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Abstract  

How should redistributive governments set pollution taxes in a context of endogenous 

productivity through investment in education? 

This paper investigates if the optimal green tax is still equal to the Pigouvian rate, in a context 

of endogenous productivity, or the distributive / efficient impact should be remove.  In a 

Mirrlees partial equilibrium model based on Jacobs and de Mooij [2015], and Jacobs and Van 

der Ploeg [2010], we introduce endogenous productivities through investment in education.  

Each household differs by ability and chooses whether to acquire an education and become a 

high-skilled worker or remain unskilled. Given these assumptions, our economy is 

characterized by an ability cut-off such as those with education cost parameter strictly above 

will invest in education and become skilled. It determines endogenously the proportion of 

skilled and unskilled workers in the economy that is directly impacted by the government 

policy instruments. We derive the optimal carbon tax in conjunction with the optimal 

redistributive income tax and lumps sum transfers. We found that discriminating lump sum 

tax transfers between high and low skilled workers is necessary to allow the government to 

reach the first best pollution tax (the Pigouvian one). Tax subsidies on education have the 

same advantage. Yet, this result holds only under the homothetic properties of the human 

capital production function. Otherwise, neither lump-sum transfers, nor education subsidies 

allow reaching the first best pollution tax.  
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Preliminary Motivations /Introduction 

 

Environmental taxes, such as pollution emission taxes or energy consumption taxes, were 

introduced by Pigou [1920], in order to address the problem of emitters of greenhouse gases 

not facing the full social cost of their actions. Pigou taught us that to internalize a negative 

environmental externality; the optimal environmental tax must be equal to the marginal 

external damage arising from polluting activities.  Even if economists traditionally recognize 

the efficiency of such a market-based instrument to achieve a better environmental quality, 

there are still debates on the desirability of a carbon price. The opponents to the carbon tax 

underline its macroeconomic gross cost measured as the welfare loss due to lower growth, 

consumption or employment. Indeed, as any indirect taxation, a green tax causes a loss of 

purchasing power for the consumers. This loss is somehow alleviated by the substitution 

effect that leads them to alter their consumption basket, but not completely offset. Beyond this 

fact, distributive elements matter also when we consider how costs of environmental policies 

are likely to be distributed among individuals with different incomes. Green taxes are usually 

said to be strongly regressive as the energy share in the total expenditure of the poor 

households is larger compared to the one of rich households (Metcalf [1999]). Thus, the 

project of a global carbon tax is often considered costly and unfair, and governments are 

reluctant to implement significant green tax shifts for fear of strong opposition from public 

opinion. 

 

The “double dividend” literature emerged in this context. In order to legitimate the use of 

environmental taxes, economist tried to diminish the gross cost of environmental taxes, and 

even to make it negative. If the initial tax system is not optimal, governments can use the 

revenues of environmental taxes to decrease other distortionary taxes. Hence, an 

environmental tax may simultaneously improve the environmental quality and achieve a less 

distortionary tax system, i.e. it may lead to a double dividend, according to Goulder [1995]. 

Parry [1995] establishes the general condition which guarantees the existence of the second 

dividend: The revenue-recycling effect that reduces the existing tax distortions has to be 

greater than the tax interaction effect, which increases the welfare gross cost of the green tax 

through the mutual tax erosion. A number of studies have emphasized that the revenue-

recycling effect renders a weak double dividend more likely, because reducing distortionary 
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taxes is preferred to reducing non-distortionary lump-sum taxes (see e.g. Fullerton [2013] and 

Goulder et al. ([1997] and [1998]), Bovendberg and Van der Ploeg [1996]). Thus, the theory 

of second best has challenged the optimality of the Pigouvian tax. In the presence of 

distortionary taxes, the optimal Pigouvian tax should be set above or below the marginal 

environmental damage from pollution, depending on its capacity to reduce initial distortions. 

 

Somewhat surprisingly, the analyses of the double dividend issue have until recently 

neglected the “distributional effect” associated with distortionary taxation. The recent debates 

on the regressive nature of green taxes prompted economists to differ from representative 

agent models and to allow for heterogeneous agents. It seems clear that, if a carbon tax reform 

is to be done, the way the tax proceeds are redistributed is of foremost importance for equity 

concerns. Papers on these issues are still few. Allowing for heterogeneous agents, Jacob and 

de Mooij [2015] have shown that one should not only look at the revenue-recycling effect, but 

also account for the so-called “distributional effect” that is associated with distortionary 

taxation. Whether a weak double dividend occurs depends on the balance of the revenue-

recycling and distributional effects. But, on the optimal tax system, the two exactly offset 

each other and finally the optimal environmental tax should not differ from the Pigouvian 

rate. Jacob and Van der Ploeg [2016] generalize this result in a model with non-homothetic 

preferences to capture the potential regressivity of green taxes (the poor spend a large part of 

their income on dirty goods). They found surprisingly that the optimal carbon tax still 

amounts to the value of marginal climate damages (the Pigouvian tax) even though 

preferences are non-homothetic. In contrast to the large part of the literature on the double 

dividend issue, both of these papers advise an environmental tax equal to the Pigouvian one. 

Accordingly, countries with highly distortionary tax systems due to a strong preference for 

equality should not set lower taxes on, e.g. carbon emissions than countries with smaller tax 

distortions. Nevertheless, the government can always employ non-distortionary, non-

individualized lump-sum taxes. Intuitively, non-individualized lump-sum taxes are always 

incentive-compatible, and should therefore be part of the instrument set of the government. 

The authors highlight the importance for the government to have access to sufficient policy 

instruments in order to internalize the trade-off between revenue-recycling and distributional 

effects that is still present. Moreover, the tax structure also matters. The progressivity of the 

income tax is one more instrument that can help to design an environmental tax reform with 

distributive objective.” If there are no other sources of heterogeneity than in skills, the non-

linear income tax is the informationally most efficient instrument to redistribute income, 
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which renders indirect instruments for redistribution redundant”  (Jacob and de Mooij [2015]). 

These results are in line with previous works that aim to assign a redistributive objective to an 

environmental tax reform (see Cremer and Ladoux [2003], Chiroleu-Assouline and Fodha 

[2014]).  

 

Yet, as distorsive instrument, progressivity of income tax or the tax system (lump-sum tax) 

can lead also to adverse effects. As typically argued in public finance, tax progressivity may 

be detrimental to incentives on work-effort and lead to an inevitable trade-off between 

equality and efficiency. Its impact on growth and education level is also pointed out. Jacobs 

and Bovendberg [2010] have shown that the optimal marginal income taxes are lower with 

endogenous human capital formation than it would be with exogenous one. Intuitively, with 

endogenous learning, the efficiency costs of redistribution increase because positive marginal 

tax rates distort not only labor supply but also human capital accumulation. Caucutt, 

Imrohoroglu and Kumar [2006], builded  a general equilibrium model of endogenous growth, 

in which there is heterogeneity in skill through education decision, income, and tax rates and 

evaluate the effect of progressivity of taxes on growth and welfare. They found that welfare is 

unambiguously higher in a flat rate system when comparisons are made across balanced 

growth equilibrium. Surprisingly a less progressive tax system, which is rarely perceived as 

an egalitarian measure, gives rise to an increase in growth, a decrease in inequalities, and a 

greater mobility for the poor in the long run, especially in light of contradicting claims in the 

literature regarding the connection between growth and inequality. 

