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SAFETY IN NUMBERS? SELF-PROTECTION AS A LOCAL 

PUBLIC GOOD  

1. INTRODUCTION 

Because of their simple intuitive binary structure, Bernoullian variables and binomial 

distributions are often used in representing risk in economics and related subjects. The 

following are some examples: (i) in manufacturing and distributing a commodity of uncertain 

quality, each of the ex ante identical units in a batch might be satisfactory with a common 

probability that depends on specifics of the production process, such as the age of the 

machinery and the investment in maintenance and quality control. The distribution of the 

number of unsatisfactory items in the batch is then binomial with parameters given by the 

batch size and the endogenous probability of an item being unsatisfactory; (ii) in a locality, 

the risk of an arbitrary pedestrian having a road accident in a period, dependent on the 

municipality’s investment in road safety features, might be constant across all pedestrians. A 

binomial distribution, now for the number of pedestrian accident victims in the period, will 

result; (iii) the risk of accidental death or injury to any child in a household might be a scalar 

which depends on the parents’ investment in protective activities. Yet again, for a household 

with one or more children, the distribution of family size or uninjured members at the end of 

a period is binomial.  

 In such examples, the parameter representing the accident or failure risk 

(equivalently, the level of “safety”) can be taken to be endogenous. The economic problem is 

then to analyse the factors which determine this risk from the societal, firm or household’s 

standpoint and the consequences of this level of risk. Moreover, any investment which affects 

the level of risk is a local public good in that it affects all the relevant risks equally. Thus, 

e.g., if investment in a machine reduces the risk of an item from a batch being defective, it 

reduces the risk equally for all items in the batch. The firm, household or society’s incentive 
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to make such risk-reducing investments can be analysed using expected utility theory, where 

utility is household utility, company profits or social welfare and can be taken to be 

monotonically decreasing in the number of accidents, losses or failures, depending on the 

context. Because the decision-maker can spend to reduce the probability of loss, the 

environment is one of self-protection (SP) as analysed by Erhlich and Becker (1972). 

 One particularly important issue that arises, and which is our main focus, is how the 

incentive for risk reduction depends on the size of the population protected. I.e., how does the 

extent of publicness of risk reduction, defined here as the number of people who benefit from 

it, affect the incentive to undertake it? In analysing this, it transpires that how utility covaries 

with the number of losses or accidents in the relevant population and how this covariance 

changes as the population size increases play pivotal roles. We provide a simple recursive 

formula for this covariance which yields a considerable simplification of subsequent analysis 

incorporating it.  

 It is worth noting that there is an extensive urban economics literature which studies how 

population size and growth affect, among other things, per capita public expenditure on public safety. 

This literature is largely empirically orientated. Regarding safety, it concentrates mainly on 

interjurisdictional comparisons of protection against crime and fire. It stresses the importance of a 

community’s socio-economic characteristics and the nature of the congestion function for shared 

goods, hence their degree of publicness, for determining expenditure. See, e.g., Clark and Cosgrove 

(1990), Ladd (1992), McGreer and McMillan (1993) - who also consider highway maintenance - and 

Schwab and Zampelli (1987).  

 An early notable exception to this empirical focus is the neglected paper of Kolm (1976). 

Kolm presents a general analysis in which the physical risk someone faces depends on two types of 

safety expenditures: first, one with an effect which is purely private to the individual; second, one 

which also reduces the risks for others and thus has a degree of publicness. He considers the socially 
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optimal rate of substitution between these two types and the dependence of the optimal relationship 

between impurely public and purely public safety expenditure on whether the former is a complement 

or substitute for safety expenditures with a purely private effect. However, Kolm did not consider 

directly how optimal purely public safety expenditure changes as the population protected by it 

increases, our main concern. This neglect of the influence of the size of the protected population on 

optimal safety decisions is pervasive in both the theoretical literature and, as Viscusi (1995) observes, 

policy-making1.  

 More recently, several papers have examined public good aspects of self-protection 

(e.g., Fraser, 1996 WP, Kunreuther and Heal, 2003; Heal and Kunreuther, 2005; Muermann 

and Kunreuther, 2008; Lohse, Robledo and Schmidt, 2012). Barring Fraser, these authors 

consider scenarios where safety decisions are made by several agents with interdependent 

risks. The focus is on the free-riding behaviour that might then arises. By contrast, as in this 

paper, Fraser (1996) considers scenarios wherein a single decision-maker, or decision-makers 

acting collectively, make a safety decision that influences the risk faced by several people. 

Thus, I do not consider free-riding incentives. However, the framework that I employ can be 

extended straightforwardly to consider such incentives, with the agents analysed in this paper 

each being an agent in a Nash equilibrium model.  

