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Abstract
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1 Introduction

For most sports organizations, the sale of broadcasting and media rights is now the biggest

source of revenue. A study of how much money various professional sports leagues generates

shows that the NFL made $13 billion in revenue last season.1 The Major League Baseball,

came second with $9.5 billion and the Premier League third with $5.3 billion.2 Sharing these

sizable revenues among participating teams is, by no means, a straightforward problem. Rules

vary across the world. For instance, FC Barcelona and Real Madrid CF, the two Spanish giant

football clubs, used to earn each more than 20% of the revenues generated by the Spanish

football league. In England, however, the top two teams combined only make 13% of the

revenues generated by the Premier league.3

The aim of this paper is to provide a formal model to study the problem of sharing the

revenues from broadcasting sport events. Our model could be applied to di↵erent forms of

competitions, but our running example will be a round robin tournament in which each com-

petitor (usually, a team) plays in turn against every other (home and away). Thus, the input

of our model will be a (square) matrix in which each entry will be indicating the revenues

associated to broadcasting the game between the two corresponding competitors. For ease

of exposition, we shall assume an equal pay per view fee to each game. Thus, broadcasting

revenues can be simplified to audiences.

We shall take several approaches to analyze this problem. In each case, we shall derive

focal rules to share the revenues from broadcasting sport events. Two salient rules will be

what we shall call the Shapley rule and the OLS rule, each conveying somewhat polar forms of

estimating the fan e↵ect.

More precisely, we first take a direct approach, partly based on a regression analysis, which

will lead us towards what we name the OLS rule. This rule assigns to each player the revenue

from the di↵erential audience with respect to the average audience per game that the rest of

1The study “Which Professional Sports Leagues Make the Most Money” is published by Howmuch.net, a

cost information website. It can be accessed at https://howmuch.net/articles/sports-leagues-by-revenue.
2Four of the top five leagues in revenue are in North America. However, 14 of the 20 biggest earners are

football leagues that are mostly based in Europe.
3This might explain why in the last 12 editions of the Spanish football league only 1 time the champion was

di↵erent from FC Barcelona and Real Madrid CF, whereas the Premier League witnessed 4 di↵erent champions

in its last 4 editions.

2



the players yield (in the remaining games they play).

Second, a strategic approach in which we deal with a natural cooperative game associated

to the problem. This approach will lead us towards the Shapley rule. This rule allocates the

revenues from each game equally among the two playing teams.

Third, we take an axiomatic approach formalizing axioms that reflect ethical or operational

principles with normative appeal. It turns out the two rules mentioned above are characterized

by three properties. Two properties are common in both characterizations. Namely, equal

treatment of equals, which states that if two competitors have the same audiences, then they

should receive the same amount, and additivity, which states that revenues should be additive

on the audience matrix.4 The third property in each characterization result comes from a pair

of somewhat polar properties modeling the e↵ect of null or nullifying players, respectively.

More precisely, the null player property says that if nobody watches a single game of a given

team (i.e., the team has a null audience), then such a team gets no revenue. On the other hand,

the nullifying player property says that if a team nullifies the audience of all the games it plays

(for instance, due to some kind of boycott), then the allocation of such a team should decrease

exactly by the total audience of such a team.

Fourth, we take an indirect approach in which we focus on an associated problem of adju-

dicating conflicting claims.

The rest of the paper is organized as follows. In Section 2, we present the model. In Section

3, we perform a regression analysis that will lead to a first (direct) justification of one of the

two rules mentioned above. In Section 4, we take the game-theoretical approach associating a

suitable cooperative game to each problem. In Section 5, we deal with the axiomatic analysis.

In Section 6, we associate our problems to claims problems and appeal to focal rules in the

sizable literature dealing with these later problems to solve the former. In Section 7, we provide

an empirical application. Finally, we conclude in Section 8.

4An interpretation is that the aggregation of the revenue sharing in two seasons (involving the same com-

petitors) is equivalent to the revenue sharing in the hypothetical combined season aggregating the audiences of

the corresponding games (involving the same teams) in both seasons.
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2 The model

Let N represent the set of all potential competitors (teams) and let N be the family of all finite

(non-empty) subsets of N. An element N 2 N describes a finite set of teams. Its cardinality is

denoted by n. In what follows, we assume n � 3. Given N 2 N , let ⇧
N

denote the set of all

orders in N . Given ⇡ 2 ⇧
N

, let Pre (i, ⇡) denote the set of elements of N which come before i

in the order given by ⇡, i.e.

Pre (i, ⇡) = {j 2 N | ⇡ (j) < ⇡ (i)} .

For notational simplicity, given ⇡ 2 ⇧
N

, we denote the agent i 2 N with ⇡ (i) = s as ⇡
s

.

For each pair of teams i, j 2 N , we denote by a
ij

the broadcasting audience (number of

viewers) for the game played by i and j at i’s stadium. We use the notational convention that

a
ii

= 0, for each i 2 N . Let A = (a
ij

)(i,j)2N⇥N

denote the resulting matrix with the broadcasting

audiences generated in the whole tournament involving the teams within N .5 Let A
n⇥n

denote

the set of all possible such matrices (with zero entries in the diagonal), and A =
S

n

A
n⇥n

. For

each A 2 A, let ||A|| =
P

i,j2N a
ij

.

A (broadcasting sports) problem is a duplet (N,A), where N 2 N is the set of teams and

A = (a
ij

)(i,j)2N⇥N

2 A
n⇥n

is the audience matrix. The family of all the problems described

as such is denoted by P . For each (N,A) 2 P , and each i 2 N , let ↵
i

(A) denote the total

audience achieved by team i, i.e., ↵
i

(A) =
P

j2N(aij + a
ji

). When no confusion arises we write

↵
i

instead of ↵
i

(A) .