 

In regards with these papers, it seems that the potential adverse efficiency effect of the use of 

progressivity or lump sum transfers due to endogenous learning can be a serious barrier to the 

implementation of environmental policies. Typically if instruments besides green taxes (labor 

taxes and lump sum transfers) are not sufficient to internalize the trade-off between efficiency 

and equity, it could raise again the issue of green taxes levied at the Pigouvian tax rate. How 

does endogenous learning matter for the equity and the efficiency of the environmental green 

tax reform? The optimal green tax will be still equal to the Pigouvian rate, in a context of 

endogenous productivity, or the distributive/ efficient impact should be remove?  

This paper aims at providing a way to answer these questions. To the best of our knowledge 

no paper tries to incorporate this feature in a model with environmental concern. We think 

this issue is relevant and may have several implications for a better understanding of the 

strong political opposition that environmental policies face now. Kempf and Rossignol [2010] 



5 
 

address the important issue of the long-term impact of income distribution on the 

environment. They claim that income inequality is harmful for the environment insofar as a it 

generates a conflict of interest: relatively poor people are more interested in fostering physical 

growth at the expense of a clean environment, whereas relatively rich people are more 

concerned with the quality of the environment and are more willing to spend for depollution 

purposes, even if this means a less productive economy in the long run. Allowing for 

endogenous education decisions could provide another explanation and push us to consider 

some other instruments to encourage environmental policies, as for instance education 

subsidies. 

 

In a Mirrlees partial equilibrium model based on Jacobs and de Mooij [2015], and Jacobs and 

Van der Ploeg [2010], we introduce endogenous productivities through investment in 

education.  Each household differs by ability and chooses whether to acquire an education and 

become a high-skilled worker or remain unskilled. Given these assumptions, our economy is 

characterized by an ability cutoff such as those with education cost parameter strictly 

above will invest in education and become skilled. It determines endogenously the proportion 

of skilled and unskilled workers in the economy that is directly impacted by the government 

policy instruments. We derive the optimal carbon tax in conjunction with the optimal 

redistributive income tax and lumps sum transfers. We found that discriminating lump sum 

tax transfers between high and low skilled workers is necessary to allow the government to 

reach the first best pollution tax (the Pigouvian one). Tax subsidies on education have the 

same advantage. Yet, this result holds only under the homothetic properties of the human 

capital production function. Otherwise, neither lump-sum transfers, nor education subsidies 

allow reaching the first best pollution tax.  

 

The first section describes the model. The second one derives the optimal carbon tax in 

conjunction with the optimal redistributive income tax and lumps sum transfers. The third 

section discuss about the implication of the human capital function.  

1 Model 

1.1 Household’s Behaviour 

In a partial equilibrium framework, we assume an economy populated by a continuum of 

measure one of households that differ by ability 𝑛, which is private information. The 

cumulative distribution function of ability is denoted by 𝐺(∙) with the support being the 
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interval [0;1]. The density function is denoted by  𝑔(∙) =  𝐺′(∙). All households have one unit 

of labor time during their life, but are born without skills and thus with low productivity. Each 

household can choose whether to acquire an education and become a high-skilled worker 

(indexed by 𝑖 = 𝐻), or instead remain unskilled (𝑖 = 𝐿, low-skilled worker). A household 

with ability 𝑛 that has gone to college produces (1 +  𝑝𝑛)𝑤 =  𝑤𝑛
𝐻 units of consumption per 

unit of labor, whereas a household without a college degree has labor productivity 𝑤𝐿 =  𝑤. 

Here 𝑝 >  0 (the college premium for the most able type) is a fixed positive parameters 

and  𝑤 stands for the wage rate per efficiency unit of skill
3
. The two labor types are assumed 

to be perfect substitutes in aggregate production. As a result,  𝑤 is constant. We also assume a 

positive pecuniary cost of going to college 𝑤𝑘 (where 𝑘 >  0 is a parameter), which is 

assumed to be tax deductible. Each individual derives utility from two types of commodities: 

the so-called polluting consumption commodity (𝑏), that harms the environment when 

consumed, and the clean consumption commodity (𝑐). We assume their prices (before taxes) 

are fixed and normalized to unity (the rates of transformation is assumed to be constant). In 

addition, individual derive disutility from supplying labor 𝑙𝑛
𝑖 . Assume further that the 

environmental externality enters linearly in the utility function, the utility function of an 

individual 𝑛, can be written as: 

𝑈𝑛
𝑖 ((𝑐𝑛

𝑖 , 𝑏𝑛
𝑖 ), 1 −  𝑙𝑛

𝑖 )  +   𝜑(𝐸) for  𝑖 = 𝐿; 𝐻 

Where 𝑈𝑛
𝑖  is assumed strictly quasi-concave, weakly separable between labor and 

consumption and identical across individuals (𝑈𝑛
𝑖 = 𝑈). So the marginal utility of income is 

decreasing.  𝜑(𝐸) denotes the utility of a better environmental quality. We assume that the 

government imposes a tax 𝑡𝑖 on the labor income of households of types and provides lump-

sum transfers to individuals 𝑇𝑖  4. Moreover the government fights pollution externalities by 

imposing a green tax 𝑞 on the consumption of the dirty good. Households spend all their 

revenue on consumption of clean and dirty goods. 

The individual budget constraint therefore reads as follows: 

For an individual that did not go to college (low skilled): 

(1 + 𝑞)𝑏𝐿 + 𝑐𝐿 = (1 − 𝑡𝐿)𝑤𝐿 + 𝑇𝐿 

                                                           
3
 We could also consider another situation where the labor supply of the high skilled is diminished by 

its time passed to study as in Jacobs and Bovendberg [2006].  Investment in human capital is denoted 

𝑒𝑛(𝑓𝑜𝑟 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) and the production function for human capital is homothetic and given by:  

ℎ𝑛
𝐻 = 𝑤(1 + 𝑝𝑛)𝜙(𝑒𝑛

𝐻)  = 𝑤(1 + 𝑛)(𝑒𝑛
𝐻)𝛽. Where   ℎ𝑛

𝐻 denotes human capital that features 

decreasing returns with respect to investments.  See the section 3 of the paper for a discussion.  
4
 (We assume that individualized lump-sum transfers and taxes are not feasible, as the government can 

observe neither individual earnings ability nor labor effort, just  the type of workers) 
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For an individual that has gone to college (high skilled): 

(1 + 𝑞)𝑏𝑛
𝐻 + 𝑐𝑛

𝐻 = (1 − 𝑡𝐻)(𝑤𝑛
𝐻𝑙𝑛

𝐻) − 𝑘𝑤 + 𝑇𝐻

= 𝑤((1 − 𝑡𝐻)(1 +  𝑝𝑛) 𝑙𝑛
𝐻 − 𝑘) + 𝑇𝐻 

As the environmental degradation acts as an externality, we assume households ignore the 

adverse effect of their demand for polluting goods on the quality of the environment. 

Consequently, optimal choices of labor and consumption are governed by the following first-

order conditions: 

𝑈𝑏
𝑖

𝑈𝑐
𝑖 = 1 + 𝑞;  

𝑈1−𝑙
𝑖

𝑈𝑐
𝑖 = (1 − 𝑡𝑖)𝑤𝑖   for  𝑖 = 𝐿; 𝐻 

The marginal benefit of consuming one marginal unit of dirty good in monetary term, has to 

be equals to its marginal cost. Labor supply is expressed as a function of the after tax wage 

rate. More ability raises high skilled labor supply by increasing before tax-wage. 

The indirect utility function is designated by  𝑉𝑛
𝑖(𝑇, 𝑡, 𝑞, 𝐸) = 𝑈𝑛((𝑐𝑛

𝑖∗, 𝑏𝑛
𝑖∗),1 − 𝑙𝑛

𝑖∗) + 𝜑(𝐸) 

where stars denote the optimized values of each commodity and labor supply. 

