of finite decision horizon. Boucekkine et al. (2013a) is

an exception in this respect, but they focus on the case of linear production function

(AK model). Camacho and Pérez-Barahona (2015) allow for a non-linear production

function. However, their analytical results about the existence of unique equilibrium

exclusively apply to the time-invariant solution.

Making use of Theorems 1 and 2, we will conclude that the social optimum exists

and is unique. Hence, when the time horizon is finite, we can confirm that these models

are well-posed. From a numerical perspective, we will implement the iterative method

presented in Theorem 1 in order to simulate the optimal trajectories of the spatial

growth model. In particular, we will apply this algorithm to study the role played by

capital mobility in economic growth.9

4.1 The spatial growth model

Within the general framework of economic growth theory, the spatial Ramsey model

considers a policy maker that maximizes utility in a region Ω of space from time 0 to

T , subject to the dynamic evolution across time and space of the capital stock.10 The

corresponding optimal control problem is

max
c

∫ T

0

∫
Ω

U(c(x, t))e−ρtdxdt+

∫
Ω

Ψ(k(x, T ))e−ρTdx (12)

9Camacho and Pérez-Barahona (2015) already include a numerical analysis of our second example.

Their computational setting is alternatively based on a discretization of the Pontryagin conditions,

starting from an initial guess for the reversed-time shadow price.
10Spatial economics usually considers space as a physical characteristic of the problem. However, it

is possible to think about alternative interpretations, such as the idea of “economic distance” suggested

by papers like Patel (1964) or Quah (1996a).
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subject to
kt(x, t)− kxx(x, t) = Af(k(x, t))− δk(x, t)− c(x, t), ∀(x, t) ∈ Ω× [0, T ]

limx→δΩ kx(x, t) = 0 ∀t ∈ [0, T ],

k(x, 0) = k0(x) > 0 given ∀x ∈ Ω.

(13)

The policy maker decides on the consumption c(x, t) of the representative household

at every location x and time t. In this respect, she takes into account the spatial-

dynamic motion of the stock of capital in each location k(x, t). So the first constraint

in (13) represents the law of motion of k(x, t). The right hand side of this equation

is the net investment, where δ ∈ (0, 1) is the rate of capital depreciation and f(·) is

the production technology of the economy, with a scale parameter A. As we already

observed in Section 2 (equation 3), this expression is a parabolic PDE where kxx(x, t)

introduces a new feature with respect to the standard law of motion of capital. This

term entirely comes from the spatial mobility of capital, which flows from regions with

lower marginal productivity of capital to the higher ones. The second constraint is the

(Neumann) boundary condition, which assumes that there is no capital flow at locations

that are far away from the origin. Finally k0(x) > 0 is the initial spatial distribution of

capital, which is given in the economy.

Ψ(·) > 0 measures how much the policy maker cares about the final state of capital,

or scrap value. It is a continuously differentiable function with bounded and positive

derivative. We assume that U and f are both positive, continuous, differentiable and

concave functions. Only settings with measurable k0 and existing integrals are con-

sidered. Following the variational principle in Appendix A, the Pontryagin optimal

conditions associated to this problem are

kt(x, t)− kxx(x, t) = Af(k(x, t))− δk(x, t)− c(x, t),∀(x, t) ∈ Ω× [0, T ],

λt(x, t) + λxx(x, t) = λ (δ + ρ− Af ′(k(x, t))) ,∀(x, t) ∈ Ω× [0, T ],

U ′(c(x, t)) = λ(x, t),∀(x, t) ∈ Ω× [0, T ]

limx→δΩ kx(x, t) = limx→δΩ λx(x, t) = 0, ∀t ∈ [0, T ],

k(x, 0) = k0(x) given, ∀x ∈ Ω,

λ(x, T ) = Ψ′(k(x, T )),∀x ∈ Ω,

where λ is the corresponding co-state variable, i.e., the shadow price of capital.

4.1.1 Analytical application

For this illustration we consider the usual CRRA utility function U(c) = c1−σ

1−σ with σ > 0,

together with a Cobb-Douglas production technology f(k) = kα where α ∈ (0, 1). We
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assume, for the sake of simplicity, a linear scrapping value Ψ(k(x, T )) = χk(x, T ) with

χ > 0. Using our general formulation (I), f1(k, λ) = Af(k(x, t))− δk(x, t)− λ(x, t)−1/σ

and f2(k, λ) = λ (δ + ρ− Af ′(k(x, t))). Let us apply Theorem 1 in order to prove the

existence of the unique social optimal solution of the spatial growth model. As we

pointed out in the previous section, the main idea of the theorem is to identify upper

and lower solutions to the system (I). This will ensure the existence of unique solution

within the space that the upper and lower solutions outline. Taking the definition (6)-

(8) of this type of solutions, one can verify that the following couple is a lower solution

to our problem :

(k̃, λ̃) =

((
αA

δ + ρ

) 1
1−α

− ε,
(
Ak̃α − δk̃

)−σ
+ ε

)
,

with ε > 0 a constant. Moreover, the couple below provides an upper solution:

(k̂, λ̂) = (ϕeφt, ψeζt),

with
Aαϕα−1 ≤ δ + ρ− ζ,
e
ζ+φ
σ
T ≤ ψ−1/σ

Aϕα−ϕ(1+δ)
,

for positive constants ϕ, ψ, φ, ζ > 0.11

As stated in Theorem 1 we also have to ensure several boundary and continuity

requirements (Assumptions 1-4). It is easy to see that Assumption 1 holds if we consider

non-explosive initial distributions for the capital and the upper and lower solutions.

Since f1 and f2 are continuously differentiable functions, they are Hölder continuous as

well. So Assumption 4 is verified too. With respect to Assumption 2, this is guaranteed

if we focus on interior non-explosive solutions. Lastly, notice that f1 is increasing in

both k and λ.12 One can also prove that f2 is decreasing in λ. However f2 is increasing

in k since λ > 0 and the production function is concave in k. We should then choose

a1 ≥ 0 and c̄1 ≤ 0 according to Assumption 3. Moreover, since f2 is increasing in k but

decreasing in λ, we can set c̄1 = 0 in order to ensure that Assumption 2 holds.

Summing-up, we have identified an upper and a lower solution. Since the assump-

tions of Theorem 1 hold for the functional forms of this illustration, we can then confirm

that there exist a unique solution to our problem. Considering finally Theorem 2, we

11Notice that these constants can be conveniently set in order to verify the conditions k̃(x, 0) <

k(x, 0) < k̂(x, 0) and λ̃(x, T ) < Ψ′1(k(x, T ), x) < λ̂(x, T ).
12∂f1/∂λ > 0 because λ(x, t) = U ′(c(x, t)) > 0. For ∂f1/∂k > 0 the scale parameter A should be

high enough, i.e., A > δ(ϕeφT )1−α/α.
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can guarantee that every solution lies between the upper and lower solutions, so we are

not missing any additional solution. Hence, we can state the following proposition:

Proposition 1. The spatial growth model (12)-(13) is well-posed.

4.1.2 Numerical application

Let us consider the initial set (S̃) or (Ŝ) in Theorem 1. Each of these sets defines the

initialization of an algorithm starting from the lower or the upper solution, respectively.

Our numerical method iteratively applies (11) in order to generate the sequences stated

in the theorem. Notice that, since we have proved that both sequences converge, the

algorithm can be initialized either with the lower or with the upper solution. The details

of the algorithm are provided in Appendix D.

For this numerical example we consider the same functional forms as in the analytical

application. Our method involves functions F1 and F2 defined in (9), so we have to

specify a1 and c̄2. Taking into account the Assumptions 2 and 3, one can verify that

a1 = δ and c̄2 = δ + ρ satisfy all the requirements since we have set c̄1 = 0. All

parameters values used in the simulations are displayed in Table 1. For the sake of

illustration we set the scale parameter A = 1. Regarding the CRRA utility, Attanasio

and Weber (1993) and Attanasio and Browning (1995) identify an interval for σ between

1.25 and 3.33 using micro household data. Consistently with this range, Barro et al.

(1995) assume σ = 2. Chetty (2006) however observes that, even if macroeconomics

tends to suggest values of σ greater than in microeconomic studies, there is an upper

bound implying that σ < 2. So in line with these papers we choose for our application

σ = 1.95. As in Barro et al. (1995) and Barro and Sala-i-Martin (2004), we consider

a time discount rate ρ = 0.02 and a depreciation rate δ = 0.05. We set the output

elasticity α = 0.75 following the notion of a broad measure that also includes knowledge

capital (see, for instance, Barro and Sala-i-Martin, 2004; and Acemoglu, 2009). For the

scrapping function, we choose a marginal value χ = 0.1 in order to reduce the direct

welfare gains due to the capital left at the end of the decision horizon. Finally we set the

constant ε of the lower solution to 1. Indeed, as observed before, the iterations can start

with either the upper or the lower solutions. Since for this model the lower solutions

are simpler (see analytical application), we decide to initialize the algorithm with the

set (S̃).13

13As robustness checks we repeated simulations for α = 1/3, which is a value frequently assumed for a

restricted definition of capital. We also tried alternative marginal scrap values χ = {0.001, 0.01, 0.5, 1}.
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A Scale parameter 1

σ Utility parameter 1.95

ρ Time discount rate 0.02

δ Depreciation rate 0.05

α Output elasticity 0.75

χ Scrap parameter 0.1

ε Lower solution constant 1

Table 1: Parameters values

For this illustration we assume a decision horizon T = 10, considering that the region

Ω of space is a real line of length 10. Since our numerical method requires that both

time and space are discretized, we divide them into 100 and 20 points respectively. So

following the notation of Appendix D, J = 100 and N = 20 with Dt = 0.1 and Dx = 0.5.