Consider the following example, which will be used often in the paper.6

Example 1 Let (N,A) be such that N = {1, 2, 3} and

A =

0

B

B

B

@

0 1200 1030

1200 0 230

1030 230 0

1

C

C

C

A

Then ||A|| = 4920 and ↵(A) = (↵1(A),↵2(A),↵3(A)) = (4460, 2860, 2520) .

5We assume a standard round robin tournament, i.e., a league in which each team plays each other team

twice: once home, another away.
6The rationale underlying this example is the existence of three teams: a power house with 1000 fans, an

average team with 200 fans and a small one with just 30 fans.
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A (sharing) rule is a mapping that associates with each problem an allocation indicating

the amount each team gets from the total revenue generated by broadcasting games. Without

loss of generality, we normalize the revenue generated by each game to 1 (to be interpreted as

the “pay per view” fee). Thus, formally, R : P ! Rn is such that, for each (N,A) 2 P ,

X

i2N

R
i

(N,A) = ||A||.

Two rules will be central to our analysis. First, the rule that allocates the revenues from each

game equally among the two playing teams. Equivalently, given our normalization convention,

each team is awarded half of its total audience.7 Formally,

Shapley, S: For each (N,A) 2 P , and each i 2 N ,

S
i

(N,A) =
↵
i

2
.

Second, a somewhat less intuitive rule, resulting from a specific linear combination of the

Shapley rule just described, and the rule splitting the total revenue equally among all teams.8

Formally,

OLS, O: For each (N,A) 2 P , and each i 2 N ,

O
i

(N,A) =
(n� 1)↵

i

� ||A||
n� 2

. (1)

As ||A|| = ↵
i

+
P

j,k2N\{i}
(a

jk

+ a
kj

) , we can express the rule in the following alternative way:

O
i

(N,A) = ↵
i

�

P

j,k2N\{i}
(a

jk

+ a
kj

)

n� 2
. (2)

Notice that
P

j,k2N\{i}
(a

jk

+ a
kj

) is the total audience in the (n� 1) (n� 2) games played by

the rest of the teams. Thus,

P

j,k2N\{i}
(ajk+akj)

n�2 is the average audience per game in the games

played by each of the rest of the teams. Thus, the rule is assigning to each team the di↵erential

audience with respect to the average audience per game that the rest of the teams yield (in the

remaining games they play).

7The reader is referred to Section 4 for a plausible reason to name this rule after Shapley (1953). A similar

rule was introduced by Ginsburgh and Zang (2003), and characterized by Bergantiños and Moreno-Ternero

(2015), for the so-called museum pass problem.
8The reader is referred to the next section for a convincing reason to name this rule as OLS.
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In Example 1 we have that

Rule/Team 1 2 3

Equal Awards 1640 1640 1640

Shapley 2230 1430 1260

OLS 4000 800 120

We can safely argue that, in general, one might become a viewer of a game involving teams

i and j for several reasons:

1. Because of being a fan of this sport per se (in which case one would be eager to watch all

the games, independently of the teams playing).

2. Because of being a fan of team i (in which case one would be eager to watch all the games

involving team i).

3. Because of being a fan of team j (in which case one would be eager to watch all the games

involving team j).

4. Because of some other reason, di↵erent than the ones stated above.

Let a, a
i

, a
j

and u
ij

denote, respectively, the number of viewers in each of the above categories.

Then, it seems reasonable to allocate a
ij

+ a
ji

(the overall audience of the games involving

teams i and j) among team i and team j as follows:

⇣a

2
+ a

i

+
u
ij

2
,
a

2
+ a

j

+
u
ij

2

⌘

In words, the audience generated by each team is assigned to such a team. The rest of the

audience is divided equally among both teams.9

As mentioned in footnote 5, Example 1 was defined assuming that a1 = 1000, a2 = 200,

a3 = 30 and the remaining parameters as 0. Thus, the allocation proposed by the above

principle would be (4000, 800, 120), which is precisely the OLS allocation depicted at the table

above.
9This is the same logic underlying the so-called concede-and-divide mechanism (e.g., Thomson, 2003), which

can be traced back to the Babylonian Talmud.
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Now, in practice, we do not know the parameters a, a
i

, a
j

and u
ij

. One might interpret the

Shapley rule as a naive attempt to deal with this issue, assuming a
i

= a
j

. But, obviously, this

is a very strong assumption. It is more natural to assume that teams are heterogeneous when

it comes to their numbers of fans. Some teams have more fans than others and, consequently,

they drive larger audiences. This aspect seems to be indeed captured by the actual revenue

sharing process used in professional sports, where the amount assigned to each team depends

on some parameters that try to capture such heterogeneity. As mentioned in the introduction,

the way in which this idea is implemented varies across countries and sports.

A somewhat polar option to the attempt conveyed by the Shapley rule can also be consid-

ered. More precisely, it seems plausible to assume that the “worst” scenario for measuring the

fan e↵ect is what the Shapley rule conveys, as it could be interpreted as saying that no team has

fans. Similarly, the “best” scenario for measuring the fan e↵ect is what the previous example

showed, where it was assumed that all individuals are fans of some team. We shall develop this

scenario further with the help of the regression analysis elaborated in the next section. As we

shall see, it will drive us towards the OLS rule introduced above.

3 Regression Analysis

We take an econometric approach to our problem in this section. More precisely, we consider

the following linear regression model:

Y = b0 +
X

i2N

b
i

X
i

+ ",

where Y is the audience of a game, X
i

is the team dummy variable (i.e., X
i

= 1 if team i plays

the game and 0 otherwise) and " is the error term. Thus, with our notation,

a
ij

= b0 + b
i

X
i

+ b
j

X
j

+ "
ij

,

for each pair i, j 2 N, with i 6= j.