1.2 The cutoff determination 

Given our assumptions, the previous solution for the household problem is characterized by 

an ability cutoff level denoted by 𝑛𝐶 , that equalizes the indirect utility function of a low 

skilled and a high skilled. 

𝑉𝑛𝑐
𝐻(𝑇𝐻, 𝑡𝐻 , 𝑞, 𝐸, 𝑛𝑐)  = 𝑉𝐿(𝑇𝐿 , 𝑡𝐿 , 𝑞, 𝐸)  

The cutoff is defined such as those with education cost parameter strictly above 𝑛𝐶  will invest 

in education and become skilled, while everyone else remains unskilled. It thus determines 

endogenously the proportion of skilled (1 − 𝐺(𝑛𝐶) ) and unskilled workers (𝐺(𝑛𝐶) ) in the 

economy. Because we made the assumption of a strongly separable utility function between 

the environmental quality and consumption and leisure, the cut-off 𝑛𝐶  only depends on the 

government policy instruments (𝑛𝐶  (𝑡𝐻; 𝑡𝐿;  𝑞;  𝑇𝐻; 𝑇𝐿). Differentiating the previous equation 

in  𝑛𝐶 , and using the theorem of the implicit function gives us the variation of the cut-off due 

to the variation of each government instrument:  

𝑑𝑛𝐶

𝑑𝑥
= (

𝜕(𝑉𝐿(𝑇𝐿,𝑡𝐿,𝑞,𝐸))−𝜕𝑉𝑛𝑐
𝐻 (𝑇𝐻,𝑡𝐻,𝑞,𝐸,𝑛𝑐)

𝜕𝑥
) (

𝜕𝑉𝑛𝑐
𝐻 (𝑇,𝑡,𝑞,𝐸,𝑛𝑐)

𝜕𝑛𝐶
)

−1

with 𝑥 =  𝑡𝐻; 𝑡𝐿;  𝑞;  𝑇𝐻; 𝑇𝐿 

 

Using the Roy-lemma (see Appendix) we finally find:    
𝑑𝑛𝐶

𝑑𝑇𝐿 = (𝜆𝐿) (
𝜕𝑉𝑛𝑐

𝐻 (𝑇,𝑡,𝑞,𝐸,𝑛𝑐)

𝜕𝑛𝐶
)

−1

> 0;  

𝑑𝑛𝐶

𝑑𝑇𝐻 = (−𝜆𝑛𝐶
𝐻 ) (

𝜕𝑉𝑛𝑐
𝐻 (𝑇,𝑡,𝑞,𝐸,𝑛𝑐)

𝜕𝑛𝐶
)

−1

< 0;  
𝑑𝑛𝐶

𝑑𝑡𝐿 = (−
𝑑𝑛𝐶

𝑑𝑇𝐿) 𝑙𝐿𝑤𝐿 < 0;  
𝑑𝑛𝐶

𝑑𝑡𝐻 =
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((−
𝑑𝑛𝐶

𝑑𝑇𝐻
) (𝑙𝑛𝐶

𝐻 𝑤𝑛𝐶
𝐻 )) > 0; 

𝑑𝑛𝐶

𝑑𝑞
= − ((

𝑑𝑛𝐶

𝑑𝑇𝐿
) 𝑏𝐿 + (

𝑑𝑛𝐶

𝑑𝑇𝐻
) 𝑏𝑛𝐶

𝐻 )
<
>

 0 depending on the 

distributives properties of the pollution tax.  

  

Where  𝜆𝑛
𝑖  stands for the private marginal utility of income of type 𝑖 =  𝐿; 𝐻 with ability 𝑛 

(the Lagrange multiplier associated with the budget constraint of household). The sign of the 

derivatives of 𝑛𝐶  with respect to the government policy instruments is easy to interpret. A 

marginal increase of the low-skilled lump-sum transfer will benefit to low-skilled households 

without changing (all things equal) the welfare of high skilled workers. The opportunity cost 

of investing in education becomes lower: low skilled households have less incentive to go to 

school. Thus, the proportion of low skilled workers in the economy will increase meaning an 

increase of 𝑛𝐶  . The same reasoning can be applied for 𝑥 =  𝑡𝐻; 𝑡𝐿;  𝑇𝐻.  Note that the sign of 

the derivatives of the cutoff (𝑛𝐶) with respect to the pollution tax (𝑞) is ambiguous and 

depends on the sign of  𝜆𝑛𝐶
𝐻 (1 + 𝑞)𝑏𝑛𝐶

𝐻 − 𝜆𝐿(1 + 𝑞)𝑏𝐿. If the utility from the polluting 

consumption good is higher for the indifferent household (𝑡𝑦𝑝𝑒 𝑜𝑓 𝑛𝐶) than for low skilled 

households, increasing the dirty tax will increase the cutoff ability level and then lower the 

number of high skilled households inside the economy. It thus depends on the distributive 

properties of the polluting good (Giffen goods for example). The next section will consider 

some the non homothetic utility function for this purpose (See proposition 5 further).  

 

1.3 Environmental quality: 

The environmental quality E is modeled as a pure public good. 

𝐸 = 𝐸0 − α (∫ 𝑏𝐿
nC

0

dG(n) + ∫ bn
H

1

nC

dG(n)) 

𝐸0 denotes the initial stock of environmental quality. Environmental quality is a linear 

function of aggregate consumption of dirty goods. The latter assumption ensures increasing 

marginal social damage from pollution. Alternatively, one can also interpret equation (5) as 

the production technology of environmental quality (Jacobs and de Mooij [2015]). 

 

 

1.4 Government: 

The government maximizes a Samuelson-Bergson social welfare function, which is a concave 

sum of individuals: 
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∫ ψ(𝑈𝐿)
nC

0

dG(n) + ∫ ψ(Un
H)

1

nC

dG(n) 

We assume that the government uses its taxes revenue for financing some exogenous 

government spending  �̅� and to provide lumps sum transfers. Individualized lump-sum taxes 

are not feasible, as the government can observe neither individual earnings ability nor labor 

effort, just the type of worker (low skilled/high skilled). The government budget constraint 

can be written as follow: 

 

�̅�   + 𝐺(𝑛𝐶)𝑇𝐿 + (1 − 𝐺(𝑛𝐶))𝑇𝐻

= ∫ (𝑡𝐿𝑤𝐿𝑙𝐿)
nC

0

dG(n) + ∫ 𝑡𝐻(wn
Hln

H)
1

nC

dG(n)

+ q [∫ 𝑏𝐿
nC

0

dG(n) + ∫ bn
H

1

nC

dG(n)] 

2 Optimal linear taxation 

 

The Lagrangian for maximizing social welfare is given by: 

 

             𝑀𝑎𝑥                             𝐿 =
{𝑡𝐻; 𝑡𝐿; 𝑞; 𝑇𝐻; 𝑇𝐿} ∫ [ψ(𝑉𝐿) + 𝜂(𝑡𝐿𝑤𝐿𝑙𝐿) + (𝜂q − μα)𝑏𝐿 − 𝜂𝑇𝐿]

nC

0

dG(n)

+ ∫ [ψ(Vn
H) + 𝜂𝑡𝐻(wn

Hln
H) + (𝜂q − μα)bn

H − 𝜂𝑇𝐻]
1

nC

dG(n)   

−𝜂[�̅� ] − 𝜇(𝐸 − 𝐸0) 

 

Where 𝜂 and 𝜇 stand respectively for the marginal social value of public resources (the 

Lagrange multiplier of the governmental budget constraint) and the marginal social cost 

(measured in social welfare units) of providing a better environmental quality 𝐸. 