The economic aim of this application is to investigate the role played by capital mobility,

paying particular attention to the evolution of spatial inequalities across locations. So

we will assume that locations are spatially heterogenous with respect to their capital

endowment. We specifically consider that the initial distribution of capital is given by

k0(x) = 164 − 40 log(x) for x in our discretized space Ω ' {Dx, 2 ∗ Dx, ..., N ∗ Dx}.
Therefore, the endowment of capital stock is assumed to range from 164 to 44.17 as we

move away from the origin.

We first consider the case of perfect capital mobility. For this scenario the algorithm

needs 528 iterations to converge, with an Euclidean distance between two last iterations

lower than 0.1 for both k and λ. We plot in Figure 1 the optimal trajectories for the

capital and its shadow price. We compare this case with the other extreme situation

where there is no spatial diffusion. The policy maker still maximises the utility in the

whole space. However, capital is not allowed to move from one location to another. For

this simulation the algorithm needs 50 iterations to converge and, as in the previous case,

the Euclidean distance between two iterations is lower than 0.1. Figure 2 reproduces

the corresponding simulations.

We can see from these figures that the economy does not immediately adjust even if

capital is perfectly mobile. This outcome contrasts with the open-economy neoclassical

growth model introduced in Barro et al. (1995). Transitional dynamics is a desir-

In all these inspections we get similar qualitative results. We additionally verified that the simulated

trajectories remain identical for different lower solutions, with ε = {0.1, 0.5, 1.5, 2}.
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Figure 1: Spatial mobility

Figure 2: No spatial mobility

able property for a realistic economic model. However they observe that, under the

reasonable assumptions of capital irreversibility and economic openness, perfect cap-

ital mobility is only compatible with this property if we include capital adjustment

costs. Nevertheless, an important limitation of their set-up is that space is not ex-

plicitly included. We show in this regard that adding spacial structure, represented

in our framework by the diffusion process, avoids immediate adjustment in the growth

model even if capital is perfectly mobile. This conclusion is in line with Boucekkine et

al. (2013a), where transitional dynamics arises in the AK growth model with explicit

spatial structure. Within the context of Barro et al. (1995)’s observation, geography

introduces an additional adjustment cost for capital.
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Another remarkable feature that our model points out is the effect of capital mobil-

ity on social welfare. Capital mobility allows the economy to reduce the negative effect

of decreasing returns to scale. When capital is mobile, it flows to locations with lower

abundance (and, consequently, with higher shadow price). So the global impact of de-

creasing returns to scale reduces. As we can see in our simulations, capital increases with

time in the two scenarios. But at the end of the decision horizon, both the minimum

and the maximum stock of capital in the space are greater when there is spatial mo-

bility (without mobility, min |Ω(k(x, T )) = 611.93 and max |Ω(k(x, T )) = 1312.9; while

min |Ω(k(x, T )) = 6.55 × 105 and max |Ω(k(x, T )) = 6.74 × 105 with mobility). Taking

the evolution of the shadow price, we compute c(x, t) since U ′(c(x, t)) = λ(x, t). We

can then compare the social welfare in each type of economy, considering as well k(x, T )

and the corresponding scrap value. We find that capital mobility provides greater so-

cial welfare to the economy because capital can be spatially reallocated, thus inducing

efficiency gains. This result is consistent with the importance that economic integration

gives to capital mobility. Indeed, the elimination of any restrictions on the movement

of capital is a primary objective of, for instance, the Economic and Monetary Union of

the EU (EU, 2008; and, for a revision of the literature, see Kose et al., 2010).

Let us complete the illustration with the evolution of income inequality in the econ-

omy, considering the effect of capital mobility. The income of each location at time

t is defined as y(x, t) = Af(k(x, t)). Taking the simulated trajectories for k(x, t), we

can analyze the dynamics of the spatial income distribution by means of computing the

Lorentz curve and the Gini coefficient of the economy in each time t. Figure 3 represents

the evolution of spatial inequality, with and without capital mobility.

Since we have assumed an initial distribution of capital that is spatially heteroge-

neous, Figure 3(a) depicts the resulting income inequality that corresponds to a Gini

coefficient of 0.16. In both scenarios, due to the decreasing returns to scale, inequality

reduces as capital accumulates (see Figure 3b). However, the spatial mobility of capital

allows the economy to achieve lower inequality (blue line). This is also clear if we eval-

uate the level of inequality in the economy at the end of the decision horizon. Figures

3(c) and (d) show that the area between the line of equality (i.e., 45 degree line) and the

Lorentz curve is smaller when capital is spatially mobile. The Gini coefficient is 0.004

when the capital is mobile, which contrasts with a higher value (around 0.1) for the

case where spatial mobility is not allowed. Consistently with the statement presented in

papers such as Galor (1996) and Quah (1996a,b), our simulations show that improving

capital mobility reduces the importance of the initial differences among locations. As
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(a) Initial spatial inequality (b) Evolution of Gini index

(c) Final spatial inequality: mobility (d) Final spatial inequality: no mobility

Figure 3: Income distribution

before, the higher social value of capital in locations with lower abundance induces the

spatial flow of this input.

4.2 Land use dynamics and the environment

Our last application considers the spatial dynamic model introduced by Camacho and

Pérez-Barahona (2015). This paper applies the spatial-Ramsey framework to environ-

mental economics and, in particular, to study the social optimal use of land. It is

also consistent with the predictions of spatial models of natural resources such as the

harvesting stochastic spatial approach of Costello and Polasky (2008).

We assume an economy where each location has a unit of land, which can be de-
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voted to three different activities: production, housing and pollution abatement. For

simplicity, the space required for housing at each location is equal to its population

density f(x). We also consider no population growth. In this economy there exists a

unique consumption good, which only requires land as a production input. We denote

the production by F (l). Production generates pollution. However, the remainder of the

land can be used as pollution abatement with a technology G(1− l− f(x)). The policy

maker chooses the level of consumption per capita and the use of land at each location

that maximize the discounted social welfare of the entire population. An important fea-

ture of this problem is that, even if land is immobile by nature, local actions affect the

whole space because pollution flows across locations. We describe the spatial dynamics

of pollution by means of the Gaussian plume model presented in Section 2 (equation 4).

The policy maker maximizes the aggregate welfare in a bounded region of space

R over a finite time period [0, T ], where c(x, t) denotes the consumption per capita at

location x and time t:

max
{c,l}

∫ T

0

∫
R

u(c(x, t))f(x)e−ρtdxdt+

∫
R

ψ(p)(x, T )e−ρTdx (14)

subject to

pt(x, t)− pxx(x, t) = P (p, x)A(x, t)F (l(x, t))−G(1− l − f(x)),∫
R
c(x, t)f(x)dx =

∫
R
P (p, x)A(x, t)F (l)dx,

limx→δR px(x, t) = 0,

p(x, 0) = p0(x) ≥ 0.

(15)

Following the example considered in Camacho and Pérez-Barahona (2015), we intro-

duce two discounts in the objective function (14). The term e−ρt is the usual temporal

discount with ρ > 0. The spatial discount f(x) represents the weight that the policy

maker gives to each location. This can be identified, for instance, as the population den-

sity in order to avoid any subjective spatial preferences. In contrast to the application

considered in the previous section, the scrap value represents in this set-up the policy

maker’s concern about the state of pollution at the end of the planning horizon. Since

pollution is assumed to reduce social welfare, the scrap function will be considered as

negative.

In this economy pollution damages production. If we denote by A(x, t) the to-

tal factor productivity at location x at time t, we have that this location produces
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P (p, x)A(x, t)F (l) units of final good when it devotes an amount l of land to produc-

tion. 1−P represents the share of foregone production due to pollution, with a function

P (p, x) decreasing in pollution. The first equation in (15) is the Gaussian plume, where

the corresponding emissions E(x, t) represents the instantaneous net emissions of each

location, i.e., PAF (l) − G. As in Camacho and Pérez-Barahona (2015), the second

constraint in (15) allows for the possibility of spatial reallocation of production. So the

policy maker collects all the production and reallocate it across locations at no cost.

The limit constraint of the problem is the usual boundary condition: it is assumed that

there is no pollution flow in the boundaries of the space. Finally p(0, x) represents the

initial spatial distribution of pollution.