 Section 2 of this paper introduces my model in the context of endogenous physical 

safety within the household. I show how the covariance between utility and the number of 

accidents is important for how the incentive to engage in risk reduction varies with the size of 

the population protected. Section 3 provides the recursive relationship linking the covariances 

between utility and the number of accidents for protected populations of different sizes. We 

give sufficient conditions for this covariance to decrease with the size of the protected 

population via this recursion relationship. In an Appendix, we consider an alternative 

approach based on first degree stochastic dominance (FSD) to show that our approach using 
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this recursion relationship yields stronger sufficient conditions than the latter. Because “self-

protection” problems are not generally concave, we also give a detailed treatment of the 

second-order condition for optimal safety investment, again via FSD. Finally, we bring 

together the preceding analysis to obtain sufficient conditions for the investment in safety to 

increase with the size of the population protected. Section 4 concludes. The Appendix 

contains two proofs. 

 

2. HOW THE COVARIANCE CAN ARISE 

Without loss of generality, we will specialise the analysis initially to endogenous safety 

within the household. Some of the details which follow are not in themselves important. 

Rather, they are minutiae illustrative of a context in which our analysis applies. As we note 

below, it applies in production and other contexts as well. Thus, consider a two-parent 

household with n children in which each child at risk faces an independent and identical 

probability p e( )  of suffering death or injury (taken to be death for simplicity) during a given 

time period. This probability is endogenous and depends on the parents’ expenditure of 

protective “effort” and/or money e , satisfying  

 

(2.1)      p e p e e E( ) , ( ) ,0 0   (non-increasing returns) 

 

Here E  is the compact interval of the non-negative real line within which e  can lie. As e  

affects identically the risk confronting all children considered at risk in the household (which 

need not be all of the n ), it is a local public good.  

 The parents, who command a household income M , fixed for simplicity, are assumed 

to derive utility from both the household’s material standard of living and its size. We assume 

that their utility subsumes their children’s for, despite the many models questioning parents’ 
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altruism towards each other or their children2, it seems reasonable to assume that parents at 

least agree on the desirability of their children’s safety. Because of the children’s accident 

risk, the number of children in the household at the end of the period and hence the household 

size are binomially distributed random variables, denoted ~n  and
~ ~h n  2 , respectively. For 

simplicity, the material standard of living is proxied by the household’s per capita income at 

the end of the period, denoted ~ /
~

x M h , and is again random ex ante. Moreover, there is an 

obvious trade-off between the household’s size and its material standard of living. 

 As bereavement is distressing, it gives parents an extra incentive to protect their 

children. Thus, we assume that their joint utility function is state-dependent and index the 

states of the world by r   the number of children lost to accidents. Then U
r ,  r  =  

0 1, ,2, ... , ,n  denotes their utility function conditional on the number of children lost. We will 

follow much of the insurance, moral hazard and incentives literature in assuming that this 

utility function is quasi-linear in the level of “effort” parents expend in protection3. Then 

utility in state r  will be given by 

 

(2.2)  U x h er r r( , , )   u M n r n r er / ( ),22      

 

 It seems plausible to assume that, whether or not they are state-dependent, the 

functions U r and ur  will be monotonically decreasing in r . I.e., other things equal,  

 

(A.1)  U Ur r 1
, r j 1 1,2,..., . 

 

One formulation that I have used elsewhere (Fraser 1996a, 1996b, 2001) is  
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(A.1’)     u M n r n r u M n r n r r du drr / ( ),2 / ( ),2 , , /2 2 0          4. 

 

However, for the rest of this paper, the specifics of the utility function do not matter beyond 

that (A.1) and another assumption to be introduced below, (A.2), hold. 

 

 Suppose j n of the household’s children are at risk. For a given level of e , 

j

r
p e p er j r






 


( ) ( ( ))1  is the probability that exactly r  of these children will be killed, 

r j 0 1, ,2,..., , 
j

r








 being the binomial coefficient giving the number of ways r  items can be 

chosen from j . The parents can be thought to choose the level of  e  to solve the following 

conditional expected utility (CEU)5 maximisation problem:  

 

(2.3)  
e

j r j r r
Max CEU e

j

r
p e p e u e

j

. ( ) ( ) ( ( )) 







 













0

1  

 

 This problem is in the class of self-protection problems (cf. Becker and Ehrlich 

(1972)). Such problems are not usually concave in e 6. Thus, for a calculus solution, we must 

assume or show that the second-order condition (SOC) holds at any e satisfying the first-

order condition (FOC). One of our innovations below is a detailed analysis of the SOC which 

yields sufficient conditions for the problem’s concavity. Granted this, an interior optimal 

choice for e , denoted e
j
, satisfies: 

  

(2.4)  (FOC:) CEU ee
j j
( )   
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p e
j

r
j r p e p e rp e p e u

j j r j j r j r j j r r

r

j
( ) ( ) ( ) ( ( )) ( ) ( ( ))1 1 1 0

1 1

0
 

Note that this is the Samuelson condition for self-protection in the household. 