Let the estimation of the parameters be denoted by b̂0,
n

b̂
i

o

i2N
and {"̂

ij

}
i,j2N,i 6=j

, respec-

tively. We then assume the following:

(C1) b̂0 is divided equally among teams.

(C2) b̂
i

is assigned to team i.

(C3) "̂
ij

is divided equally between teams i and j.
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Applying those principles we can define a rule where, for each problem (N,A) 2 P and each

i 2 N, the audience assigned to agent i is10

(n� 1) bb0 + 2 (n� 1) bb
i

+
X

j2N\{i}

c"
ij

+c"
ji

2
.

We now estimate the parameters using the ordinary least squares (OLS) estimator. That

is,

⇣

bb
i

⌘

i2N
= Cov (X,X)�1 Cov (X, Y ) and (3)

bb0 = Y �
n

X

i=1

bb
i

X
i

where

Cov (X,X) = (Cov (X
i

, X
j

))
i,j2N and

Cov (X, Y ) = (Cov (X
i

, Y ))
i2N

In general, given two variables U, V taking the values {(u
k

, v
k

)}m
k=1we have that

Cov (U, V ) =

m

P

k=1
u
k

v
k

m
�

0

B

B

@

m

P

k=1
u
k

m

1

C

C

A

0

B

B

@

m

P

k=1
v
k

m

1

C

C

A

.

We now apply the previous formula to some cases.

1. i, j 2 N with i 6= j.

Cov (X
i

, X
j

) =
2

n (n� 1)
�
✓

2 (n� 1)

n (n� 1)

◆✓

2 (n� 1)

n (n� 1)

◆

=
2

n (n� 1)
� 4

n2
=

2 (2� n)

n2 (n� 1)
.

2. i 2 N.

Cov (X
i

, X
i

) =
2 (n� 1)

n (n� 1)
�
✓

2 (n� 1)

n (n� 1)

◆✓

2 (n� 1)

n (n� 1)

◆

=
2

n
� 4

n2
=

2 (n� 2)

n2
.

10Note that each team plays 2 (n� 1) games.
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3. i 2 N.

Cov (X
i

, Y ) =
↵
i

n (n� 1)
�
✓

2 (n� 1)

n (n� 1)

◆✓

||A||
n (n� 1)

◆

=
↵
i

n (n� 1)
� 2 ||A||

n2 (n� 1)

=
n↵

i

� 2 ||A||
n2 (n� 1)

=

✓

↵
i

� 2 ||A||
n

◆

1

n (n� 1)

Now,

Cov (X, Y ) =
1

n2 (n� 1)

0

B

B

B

@

n↵1 � 2 ||A||

...

n↵
n

� 2 ||A||

1

C

C

C

A

(4)

Cov (X,X) =
2 (2� n)

n2 (n� 1)

0

B

B

B

B

B

B

@

1� n 1 ... 1

1 1� n ... 1

1 ... ... 1

1 1 1 1� n

1

C

C

C

C

C

C

A

(5)

Unfortunately, Cov (X,X) has a zero determinant (and, thus, cannot be inverted). Thus,

we have a problem of colinearity in the regression model. It is easy to see that, for each

k = 1, ..., n, we have that

X
k

= 2
A

�
X

i2N\{k}

X
i

where 2
A

is the vector with all coordinates equal to 2.

We now remove one of the independent variables in order to avoid the colinearity issue. Thus,

given k 2 N we consider the regression where the set of independent variables is {X
i

}
i2N\{k} .

In this new regression the expressions for Cov (X, Y ) and Cov (X,X) are the same as in

formulas (4) and (5). But now Cov (X,X) is a matrix of (n� 1)⇥ (n� 1) dimension (instead

of n⇥ n as in (5)). It is not di�cult to show that

Cov (X,X)�1 =
n (n� 1)

2 (n� 2)

0

B

B

B

B

B

B

@

2 1 ... 1

1 2 ... 1

1 ... ... 1

1 1 1 2

1

C

C

C

C

C

C

A

(6)
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Because of (3), we have that, for each j 2 N\ {k},

bb
j

=
n (n� 1)

2 (n� 2)

1

n2 (n� 1)

2

42 (n↵
j

� 2 ||A||) +
X

i2N\{j,k}

(n↵
i

� 2 ||A||)

3

5

=
1

2 (n� 2)n

2

42n↵
j

� 4 ||A||+ n
X

i2N\{j,k}

↵
i

� 2 (n� 2) ||A||

3

5

=
1

2 (n� 2)n

2

42n↵
j

+ n
X

i2N\{j,k}

↵
i

� 2n ||A||

3

5 .

As
P

i2N
↵
i

= 2 ||A||, we have that

bb
j

=
1

2 (n� 2)n
[2n↵

j

+ n (2 ||A||� (↵
j

+ ↵
k

))� 2n ||A||]

=
1

2 (n� 2)n
[2n↵

j

+ 2n ||A||� n (↵
j

+ ↵
k

)� 2n ||A||]

=
1

2 (n� 2)n
[n (↵

j

� ↵
k

)] =
↵
j

� ↵
k

2 (n� 2)
.

Furthermore,

bb0 = Y �
X

j2N\{k}

bb
j

X
j

=
||A||

n (n� 1)
�

X

j2N\{k}

↵
j

� ↵
k

2 (n� 2)

2 (n� 1)

n (n� 1)

=
||A||

n (n� 1)
�

X

j2N\{k}

↵
j

� ↵
k

n (n� 2)

=
||A||

n (n� 1)
� 1

n (n� 2)

2

4

X

j2N\{k}

↵
j

� (n� 1)↵
k

3

5

=
||A||

n (n� 1)
� 1

n (n� 2)
[2 ||A||� ↵

k

� (n� 1)↵
k

]

=
||A||

n (n� 1)
� 2 ||A||

n (n� 2)
+

↵
k

n� 2
= � ||A||

(n� 1) (n� 2)
+

↵
k

n� 2
.