The Pontryagin conditions of the problem are:

pt(x, t)− pxx(x, t) = P (p, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

qt(x, t) + qxx(x, t) + P ′(p, x)A(x, t)F (l) [u′(c(x, t)) + q(x, t)] + ρq = 0,

[u′ (c(x, t)) + q(x, t)]P (p, x)A(x, t)F ′(l) + q(x, t)G′(1− l − f(x)) = 0,∫
R c(x, t)f(x)dx =

∫
R P (p, x)A(x, t)F (l)dx,

p(x, 0) = p0(x) ≥ 0,

limx→δR px(x, t) = 0, limx→δR p(x, t)qx(x, t) = 0,

q(x, T ) = ψ′(x, T ),

(16)

for (x, t) ∈ R× [0, T ].

As in Boucekkine et al. (2009), we should observe that the boundary condition for

the shadow price q(x, t) becomes the standard limx→δR qx(x, t) = 0 if we focus on interior

solutions. Moreover, the last expression in (16) is the terminal condition of the problem.

It states that, at the end of the planning horizon, the shadow price of pollution is equal

to the marginal concern of the policy maker about the pollution left behind.

Camacho and Pérez-Barahona (2015) show that, due to the possibility of consump-

tion “imports” (represented in this framework by the consumption reallocation), con-

sumption is spatially homogenous. So it is possible to prove that c(x, t) = c(t) =∫
R
P (p, x)A(x, t)F (l)dx/

∫
R
f(x)dx. Moreover, replacing this expression in the equation

describing the trade-off between consumption and pollution (third equation in 16), one

can prove that the optimal land l(x, t) is a unique function of p(x, t) and q(x, t). Conse-

quently, the spatial dynamic behaviour of this economy is described by a set of equations

that correspond to our general system (I) in Section 3. We should notice though that
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our general formulation assumes that both state and co-state variables are positive.

Therefore, we do the change of variable q̃(x, t) = −q(x, t) since the shadow price of

pollution is negative.

Let us apply Theorems 1 and 2 in order to study the existence of the unique solution

to this economy. One can verify first that the assumptions of both theorems hold for the

functional forms considered in their paper. We should also observe that f1 and f2 are

decreasing functions in both arguments p and q̃. So we have to set a2 ≤ 0 and c̄2 ≥ 0.

The last components to be ensured are the upper and lower solutions to the problem.

Camacho and Pérez-Barahona (2015) adapt Theorem 3.4 in Pao (1992) to study the

existence of a unique time-invariant solution. In order to apply this existence result

they identify time-invariant upper and lower solutions. But these stationary solutions

are just particular cases of upper and lower solutions. We can then use directly our

theorems, concluding that this problem has a unique solution:

Proposition 2. The land use dynamic problem (14)-(15) is well-possed.

As it is clear from the last argument above, our paper generalizes Pao (1992)’s

stationary method to the full dynamic problem. From this perspective, an additional

novelty of our approach is that it is not exclusively constrained to the time-invariant

solution.

5 Concluding remarks

We have proposed a general method to study the optimal solution of dynamic models

based on the spatial Ramsey framework. The iterative nature of this approach also

allowed us to provide a new algorithm to simulate the evolution in time and space of

the economy. We included two economic illustrations of our technique. Considering the

spatial growth model, we numerically investigated the role played by capital mobility in

economic growth. We pointed out as well the effect on social welfare and on the evolution

of spatial inequality. From an analytical point of view, we proved the existence of unique

optimal solution in spatial Ramsey-type models. As a matter of example, we applied

this result to the spatial growth model and the optimal land-use set-up of Camacho

and Pérez-Barahona (2015). We concluded that both spatial-dynamic problems are

well-posed.

As in the existing mathematical literature, we focused on the case of a finite decision
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horizon. Considering a time span that is finite allows us for instance to be able to reverse

time, which is a necessary step in this technique. In our approach the finite horizon can

be as large as one wishes. However, it is worth paying attention to the case of infinite

horizon too. This case, even if beyond the scope of the paper, is particularly relevant

to understanding the asymptotic behaviour of the economy. Boucekkine et al. (2013b)

point out in this respect that infinite time horizon is still an open question in this new

field of spatial economics.

Several extensions can be made to our paper. The decentralization of the social

optimum in spatial Ramsey-type models has not been explored yet in the literature.

This would introduce the possibility of implementing public policy schemes that take

into account the geographical characteristics of the economy. From this perspective,

and in line with papers considering the interaction between capital mobility and tax

coordination (among others, Bental, 1985; and Rodrik and van Ypersele, 2001; and

Baldwin and Krugman, 2004), our approach would be also useful to discuss the optimal

degree of capital mobility in the economy. Another possible extension would incorporate

human capital into the spatial growth model. As observed in the numerical application,

we consider a broad definition of capital that includes knowledge as well. This is the

case of, for example, tradable knowledge capital through patents. But one could also

think about human capital, which is reasonably less mobile (Galor, 1996; and Baldwin

and Martin, 2004). Since our set-up admits multiple state variables, we could thus

distinguish between physical and human capital. The spatio-temporal motion of each

stock would be described by means of a PDE, assuming a lower diffusion degree for the

human capital.

Appendices

A Pontryagin optimal conditions

Let us define the value function associated to our problem:

V (c, u1, u2) ≡
∫ T

0

∫
Ω U (c(x, t)) g(x, t)dxdt+

∫
Ω Ψ(u1)(x, T )dx

−
∫ T

0

∫
Ω u2(x, t) [u1,t(x, t)− u1,xx(x, t)− f1(u1, u2)] dxdt,

(17)
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where u2 is an auxiliary function. V is a function of c, u1 and u2. If there exists an

optimal solution (c∗, u∗1, u
∗
2), then any other solution to problem (1)-(2) can be written

as a deviation from the optimal solution as

c(x, t) = c∗(x, t) + εκ(x, t),

u1(x, t) = u∗1(x, t) + εv1(x, t),

u2(x, t) = u∗2(x, t) + εv2(x, t),

(18)

for ε ∈ R. We can take the first order derivative of the value function V with respect

to ε in order to minimize the deviation of the trajectory from the optimal. Beforehand

and using integration by parts, we rearrange some integral terms in V :∫ T
0

∫
Ω
u2(x, t)u1,xx(x, t)dxdt =

∫ T
0
u2(x, t)u1,x(x, t)|δΩdt−

∫ T
0
u2,x(x, t)u1(x, t)|δΩdt

+
∫ T

0

∫
Ω
u2,xx(x, t)u1(x, t)dxdt,

(19)

and as usual:∫ T
0

∫
Ω
u2(x, t)u1,t(x, t)dxdt =

∫
Ω
u1(x, t)u2(x, t)|T0 dx−

∫ T
0

∫
Ω
u1(x, t)u2,t(x, t)dxdt

=
∫

Ω
u1(x, T )u2(x, T )dx−

∫
Ω
u1(x, 0)u2(x, 0)dx−

∫ T
0

∫
Ω
u2(x, t)u2,t(x, t)dxdt.

(20)

We then obtain:

∂V (c,u1,u2)
∂ε =

∫ T
0

∫
Ω U

′(c(x, t))κ(x, t)g(x, t)dxdt+
∫

Ω Ψ′1(u1(x, T ))v1(x, T )dx

+
∫ T

0

∫
Ω v1(x, t) [u2,t(x, t) + u2,xx(x, t)] dxdt

−
∫

Ω u2(x, T )v1(x, T )dx−
∫ T

0 v1(x, t)u2,x(x, t)|δΩdt+
∫ T

0

∫
Ω u2(x, t)

(
∂f1
∂c κ(x, t) + ∂f1

∂u1
v1

)
dxdt.

In order to get the necessary conditions, we can group the elements multiplying κ

and v1, and equate them to zero. If all factors multiplying deviations from optimal

values for c and u1 are equal to zero, then ∂V
∂ε

= 0. So we would need:{
κ : U ′(c)g(x, t) + u2

∂f1
∂c

= 0,

v1 : u2,t + u2,xx + ∂f1
∂u1
u2 = 0.

(21)

The first equation in (21) shows that c is an implicit function of u1 and u2. Moreover,

we need to add to these conditions the following spatial boundary and transversality

conditions: {
limx→δΩ u2,x(x, t) = 0,

u2(x, T ) = Ψ′1(u1(x, T )).
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We then obtain the Pontryagin conditions (O) by defining f2(u1, u2) ≡ −u2
∂f1
∂u1

. Finally,

taking into account that c can be expressed as an implicit function of u1 and u2, we can

rewrite the set of necessary conditions as:

u1,t(x, t)− u1,xx(x, t) = f1(u1, u2),

u2,t(x, t) + u2,xx(x, t) = f2(u1, u2),

limx→δΩ u1,x(x, t) = 0,

limx→δΩ u2,x(x, t) = 0,

u1(x, 0) = u1,0(x), given,

u2(x, T ) = Ψ′1(u1(x, T )).

For the sake of exposition, we will use this alternative formulation of (O) in Section 3.

B Theorem 1 proof

The final objective of this proof is to demonstrate the contraction property of L−1F , so

the sequence  uk1

uk2

 = L−1F (uk−1)

converges to the unique solution (u1, u2)′. This outcome will require to establish some

intermediate results. So let us first summarize our method to build the sequences of the

theorem. It mainly consists of four steps, which are developed in detail in the subsequent

Proposition B1:

Step 1. We build a sequence of functions {ūk1}k∈N starting from (ū0
1, ū

0
2) = (û1, û2). ū1

1 is

the solution to L1ū
1
1 = F1(ū0

1, ū
0
2) = F1(û1, û2), ∀(x, t) ∈ Ω× [0, T ],

limx→δΩ ū
1
1,x(x, t) = 0, ∀t ≥ 0,

(22)

with a suitable initial condition for ū1
1 verifying that u1(x, 0) ≤ ū1

1(x, 0) ≤ û1(x, 0).