Equation (a.1) to (a.6) in the appendix (A.I) give the first-order conditions of this problem.  

2.1 Social marginal value of income and Marginal cost of public funds 

In line with Jacobs and de Mooij [2015] and following Diamond [1975], we define the net 

marginal social value of income of low skilled workers of type 𝑛 <  𝑛𝐶, including the income 

effect on the tax base as: 
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𝜆∗𝐿 = ψ′(𝑉𝐿)𝜆𝐿 + 𝜂 (𝑡𝐿𝑤𝐿
𝜕𝑙𝐿

𝜕𝑇𝐿
) + (𝜂q − μα)

𝜕𝑏𝐿

𝜕𝑇𝐿
 

We use the same decomposition of 𝜆∗𝐿 than in de Mooij and Jacobs [2015]. First, if a low-

skilled individual receives a marginal unit of income, his private welfare rises by   𝜆∗𝐿 , and 

social welfare increases by ψ′(𝑉𝐿)𝜆𝐿. Second, assuming leisure as a normal good, the low-

skilled labor supplies increase if they receive a marginal unit of income (
𝜕𝑙𝐿

𝜕𝑇𝐿
> 0). In the case 

where low-skilled labor income is taxed,  this increases the government tax revenues and then 

the social welfare by 𝜂 (𝑡𝐿𝑤𝐿 𝜕𝑙𝐿

𝜕𝑇𝐿
) . Third, assuming the dirty good as a normal good, the low-

skilled worker will consume more dirty goods with a marginal unit of income in addition. If 

dirty commodities are taxed, this will again increase the tax revenues of the government by 

(𝜂q)
𝜕𝑏𝐿

𝜕𝑇𝐿
 . Yet the impact on the social welfare will be ambiguous due to its negative impacts 

on environmental degradation (– μα)
𝜕𝑏𝐿

𝜕𝑇𝐿 .   

 

Similarly, the social marginal value of transferring a marginal unit of income to a high skilled 

workers (𝑛 > 𝑛𝑐) is given by: 

𝜆𝑛
∗𝐻 = ψ′(Vn

H)𝜆n
H + 𝜂 (𝑡𝐻wn

H
𝜕ln

H

𝜕𝑇𝐻
) + (𝜂q − μα)

𝜕bn
H

𝜕𝑇𝐻
 

Yet, government lump-sum transfers have also an impact on the ratio of skilled and unskilled 

workers in the economy.  Typically, for workers of ability 𝑛𝐶  there is a trade-off between 

paying education cost and being paid more or remaining low skilled. For them, both high and 

low skilled lump-sum transfers matters for this decision: a high (low) skilled worker of ability 

𝑛𝐶  could be influence to disinvest (invest) in education and switch from high skilled status for 

a low skilled status if government increase (decrease) low skilled lump-sum transfers more 

than high-skilled one.  In this case, the social marginal value of transferring a marginal unit of 

income to a worker of ability (𝑛𝑐) is given by: 

 

𝜆𝑛𝐶
∗ = − [(ψ(V𝑛𝐶

H ) − ψ(𝑉𝐿)) + 𝜂(𝑡𝐻𝑙𝑛𝐶
𝐻 𝑤𝑛𝐶

𝐻 − 𝑡𝐿𝑙𝐿𝑤𝐿) + 𝜂 (q −  
𝜇

𝜂
α) (𝑏𝑛𝐶

𝐻 − 𝑏𝐿) +

𝜂(𝑇𝐻 − 𝑇𝐿)] ∗ [
𝜕(nC)

𝜕𝑇𝐿
+

𝜕(nC)

𝜕𝑇𝐻
]y 

= −𝜂[𝑇𝑅] [
𝜕(nC)

𝜕𝑇𝐿
+

𝜕(nC)

𝜕𝑇𝐻
] = −(𝜆𝐿 − 𝜆𝑛𝐶

𝐻 ) [𝜂[𝑇𝑅] (
𝜕𝑉𝑛𝑐

𝐻(𝑇, 𝑡, 𝑞, 𝐸, 𝑛𝑐)

𝜕𝑛𝐶
)

−1

] 
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Where  𝜂𝑇𝑅 = 𝜂 [(𝑡𝐻𝑙𝑛𝐶
𝐻 𝑤𝑛𝐶

𝐻 − 𝑡𝐿𝑙𝐿𝑤𝐿) − (𝑇𝐻 − 𝑇𝐿) + (q −  
𝜇

𝜂
α) (𝑏𝑛𝐶

𝐻 − 𝑏𝐿)] denotes the 

marginal government tax revenue gains associated to an additional high skilled worker in the 

economy (i-e to one less low skilled worker). Thus the social welfare increase by  

−𝜂[𝑇𝑅](𝜆𝐿 − 𝜆𝑛𝐶
𝐻 ) (

𝜕𝑉𝑛𝑐
𝐻 (𝑇,𝑡,𝑞,𝐸,𝑛𝑐)

𝜕𝑛𝐶
)

−1

. The sign is ambiguous and depends on the difference 

of the private marginal utility of income  [𝜆𝐿 − 𝜆𝑛𝐶
𝐻 ] between low and high skilled. 

 

 The average social marginal value of one private unit of private income is then: 

𝜆∗̅ = ∫ (𝜆∗𝐿)
nC

0
dG(n) + ∫ (𝜆𝑛

∗𝐻)
1

nC
dG(n) + (𝜆𝑛𝐶

∗ )
𝑑𝐺(𝑛𝐶)

𝑑𝑛𝐶
     i-e 

𝜆∗̅ = ∫ (𝜆∗𝐿)
nC

0

dG(n) + ∫ (𝜆𝑛
∗𝐻)

1

nC

dG(n) +  (𝜆𝑛𝐶
𝐻 − 𝜆𝐿) [𝜂[𝑇𝑅]𝑔(nC) (

𝜕𝑉𝑛𝑐
𝐻

𝜕𝑛𝐶
)

−1

] 

 

 

The marginal cost of public funds (MCF) is defined as the ratio between marginal social value 

of one unit of public income (𝜂) and the average of the marginal social value of one unit of 

private income 𝜆∗̅. 

𝑀𝐶𝐹 =
(𝜂)

𝜆∗̅
 

2.2 The Feldstein distributional characteristics 

 

Definition 1: The Feldstein (1972) distributional characteristic of labor income as the 

normalized covariance between the welfare weight the government attaches to income of a 

particular ability 𝑛 and gross labor income:   

 

ɛ𝑙 =
𝑐𝑜𝑣[𝜆n

∗i, wn
i ln

i ]

𝜆∗̅̅ ̅̅ ∗  wl̅̅ ̅
 

= 1

−  

∫ 𝜆∗𝐿𝑤𝐿𝑙𝐿nC

0
dG(n) + ∫ 𝜆n

∗Hwn
Hln

H1

nC
dG(n) + (𝜆𝑛𝐶

𝐻 w𝑛𝐶
H l𝑛𝐶

H − 𝜆𝐿𝑤𝐿𝑙𝐿) [𝜂[𝑇𝑅]𝑔(nC) (
𝜕𝑉𝑛𝑐

𝐻

𝜕𝑛𝐶
)

−1

]  

𝜂 [∫ 𝑤𝐿𝑙𝐿nC

0
dG(n) + ∫ (wn

Hln
H)

1

nC
dG(n)]
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It corresponds to the normalized covariance of earnings of individual of type 𝑛, and the net 

social welfare weight of individual 𝑛.  ɛ𝑙 measures the marginal gain in social welfare (in 

monetary equivalents), expressed as a percentage of taxed labor income, of raising revenue 

via the tax on labor income. If TR was equal to zero, the covariance would have been positive 

because the covariance between labor earnings and welfare weights is negative: individuals 

with higher incomes feature lower welfare weights because of diminishing social marginal 

utility of income. This is caused by diminishing private marginal utility of income and the 

concavity of the social welfare function. But here, the distributional characteristic is here 

ambiguous because raising income tax impacts on the mass of low/high skilled households. 