Once we have estimated the parameters we have that

a
ij

= bb0 + bbi + bbj +c"ij if i, j 2 N\ {k}

a
ik

= bb0 + bbi +c"ik if i 2 N\ {k}

a
ki

= bb0 + bbi +c"ki if i 2 N\ {k} .
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Given i, j 2 N\ {k},

c"
ij

= a
ij

� bb0 � bbi � bbj =

= a
ij

+
||A||

(n� 1) (n� 2)
� ↵

k

n� 2
� ↵

i

� ↵
k

2 (n� 2)
� ↵

j

� ↵
k

2 (n� 2)

= a
ij

+
||A||

(n� 1) (n� 2)
� ↵

i

+ ↵
j

2 (n� 2)
.

Given i 2 N\ {k},

c"
ik

= a
ik

� bb0 � bbi =

= a
ik

+
||A||

(n� 1) (n� 2)
� ↵

k

n� 2
� ↵

i

� ↵
k

2 (n� 2)

= a
ik

+
||A||

(n� 1) (n� 2)
� ↵

i

+ ↵
k

2 (n� 2)
.

Analogously, we have that

c"
ki

= a
ki

+
||A||

(n� 1) (n� 2)
� ↵

i

+ ↵
k

2 (n� 2)
.

Notice that, for each pair i, j 2 N ,

c"
ij

= a
ij

+
||A||

(n� 1) (n� 2)
� ↵

i

+ ↵
j

2 (n� 2)
. (7)

We now compute a rule by applying principles (C1), (C2) and (C3) in this regression. We

consider two cases.

• Team i 2 N\ {k}.

The audience assigned to team i is made of three components:

By (C1), team i receives

(n� 1) bb0 = � ||A||
n� 2

+
(n� 1)↵

k

n� 2
.

By (C2), team i receives

2 (n� 1) bb
i

=
(n� 1) (↵

i

� ↵
k

)

n� 2
.

By (C3), team i receives

X

j2N\{i}

c"
ij

+c"
ji

2
=

1

2

X

j2N\{i}

(a
ij

+ a
ji

) +
||A||

(n� 2)
�

(n� 1)↵
i

+
P

j2N\{i} ↵j

2 (n� 2)

=
↵
i

2
+

||A||
n� 2

� (n� 1)↵
i

+ 2 ||A||� ↵
i

2 (n� 2)

=
↵
i

2
+

||A||
(n� 2)

� ↵
i

2
� ||A||

n� 2
= 0.
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Thus, team i receives

� ||A||
n� 2

+
(n� 1)↵

k

n� 2
+

(n� 1) (↵
i

� ↵
k

)

n� 2
=

(n� 1)↵
i

� ||A||
n� 2

• Team k.

The audience assigned to team k is also made of three components:

By (C1), team k receives

(n� 1) bb0 = � ||A||
n� 2

+
(n� 1)↵

k

n� 2
.

By (C2), team k receives nothing.

Analogously to the previous case, by (C3), team k receives nothing.

Thus, team k receives
(n� 1)↵

k

� ||A||
n� 2

.

Notice that the audience assigned to any team i is independent of the variable X
k

removed

from the initial list of independent variables. Thus, the regression analysis drives precisely

towards the OLS rule introduced above. This seems to be a strong argument to endorse the

OLS rule.

4 The (cooperative) game-theoretical approach

We now take a game-theoretical approach and model our problem as a cooperative game. A

cooperative game with transferable utility, briefly a TU game, is a pair (N, v), where N

denotes a set of agents and v : 2N ! R satisfies that v (?) = 0. We say that (N, v) is convex

if, for each pair S, T ⇢ N and i 2 N such that S ⇢ T and i /2 T,

v (T [ {i})� v (T ) � v (S [ {i})� v (S) .

Given S ⇢ N, the unanimity game associated with S is defined as the TU game (N, u
S

)

where u
S

(T ) = 1 if S ⇢ T , and u
S

(T ) = 0 otherwise. Given a TU game (N, v), there exists a

unique family of numbers {�
S

}
S⇢N

such that v =
P

S⇢N

�
S

u
S

.
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We present some well-known solutions for TU games. First, the core, defined as the set of

feasible payo↵ vectors, for which no coalition can improve upon. Formally,

C (N, v) =

(

x 2 RN such that
X

i2N

x
i

= v (N) and
X

i2S

x
i

� v (S) , for each S ⇢ N

)

.

The Shapley value (Shapley, 1953) is the linear function that, for each unanimity game,

splits each unit equally among the members of the coalition (and only among them). Formally,

for each i 2 N , Sh
i

(N, v) =
P

S⇢N

�
S

Sh
i

(N, u
S

) , where

Sh
i

(N, u
S

) =

8

<

:

1
|S| if i 2 S

0 otherwise.

Alternatively, we can define it as follows:

Sh
i

(N, v) =
1

n!

X

⇡2⇧N

[v (Pre (i, ⇡) [ {i})� v (Pre (i, ⇡))] ,

for each i 2 N .

We associate with each (broadcasting sports) problem (N,A) 2 P a TU game (N, v
A

)

where, for each S ⇢ N, v
A

(S) denotes the total audience of the games played by the teams in

S. Namely,

v
A

(S) =
X

i,j2S
i 6=j

a
ij

=
X

i,j2S
i<j

(a
ij

+ a
ji

) .

Notice that, for each problem (N,A) 2 P and each i 2 N, v
A

({i}) = 0.

In Example 1 we have that

S {1, 2} {1, 3} {2, 3} {1, 2, 3}

v
A

(S) 2400 2060 460 4920

and

Sh (N, v
A

) = (2230, 1430, 1260) = S (N,A) .