(22) together with the initial condition for ū1
1 set up a linear parabolic PDE. Given

the structure of the left hand side of the PDE in (22), and since F1(û1, û2) is a

known bounded function of time and space, there exists a unique solution to (22)
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from ū1
1(x, 0) and subject to the boundary condition, as proven in Theorem 1.7 in

Friedman (1959). Furthermore, this solution verifies that∫ T

0

∫
Ω

| ū1
1(x, t) | e−%|x|2dxdt <∞,

for some positive constant %.

Step 2. We initiate the sequence {w̄k2}k∈N as w̄0
2(x, t) = û2(x, T−t). Using ū0

1 as w̄0
1(x, t) =

û1
1(x, T − t), w̄1

2 is the solution to L′2w̄1
2 = −F2(w̄0

1, w̄
0
2),

limx→δΩ w̄
1
2(x, t) = 0,

(23)

and a suitable initial condition for w̄1
2 verifying w2(x, 0) ≤ w̄1

2(x, 0) ≤ ŵ2(x, 0). As

in Step 1, (23) is a linear parabolic PDE, which has a unique positive solution

under the boundedness assumption on Ψ and Assumption 1. Furthermore, the

solution is bounded as before:∫ T

0

∫
Ω

| w̄1
2(x, t) | e−%|x|2dxdt <∞,

for some positive constant %. We proceed to the next iteration by undoing the

change of variable ū1
2(x, t) = w̄1

2(x, T − t). Likewise, building on (ūk−1
1 , ūk−1

2 ), we

compute (ūk1, ū
k
2) following the procedure just described for k = 2, 3, · · · . Moreover,

for the subsequent iterations, we also need to state appropriate initial conditions

ūk1(x, 0) and w̄k2(x, 0) in order to ensure that the initial and terminal conditions in

(I) hold as k → ∞ (notice that the terminal condition for u2 in (I) is equivalent

to the initial condition for w2 after reversing time).

Step 3. In a similar manner, we can build a sequence {uk1, uk2}k∈N and {wk1, wk2}k∈N consid-

ering the lower solution.

Step 4. We prove that {ūk1, w̄k2}k∈N is monotonic non-increasing and that {uk1, wk2}k∈N is

monotonic non-decreasing. Undoing the change of time variable, we obtain the

convergence of sequences {ūk1, ūk2}k∈N and {uk1, uk2}k∈N in Ω× [0, T ]. As it will be-

come clear in the proposition, the monotonicity and convergence of the generated

sequence hinges on the choice of the initial conditions at each iteration. This

choice will depend on the monotonicity characteristics of functions Fi.

We formally enunciate this iterative method as a proposition, together with the mono-

tonicity property of the generated sequences:
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Proposition B1. Let us consider the assumptions of the theorem. Let us introduce

variables w as the time-reverse of u, that is, wi(x, t) ≡ ui(x, T−t), ŵi(x, t) ≡ ûi(x, T−t)
and w̃i(x, t) ≡ ũi(x, T − t) for i = 1, 2. We build sequences {ūk1, w̄k2}k∈N and {uk1, wk2}k∈N
through the process


L1ū

k
1 = F1(ūk−1

1 , ūk−1
2 ),

ūk1(x, 0) = Υ
k
û1(x, 0) + (1− Υ

k
)u1(x, 0),

limx→δΩ ū
k
1,x = 0,

and 
L1u

k
1 = F1(uk−1

1 , uk−1
2 ),

uk1(x, 0) = ζ
k
ũ1(x, 0) + (1− ζ

k
)u1(x, 0),

limx→δΩ u
k
1,x = 0,

with 0 < ζ < Υ < 1,
L′2w̄k2 = −F2(w̄k−1

1 , w̄k−1
2 ),

w̄k2(x, 0) = ψ
k
ŵ2(x, 0) + (1− ψ

k
)Ψ′1(w̄k−1

1 (x, 0), x),

limx→δΩ w̄
k
2,x = 0,

and 
L′2wk2 = −F2(wk−1

1 , wk−1
2 ),

wk2(x, 0) = φ
k
w̃2(x, 0) + (1− φ

k
)Ψ′1(wk−1

1 (x, 0), x),

limx→δΩ w
k
2,x = 0,

with 0 < φ < ψ < 1. We initialize the sequences as

(ū0
1, ū

0
2) = (û1, û2),

(w̄0
1, w̄

0
2) = (ŵ1, ŵ2),

(u0
1, u

0
2) = (ũ1, ũ2),

(w0
1, w

0
2) = (w̃1, w̃2).

Then, the two sequences {ūk1, w̄k2}k∈N and {uk1, wk2}k∈N obtained above have the monotone

property

uk−1
1 ≤ uk1 ≤ ūk1 ≤ ūk−1

1 ,

wk−1
2 ≤ wk2 ≤ w̄k2 ≤ w̄k−1

2 .
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Proof. For the ease of presentation, we divide the proof in five parts. Along this proof

it is important to keep in mind that

ũ1(x, t) ≤ û1(x, t),

w̃2(x, t) ≤ ŵ2(x, t),

and
ũ1(x, 0) < u1(x, 0) < û1(x, 0),

w̃2(x, 0) < Ψ′1(ũ1(x, T ), x),

Ψ′1(û1(x, T ), x) < ŵ2(x, 0).

i) Let us first construct {ūk1}k∈N and {w̄k2}k∈N. We initialize the sequences as

(ū0
1, ū

0
2) = (û1, û2),

(w̄0
1, w̄

0
2) = (ŵ1, ŵ2).

As we have observed in the short description of our iterative method, the first

element of the sequence {ūk1}k∈N is the solution to
L1ū

1
1 = F1(ū0

1, ū
0
2) = F1(û1, û2),

ū1
1(x, 0) = Υû1(x, 0) + (1−Υ)u1(x, 0),

limx→δΩ ū
1
1,x = 0.

(24)

The PDE in (24) has a unique solution ū1
1 given that F1(û1, û2) is known, L1

is linear, and ū1
1(x, 0) is strictly positive. Next, we show that ū0

1 ≥ ū1
1. Let us

construct an auxiliary variable v0
1 on Ω× [0, T ]:14

v0
1 ≡ ū0

1 − ū1
1 = û1 − ū1

1.

Then,

L1v
0
1 = L1(ū0

1 − ū1
1) = û1,t − û1,xx + a1(x, t)û1 − F1(û1, û2)

= û1,t − û1,xx + a1(x, t)û1 − f1(û1, û2)− a1(x, t)û1 ≥ 0.

We know that the expression above is non-negative because (û1, û2) is an upper

solution of problem (I). Besides,

v0
1(x, 0) = ū0

1(x, 0)− ū1
1(x, 0) = û1(x, 0)−Υû1(x, 0)− (1−Υ)u1(x, 0)

14We deliberately abuse of notation in this proof. For i = 1, 2, we denote by v0i , v1i and vki different

auxiliary variables. Since the usage of these variables is unambiguously restricted to the prove of each

intermediate result, we opt for this abuse for the sake of presentation.
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= (1−Υ) (û1(x, 0)− u1(x, 0)) > 0.

Then, invoking classical results on positiveness as in Pao (1992), we conclude that

v0
1(x, t) ≥ 0, which implies that ū0

1(x, t) ≥ ū1
1(x, t) for all (x, t) ∈ Ω× [0, T ].

Let us similarly consider w̄1
2, solution to

L′2w̄1
2 = −F2(w̄0

1, w̄
0
2) = −F2(ŵ1, ŵ2),

w̄1
2(x, 0) = ψŵ2(x, 0) + (1− ψ)Ψ′1(w̄0

1(x, 0), x),

limx→δΩ w̄
1
2,x = 0,

and construct v0
2 ≡ w̄0

2 − w̄1
2 = ŵ2 − w̄1

2, where ŵ2(x, t) = û2(x, T − t) is the time

reverse of the second coordinate of the upper solution (û1, û2). We prove a similar

result for v0
2:

L′2v0
2 = L′2(ŵ2 − w̄1

2) = ŵ2,t − ŵ2,xx + c̄2(x, t)ŵ2 − F2(ŵ1, ŵ2)

= ŵ2,t − ŵ2,xx + c̄2(x, t)ŵ2 + f2(ŵ1, ŵ2)− c̄2(x, t)ŵ2 ≥ 0,

because of (8). We need to check the sign of v0
2(x, 0), using the definition of the

initial conditions:

v0
2(x, 0) = ŵ2(x, 0)− w̄1

2(x, 0) = ŵ2(x, 0)− ψŵ2(x, 0)− (1− ψ)Ψ′1(w̄0
1(x, 0), x)

= (1− ψ) (ŵ2(x, 0)−Ψ′1(ŵ1(x, 0), x)) > 0.