The third term of the nominator can be interpret has the new skilling down term showing how 

a higher income tax rate t pushes up the cut-off level as we mention in section, narrows the 

high-income tax base and thus raises the costs of income taxation . A positive distributional 

characteristic ɛ𝑙   implies that taxing labor income yields distributional benefits. A zero 

distributional characteristic is obtained either if the government is not interested in 

redistribution and attaches the same welfare weight 𝜆n
∗i to all 𝑛, or if taxable income 𝑤𝑙

𝑖𝑙𝑛
𝑖  is 

the same for all n so that there is no inequality, or . The distributional characteristic reaches a 

maximum of one with the strongest possible distributional concerns, i.e., if the government 

has Rawlsian social preferences. 

 

 

Definition 2: The Feldstein (1972) distributional characteristic of dirty goods consumption is 

defined as:  

ɛ𝑏 =
𝑐𝑜𝑣[𝜆n

∗i, bn
i ]

𝜆∗̅̅ ̅̅ ∗  b̅

= 1

−  

∫ (𝜆∗𝐿)𝑏𝐿nC

0
dG(n) + ∫ (𝜆n

∗H)(bn
H)

1

nC
dG(n) + (𝜆𝑛𝐶

𝐻 b𝑛𝐶
H − 𝜆𝐿𝑏𝐿) [𝜂[𝑇𝑅]𝑔(nC) (

𝜕𝑉𝑛𝑐
𝐻

𝜕𝑛𝐶
)

−1

]

𝜂 [∫ 𝑏𝐿nC

0
dG(n) + ∫ (bn

H)
1

nC
dG(n)]

 

 

 

It corresponds to the normalized covariance of earnings of individual of type n, and the net 

social welfare weight of individual 𝑛. The sign of   ɛ𝑏 is generally ambiguous. If individuals 

with a high ability (low ability) consume relatively more from the dirty good, the 
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distributional characteristics is positive (negative).  As above, the third term of the nominator 

can be interpret has the new skilling down term showing how a higher pollution tax rate q 

pushes up the cut-off level , and  narrows the high skilled tax base and thus raises the welfare 

lost of pollution taxation.  

 

Definition 3: The distributional characteristic of environmental quality is:  

ɛ𝐸 = 1 −  

∫
UE

L

UC
L (𝜆∗𝐿)

nC

0
dG(n) + ∫

UnE
H

UnC
H (𝜆n

∗H)
1

nC
dG(n)

𝜂 [∫
UE

L

UC
L

nC

0
dG(n) + ∫

UnE
H

UnC
H

1

nC
dG(n)]

 

 

If mainly high-ability (low-ability) types benefit from a better environmental quality, then 

ɛ𝐸 > 0 (ɛ𝐸< 0). ɛ𝐸= 0 if environmental quality is distributionally neutral. In that case,  all 

individuals share the same willingness to pay for a better environment  
UnE

H

UnC
H =

UE

UC
L . Notice, that 

because of our separability assumption of environmental damage in the utility function, the 

cut-off does not depend on the quality of environment and the numerator of the previous 

equation does not contain any skilling down term.  

 

 

 

2.3 Optimal redistribution and corrective taxes: 

 

Proposition 1: The optimal pollution tax, the optimal Pigouvian tax, the optimal marginal 

income tax rate and the marginal cost of public funds are determined by:    

 𝑀𝐶𝐹 =
(𝜂)

𝜆∗̅̅ ̅ = 1 

 ɛ𝑙 =
𝑡

1−𝑡
(−𝜀𝑙,𝑡̅̅ ̅̅ ) +

(q−μ
α

𝜂
)

1+𝑞
(−𝛾𝜀𝑙,𝑞̅̅ ̅̅ ̅̅ ̅̅ ) 

 ɛ𝑏 =
(q−μ

α

𝜂
)

1+𝑞
(

−𝜀𝑏,𝑞̅̅ ̅̅ ̅̅ ̅̅

�̅�
) +

𝑡

1−𝑡
(−

𝜀𝑏,𝑡

�̅�

̅̅̅̅ ) 

 (1 − ɛ𝐸) [∫
UE

L

UC
L

nC

0
dG(n) + ∫

UnE
H

UnC
H

1

nC
dG(n)] =

𝜇

𝜂
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Where 𝛾𝑖(𝑛) =
(1+𝑞) bn

i

(1−𝑡𝑖) wn
i ln

i   the share parameter, and  �̅� =
∫ (𝛾𝐿)𝑤𝐿𝑙𝐿nC

0
dG(n)+∫ (𝛾n

H)(wn
Hln

H)
1

nC
dG(n)

𝑤𝑙̅̅̅̅
 .  

Where 𝜀𝑦𝑛,𝑡
𝑖 =

𝜕𝑦𝑛
𝑖

𝜕𝑥𝑖  
𝑥𝑖

𝑦𝑛
𝑖   for 𝑖 =  𝐿; 𝐻 and 𝑦𝑛

𝑖  =  𝑏𝑛
𝑖 ;  𝑙𝑛

𝑖 , 𝑎𝑛𝑑 𝑥𝑖 = 𝑡𝑖 , 𝑞,  the compensated 

elasticity of dirty consumption (or labor supply) with respect to the labor or the environmental 

tax rate. 

And 𝜀𝑦,𝑥̅̅ ̅̅ ̅ = [∫ 𝜀𝑦,𝑥
𝐿 𝑤𝐿𝑙𝐿nC

0
dG(n) + ∫ (𝜀𝑦,𝑥

𝐻 )(wn
Hln

H)
1

nC
dG(n)] ⌈[𝑤𝑙̅̅ ̅]⌉

−1
, the income-weighted 

average of the compensated elasticity of dirty consumption with respect to the tax rate 

𝑥 =  𝑞;  𝑡.  

 

The first equation (𝑀𝐶𝐹 =
(𝜂)

𝜆∗̅̅ ̅ = 1) tells us that the average social marginal benefit of a 

higher lump-sum transfer  𝜆∗̅, should equals to its costs 𝜂. Resources are equally valuable in 

public and private sector.  

 

The left-hand side of the equation 2, shows the marginal benefit of redistribution using the 

income tax rate. The right-hand side shows the marginal cost consisting of a first term: the 

Ramsey term (the optimal income tax rate is inversely proportional to the wage elasticity of 

labour supply in accordance with the Ramsey considerations), and a Corlett-Hague term 

depending on the difference between the pollution tax and the Pigouvian pollution tax and on 

the cross elasticity of demand for dirty goods with respect to the income tax rate (the second 

term).  

 

In the same line, the left-hand side of the equation 3, shows the marginal benefit of 

redistribution using the polluting tax rate. The right-hand side shows the marginal cost 

consisting of a Ramsey term (the first term), a Corlett-Hague term depending on the cross 

elasticity of the labor supply with respect to the pollution tax rate (the second term), and the 

new skilling down term showing how a higher polluting  tax rate q pushes up the cut-off level 

(the third term).  