The next result summarizes our main findings regarding the game v
A

. First, we show that

the game is convex. Consequently, the core is easily characterized. Namely, for each pair of

teams, we divide the audience of the games played by both teams in any way among them.

Each team receives the aggregation of these amounts, across the rest of the teams.

13



Proposition 1 Let (N,A) 2 P and (N, v
A

) be its associated TU game. The following state-

ments hold:

(a) (N, v
A

) is convex.

(b) x = (x
i

)
i2N 2 C (N, v

A

) if and only if, for each i 2 N, there exist
�

xj

i

�

j2N\{i} satisfying

three conditions:

(i) xj

i

� 0, for each j 2 N\ {i};

(ii)
P

j2N\{i}
xj

i

= x
i

, for each i 2 N ;

(iii) xj

i

+ xi

j

= a
ij

+ a
ji

, for each pair i, j 2 N , with i < j.

Proof. Let (N,A) 2 P and (N, v
A

) be its associated TU game.

(a) Let S, T ⇢ N and i 2 N such that S ⇢ T and i /2 T . Then,

v
A

(T [ {i})� v
A

(T ) =
X

j,k2T[{i}

a
jk

�
X

j,k2T

a
jk

=
X

j2T

(a
ij

+ a
ji

) �
X

j2S

(a
ij

+ a
ji

)

=
X

j,k2S[{i}

a
jk

�
X

j,k2S

a
jk

= v
A

(S [ {i})� v
A

(S) .

(b) We first prove that if x = (x
i

)
i2N is such that for each i 2 N, there exists

�

xj

i

�

j2N\{i}

satisfying the three conditions, then x 2 C (N, v
A

).

By (ii),
X

i2N

x
i

=
X

i2N

X

j2N\{i}

xj

i

=
X

i,j2N
i<j

�

xj

i

+ xi

j

�

.

By (iii),
X

i,j2N
i<j

�

xj

i

+ xi

j

�

=
X

i,j2N
i<j

(a
ij

+ a
ji

) = v
A

(N) .

Analogously, for each S ⇢ N,

X

i2S

x
i

=
X

i2S

X

j2N\{i}

xj

i

�
X

i2S

X

j2S\{i}

xj

i

=
X

i,j2S
i<j

�

xj

i

+ xi

j

�

=
X

i,j2S
i<j

(a
ij

+ a
ji

) = v
A

(S) .

Then, x 2 C (N, v
A

).
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Conversely, let x = (x
i

)
i2N 2 C (N, v

A

). As (N, v
A

) is convex, the core is the convex hull of

the vector of marginal contributions. Thus, there exists (y
⇡

)
⇡2⇧N

with y
⇡

� 0 for each ⇡ 2 ⇧
N

and
P

⇡2⇧N

y
⇡

= 1 such that, for each i 2 N,

x
i

=
X

⇡2⇧N

y
⇡

[v
A

(Pre (i, ⇡) [ {i})� v
A

(Pre (i, ⇡))] .

Because of the definition of v
A

, we have that

x
i

=
X

⇡2⇧N

y
⇡

2

4

X

j2Pre(i,⇡)

(a
ij

+ a
ji

)

3

5 =
X

j2N\{i}

(a
ij

+ a
ji

)
X

⇡2⇧N ,j2Pre(i,⇡)

y
⇡

.

For each pair i, j 2 N , with i 6= j, we define

xj

i

= (a
ij

+ a
ji

)
X

⇡2⇧N ,j2Pre(i,⇡)

y
⇡

.

Thus, xj

i

� 0, for each j 2 N\ {i}, and for each i 2 N , i.e., (i) holds.

Furthermore,
P

j2N\{i}
xj

i

= x
i

, i.e., (ii) holds.

Let i, j 2 N with i 6= j. Then,

xj

i

+ xi

j

=

0

@(a
ij

+ a
ji

)
X

⇡2⇧N ,j2Pre(i,⇡)

y
⇡

1

A+

0

@(a
ij

+ a
ji

)
X

⇡2⇧N ,i2Pre(j,⇡)

y
⇡

1

A

= (a
ij

+ a
ji

)
X

⇡2⇧N

y
⇡

= a
ij

+ a
ji

,

i.e., (iii) holds.

Statement (b) of the above proposition states that, in order to satisfy the core constraints,

we should divide the revenue generated by the audience of a game between the two teams

playing the game. There is complete freedom within those bounds. For instance, assigning

all the revenue to one of the teams would be admissible. The Shapley rule states that the

revenue generated by the audience of a game be divided equally between both teams. Thus,

the allocations that the Shapley rule yields satisfy the core constraints. This is, however, not

the case with the OLS rule, which might allocate less than the total revenue generated by the

audience of a game to the two teams involved.11

11Take, for instance, the problem (N,A) 2 P, where N = {1, 2, 3, 4} and

A =

0

B

B

B

B

B

B

@

0 0 0 0

150 0 0 0

0 0 0 0

0 0 200 0

1

C

C

C

C

C

C

A
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The next result establishes a correspondence between the Shapley rule and the Shapley

value for TU-games described above, which justifies the name given to the rule.

Theorem 1 For each (N,A) 2 P, Sh (N, v
A

) = S (N,A).

Proof. Let (N,A) 2 P and (N, v
A

) be its associated TU game. For each pair i, j 2 N with

i 6= j we define the characteristic function vij
A

as follows. For each S ⇢ N ,

vij
A

(S) =

8

<

:

a
ij

+ a
ji

if {i, j} ⇢ S

0 otherwise.

Consider the resulting TU-game
�

N, vij
A

�

. It is straightforward to see that, for such a game,

agents i and j are symmetric, whereas the remaining agents in N\ {i, j} are null teams. Thus,

Sh
k

�

N, vij
A

�

=

8

<

:

aij+aji

2 if k 2 {i, j}

0 otherwise.