So, suppressing functional arguments and rearranging, we have: 

 

(2.5)     







  








 



p
j

r
p p jp r u p pr j r r

r

j
( ) ( ) ( )1 1

0
 

 

 In (2.4), 1 is the constant marginal cost of reducing the child mortality risk and 

  







    









   

p
j

r
j r p p rp p ur j r r j r r

r

j
( ) ( ) ( )1 1

1 1

0
 is the parents’ perceived marginal 

benefit of this expenditure. In (2.5), given (A.1), as the joint distribution of r  and ur  is 

identical to r ’s,  







  












j

r
p p jp r ur j r r

r

j
( ) ( )1

0
  Cov r ur( , ) , where Cov v w( , )  is the 

covariance between the random variables v w and . Thus, from (2.5), the parents’ marginal 

benefit from protective expenditure is proportional to Cov r ur( , ) . How Cov r ur( , ) behaves at 

a given e  as the number of children at risk increases, the subject of section 3, determines 

whether an increase in the degree of publicness of protective expenditure increases the 

incentive to make that expenditure.  

 

3. A RECURSIVE DECOMPOSITION OF Cov r ur( , )  AND ITS IMPLICATIONS 
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It is convenient to use the following notation in the sequel. Let Cov r u
f r

a
b( , )

( )
   the 

covariance between the random variables r  and u
f r( )

, where f r( )  and u
f r( )

 are some 

functions of r  and r  ranges from a  to b . It is also convenient to assume: 

 

(A.2) u r  is the same at a given r , irrespective of the number of children protected by a given 

risk-reducing expenditure. 

 

 Assumption (A.2) is quite strong.7 It ensures that the u r appearing in Cov r ur j
( , )

0
1

= 

 
j

r
p p r j p ur j rj r







   

 


1

1 1
1

0

1
( ) ( )  and in Cov r ur j

( , )
0

= 

 
j

r
p p r jp ur j rj r






  


 ( )1

0
 are identical. In the household context, the assumption is 

plausible. It merely requires that parents initially with n  children assign the same utility to 

losing r  of them if j of them are at risk, r j n  , as when j 1 are, r j n  1 . It is also 

plausible in other contexts. E.g., for an expected vote maximising local authority undertaking 

public safety measures, other things equal, the endogenous popularity function, say, would 

need to be uniquely determined by the number of accidents in the locality and not by the 

number of people actually at risk. In a production context, it would require, e.g., the profits of 

an expected profit maximising firm to be uniquely related to the number of defective items 

sold8. 

 Even with (A.2), how large Cov r ur j
( , )

0
1

is relative to Cov r ur j
( , )

0
 is unclear. On one 

hand, Cov r ur j
( , )

0
1

 has the extra term in  u j j p
j

  
1

1 1( )  compared to Cov r ur j
( , )

0
. On 

the other, without further restrictions on j  and p , we cannot say whether the term in an 
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arbitrary u r jr , , ,.., 0 1 , increases going from Cov r ur j
( , )

0
 to Cov r ur j

( , )
0

1
. Thus we need a 

more systematic investigation of how the covariance behaves as the size of the population 

increases. Our core result here is presented next. 

3.1. The Main Theorem 

 THEOREM 3.1. Suppose r  k  is the number of “successes” in a series of k

Bernoulli trials, each with success probability p , and ur  is a state-dependent function of  r  

satisfying u ur r 1
, r r k,  1 .  Then, for k j 1 trials, 

(3.1)  Cov r ur j
( , )

0
1
 ( ) ( , ) ( , )1

1 1
0

1

0






















p
j

j
Cov r u p

j

j
Cov r ur j r j

 

 PROOF. Consider an arbitrary j j n, ,2,... .  1 1  By definition, given (A.1), 

 

(3.2)  Cov r ur j
( , )

0
1

=  
j

r
p p r j p ur j rj r







   

 


1

1 1
1

0

1
( ) ( )      

 =
j

j
p

j

r
p p r jp ur j r rj







 








  




1
1 1

0
( ) ( ) ( ) + 

+  
j

r
p p r j p ur j rj r







   

 


1

1 1
1

0

1
( ) ( ) 









 








  




j

j
p

j

r
p p r jp ur j r rj1

1 1
0

( ) ( ) ( ) . 