 

The optimal tax structure of income and environmental taxes can be solved as functions of the 

elasticities and distributional terms. It gives the following corollary:  

 

Corollary: The optimal tax structure of the income tax and the pollution one are given by:  
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𝑡

1−𝑡
=

ɛ𝑙+(𝜀𝑏,𝑡̅̅ ̅̅ ̅)(
�̅�ɛ𝑏

−𝛾ɛ𝑏,𝑞̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

−𝜀𝑙,𝑡̅̅ ̅̅ ̅̅ ̅−(𝜀𝑏,𝑡̅̅ ̅̅ ̅)(
𝜀𝑙,𝑡̅̅ ̅̅ ̅

−𝛾ɛ𝑏,𝑞̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

 

 

 
(q−μ

α

𝜂
)

1+𝑞
=

�̅�ɛ𝑏+(𝜀𝑙,𝑞̅̅ ̅̅ ̅)(
ɛ𝑙

−𝛾ɛ𝑙,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅
)

−𝛾𝜀𝑏,𝑞̅̅ ̅̅ ̅̅ ̅̅ ̅−(𝜀𝑙,𝑞̅̅ ̅̅ ̅)(
𝛾𝜀𝑏,𝑡̅̅ ̅̅ ̅̅ ̅̅

−ɛ𝑙,𝑡̅̅ ̅̅ ̅̅ ̅
)
 

 

Proof (solve equations system in the proposition 1 for  
𝑡

1−𝑡
  and  

(q−μ
α

𝜂
)

1+𝑞
)  

 

2.4 First best and Second best: 

 

Proposition 3: In the absence of distributional concerns, the first-best policy rules for the 

environment can be obtained. The marginal income tax rate is set to zero (𝑡 =  0). The 

optimal environmental tax 𝑞 satisfies the first-best Pigouvian tax rate (𝑞 = 𝜇
𝛼

𝜂
), and sustains 

a first-best level of environmental quality      (1 − ɛ𝐸) [∫
UE

L

UC
L

nC

0
dG(n) + ∫

UnE
H

UnC
H

1

nC
dG(n)] =

𝜇

𝜂
 

 

This proposition demonstrates most clearly that positive marginal tax rates on labor income 

are introduced only to redistribute income. 

Special cases can be derived where the optimal environmental tax in the second-best equals 

the first-best expression for the Pigouvian tax. 

 

Proposition 4: Conditions for first-best rules in the second-best: If the utility function is given 

by 𝑈𝑛
𝑖 =𝑈(𝑣(𝑐𝑛

𝑖 , 𝑏𝑛
𝑖 ), 1 − 𝑙𝑛

𝑖 ) +  𝜑(𝐸)  where 𝑣(𝑐𝑛
𝑖 , 𝑏𝑛

𝑖 ) is of the Gorman Polar form and 

identical for all individuals, if government allows for education subsidies then  the optimal 

income marginal rate is given by  
ɛ𝑙

(−𝜀𝑙,𝑡̅̅ ̅̅ )
=

𝑡

1−𝑡
=

𝑡𝑖

1−𝑡𝑖,  the optimal pollution tax equals the 

first-best Pigouvian tax (𝑞 = 𝜇
𝛼

𝜂
), and environmental quality follows the first-best Samuelson 

rule (1 − ɛ𝐸) [∫
𝑈𝐸

𝐿

𝑈𝐶
𝐿

𝑛𝐶

0
𝑑𝐺(𝑛) + ∫

𝑈𝑛𝐸
𝐻

𝑈𝑛𝐶
𝐻

1

𝑛𝐶
𝑑𝐺(𝑛)] =

𝜇

𝜂
 . These results are also true for an Utility 

function of type  HARA.  
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As in Jacobs and van der Ploeg [2010], the optimal environmental tax still amounts the 

Pigouvian tax rate i-e marginal climate damages even though preferences are non-homothetic 

(the poor spend a greater proportion of their income on dirty goods) and productivity is 

endogenous. Pushing the optimal carbon tax below the Pigouvian tax for income-

distributional or for efficiency reasons is thus not optimal. The regressive nature of the dirt tax 

does not require an extra effort of the linear income tax to compensate for the adverse effects 

on inequality. Yet, its potential detrimental impact on education level needs to be internalized. 

The demonstration of the proposition is in appendix and shows that this results does not hold 

anymore if government cannot discriminate lump sum transfers between low and high skilled. 

Clearly, education costs generate distortions that have to be internalized by another 

instrument: here lumps-sum transfers or education costs subsidies as it is shown in the 

previous proposition. Differentiating the labor income tax rate in this case will not work, as 

the education cost is independent of labor income.  

 

 

3  Extension and Discussion: Endogenous education investment: 

 

As previously noticed in a footnote, we could also consider another situation where the labor 

supply of the high skilled is diminished by its time passed to study as in Jacobs and 

Bovendberg [2006].  Investment in human capital is denoted 𝑒𝑛 and the production function 

for human capital is homothetic and given by:  ℎ𝑛
𝐻 = 𝑤(1 + 𝑝𝑛)𝜙(𝑒𝑛

𝐻)  = 𝑤(1 + 𝑛)(𝑒𝑛
𝐻)𝛽. 

Where   ℎ𝑛
𝐻 denotes human capital that features decreasing returns with respect to 

investments. The Gross labor income: 𝑧𝑛
𝐻 would be the product of the number of efficiency 

units of human capital  ℎ𝑛
𝐻 and hours worked 𝑙𝑛

𝐻  , i-e  𝑧𝑛
𝐻 = 𝑙𝑛

𝐻ℎ𝑛
𝐻 = 𝑙𝑛𝑛(𝑒𝑛

𝐻)𝛽. In the same 

time, education cost (that is subsidies at a rate 𝑠𝐻)  depends also of ability.  

Thus the budget constraint of an high skilled household would be: 

(𝑙𝑛
𝐻𝑛(𝑒𝑛

𝐻)𝛽. (1 − 𝑡𝐻) + 𝑇𝐻 − (1 − 𝑠𝐻)𝑘𝑤(𝑒𝑛
𝐻) = (1 + 𝑞)𝑏𝑛

𝐻 + 𝑐𝑛
𝐻 

 

Taking the policy instruments of the government as given, individuals maximize utility by 

choosing 𝑐𝑛
𝐻, 𝑏𝑛

𝐻 , 𝑙𝑛
𝐻, 𝑒𝑛

𝐻   , subject to the household budget constraint. 

First orders conditions for  𝑒𝑛
𝐻 and the production function of human capital 𝑙𝑛

𝐻 imply that 

gross labor income 𝑧𝑛 is proportional to education investment. With linear policy instruments, 

the proportionality factor does not depend on ability n, because the shares of 𝑒𝑛
𝐻 in human 
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capital investment, are the same for all high skilled agents (homothetic function of human 

capital production). 

 

 

Proposition 5: If the function of human capital production is homothetic such as that gross 

labor income 𝑧𝑛 is proportional to education investment and the proportion is independent on 

ability, then proposition 4 and 5 still hold under this representation. Otherwise, neither lump-

sum transfers, nor education subsidies allow to reach the first best pollution tax.     