For each S ⇢ N,

v
A

(S) =
X

i,j2S
i<j

(a
ij

+ a
ji

) =
X

i,j2N
i<j

vij
A

(S) .

As the Shapley value is additive on v, we have that

Sh (N, v
A

) =
X

i,j2N
i<j

Sh
�

N, vij
A

�

.

Thus, for each k 2 N,

Sh
k

(N, v
A

) =
X

i,j2N
i<j

Sh
k

�

N, vij
A

�

=
X

j2N

Sh
k

⇣

N, vkj
A

⌘

=
X

j2N

a
kj

+ a
jk

2
=

↵
k

2
.

It is well known that when the cooperative game is convex the Shapley value belongs to

the core. Thus, it follows from Proposition 1(a) and Theorem 1 that the Shapley rule always

yields stable allocations, in the sense formalized by the core. Formally, S (N,A) 2 C (N, v
A

),

for each problem (N,A).12

Then ||A|| = 350, ↵ = (150, 150, 200, 200), O (N,A) = (50, 50, 125, 125) , and vA (1, 2) = 150.
12This had been implicitly mentioned above, right after the proof of Proposition 1.
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This is a strong argument to endorse the Shapley rule. Teams are corporations and, as

such, any subgroup of teams could potentially secede and form another (smaller) competition.

Thus, if the rule selects allocations within the core, it provides stable outcomes, in the sense of

dismissing incentives for team secessions. As shown above, in this case, the core is non-empty

and very large.13 Thus, it seems reasonable to select one allocation within the core.

5 The axiomatic approach

The previous two sections provided arguments to endorse, respectively, the two focal rules of

this work. First, the OLS rule was the outcome of a linear regression analysis of our problem.

Second, the Shapley rule was shown to coincide with the Shapley value of a natural convex

TU-game, thus guaranteeing stable outcomes (as formalized by the core of such a game). In

this section, we provide normative foundations for both rules. As we shall see, each rule

is characterized by a combination of three axioms (among which, two are common for both

results).

The first axiom we consider says that if two teams have the same audiences, then they

should receive the same amount.

Equal treatment of equals: For each (N,A) 2 P , and each pair i, j 2 N such that

a
ik

= a
jk

, and a
ki

= a
kj

, for each k 2 N \ {i, j},

R
i

(N,A) = R
j

(N,A).

The second axiom says that revenues should be additive on A. Formally,

Additivity: For each pair (N,A) and (N,A0) 2 P

R (N,A+ A0) = R (N,A) +R (N,A0) .

The third axiom says that if nobody watches a single game of a given team (i.e., the team

has a null audience), then such a team gets no revenue.

13As a matter of fact, the core is made of all the allocations induced by the rules satisfying non negativity

(i.e., no team gets a negative amount) and two axioms considered in the next section (namely, additivity and

null team).
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Null team: For each (N,A) 2 P , and each i 2 N , such that a
ij

= 0 = a
ji

, for each j 2 N ,

R
i

(N,A) = 0.

Alternatively, the next axiom says that if a team nullifies the audience of all the games it

plays (for instance, due to some kind of boycott), then the allocation of such a team should

decrease exactly by the total audience of such a team.14 Formally,

Nullifying team: For each (N,A), (N,A0) 2 P such that there exists k 2 N (the nullifying

team) satisfying a0
ij

= a
ij

when k /2 {i, j} and a0
ij

= 0 when k 2 {i, j} we have that

R
k

(N,A0) = R
k

(N,A)� ↵
k

(A).

The next result provides the characterizations of the two rules.

Theorem 2 The following statements hold:

(a) A rule satisfies equal treatment of equals, additivity and null team if and only if it is the

Shapley rule.

(b) A rule satisfies equal treatment of equals, additivity and nullifying team if and only if it

is the OLS rule.

Proof.

(a) It is obvious that the Shapley rule satisfies the three axioms. Conversely, let (N,A) 2 P .

For each pair i, j 2 N , with i 6= j, let Aij denote the matrix with the following entries:

aij
kl

=

8

<

:

a
ij

if (k, l) = (i, j)

0 otherwise.

Notice that aij
ji

= 0.

Let k 2 N. By additivity,

R
k

(N,A) =
X

i,j2N :i 6=j

R
k

�

N,Aij

�

.

By null team, for each pair i, j 2 N with i 6= j, and for each l 2 N\ {i, j}, we have

R
l

(N,Aij) = 0. Thus,

R
k

(N,A) =
X

l2N\{k}

⇥

R
k

�

N,Alk

�

+R
k

�

N,Akl

�⇤

.

14A similar axiom was introduced in cooperative transferable utility games by van den Brink (2007).
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By equal treatment of equals, R
k

�

N,Alk

�

= R
l

�

N,Alk

�

. As
�

�

�

�Alk

�

�

�

� = a
lk

we have that

R
k

�

N,Alk

�

= alk
2 . Similarly, R

k

�

N,Akl

�

= akl
2 . Thus,

R
k

(N,A) =
X

i2N\{k}

ha
lk

2
+

a
kl

2

i

=
↵
k

2
= S

k

(N,A) .

(b) It is obvious that the OLS rule satisfies equal treatment of equals and additivity. Let

(N,A), (N,A0) 2 P and k 2 N be as in the definition of nullifying team. By (2),

O
k

(N,A0) = ↵
k

(N,A0)�

P

j,k2N\{i}

�

a0
jk

+ a0
kj

�

n� 2

= �

P

j,k2N\{i}
(a

jk

+ a
kj

)

n� 2

= ↵
k

(N,A)�

P

j,k2N\{i}
(a

jk

+ a
kj

)

n� 2
� ↵

k

(N,A)

= O
k

(N,A)� ↵
k

(N,A)

Then, O satisfies nullifying team.