Then v0
2(x, t) ≥ 0⇒ ŵ2(x, t) ≥ w̄1

2(x, t) for every (x, t) ∈ Ω× [0, T ].

ii) We apply the same procedure to the other sequences, starting however with the

lower solutions:
(u0

1, u
0
2) = (ũ1, ũ2),

(w0
1, w

0
2) = (w̃1, w̃2).

u1
1 is the solution to

L1u
1
1 = F1(u0

1, u
0
2) = F1(ũ1, ũ2),

u1
1(x, 0) = ζũ1(x, 0) + (1− ζ)u1(x, 0),

limx→δΩ u
1
1,x = 0.

Then, defining v0
1 and v0

2 as

v0
1 ≡ u1

1 − u0
1 = u1

1 − ũ1,

v0
2 ≡ w1

2 − w0
2 = w1

2 − w̃2,
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we can prove that u1
1 ≥ u0

1 and w1
2 ≥ w0

2. Let us consider in this respect v0
1 =

u1
1 − u0

1 = u1
1 − ũ1. Applying the operator L1:

L1v
0
1 = L1(u1

1 − ũ1) = F1(u0
1, u

0
2)− (ũ1,t − ũ1,xx + c̄1ũ1)

= f1(ũ1, ũ2) + c̄1ũ1 − ũ1,t + ũ1,xx − c̄1ũ1 ≥ 0,

because (ũ1, ũ2) is a lower solution. Regarding the initial condition:

v0
1(x, 0) = u1

1(x, 0)− u0
1(x, 0) = u1

1(x, 0)− ũ1(x, 0)

= ζũ1(x, 0) + (1− ζ)u1(x, 0)− ũ1(x, 0) = (1− ζ)(u1(x, 0)− ũ1(x, 0)) > 0.

So we conclude that u1
1 ≥ u0

1.

Similarly, let us prove that w0
2 ≤ w1

2. Taking the definition of v0
2, we can show that

L′2v0
2 = L′2(w1

2 − w0
2) = −F2(w0

1, w
0
2)−

(
w2,t − w2,xx + c̄2w2

)
= −f2(w̃1, w̃2) + c̄2w̃2 − (w̃2,t − w̃2,xx + c̄2w̃2) ≥ 0.

Moreover,

v0
2(x, 0) = w1

2(x, 0)− w0
2(x, 0)

= w1
2(x, 0)− w̃2(x, 0) = φw̃2(x, 0) + (1− φ)Ψ′1(w0

1(x, 0), x)− w̃2(x, 0)

= (1− φ) (Ψ′1(w̃1(x, 0), x)− w̃2(x, 0)) > 0.

We therefore confirm our statement.

iii) We prove next that u1
1 ≤ ū1

1 and w1
2 ≤ w̄1

2. To do so, we define the auxiliary

variables v1
1, v

1
2 on Ω× [0, T ] as

v1
1 ≡ ū1

1 − u1
1,

v1
2 ≡ w̄1

2 − w1
2.

Let us show first that ū1
1 ≤ u1

1. Applying the operator L1,

L1v
1
1 = L1(ū1

1 − u1
1) = F1(û1, û2)− F1(ũ1, ũ2)

= f1(û1, û2)− f1(ũ1, ũ2) + a1(û1 − ũ1).

Since û1 ≥ ũ1, we can see that L1v
1
1 ≥ 0 if a1 ≥ 0 and f1 increasing in both

arguments u1 and u2; or if alternatively a2 ≤ 0. In the later case, we would have

L1v
1
1 = f1(û1, û2)− f1(ũ1, ũ2) + a1(û1 − ũ1) ≥ −a2(û2 − ũ2) ≥ 0.
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Taking into account that

v1
1(x, 0) = ū1

1(x, 0)−u1
1(x, 0) = Υû1(x, 0)+(1−Υ)u1(x, 0)−(ζũ1(x, 0) + (1− ζ)u1(x, 0))

= Υû1(x, 0)− ζũ1(x, 0)− (Υ− ζ)u1(x, 0)

≥ Υû1(x, 0)− ζû1(x, 0)− (Υ− ζ)u1(x, 0) = (Υ− ζ) (û1(x, 0)− u1(x, 0)) > 0,

we conclude that v1
1(x, t) ≥ 0, ∀(x, t) ∈ Ω× [0, T ]. Hence, u1

1 ≤ ū1
1.

iv) Let us consider v1
2. Applying L′2,

L′2v1
2 = L′2(w̄1

2 − w1
2) = −F2(ŵ1, ŵ2) + F2(w̃1, w̃2)

= −f2(ŵ1, ŵ2) + f2(w̃1, w̃2) + c̄2(ŵ2 − w̃2),

which can be positive if either f2 decreasing in both w1 and w2 and c̄2 ≥ 0; or if

c̄1 ≤ 0 whatever the sign of the partial derivatives of f2 since

L′2v1
2 ≥ −c̄1(ŵ1 − w̃1) ≥ 0.

Moreover, one can verify that

v1
2(x, 0) = w̄1

2(x, 0)− w1
2(x, 0)

= ψŵ2(x, 0) + (1− ψ)Ψ′1(w̄0
1(x, 0), x)− φw̃2(x, 0)− (1− φ)Ψ′1(w0

1(x, 0), x)

≥ (ψ − φ) (ŵ2(x, 0)−Ψ′1(ŵ1(x, 0), x)) > 0.

We therefore conclude that v1
2 ≥ 0 and w̄1

2 ≥ w1
2.

v) We have proven so far that

u0
1 ≤ u1

1 ≤ ū1
1 ≤ ū0

1,

and

w0
2 ≤ w1

2 ≤ w̄1
2 ≤ w̄0

2.

These two conclusions allow us to identify the required base case to show by

mathematical induction that our sequences are ordered. Following this strategy,

let us assume that

uk−1
1 ≤ uk1 ≤ ūk1 ≤ ūk−1

1 ,

and

wk−1
2 ≤ wk2 ≤ w̄k2 ≤ w̄k−1

2 .
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We have to show, as inductive step, that

uk1 ≤ uk+1
1 ≤ ūk+1

1 ≤ ūk1,

and

wk2 ≤ wk+1
2 ≤ w̄k+1

2 ≤ w̄k2 .

Let us begin by verifying that the inequality ūk+1
1 ≤ ūk1 holds. We define in this

regard the auxiliary variable vk1 as

vk1 ≡ ūk1 − ūk+1
1 .

Applying the operator L1,

L1v
k
1 = F1(ūk−1

1 , ūk−1
2 )− F1(ūk1, ū

k
2)

= f1(ūk−1
1 , ūk−1

2 )− f1(ūk1, ū
k
2) + a1

(
ūk−1 − ūk1

)
≥ 0.

Since ūk1 ≤ ūk−1
1 and ūk2 ≤ ūk−1

2 , we can see that L1v
k
1 ≥ 0 if a1 ≥ 0 and f1

increasing in both arguments; or if alternatively a1 ≤ 0. In the later case,

L1v
k
1 = f1(ūk−1

1 , ūk−1
2 )− f1(ūk1, ū

k
2) + a1

(
ūk−1 − ūk1

)
≥ −a2

(
ūk−1

2 − ūk2
)
≥ 0.

Moreover,

vk1(x, 0) = ūk1(x, 0)− ūk+1
1 (x, 0)

=
Υ

k
û1(x, 0) +

(
1− Υ

k

)
u1(x, 0)− Υ

k + 1
û1(x, 0)−

(
1− Υ

k + 1

)
u1(x, 0)

= Υû1(x, 0)

(
1

k
− 1

k + 1

)
−Υu1(x, 0)

(
1

k
− 1

k + 1

)
,

= Υ

(
1

k
− 1

k + 1

)
(û1(x, 0)− u1(x, 0)) > 0,

since û1(x, 0) > u1(x, 0). Hence vk1 ≥ 0 and ūk1 ≥ ūk+1
1 .

Similarly, let us prove the inequality uk1 ≤ uk+1
1 . We define the auxiliary variable

vk1 as

vk1 ≡ uk+1
1 − uk1.

Applying again L1,

L1v
k
1 = F1(uk1, u

k
2)− F1(uk−1

1 , uk−1
2 )

= f1(uk1, u
k
2)− f1(uk−1

1 , uk−1
2 ) + a1(uk1 − uk−1

1 ) ≥ 0.
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Since uk1 ≥ uk−1
1 and uk2 ≥ uk−1

2 , we can see that L1v
1
1 ≥ 0 if a1 ≥ 0 and f1

increasing in both arguments; or if alternatively a2 ≤ 0. In the later case, we

would have

L1v
k
1 = f1(uk1, u

k
2)− f1(uk−1

1 , uk−1
2 ) + a1(uk1 − uk−1

1 ) ≥ −a2(uk2 − uk−1
2 ) ≥ 0.

One can also verify that

vk1(x, 0) = uk+1
1 (x, 0)− uk1(x, 0)

=
ζ

k + 1
ũ1(x, 0) +

(
1− ζ

k + 1

)
u1(x, 0)− ζ

k
ũ1(x, 0) +

(
1− ζ

k

)
u1(x, 0)

= ζ
1

k(k + 1)
ũ1(x, 0) + ζ

1

k(k + 1)
u1(x, 0)

= ζ
1

k(k + 1)
(u1(x, 0)− ũ1(x, 0)) > 0.