 

3  Empirical illustration (to be done) 
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Appendix

Household Behaviours

Roy's lemma:

∂V Hn
∂q = −λHn bHn ; ∂V

L

∂q = −λLbL;
∂V Hn
∂t = −λHn

(
lHn w

H
n

)
; ∂V

L

∂t = −λLwLlL;
∂V Hn
∂T = λHn ;

∂V L

∂T = λL;
∂V L

∂E = −U
L
E

ULC
λL; ∂VH∂E = −U

H
E

UHC
λHn

Slutzki equations:(
∂Ci
∂pj

=
(
∂C∗

i

∂pj

)
U

+
∂Vi
∂pi
∂Vi
∂T

∂Ci
∂T

)
(
∂bHn
∂q =

∂bHn ∗
∂q − b

H
n
∂bHn
∂T

)
;
(
∂bHn
∂t =

∂bHn ∗
∂t − w

H
n l

H
n
∂bHn
∂T

)
;
(
∂lHn
∂q =

∂lHn ∗
∂q − b

H
n
∂lHn
∂T

)
;
(
∂lHn
∂t =

∂bHn ∗
∂t − w

H
n l

H
n
∂lHn
∂T

)
(
∂bL

∂q = ∂bL∗
∂q − b

L ∂bL

∂T

)
;
(
∂bL

∂t = ∂bL∗
∂t − w

LlL ∂b
L

∂T

)
;
(
∂lL

∂q = ∂lL∗
∂q − b

L ∂lL

∂T

)
;
(
∂lL

∂t = ∂lL∗
∂y − w

LlL ∂l
L

∂T

)

Compensated Elasticities:

A. I Firts-order-conditions of the government program

Tools for the F.O.C

Soit : J =
´ nc(t,q)
o

f(t, n)dG(n) ;dJdt =?

We can express J(t) as fonction of two variables x and t (where x = t) as follow :

(
J(t) = I(t, x) =

´ nc(t,q)
o

f(x, n)dG(n) =
´ nc(t,q)
o

f(x, n)g(n)dn
)

(
∂It(x,t)
∂x

)
t

=
´ nc(t,q)
o

∂f(x,n)
∂x dG(n) and

(
∂It(x,t)
∂t

)
x

= f(x, nc) ∗ g(nc) ∗ ∂nc(t,q)∂t

Finally we get:

dI =
(
∂It(x,t)
∂x

)
t
dx+

(
∂It(x,t)
∂t

)
x
dt = dx

´ nc(t,q)
o

∂f(x,n)
∂x dG(n) +

(
f(x, nc) ∗ g(nc) ∗ ∂nc(t,q)∂t

)
dt

If x and t are the same variable:

dI (t, x) = dJ(t) = J ′(t)dt =
[´ nc(t,q)
o

∂f(t,n)
∂t dG(n) + f(t, nc) ∗ g(nc) ∗ ∂nc(t,q)∂t

]
dt

Then we get: J ′(t) =
[´ nc(t,q)
o

∂f(t,n)
∂t dG(n) + f(t, nc) ∗ g(nc) ∗ ∂nc(t,q)∂t

]
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Similary for H ′(t)=
´ 1
nc(t,q)

f(t, n)dG(n) we get:

H ′=
´ 1
nc(t,q)

∂f(t,n)
∂t dG(n)− f(t, nc) ∗ g(nc) ∗ ∂nc(t,q)∂t

Then we �nd:

∂L
∂TL

= 0 ⇐⇒
´ nc
0

[
Ψ′(V L)λL + ηtwL ∂lL

∂TL
+ (qη − αµ) ∂bL

∂TL

]
dG(n)+

+η
(

[TR] ∂G(nc)
∂TL

−G(nc)
)

= 0
(A.1)

∂L
∂TH

= 0 ⇐⇒
´ 1
nc

[
Ψ′(V Hn )λHn + ηtwHn

∂lHn
∂TH

+ (qη − αµ)
∂bHn
∂TH

]
dG(n)

+η
(

[TR] ∂G(nc)
∂TH

+ (1−G(nc))
)

= 0
(A.2)

∂L
∂tL

= 0 ⇐⇒
´ nc
0

[(
−Ψ′(V L)λL + η

)
wLlL + ηtwL ∂l

L

∂tL
+ (qη − αµ) ∂b

L

∂tL

]
dG(n)+ (A.3)

+η [TR] ∂G(nc)
∂tL

= 0

∂L
∂tH

= 0 ⇐⇒
´ nc
0

[((
−Ψ′(V Hn )λHn + η

) (
wHn l

H
n

)
+ ηtwHn

∂lHn
∂tH

+ (qη − αµ)
∂bHn
∂tH

)]
dG(n)

+η [TR] ∂G(nc)
∂tH

= 0
(A.4)

∂L
∂q = 0 ⇐⇒

´ nc
0

[(
−Ψ′(V L)λL + η

)
bL + ηtwL ∂l

L

∂q + (qη − αµ) ∂b
L

∂q

]
dG(n)+´ nc

0

[((
−Ψ′(V Hn )λHn + η

) (
bHn
)

+ ηtwHn
∂lHn
∂q + (qη − αµ)

∂bHn
∂q

)]
dG(n) +η [TR] ∂G(nc)

∂q = 0
(A.5)

∂L
∂E = 0 ⇐⇒

´ nc
0

[(
−Ψ′(V L)(ULE )/(ULC )

)]
dG(n)+

´ nc
0

[(
−Ψ′(V Hn )(ULE )/(ULC )

)]
dG(n)− µ) = 0

(A.6)

A.II Proof of proposition 1

By replacing λ∗L, λ∗Hn , andλ∗nC in the �rst-order conditions of the lump-sum transfers (equation a.1 and a. 2). We

found η = λ∗ => MCF=η/λ∗ =1.

With The FOC for ti = t,

∂L
∂t = 0 ⇐⇒

´ nc
0

[(
−Ψ′(V L)λL + η

)
wLlL + ηtwL ∂l

L

∂t + (qη − αµ) ∂b
L

∂t

]
dG(n)+´ nc

0

[((
−Ψ′(V Hn )λHn + η

) (
wHn l

H
n

)
+ ηtwHn

∂lHn
∂t + (qη − αµ)

∂bHn
∂t

)]
dG(n) +η [TR] ∂G(nc)

∂t = 0

Using the Roy's lemma, the Sluzky equations for lL

∂t and ∂bL

∂t and substituting the marginal social value in the

previous equation (λL∗and λH∗n )

∂L
∂t = 0 ⇐⇒

´ nc
0

[(
−
[(

Ψ′(V L)λL + ηtwL ∂l
L

∂T + (qη − αµ) ∂b
L

∂T

)]
+ η
)
wLlL + ηtwL

(
∂lL∗

∂t

)
+ (qη − αµ)

(
∂bL∗

∂t

)]
dG(n)

+
´ 1
nc

[(
−
(

Ψ′(V Hn )λHn + ηtwHn
∂lHn
∂T + (qη − αµ)

∂bHn
∂T

)
+ η
) (
wHn l

H
n

)
+ ηtwHn

(
∂lH∗
n

∂t

)]
dG(n)

+
´ 1
nc

[
(qη − αµ)

(
∂bH∗
n

∂t

)]
dG(n) + η [TR] ∂G(nc)

∂t = 0

∂L
∂t = 0 ⇐⇒

´ nc
0

[(
−λL∗ + η

)
wLlL + η t

1−t

(
∂lL∗

∂t
1−t
lL

)
wLlL + (qη−αµ)

1+q

(
∂bL∗

∂t
1−t
bL∗

)(
1+q
wLlL

bL

1−t

)
(wLlL)

]
dG(n)

+
´ 1
nc

[(
−λH∗n + η

) (
wHn l

H
n

)
+ η t

1−t

(
∂lH∗
n

∂t
1−t
lHn

)(
lHn (1+pn)

lHn (1+pn)−k

) (
wHn l

H
n − kw

)]
dG(n)

+
´ 1
nc

[
(qη − αµ)