 

Consider the last two summands in the second equality. Collecting like terms, the coefficient of 

u0
 is 









   









 








 











j
p j p

j

j
p

j
p jp

j j1

0
1 1

1
1

0
1

1
( ) ( ) ( ) ( ) = 

 








  



























 


( ) ( )1

1

0
1

1

0
0

1
p p

j
j

j

j

j
j

j
, because 

j j







 










1

0 0
. Again, collecting like 

terms from the last two summands in (3.2), the coefficient of an arbitrary u r jr , ,2,..., , 1  is 
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   p p
j

r
r j p

j

j

j

r
r jpr j r

( ) ( )1
1

1
11










   

















 









 
 = 

   
p p

j

j

r
j r j p

j

r
j r jp

r j r
( )

( ) ( )
1 1

1 1
1

 







   








  









 

 = using 
j

r













   

j r

j

j

r

 



























1

1

1
  = 

   
p p

j

j

r
j r j p

j r

j
j r jp

r j r
( )

( ) ( )
1 1

1
1

1
1

1
 







   

 











  









 

 =

 
p p

j

j

r
r r jp

r j r
( )

( )
1 1

1
1

 







  

 

 =  using 
r

j

j

r

j r

r j r j









 



 






1 1

1

( )!

!( )!
= 

( ) !

( )!( ( ))!

j j

r j r j



  

1

1 1
=

j

j

j

r



























1

1
=   p

j

j

j

r
p p r jpr j r



















     1

1
1 11 1

( ) ( )
( )

. 

The coefficient of the term in u
j1

 is 
j

j
p p j p

j

j
p p j

j j











   









 

1

1
1 1

1
1

1
( )( ) ( ) . Using these 

derived coefficients in the last two summands of (3.2) implies 

 

 
j

r
p p r j p ur j rj r







   

 


1

1 1
1

0

1
( ) ( ) 









 








  




j

j
p

j

r
p p r jp ur j r rj1

1 1
0

( ) ( ) ( )  

=  p
j

j

j

r
p p r jp ur j rj r



















     


1

1
1 11 1

1

1
( )

( )
= p

j

j
Cov r ur j









1 1
0

( , ) . As 

j

j
p

j

r
p p r jp ur j r rj







 








  




1
1 1

0
( ) ( ) ( ) = ( ) ( , )1

1
0










p

j

j
Cov r ur j

, we are done. Q.E.D.  

 

 Four remarks are in order before we apply Theorem 3.1 to investment in safety. 

 REMARK 1. With r  binomial and ur  non-monotonic,  
j

r
p p r jp ur j rj r






  


 ( )1

0
is 

the first moment about zero of the function ( )r jp ur , denoted   r
r j

r jp u( )
0

 ( r  indicating 
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expectation over r ), not a covariance. Substituting   r
r j

r jp u( )
0

 in place of Cov r ur j
( , )

0
, and 

so on in (3.1), the basic recursion formula in (3.1) will continue to apply. 

 REMARK 2. The recursion formula (3.1) can be applied successively to obtain  

 

(3.3)  Cov r ur j
( , )

0
1

= ( )
( )

( , )
( )

1
1

1 0
1




 











 
p

j

j l
Cov r ul r j l

 

  












   





p
j

j l
p Cov r uk r j k

k

l 1
1 1

00

1
( ) ( , ) , l j1,..., .  

 

This formula might be of independent interest although we will not use it in this paper. 

 REMARK 3. Interest in recurrence relationships for the moments of binomial distributions 

in the literature has centred on those between successive moments, such as the mean and 

variance9. 

 REMARK 4.  If u r is linear, not nonlinear, in r , we can normalise so that u rr    

without loss of generality. Then, in notation analogous to that introduced above, 

Cov r u Cov r r Var r p p jr j j j
( , ) ( , ) ( ) ( ) ( )

0
1

0
1

0
1

1 1
  
        . Thus we can see that formula (3.1) 

is a proper generalisation of the variance for a binomial variate because, now,  

 

  Var r p p j
j

( ) ( ) ( )
0

1
1 1


    =   

j

j
p p pj p p pj









    

1
1 1 1( )( ) ( )    

 =  
j

j
p Var r pVar r

j j







   

1
1 1

0 0
( ) ( ) ( ) . 

 

3.2 Some Corollaries 
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 The main implications of Theorem 3.1 for parents’ incentive to invest in their children’s 

safety as the number protected increases are derived from the following two corollaries. 

 COROLLARY 3.1. 
1

1j
p


  is sufficient for Cov r u Cov r ur j r j

( , ) ( , ) ( )
0

1
0

0

  . 

 PROOF.  Given Cov r ur j
( , )

0
 < 0, 

j

j
p Cov r u Cov r ur j r j







  

1
1

0 0
( ) ( , ) ( , )  if 

j

j
p









  

1
1 1( )  or, on rearrangement, if 

1

1j
p


 . But then, from (3.1), Cov r ur j

( , )
0

1 

 
j

j
p Cov r u pCov r ur j r j







   1

1
0

1
0

( ) ( , ) ( , )   Cov r ur j
( , )

0
. Q.E.D.  