Conversely, let R be a rule satisfying the three axioms in the statement. Let (N,A) 2 P .

We define the problems Aij as in the proof of the previous item. As R satisfies additivity and

A =
P

i,j2N :i 6=j

Aij, it is enough to prove that R is uniquely determined in each problem (N,Aij) .

Let 0
N,N

be the matrix with all entries equal to 0. As R satisfies additivity, for each k 2 N

and each m 2 N, we have that

R
k

(N, 0
N,N

) = R
k

 

N,
m

X

l=1

0
N,N

!

=
m

X

l=1

R
k

(N, 0
N,N

) = mR
k

(N, 0
N,N

) .

Thus, R
k

(N, 0
N,N

) = 0.

As (N,Aij), (N, 0
N,N

) , and k = i are under the hypothesis of nullifying team,

0 = R
i

(N, 0
N,N

) = R
i

�

N,Aij

�

� a
ij

.

Thus, R
i

(N,Aij) = a
ij

. Analogously, we can prove that R
j

(N,Aij) = a
ij

.

By equal treatment of equals, for each k, l 2 N\ {i, j} we have thatR
k

(N,Aij) = R
l

(N,Aij) .

Let x denote such an amount. Thus,

a
ij

=
�

�

�

�Aij

�

�

�

� =
X

k2N

R
k

�

N,Aij

�

= a
ij

+ a
ij

+ (n� 2) x,

from where it follows that x = �aij

n�2 .

Hence, R is uniquely determined in (N,Aij) .
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Remark 1 The axioms of Theorem 2 are independent.

Let R1 be the rule in which, for each game (i, j) 2 N ⇥N the revenue goes to the team with

the lowest number of the two. Namely, for each problem (N,A) 2 P, and each i 2 N,

R1
i

(N,A) =
X

j2N :j>i

(a
ij

+ a
ji

).

R1 satisfies null team and additivity, but not equal treatment of equals.

The equal awards rule satisfies equal treatment of equals and additivity, but not null team.

Let R2 be the rule that divides the total revenue among all teams proportionally to their total

audiences. Namely, for each problem (N,A) 2 P, and i 2 N,

R2
i

(N,A) =
↵
i

(A)
P

j2N
↵
j

(A)
||A||.

R2 satisfies equal treatment of equals and null team, but not additivity.

The Shapley rule satisfies additivity and equal treatment of equals but fails nullifying team.

The rule imposing that only the team with the smallest index in N \ {i, j} gets a non-

null award from Aij (and extended to general problems by additivity) satisfies additivity and

nullifying team but fails equal treatment of equals.

The rule imposing the same solution as the OLS rule for each Aij, but not extended to

general problems by additivity, satisfies equal treatment of equals and nullifying team, but fails

additivity.

Theorem 2 not only provides a characterization of our two focal rules, but also a common

ground for them. More precisely, it states that both rules are characterized by the combination

of equal treatment of equals, additivity, and a third axiom. This third axiom (null player in

one case; nullifying player in the other case) formalizes the behavior of the rule with respect

to somewhat peculiar teams (those with no audience in one case; those killing audiences in the

other case). It turns out, nevertheless, that this only di↵erence, reflected in the mentioned pair

of axioms, is substantial as the axioms are incompatible. Namely, there is no rule satisfying both

the null team axiom and the nullifying team axiom. Consider the problem (N,A12) defined as

in the proof of Theorem 2 where N = {1, 2, 3} and a12 > 0. If R satisfies null team we have that

R3 (N,A12) = 0 and R
i

(N, 0
N,N

) = 0 for each i 2 N. Suppose that R also satisfies nullifying

team. Using arguments similar to the ones used in the proof of Theorem 2 we can deduce that

R1 (N,A12) = R2 (N,A12) = a12. Thus, R3 (N,A12) = �a12 which is a contradiction.
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6 The conflicting claims approach

O’Neill (1982) is credited for introducing one of the simplest (and yet useful) models to study

distributive justice. The so-called problem of adjudicating conflicting claims refers to a situation

in which an insu�cient amount of a perfectly divisible good (endowment) has to be allocated

among a group of agents who hold claims against it. This basic framework is flexible enough

to accommodate a variety of related situations that trace back to ancient sources such as

Aristotle’s essays and the Talmud.15 It turns out that, as we show in this section, our problems

of sharing the revenue from broadcasting sport events could also be seen as a specific instance

of the problem of adjudicating conflicting claims.

A problem of adjudicating conflicting claims (or, simply, a claims problem) is a triple con-

sisting of a population N 2 N , a claims profile c 2 Rn

+, and an endowment E 2 R+ such that
P

i2N c
i

� E. Let C ⌘
P

i2N c
i

. To avoid unnecessary complication, we assume C > 0. Let

DN be the domain of bankruptcy problems with population N and D ⌘
S

N2N DN .

Given a problem (N, c, E) 2 DN , an allocation is a vector x 2 Rn satisfying the following

two conditions: (i) for each i 2 N , 0  x
i

 c
i

and (ii)
P

i2N x
i

= E. We refer to (i) as

boundedness and (ii) as balance. A rule on D, R : D !
S

N2N Rn, associates with each problem

(N, c, E) 2 D an allocation R (N, c, E) for the problem.

The so-called constrained equal-awards rule, CEA, selects, for each (N, c, E) 2 D, the vector

(min{c
i

,�})
i2N , where � > 0 is chosen so that

P

i2N min{c
i

,�} = E. The so-called constrained

equal-losses rule, CEL, selects, for each (N, c, E) 2 D, the vector (max{0, c
i

� �})
i2N , where

� > 0 is chosen so that
P

i2N max{0, c
i

� �} = E. The so-called Talmud rule is a hybrid

between the above two. More precisely, for each (N, c, E) 2 D, it selects

T (N, c, E) =

8

<

:

CEA(N, 12c, E) if E  1
2C

1
2c+ CEL(N, 12c, E � 1

2C) if E � 1
2C

Finally, the so-called proportional rule, P , yields awards proportionally to claims, i.e., for each

(N, c, E) 2 D, P (N, c, E) = E

C

· c.