Therefore vk1 ≥ 0 and uk1 ≤ uk+1
1 . Next, we need to prove that uk+1

1 ≤ ūk+1
1 . Let

us define vk+1
1 ≡ ūk+1

1 − uk+1
1 , then

L1v
k+1
1 = F1(ūk1, ū

k
2)− F1(uk1, u

k
2) = f1(ūk1, ū

k
2)− f1(uk1, u

k
2) + a1(ūk1 − uk1) ≥ 0.

Since ūk1 ≥ uk1 and ūk2 ≥ uk2, we can see that L1v
k+1
1 ≥ 0 if a1 ≥ 0 and f1 increasing

in both arguments; or if alternatively a2 ≤ 0. In the later case,

L1v
k+1
1 = f1(ūk1, ū

k
2)− f1(uk1, u

k
2) + a1(ūk1 − uk1) ≥ −a2(ūk2 − uk2) ≥ 0.

We can verify that the initial distribution of vk+1
1 is positive:

vk+1
1 (x, 0) = ūk+1

1 (x, 0)− uk+1
1 (x, 0)

=
Υ

k + 1
û1(x, 0) +

(
1− Υ

k + 1

)
u1(x, 0)− ζ

k + 1
ũ1(x, 0)−

(
1− ζ

k + 1

)
u1(x, 0)

=
Υ

k + 1
û1(x, 0)− ζ

k + 1
ũ1(x, 0)− Υ− ζ

k + 1
u1(x, 0) ≥ Υ− ζ

k + 1
û1(x, 0)− Υ− ζ

k + 1
u1(x, 0)

=
Υ− ζ
k + 1

(û1(x, 0)− u1(x, 0)) > 0,

Hence vk+1
1 ≥ 0 and uk+1

1 ≤ ūk+1
1 . Summarizing, we can conclude that

uk1 ≤ uk+1
1 ≤ ūk+1

1 ≤ ūk1.

Let us consider the second set of inequalities. Defining vk2 ≡ w̄k2 − w̄k+1
2 , we apply

the operator L′2:

L′2vk2 = F2(w̄k1 , w̄
k
2)−F2(w̄k−1

1 , w̄k−1
2 ) = f2(w̄k1 , w̄

k
2)−f2(w̄k−1

1 , w̄k−1
2 )+c̄2(w̄k−1

2 −w̄k2) ≥ 0.
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Since w̄k1 ≤ w̄k−1
1 and w̄k2 ≤ wk−1

2 , we can see that L′2vk2 ≥ 0 if c̄2 ≥ 0 and f2

decreasing in both arguments; or if alternatively c̄1 ≤ 0. In the later case,

L′2vk2 = f2(w̄k1 , w̄
k
2)− f2(w̄k−1

1 , w̄k−1
2 ) + c̄2(w̄k−1

2 − w̄k2)

≥ −c̄1(w̄k−1
1 − w̄k1) ≥ 0.

Moreover,

vk2(x, 0) = w̄k2(x, 0)− w̄k+1
2 (x, 0)

= ψ

(
1

k
− 1

k + 1

)
ŵ2(x, 0)+

(
1− ψ

k

)
Ψ′1(w̄k−1

1 (x, 0), x)−
(

1− ψ

k + 1

)
Ψ′1(w̄k1(x, 0), x).

Since w̄k+1
1 (x, 0) ≤ w̄k1(x, 0), for a convex function Ψ,

wk2(x, 0)

≥ ψ

(
1

k
− 1

k + 1

)
ŵ2(x, 0)+

(
1− ψ

k

)
Ψ′1(w̄k−1

1 (x, 0), x)−
(

1− ψ

k + 1

)
Ψ′1(w̄k−1

1 (x, 0), x)

= ψ

(
1

k
− 1

k + 1

)[
ŵ2(x, 0)−Ψ′1(w̄k−1

1 (x, 0), x)
]

> ψ

(
1

k
− 1

k + 1

)
[ŵ2(x, 0)−Ψ′1(ŵ1(x, 0), x)] > 0.

Hence, we conclude that vk2(x, 0) > 0 and w̄k+1
2 ≤ w̄k2 .

We prove next that wk2 ≤ wk+1
2 . Let us define vk2 ≡ wk+1

2 − wk2. Considering the

operator L′2 we obtain

L′2vk2 = F2(wk−1
1 , wk−1

2 )− F2(wk1, w
k
2)

= f2(wk−1
1 , wk−1

2 )− f2(wk1, w
k
2) + c̄2(wk2 − wk−1

2 ) ≥ 0.

Since wk−1
1 ≤ wk1 and wk−1

2 ≤ wk2, we can see that L′2vk2 ≥ 0 if c̄2 ≥ 0 and f2

decreasing in both arguments; or if alternatively c̄1 ≤ 0. In the later case,

L′2vk2 = f2(wk−1
1 , wk−1

2 )− f2(wk1, w
k
2) + c̄2(wk2 − wk−1

2 )

≥ −c̄1(wk1 − wk−1
1 ) ≥ 0.

We check the initial distribution of vk2 , for a convex function Ψ:

vk2(x, 0) = wk+1
2 (x, 0)− wk2(x, 0)

=
φ

k + 1
w̃2(x, 0)+

(
1− φ

k + 1

)
Ψ′1(wk1(x, 0), x)−φ

k
w̃2(x, 0)−

(
1− φ

k

)
Ψ′1(wk−1

1 (x, 0), x)
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≥ φ
1

k(k + 1)

(
Ψ′1(wk1(x, 0), x)− w̃2(x, 0)

)
> φ

1

k(k + 1)
(Ψ′1(w̃1(x, 0), x)− w̃2(x, 0)) > 0,

Therefore vk2(x, 0) > 0 and wk2 ≤ wk+1
2 .

Let us finally show that wk+1
2 ≤ w̄k+1

2 . This time we define wk+1
2 ≡ w̄k+1

2 − wk+1
2 .

Applying L′2,

L′2vk+1
2 = −F2(w̄k1 , w̄

k
2) + F2(wk1, w

k
2)

= −f2(w̄k1 , w̄
k
2) + f2(wk1, w

k
2) + c̄2(w̄k2 − wk2) ≥ −c̄1(w̄k1 − wk1) ≥ 0.

Since w̄k2 ≥ wk2 and w̄k1 ≥ wk1, we can see that L′2vk+1
2 ≥ 0 if c̄2 ≥ 0 and f2

decreasing in both arguments; or if alternatively c̄1 ≤ 0. In the later case,

L′2vk+1
2 = −f2(w̄k1 , w̄

k
2) + f2(wk1, w

k
2) + c̄2(w̄k2 − wk2) ≥ −c̄1(w̄k1 − wk1) ≥ 0.

Regarding the initial condition vk+1
2 (x, 0):

wk+1
2 (x, 0) =

=
ψ

k + 1
ŵ2(x, 0)+

(
1− ψ

k + 1

)
Ψ′1(w̄k1(x, 0), x)− φ

k + 1
w̃2(x, 0)−

(
1− φ

k + 1

)
Ψ′1(wk1(x, 0), x)

≥ ψ − φ
k + 1

ŵ2(x, 0)− ψ − φ
k + 1

Ψ′1(w̄k1(x, 0), x) =
ψ − φ
k

(
ŵ2(x, 0)−Ψ′1(w̄k1(x, 0), x)

)
≥ ψ − φ

k
(ŵ2(x, 0)−Ψ′1(ŵ1(x, 0), x)) > 0,

for a convex function Ψ. This implies that vk+1
2 ≥ 0 and hence wk+1

2 ≤ w̄k+1
2 . So

we can state that

wk2 ≤ wk+1
2 ≤ w̄k+1

2 ≤ w̄k2 .

Before going to the next intermediate result, it is important to consider the following

observations regarding the generality of Proposition B1:

Remark 1. The initial conditions for w̄k2 and wk2 correspond to a function Ψ that is

assumed to be convex in w1. For Ψ1 concave we should initialize w̄k2 and wk2 as

w̄k2(x, 0) = ψ
k
ŵ2(x, 0) + (1− ψ

k
)Ψ′1(wk−1

1 (x, 0), x),

wk2(x, 0) = φ
k
w̃2(x, 0) + (1− φ

k
)Ψ′1(w̄k−1

1 (x, 0), x).
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Remark 2. In the absence of an upper solution, it is still true that {uk1, uk2} is mono-

tone non-decreasing. Then the sequence either converges to some limit or it becomes

unbounded, as k → ∞. Nevertheless, we cannot prove that the limit is a solution of

the original problem. The same holds true for the monotone non-increasing sequence

{ūk1, ūk2}.

Remark 3. The initial conditions for our sequences have been set in order to ensure

that the iterative process is monotone. Alternative forms might be considered. The main

requirement is that they should converge towards the initial and terminal conditions of

the original problem when k →∞.