 

 In the Appendix, we will prove a slightly weaker analogue of Corollary 3.1, Corollary 

3.1A, by a stochastic dominance technique also utilised below in Section 3.3. Here, the inequality 

1

1j
p


  is the condition for a binomial density based on j i.i.d. Bernoulli trials to have its mode 

at r  0 . For the major physical risks to children usually encountered in the household, 
1

1j
p


  

is likely to be  a reasonable assumption because, typically, both j  and p  will be small. Hence, 

“no accident” is the highest probability event. But in other contexts where we might apply our 

model, such as in analysing quality control in production where, in effect, there are numerous 

trials, this need not be the case. Also, as p  is endogenous, it might not always be thought 

appropriate to put such an a priori restriction on it. Thus we need a more general result, such as in 

Corollary 3.2. 

 

 COROLLARY 3.2. If u r  is monotonically decreasing and concave in r , then, at the same 

p,  Cov r u Cov r ur j r j
( , ) ( , ) ( )

0
1

0
0


  . 
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 PROOF. Let u u uk k k 1
. Then 

 (3.4)   Cov r ur j
( , )1

0
 Cov r ur j

( , )
0

=   
j

r
p p r jp u urj j r r r






   

 

0

11( ) = 

   
j

r
p p r jp urj j r r






  



0
1( )  .  

By our earlier argument, if u r  is monotonic in r ,  
j

r
p p r jp urj j r r






  



0
1( )  = 

Cov r ur( , ) . If u r  is also increasing in r , then Cov r ur( , ) 0 and, from (3.4), Cov r ur j
( , )1

0

  

Cov r ur j
( , )

0
. Likewise, if u r  is decreasing in r , then Cov r ur j

( , )
0

   Cov r ur j
( , )1

0
. Now, if 

u r  is increasing in r , then ur1
   u r    u ur r 2 1

   u ur r 1 

  1 2 2 1u u ur r r   . The last two inequalities define convexity of u r  in r . Likewise, if  u r  is 

concave in r , u r  is decreasing in r and, hence, Cov r ur j
( , )

0
  Cov r ur j

( , )1
0

. Thus, if u r  is 

concave in r , Cov r ur j
( , )

0
  ( ) ( , )1

0
 p Cov r ur j

 + pCov r ur j
( , )1

0
,   p 0 1, , hence 

Cov r ur j
( , )

0
 ( ) ( , )1

0
 p Cov r ur j

+ pCov r ur j
( , )1

0
  

j

j











1
( ) ( , )1

0
 p Cov r ur j

+ pCov r ur j
( , )1

0
= Cov r ur j

( , )
0

1
 by Theorem 3.1. Q.E.D. 

 

 REMARK 5. If u r  is increasing in r , hence u r  is convex in r , thus Cov r ur j
( , )

0
   

Cov r ur j
( , )1

0
, then Cov r ur j

( , )
0
 ( ) ( , )1

0
 p Cov r ur j

+ pCov r ur j
( , )1

0
. But, for j  0 , as 

( ) ( , )1
0

 p Cov r ur j
+ pCov r ur j

( , )1
0


j

j











1
( ) ( , )1

0
 p Cov r ur j

+ pCov r ur j
( , )1

0
 = 
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Cov r ur j
( , )

0
1

, it is now still possible that Cov r ur j
( , )

0
 Cov r ur j

( , )
0

1
. Thus, that u r is concave 

and decreasing in r is sufficient but unnecessary for Cov r ur j
( , )

0
 Cov r ur j

( , )
0

1
. 

 

 It seems intuitively reasonable in the household context that u r will be concave and 

decreasing in r - equivalently that u u u ur r r r    1 2 1
. This states merely that the parents’ fall 

in utility from losing the additional child is no less the more children are lost. 

 

3.3. Existence and Uniqueness of a Protective Equilibrium by a First-Order Approach 

 We noted above that the protection problem is generally non-concave. It is thus important 

to investigate the restrictions on the utility and risk functions which ensure that the SOC is always 

satisfied and, hence, the FOC identifies a unique protective equilibrium. 