(
1+q

(wHn l
H
n )

bHn
1−t

)
(wHn l

H
n )
(
∂bH∗
n

∂t

)]
dG(n) + η [TR] ∂G(nc)

∂t = 0
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Using the de�nition of compensated elasticities and γin =
(

1+q
1−t

)
bi(n)
winl

i
n
, we get:

∂L
∂t = 0 ⇐⇒

´ nc
0

[(
−λL∗ + η

)
wLlL + η

[
t

1−tξ
L
l,t +

(q−αµη )
1+q

(
ξLb,tγ

L
)]
wLlL

]
dG(n)

+
´ 1
nc

[(
−λH∗n + η

) (
wHn l

H
n

)
+ η

[
t

1−tξ
H
l,t +

(q−αµη )
1+q

(
ξHb,t ∗ γHn

)]
wHn l

H
n

]
dG(n)

+η [TR] ∂G(nc)
∂t = 0

∂L
∂t = 0 ⇐⇒

´ nc
0

[
t

1−tξ
L
l,t +

(q−αµη )
1+q

(
ξLb,t ∗ γL

)]
wLlLdG(n)

+
´ 1
nc

[
t

1−tξ
H
l,t +

(q−αµη )
1+q

(
ξHb,t ∗ γHn

)]
wHn l

H
n dG(n)

= −
(´ nc

0
wLlLdG(n) +

´ 1
nc

(
wHn l

H
n

)
dG(n)

)
+
´ nc
0

λL∗
n wLlLdG(n)+

´ 1
nc
λH∗
n (wHn l

H
n )dG(n)−η[TR]

∂G(nc)
∂t

η

∂L
∂t = 0 ⇐⇒ t

1−t

[
−
´ nc
0
ξLl,tw

LlLdG(n) +
´ 1
nc

ΓHn ξ
H
l,t

(
wHn l

H
n

)
dG(n)

]
∗
[´ nc

0
wLlLdG(n) +

´ 1
nc

(
wHn l

H
n

)
dG(n)

]−1
+

(q−αµη )
1+q

[
−
´ nc
0
γLξLb,tw

LlLdG(n) +
´ 1
nc
γHn ξ

H
b,tw

H
n l

H
n dG(n)

]
∗
[´ nc

0
wLlLdG(n) +

´ 1
nc

(
wHn l

H
n

)
dG(n)

]−1
= 1−

´ nc
0

λL∗
n wLlLdG(n)+

´ 1
nc
λH∗
n (wHn l

H
n )dG(n)−ηg(nc)[TR](λLwLlL−λHnc (w

H
nc
lHnc ))

η[
´ nc
0

wLlLdG(n)+
´ 1
nc

(wHn l
H
n )dG(n)]

= ξl

∂L
∂t = 0 ⇐⇒ ξl = t

1−t
(
−ξl,t

)
+

(q−αµη )
1+q

(
−γξb,t

)
Similary, we obtain ξq,ξE .

A.III proof of proposition 4

q∗ = αµ
η

=⇒ ∂L
∂t

= 0 , ∂L
∂q

= 0?

Remember the First -order condition for the dirty good:

∂L
∂q = 0 ⇐⇒

´ nc
0

[(
η − λL∗

)
bL + η

(
t

1−tw
LlL

[
1−t
1+q

]
ξLl,q +

(
q−αµη
1+q

)
ξLb,qb

L
)]
dG(n)

+
´ 1
nc

[(
η − λH∗n

)
bHn + η

(
t

1−tw
H
n l

H
n

[
1−t
1+q

]
ξHl,q +

(q−αµη )
1+q

(
ξHb,q

)
bHn

)]
dG(n)

+η [TR] ∂G(nc)
∂q = 0

So if q = αµη , taking into account the variation of the cuto� we obtain:

∂L
∂q = 0 ⇐⇒

´ nc
0

[(
η − λL∗

)
bL + η

(
t

1−tw
LlL

[
1−t
1+q

]
ξLl,q

)]
dG(n)

+
´ nc
0

[(
η − λH∗n

)
bHn + η

(
t

1−tw
H
n l

H
n

[
1−t
1+q

]
ξHl,q

)]
dG(n

η [TR] g (nc)
(
λHn b

H
nc − λ

LbL
) (

∂V H

∂nc

)−1
= 0

With a Gorman polar form, we get: (1 + q)bin = α(q) + φ(q)Rin
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∂L
∂q = 0 ⇐⇒

´ nc
0

[(
η − λL∗

)(α(q)+φ(q)(wLlL(1−t)+TL)
1+q

)
+ η

(
t

1−tw
LlL

[
1−t
1+q

]
ξLl,q

)]
dG(n)

+
´ 1
nc

[(
η − λH∗n

)(α(q)+φ(q)((wHn lHn )(1−t)+TH−kw)
1+q

)
+ η

(
t

1−tw
H
n l

H
n

[
1−t
1+q

]
ξHl,q

)]
dG(n)

+η [TR] g (nc)

(
λHn

(
α(q)+φ(q)((wHnc l

H
nc)(1−t)+T

H−kw)
1+q

)
− λL

(
α(q)+φ(q)(wLlL(1−t)+T)

1+q

))(
∂V H

∂nc

)−1
∂L
∂q = 0 ⇐⇒

[
(1−t)φ(q)

1+q

] ´ nc
0

[(
η − λL∗

)
wLlL + η

(
t

1−t
ξLl,q
φ(q)w

LlL
)]

dG(n)

+
[
(1−t)φ(q)

1+q

] ´ 1
nc

[(
η − λH∗n

) (
wHn l

H
n

)
+ η

(
t

1−t
ξHl,q
φ(q)w

H
n l

H
n

)]
dG(n)

+
[
(1−t)φ(q)

1+q

]
η [TR] g (nc)

(
λHn
(
wHnc l

H
nc

)
− λL

(
wLlL

)) (
∂V H

∂nc

)−1
+

(
α(q)+φ(q)(TH−kw)

1+q

)[´ 1
nc

[(
η − λH∗n

)]
dG(n) + η [TR] g (nc)

(
λHnC

) (
∂V H

∂nc

)−1]
+

(
α(q)+φ(q)(TL)

1+q

)[´ nc
0

[(
η − λL∗

)]
dG(n)− η [TR] g (nc)

(
λL
) (

∂V H

∂nc

)−1]
= 0

With the �rst -order-condition for the lump-sum, the two last term of the previous equation equals to zero. Mo-

erover the compensated elasticities for a Gorman polar form is gives us:
ξil,q
φ(q) = ξil,t thus we have:

∂L
∂q = 0 ⇐⇒

[
(1−t)φ(q)

1+q

]
∗
´ nc
0

[(
η − λL∗

)
wLlL + η

(
t

1−tξ
H
l,tw

LlL
)]
dG(n)

+
[
(1−t)φ(q)

1+q

] ´ nc
0

[(
η − λH∗n

) (
wHn l

H
n − kw

)
+ η t

1−tξ
H
l,tw

H
n l

H
n

]
dG(n)

+η [TR] g (nc)
(
λHn
(
wHnc l

H
nc − kw

)
− λL

(
wLlL

)) (
∂V H

∂nc

)−1
=
[
(1−t)φ(q)

1+q

]
∂L
∂t |(q∗=αµ

η )

At the optimum we have, q∗ = αµ
η . The compensated elasticities of labor supply (of dirty consumption) with

respect to the labor and the environmental tax rate are de�ned as: ξiy,t =
∂yin
∂t

1−t
yin

and ξiy,q =
∂yin
∂q

1+q
yin

with i = L,H

and y = b, l
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