This far we have constructed four sequences of continous functions {ūk1}k∈N, {uk1}k∈N,

{w̄k2}k∈N and {wk2}k∈N, which are monotone and bounded. Hence, one can conclude

that they converge uniformly. So there exist functions u1, ū1, w2 and w̄2 defined over

Ω× [0, T ], such that, ∀(x, t) ∈ Ω× [0, T ],

lim k →∞
k ∈ N

uk1(x, t) = u1(x, t),

lim k →∞
k ∈ N

ūk1(x, t) = ū1(x, t),

and
lim k →∞

k ∈ N

wk2(x, t) = w2(x, t),

lim k →∞
k ∈ N

w̄k2(x, t) = w̄2(x, t).

Notice that u1(x, 0) = ū1(x, 0) = u1(x, 0) and w2(x, 0) = w̄2(x, 0) = Ψ′1(u1(x, T ), x)

(see Remark 3 above). Undoing the change of variable, we also obtain limit functions

ū2(x, t) = w̄2(x, T − t) and u2(x, t) = w2(x, T − t). The next question is whether

the limit functions u1(x, t), ū1(x, t), u2(x, t) and ū2(x, t) coincide, i.e., whether for all

(x, t) ∈ Ω × [0, T ] it is true that u1(x, t) = ū1(x, t) and u2(x, t) = ū2(x, t). At this

point, we directly focus on u1 and u2. In order to prove that u1 = ū1 and u2 = ū2, we

will show that the linear operators L1 and L2, and the corresponding diagonal matrix

L ≡ diag(L1,L2), are invertible. Then, after proving that L−1F (u) is a contraction

where F (u) ≡ (F1(u), F2(u))′, we can conclude the uniqueness of the limits. Let us first

consider the existence of L−1:

Lemma B1. There exists a real positive number γ such that the inverse operators of

L1 and L2, denoted by L−1
1 and L−1

2 respectively, exist and satisfy

| L−1
i ui − L−1

i u′i |0 ≤ γ−1 | ui − u′i |0,
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for any (x, t) ∈ Ω × [0, T ], where | · |0 is the supremum norm for functions in R(Li),

the range of Li:
Li : D(Li) −→ C(Ω× [0, T ]),

for i = 1, 2, where Li’s domain is

D(L1) = {u1 ∈ C(Ω̄× [0, T ]) ∩ C1,2(Ω× [0, T ]), limx→δΩ u1,x = 0, u1(x, 0) = u1,0(x), given},
D(L2) = {u2 ∈ C(Ω̄× [0, T ]) ∩ C1,2(Ω× [0, T ]), limx→δΩ u2,x = 0, u2(x, T ) = Ψ′1(u1(x, T ), x)}.

Proof. We will treat L1 and L2 separately. We begin by proving lemma’s result for L1.

I. Let us take any two u1, u
′
1 ∈ D(L1) verifying u1 6= u′1, i.e., they do not coincide

in all (x, t) ∈ Ω × [0, T ]. We build v ≡ u1 − u′1, and let (x1, t1) ∈ Ω × [0, T ] be a point

such that

| v |0=| v(x1, t1) | .

That is to say, v attains the supremum of its absolute value at (x1, t1). Let us show that

v(x1, t1) (L1u1(x1, t1)− L1u
′
1(x1, t1)) ≥ γ1 | v |20,

which would imply, following Pao (1992), the statement of the lemma for the operator

L1. The inequality above is obvious if v(x1, t1) = 0. If v(x1, t1) 6= 0 then v(x1, t1) is a

positive maximum or a negative minimum in Ω̄× [0, T ].

We know that, for t = 0 and for any x ∈ Ω, v(x, 0) = u1,0(x)−u1,0(x) = 0. Therefore

t1 > 0. Given that t1 is an extremum,{
vt(x1, t1) = 0, if t1 < T,

or v(x1, t1)vt(x1, t1) ≥ 0, if t1 = T.
(25)

Regarding the space we also have two alternatives. Rather x1 is in the interior of

the space or it is located in the frontier, i.e., x1 ∈ Ω̊ or x1 ∈ δΩ, respectively:

I.1. If x1 ∈ Ω̊, we have that

v(x1, t1)vxx(x1, t1) ≤ 0 (26)

because (x1, t1) is a extremum. Considering together (25) and (26),

v(x1, t1) [vt(x1, t1)− vxx(x1, t1)] ≥ 0

or, equivalently, rewriting the inequality above in terms of u1 and taking into

account the definition of L1,

v(x1, t1){L1u1(x1, t1)− L1u
′
1(x1, t1)− a1(x1, t1) [u1(x1, t1)− u′1(x1, t1)]} ≥ 0.
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Therefore, since a1(x, t) is a bounded function (assumption of the theorem),

v(x1, t1) [L1u1(x1, t1)− L1u
′
1(x1, t1)] ≥ a1(x1, t1) | u1(x1, t1)− u′1(x1, t1) |2

≥ γ1 | v(x1, t1) |2= γ1 | v |20
(27)

for any γ1 ∈ R such that 0 < γ1 ≤ a1(x1, t1). Hence, as in Pao (1992), since

| v |0 | L1u1 − L1u
′
1 |0≥ v(x1, t1) [L1u1(x1, t1)− L1u

′
1(x1, t1)] , (28)

we can conclude that, using (27) and (28),

| L1u1 − L1u
′
1 |0≥ γ1 | v |0 . (29)

I.2. Let us consider the case where x1 is in the frontier. If x1 ∈ δΩ then, for any ε > 0,

there exists a point (xε, tε) ∈ Ω̊× [0, T ], sufficiently close to (x1, t1), such that{
v(x1, t1)vt(xε, tε) ≥ −ε

2
| v |20,

v(x1, t1)vxx(xε, tε) ≤ −ε
2
| v |20,

where tε ≡ t1± ε and xε ≡ x1± ε. We can state the first inequality because (x1, t1)

is a maximum of the absolute value. Hence, when we approach to (x1, t1), we must

observe that vt → 0 by continuity of the trajectories. The same is true for the

derivative in space. As a consequence,

v(x1, t1) [vt(xε, tε)− vxx(xε, tε)] ≥ −ε | v |20

and, as before,

v(x1, t1) (L1u1 − L1u
′
1) |(xε,tε)≥ (γ1 − ε) | v |20 .

The arbitrariness of ε therefore ensures that

| L1u1(x1, t1)− L1u
′
1(x1, t1) |≥ γ1 | u1(x1, t1)− u′1(x1, t1) |= γ1 | u1 − u′1 |0

for x ∈ δΩ as well. Hence, since

| L1u1 − L1u
′
1 |0≥| u1(x1, t1)− L1u

′
1(x1, t1) |,

L−1
1 exists on R(L1) and satisfies

| L−1
1 u1 − L−1

1 u′1 |0≤ γ−1
1 | u1 − u′1 |0 .
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II. We prove next that L−1
2 exists and there is a γ2 > 0 such that

| L2u2 − L2u
′
2 |0≥ γ2 | u2 − u′2 |0, (30)

for any two u2, u
′
2 ∈ D(L2). We define v ≡ u2−u′2, and let (x2, t2) be a point in Ω×[0, T ]

such that

| v |0=| v(x2, t2) | .

It is important to note that v(x, T ) = 0 for any x ∈ Ω, so that t2 < T .

Let us show that

v(x2, t2) (L2u2 − L2u
′
2) ≥ γ2 | v |20 .

If v(x2, t2) = 0 then the inequality above is trivially verified. If v(x2, t2) 6= 0, v(x2, t2)

is rather a positive maximum or a negative minimum in Ω× [0, T ). Hence,

vt(x2, t2) = 0

whenever t2 < T . As in point I, x2 can lie either in Ω̊ or in δΩ:

II.1 If x2 ∈ Ω̊ then

vx(x2, t2) = 0

and v(x2, t2)vxx(x2, t2) ≤ 0. We can then write:

−v(x2, t2) [vt(x2, t2) + vxx(x2, t2)] ≥ 0,

−v(x2, t2) [L2u2 − L2u
′
2 + c̄2(u2 − u′2)] ≥ 0,

−v(x2, t2) [L2u2 − L2u
′
2] ≥ c̄2v(x2, t2)(u2 − u′2) ≥ γ2 | v |20,

for any 0 < γ2 ≤ c̄2. On the other hand,

| −v |0| L2u2 − L2u
′
2 |0≥ −v(x2, t2) (L2u2 − L2u

′
2)

and | −v |0=| v |0. Therefore,

| L2u2 − L2u
′
2 |0≥ γ2 | u2 − u′2 |0 .

Again, as in Pao (1992), this implies that L−1
2 exists and satisfies

| L−1
2 u2 − L−1

2 u′2 |0≤ γ−1
2 | u2 − u′2 |0 .
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II.2 If x2 ∈ δΩ then, since limx→δΩ vt(x, t) = 0 for all t, there exists (xε, tε) ∈ Ω̊× [0, T )

and ε sufficiently small such that{
v(x2, t2)vt(xε, tε) ≤ ε

2
| v |20,

v(x2, t2)vxx(xε, tε) ≤ ε
2
| v |20 .