 The second-order condition for problem (2.3) requires  

 

(3.5)  (SOC:) CEU eee
j j

( )   
 










  

p

p p

j

r
p p r jp u

j r j r r

( )
( )

1
1

0
+  

   










         

    p p

p p

j

r
p p j rp p r jp j r p p r jp u

j r j r r j r r j r r

( )
( ) ( ) ( ) ( ) ( ) ( )

1
1 1 1

0

1 1
 

    










  




p p p

p p

j

r
p p r jp ur j rj r( )

( )
( ) ( )

1 2

1
1

2 2 0
0 

 

Thus, multiplying through by ( )1 2 2 p p  and simplifying the middle term, we require  

 

  ( )1 2 2 p p CEU eee
j j

( ) =  ( ) ( )1 1
0

 







  


p pp

j

r
p p r jp u

j r j r r + 
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p p

j

r
p p r jp p pj ur j rj r( ) ( ) ( )1 12

0
       

   







  


p p p

j

r
p p r jp ur j rj r( ) ( ) ( )1 2 1

0
0 

 

Equivalently, combining the first and last terms before the inequality sign and using the well-

known result that, for the binomial distribution, ( ) ( )1 2  p pj r jpr ,  we need  

 

(3.6)  ( )1 2 2 p p CEU eee
j j

( ) = p p p p p p Cov r ur j
( ) ( ) ( , )1 1 2

0
      + 

    







    


p p

j

r
p p r jp r jp ur j r

r

j r( ) ( ) ( )1 2 2

0
 0 

 

 Although Cov r ur j
( , )

0
0 , it is not obvious what the signs of the two terms of ( )1 2 2 p p

CEU eee
j j

( )  are. The ensuing Theorem 3.2 shows that, if 
1

1j
p


  and p e( )    exp( ) e , for 

scalars  ,  0 , they are both negative, thus the SOC will be satisfied. 

 

 THEOREM 3.2. If  
1

1j
p


  and p e( )    exp( ) e , for some scalars  ,  0 , then 

( )1 2 2 p p CEU eee
j j

( ) 0. 

 

 PROOF. If p e( )    exp( ) e , the first term after the equality sign in (3.6) is 

 

(3.7)   ppp pp p p p p Cov r ur j
        ( ) ( ) ( , )1 2 1 2

0
= ppp Cov r ur

  ( , )  0, 
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 given (2.1) and Cov r ur( , ) <0. The second term can be  rewritten as     
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1 1 .  

But  
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r
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r

j 






 






 ( )

( )
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2
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r

r

r jp

r jp

2

2
1

( )
. Thus, 

 
j

r
p p r jp r jpr j r

r








   


( ) / ( )1

2 2  ( )r can be taken as a new discrete probability density 

for r with a corresponding cumulative distribution ( )r , compared with the original binomial 

density 
j

r
p p rr j r






  


( ) ( )1   and cumulative ( )r . Now, if 

1

1j
p


 , then 

  ( ) / ( ) ( ) / ( )0 0 12 jp jp p < 1. Moreover, as  r jp
2

/  / r r jp
2

 is decreasing (increasing) 

in r as r < (>) jp , and 1 1 ( )j p   jp p  by assumption, r jp  and thus  r jp
2

 / r r jp
2

 is increasing in r for r j1,2,...., . Thus the graph of ( )r must single-cross that of 

( )r  from below. Hence 

 

(3.8)   ( ) ( ), , , ...,r r r j  0 1 , with strict equality only at r j .  

 

But (3.8) is the definition for a discrete distribution ( )r to strictly first degree stochasticallly 

dominate (FSD) another, ( )r . Now, we know that if ( )r strictly FSD ( )r  then 

 j

r
p p

r jp

r jp
ur j r

r

rj 






 


































 ( )

( )
1 1 0

2

20 
for any strictly decreasing function u r . Combining 

this with (3.8) yields ( )1 2 2 p p CEU eee
j j

( ) 0. Q.E.D. 
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 REMARK 6. Thus, if p e( )    exp( ) e , provided the risk function is such that, 

irrespective of the level of e , the resulting binomial distribution has its mode at the origin, then 

the second-order condition for the parents’ optimisation will be satisfied everywhere.   

 REMARK 7. If 
1

1j
p


 , the second-order condition definitely holds if p e( )  satisfies the 

elasticity condition     p p p p/ / . The family of risk functions p e( )    exp( ) e ,  ,  0 , is 

the only one yielding non-increasing returns and     p p p p/ / .  

 REMARK 8. Treatment of the second-order condition in the literature has been somewhat 

perfunctory (e.g.., cf. Arnott and Stiglitz (1988)), perhaps for two reasons.  First, in the simple 

binary models usually considered, if the separable specification which we have employed here is 

used alongside strict convexity of p e( ) , then the second-order condition holds at any local 

extremum (Arnott and Stiglitz (1988, 390)). Second, the focus of earlier authors was primarily on 

moral hazard. Hence, as in Arnott and Stiglitz or Helpman and Laffont (1975), they were more 

concerned with the consequences of the problem being non-concave than with establishing 

conditions for its concavity. 

 

3.4 Safety in Numbers 

 We can now draw together our earlier results to obtain sufficient conditions for an increase 

in the size of the protected population to result in increased protective expenditure when safety is a 

local public good. These are summarised in the following theorem: 

 

 THEOREM 3.3. (i) If CEU e
j1

( )  is concave in a neighbourhood containing both e
j
 and 

e
j1

 and u r  is concave and monotonically decreasing in r , then e
j1

 e
j
. (ii) If 

    p p p p/ /  and risk levels are such that r = 0 is the most likely event in the respective cases 

with j  and j 1 protected, then e
j1

 e
j
.  
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 PROOF. (i) From (2.5) we know that p e
j

Cov r ur j
( ) ( , )

0
/ p e

j
p e

j
( ) ( )1


 


 = 1  at an 

interior e
j
 while, from Corollary 3.2, ( ) ( , ) ( , )0

0 0
1

 


Cov r u Cov r ur j r j
 if u r  is concave  and 

monotonically decreasing in r . Thus, under these conditions,  

 

(3.9)  CEU e
j j1

( ) = 

 






p e Cov r u

p e p e

j r j

j j

( ) ( , )

( ) ( )

0
1

1
1    

 





p e Cov r u

p e p e

j r j

j j

( ) ( , )

( ) ( )

0

1
1= 0. 

 

Hence, if CEU e
j1

( )  is concave in a neighbourhood containing both e
j
 and e

j1
,  then e

j1


e
j
. (ii) If risk levels are such that r = 0 is the most likely event, then 

1

2j
p


 , hence 

1

1j
p




and, from Corollary 3.1, Cov r u Cov r ur j r j
( , ) ( , )

0
1

0

 . Thus (3.9) again holds. Moreover, from 

Theorem 3.2 and Remark 7, if the risk function satisfies   p p/   p p/ also, CEU eee
j


1

0( )  

holds. Then, by concavity and (3.9), e
j1

  e
j
. Q.E.D. 

 REMARK 9. By Corollary 3.1.A in the Appendix, we can prove 0  Cov r ur j
( , )

0
 




Cov r ur j
( , )

0
1

, hence (3.9) and its implications, via FSD if 
1

2j
p


 . Our covariance 

decomposition method provides a more general approach because: (a) via Corollary 3.1, we can 

show ( ) ( , )0
0

 Cov r ur j
 


Cov r ur j

( , )
0

1
 provided only that the weaker inequality 

1

1j
p


 holds; 

(b) even when this inequality does not hold, we can show ( ) ( , )0
0

 Cov r ur j
 


Cov r ur j

( , )
0

1
 via 

Corollary 3.2 if u r  is concave and monotonically decreasing in r .  

 

4. CONCLUSION. 
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We have studied an archetypal problem in which members of a population each confront an 

identical risk and the risks are modelled as a series of i.i.d. Bernoulli trials with endogenous 

“success” probability. This probability is determined by a decision-maker’s protective 

expenditure, hence this expenditure is a local public good. We have posed and answered the 

question: how does the size of the population protected by a risk reduction affect the incentive to 

undertake it? Although such a protection problem is generally non-concave, we show that it is 

concave under plausible assumptions for some important environments. Moreover, the concavity 

issue turns out to be intertwined with that of how the protected population’s size influences the 

decision-maker’s spending on risk reduction. Although, surprisingly, an increase in this size does 

not necessarily result in greater protective expenditure being optimal, it does so unambiguously 

when we can establish that the protection problem is concave. While we have not focused 

explicitly on moral hazard here, our analysis suggests that an increase in the public good aspect of 

protection might mitigate the moral hazard problem. This conjecture will need to be elucidated in 

the context of an explicit model of the insurance market.  

 The scenario which we have examined has been fairly basic and has relied on a crucial 

simplifying assumption. This is that the utility associated with a given number of accidents is the 

same regardless of the size of the protected population. We have deliberately structured the 

problem in this manner for two reasons. Not only is it realistic, at least in the household context, 

but also it ensures that any incentive to make greater protective expenditure as the population 

increases does not depend on an increased willingness to pay because a larger population has more 

resources than a smaller one. However, as the latter force will be of considerable relevance in 

some contexts, the implications of relaxing this simplifying assumption, as well as the assumption 

that the size of the protected population is exogenous, will be pursued elsewhere. Endogeneity of 

the population size might be important in the household context if parents seek to determine 

simultaneously the number of their children and the level of protection afforded them.  
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 We specialised much of our discussion to the case of parents seeking to protect some of 

their children. We saw that the conditions for the protection problem to be concave, hence for the 

protective expenditure to increase as the number of children protected increases, would then be 

expected to be satisfied. Thus, in this context, alongside the many reasons which might be 

advanced for children to prefer to have many siblings, this paper has placed another: there is 

greater safety in numbers. 