In particular, we will restrict ε to ε ≤ c̄2(x2, t2). Therefore,

−v(x2, t2) [vt(xε, tε) + vxx(xε, tε)] ≥ −ε | v |20,

that is,

−v(x2, t2) [L2u2 − L2u
′
2 + c̄2(u2 − u′2)] |(xε,tε)≥ −ε | v |20 . (31)

It is also true that

| v(x2, t2) |0| L2u2 − L2u
′
2 |0≥ −v(x2, t2) [L2u2 − L2u

′
2] |(xε,tε) . (32)

Using (31) and (32) we obtain

| v(x2, t2) |0| L2u2 − L2u
′
2 |0≥ −ε | v |20 +c̄2(xε, tε) | v(x2, t2) |0 (u2 − u′2) |(xε,tε) .

Therefore,

| L2u2 − L2u
′
2 |0≥ −ε | v |0 +c̄2(xε, tε)(u2 − u′2) |(xε,tε) . (33)

Besides, by continuity and since u2,x(x, t) = 0 for any point in δΩ, we also know

that

lim
(xε,tε)→(x2,t2)

(u2 − u′2)(xε, tε) = v(x2, t2).

We can choose any 0 < γ2 ≤ c̄2(xε, tε) − ε, and take the limit when (xε, tε) →
(x2, t2). Consequently,

−ε | v |0 +c̄2(xε, tε)(u2 − u′2) |(xε,tε)→ −ε | v |0 +c̄2(x2, t2)(u2 − u′2) |(x2,t2)

= −ε | v |0 +c̄2(x2, t2) | v |0= [−ε+ c̄2(x2, t2)] | v |0 .

Hence, (33) implies that

| L2u2 − L2u
′
2 |0≥ [−ε+ c̄2(x2, t2)] | v |0≥ γ2 | v |0 .

As a direct consequence of Lemma B1, we can state the following result:
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Corollary B1. Taking γ = min{γ1, γ2}, the operator L ≡ (L1,L2)′ verifies

|| L−1u− L−1u′ ||0≤ γ−1 || u− u′ ||0,

for u, u′ ∈ R(L).

Under the assumptions of the theorem, there exist functions Ki = Ki(x, t) in Ω ×
[0, T ] with values in R such that, for any u, v in the domain of fi,

| Fi(u1, u2)− Fi(v1, v2) |≤ Ki | u− v | .

We define K ≡ K1 + K2. Let K̄ be an upper bound for K. As we will see in the

next lemma, one can then conclude that L−1F (u) is a contraction. The limits of our

sequences therefore coincide and define the unique solution of (I):

Lemma B2. Let γ > K̄, and consider F (u) defined in (9) and L−1F a mapping from

X ⊂ C(Ω× [0, T ]) into C(Ω× [0, T ]). Then L−1F possesses the contraction property

|| L−1F (u)− L−1F (u′) ||0≤
K̄

γ
|| u− u′ ||0,

for all u, u′ ∈ X.

Proof. For each i = 1, 2 and for each u ∈ X ⊂ C(Ω× [0, T ]), the function Fi(u) is in X.

This implies that Fi(u) ∈ R(Li), thus F (u) ∈ R(L). Hence, by Lemma 1, L−1 is well

defined on X. Since Fi verifies

| Fi(u)− Fi(u′) |≤ Ki | u− u′ |≤ Ki | u− u′ |0,

function F satisfies the condition

|| F (u)− F (u′) ||0≤ K̄ || u− u′ ||0 (34)

for all u, u′ ∈ X. We also know from Corollary B1 that

|| L−1F (u)− L−1F (u′) ||0≤ γ−1 || F (u)− F (u′) ||0 . (35)

Taking (34) and (35) together, we obtain

|| L−1F (u)− L−1F (u′) ||0≤ γ−1K̄ || u− u′ ||0,

which proves the lemma.
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C Theorem 2 proof

We prove this result by contradiction. Let u ∈ C2,1(Ω× [0, T ]) be a solution of (I) and

assume that u *< ũ, û >. We may encounter six different cases:

i) u equals the lower bound of < ũ, û > in at least one point (x0, t0), that is to say,

u(x0, t0) = ũ(x0, t0) and ũ(x, t) < u(x, t) for all other (x, t) ∈ Ω× [0, T ] \ (x0, t0).

ii) u equals the upper bound of < ũ, û > in at least one point (x0, t0), that is to say

u(x0, t0) = û(x0, t0) and u(x, t) < û(x, t) for all other (x, t) ∈ Ω× [0, T ] \ (x0, t0).

iii) u is smaller than (ũ1, ũ2) in at least one point.

iv) u is larger than (û1, û2) in at least one point.

v) u is smaller than (ũ1, ũ2) in all points.

vi) u is larger than (û1, û2) in all points.

We shall focus on points i), iii) and v). Similar reasoning can be applied to study the

remaining cases.

i) There exists a point (x0, t0) at which ũ(x0, t0) = u(x0, t0) and ũ(x, t) < u(x, t) for

all other (x, t) ∈ Ω × [0, T ] \ (x0, t0). We define v(x, t) ≡ u(x, t) − ũ(x, t), then

(x0, t0) is a minimum for v. Therefore,

vt(x0, t0) = 0,

vxx(x0, t0) > 0.

Consequently, for v = (v1, v2), we have that L1v1 |(x0,t0)< 0 and L2v2 |(x0,t0)> 0.

However

L1v1 = L1(u1 − ũ1) = L1u1 − L1ũ1 = f1(u1, u2)− f1(ũ1, ũ2) + a1(u1 − ũ1) ≥ 0.

The expression above is positive under the assumptions because, as we have seen

in the proof of Proposition B1, either f1 is increasing in both arguments, with

a1 ≥ 0 (which yields the result directly), or because a2 ≤ 0. Notice that in the

later case

L1v1(x, t) ≥ −a2(u2 − ũ2) ≥ 0.

Hence, we achieve a contradiction.
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Similarly, one can verify that

L2v2 = L2(u2 − ũ2) = L2u2 − L2ũ2 = f2(u1, u2)− f2(ũ1, ũ2)− c̄2(u2 − ũ2) ≤ 0,

which is negative under the theorem assumptions. As before, this result is directly

confirmed if f2 is decreasing in both arguments, with c̄2 ≥ 0. Otherwise, we can

show that, for c̄1 ≤ 0:

L2v2 ≤ c̄1(u1 − ũ1) ≤ 0.

A contradiction arises again. Then, we finally conclude that u and ũ cannot

coincide in one point.

iii) In the case when u is smaller than the lower bound of < ũ, û > in at least one point,

by continuity, there must be at least a point (x0, t0) at which u(x0, t0) = ũ(x0, t0).

But we just showed in point i) that this is impossible.

v) Notice that u, ũ are continuous functions on a compact space. The function v,

defined as v ≡ ũ − u, achieves then a minimum at a point denoted by (x0, t0).

Therefore,

vt(x0, t0) = 0,

vxx(x0, t0) > 0.

Hence, L1v1 |(x0,t0)< 0 and L2v2 |(x0,t0)> 0. However, as in case i) above,

L1v1 = L1(ũ1 − u1) = L1ũ1 − L1u1 = f1(ũ1, ũ2)− f1(u1, u2) + a1(u1 − ũ1) ≥ 0,

which leads to a contradiction under the theorem assumptions. Similarly,

L2v2 = L2(ũ2 − u2) = L2ũ2 − L2u2 = f2(ũ1, ũ2)− f2(u1, u2)− c̄2(u2 − ũ2) ≤ 0.

The contradiction arises because L2v2 |(x0,t0)> 0. This finishes the proof.

D A numerical algorithm

In this appendix we develop an algorithm to numerically compute the optimal solution

to our optimal control problem. Since the algorithm is based on the iterative method

presented in Theorem 1, it will require a lower or an upper solution to start iterating.

For illustration purposes let us build a sequence {uk1, uk2}k∈N with (u0
1, u

0
2) = (ũ1, ũ2).

The algorithm can be summarized in the following 3 steps:
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Step 1: Set a stopping criterion ∆ and build a grid to represent the space-time

set Ω × [0, T ], Ω ' {Dx, 2 ∗ Dx, ..., N ∗ Dx} and [0, T ] ' {Dt, 2 ∗ Dt, ..., J ∗ Dt}. We

initialize the series {uk1uk2}k∈N as

(u0
1, u

0
2) = (ũ1, ũ2),

(w0
1, w

0
2) = (w̃1, w̃2).

Step 2: For every k and given (uk−1
1 , uk−1

2 ) and (wk−1
1 , wk−1

2 )(x, t) = (uk−1
1 , uk−1

2 )(x, T−
t), compute 

L1u
k
1 = F1(uk−1

1 , uk−1
2 ),

uk1(x, 0) = ζ
k
ũ1(x, 0) + (1− ζ

k
)u1(x, 0),

limx→δΩ u
k
1,x = 0,

with 0 < ζ < 1, and
L′2wk2 = −F2(wk−1

1 , wk−1
2 ),

wk2(x, 0) = φ
k
w̃2(x, 0) + (1− φ

k
)Ψ′1(wk−1

1 (x, 0), x),

limx→δΩ w
k
2,x = 0,

with 0 < ψ < 1.

Step 3: After every k, we compute the distance between (uk−1
1 , uk−1

2 ) and (uk1, u
k
2).

If the distance is smaller than ∆, then STOP. If not, set k = k + 1 and go to step 2.
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