 

APPENDIX. 

AN ALTERNATIVE PROOF OF THEOREM 3.1. Using 
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= 
 r j p p j r jp j r

p j

       

 

( ) ( )( ) ( )( )

( )( )

1 1 1 1

1 1


N

D

1

1

. Expanding, N1
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       r j p j p j r j p r j p j r r j p p j r                ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 = 

 r j p p j r    ( ) ( )1 1
2

=  r j p p p j p pr pp j r         ( ) ( ) ( ) ( ) ( )1 1 1 1 1
2
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    r j p p p j p r j p       ( ) ( ) ( ) ( )1 1 1 1
2
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Now, applying the same argument used in the proof of Theorem 3.2 in the text, as 
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  ( )r  can 

be treated as a new probability density for r  with cumulative ( )r . Then, if 1 2/ ( )j p  , ( )r

single-crosses the binomial distribution function once from below. Hence, from our earlier argument, 

( )r FSD ( )r  (where r j 0 1 1, ,2, ... ,  now). Hence, 

 
p p p
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r j p

p p j
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1
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 < 0 for any monotonicly decreasing in r  function 

u r .  Inserting this together with  Cov r ur j
( , )

0
1

0

  in (a.2) yields Cov r u Cov r ur j r j

( , ) ( , )
0

1
0


  < 0. 

Q.E.D.  

 

Footnotes. 
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1. Viscusi (1995, 50) notes : “Regulatory agencies are generally concerned with the risk...In contrast, 

the number of people exposed to the risk plays a much less prominent role in regulatory decisions. 

The standard regulatory policy trigger is typically linked to a probability of an adverse outcome as 

opposed to an expected body count...In the course of the detailed policy analysis prepared for each 

Superfund site, EPA never assesses the size of the population exposed to the risk.” 

2. The seminal contributions of Manser and Brown (1980) and McElroy and Horney (1981) on 

parents’ non-altruistic preferences have now spawned numerous offsprings. These are reviewed in 

Lundberg and Pollak (1994, 1995). 

3. This assumption lets us abstract from income effects in determining e . Our results would be 

unchanged if we replaced e  by  ( )e  for some convex function  (. )  as in, e.g., Arnott and 

Stiglitz (1988), Mas-Colell, Whinston and Green (1995) and references therein. 

4. A justification for (A.1’) would be that, if parents have chosen the optimal family size as a 

decision prior to and separate from the protection decision, bereavement must decrease their 

utility even if it increases the household’s material living standard.   

5. Luce and Krantz (1971) provide perhaps the first rigorous justification for CEU. 

6. Perhaps the most detailed treatment of the implications of the non-concavity of protection 

problems is provided by Arnott and Stiglitz (1988). 

7. Suppose that the utility function takes the form 𝑈𝑟[𝑥(ℎ(𝑛, 𝑟)), ℎ(𝑛, 𝑟), 𝑟 ], where 𝑥(ℎ(𝑛, 𝑟)) is the 

“equivalent” level of household consumption and ℎ(𝑛, 𝑟) is the household size, dependent on the 

initial number of children and the number lost. Then, for a differential change in 𝑛, satisfaction of 

(A.2) can be shown to require [𝑈𝑥
𝑟 𝑈ℎ

𝑟⁄ ] = −(𝑥′) − 1. 

8. One instance in which the latter would be true is when the firm is a price -taker selling a fixed 

quantity of items, the reliability of each of which, 1 p e( ) , can be affected by investment e in some 

shared finishing machine. If P  is the per unit price of the commodity and either there is no loss of 

goodwill from selling defective items or defective items are detected before sale , the firm’s expected 
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profit from a batch of size j  will be  j
e( )  = P

j

r
p e p e j r er rj 






  









  ( ) ( ( )) ( )1

0
 = 

P j
j

r
p e p e r er rj









 









  ( ) ( ( ))1

0
. To maximise expected profits, the firm would seek to minimise 









  P

j

r
p e p e r er rj
( ) ( ( ))1

0
. If defective items could only be detected in use (i.e., the product is 

an “experience good”) and the firm suffered a loss of goodwill from the sale of defective items which 

was non-linearly and monotonically related to r , the number of defectives sold, and denoted g r( ) , 

then it would seek to minimise  







   

j

r
p e p e rP g r er rj
( ) ( ( )) ( )1

0
. The last two formulations 

would yield problems identical to those considered in the text. 

9. A. Aygangar (1934), R. Frisch (1925), J. Riordan (1937) and V. Romanovsky (1923) are just a few 

of the authors who have derived or refined recurrence relations for binomial and related distributions.  

Patil et al (1984) provide a useful bibliography of work in this area. More recent references include 

Renyi (2005). 
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