In a (broadcasting sports) problem (N,A), as formalized above, the issue is to allocate

the aggregate audience in the tournament (||A||) among the participating teams (N). If one

15The reader is referred to Thomson (2003, 2015, 2017) for excellent surveys of the sizable literature dealing

with this model.
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considers each team claims the overall audience of the games it was involved (↵
i

(A)), then we

obviously have a problem of adjudicating conflicting claims. More precisely, we associate with

each (broadcasting sports) problem (N,A) a claims problem
�

N, cA, EA

�

where cA
i

= ↵
i

(A),

for each i 2 N , and EA = ||A||. We sometimes write (N, c, E) instead of
�

N, cA, EA

�

, if no

confusion arises.

Notice that E = C

2 . Thus, P (N, c, E) = T (N, c, E) = c/2 for each problem. In words, the

Talmud rule and the proportional rule will always yield the same awards; namely half of its

claim for each team. In what follows, we shall then just refer to the proportional rule, instead

of the Talmud rule.

Now, by definition, S
i

(N,A) = ↵i
2 , for each i 2 N . Thus, P

�

N, cA, EA

�

= T
�

N, cA, EA

�

=

S (N,A), for each (N,A) 2 P .

In Example 1 we have that E = 4920 and

i 1 2 3

c
i

4460 2860 2520

P
i

(E, c) 2230 1430 1260

CEA
i

(E, c) 1640 1640 1640

CEL
i

(E, c) 2820 1220 880

T
i

(E, c) 2230 1430 1260

The next result summarizes the stability properties of the above rules. As stated therein,

only the proportional rule guarantees allocations within the core. This is due to the fact that,

as mentioned above, the proportional rule yields the same outcomes as the Shapley rule.

Proposition 2 The following statements hold:

(a) P
�

N, cA, EA

�

2 C (N, v
A

), for each (N,A) 2 P.

(b) CEA
�

N, cA, EA

�

/2 C (N, v
A

) for some (N,A) 2 P.

(c) CEL
�

N, cA, EA

�

/2 C (N, v
A

) for some (N,A) 2 P.

Proof. (a). As mentioned above, P
�

N, cA, EA

�

= S (N,A), for each (N,A) 2 P . By Theorem

1 (c), Sh (N, v
A

) = S (N,A), for each (N,A) 2 P . By Theorem 1 (a), (N, v
A

) is convex and,

therefore, Sh (N, v
A

) 2 C (N, v
A

). Altogether, we have P
�

N, cA, EA

�

2 C (N, v
A

), for each

(N,A) 2 P .
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(b) Let (N,A) 2 P be such that N = {1, 2, 3, 4} and

A =

0

B

B

B

B

B

B

@

0 3 0 0

3 0 0 0

0 0 0 1

0 0 1 0

1

C

C

C

C

C

C

A

Then, EA = 8, cA = (6, 6, 2, 2). Thus, CEA
�

N, cA, EA

�

= (2, 2, 2, 2). As

CEA1

�

N, cA, EA

�

+ CEA2

�

N, cA, EA

�

= 4 < 6 = a12 + a21,

it follows from Theorem 1 (b) that CEA
�

N, cA, EA

�

/2 C (N, v
A

).

(c) Let (N,A) 2 P be such that N = {1, 2, 3, 4} and

A =

0

B

B

B

B

B

B

@

0 9 0 0

9 0 0 0

0 0 0 1

0 0 1 0

1

C

C

C

C

C

C

A

Then, EA = 20, cA = (18, 18, 2, 2) and CEL
�

N, cA, EA

�

= (10, 10, 0, 0). As

CEL3

�

N, cA, EA

�

+ CEL4

�

N, cA, EA

�

= 0 < 2 = a34 + a43,

it follows from Theorem 1 (b) that CEL
�

N, cA, EA

�

/2 C (N, v
A

)

7 An empirical application

In this section, we present an empirical application of our model resorting to La Liga, the

Spanish Football League.16

La Liga is a standard round robin tournament involving 20 teams. Thus, each team plays

38 games, facing each time one of the other 19 teams (once home, another away). The available

data we have (retrieved from one of the major sport newspapers in Spain and La Liga’s website)

refers to the average audience of each team during the last completed season (2015-2016).17

From there, we can derive the necessary parameters of our model; namely, the total audience

16http://www.laliga.es/en
17It is important to note that, in general, all games were broadcasted nationally in di↵erent time windows

(normally, during the weekend) that did not overlap. Now, for each day (weekend) of competition, one game was

23



achieved by each team (↵
i

(A)), and the aggregate audience in the league (||A||).18 We also

have data on the actual sharing of the revenues obtained that season. They are all collected in

Table 1 below.

TEAMS Average Audience ↵
i

(A) Revenues %

RM 4139, 81 157312, 78 140 14, 467

BCN 2739, 97 104118, 86 140 14, 467

ATM 1387, 43 52722, 34 69, 08 7, 138

SVQ 651, 89 24771, 82 48, 52 5, 014

BET 619, 37 23536, 06 33, 94 3, 507

VAL 582, 95 22152, 1 53, 8 5, 559

CEL 580, 92 22074, 96 33, 03 3, 413

DPV 524, 63 19935, 94 31, 68 3, 274

ATH 486, 28 18478, 64 47, 88 4, 948

RVL 473, 97 18010, 86 32, 59 3, 368

RSC 454, 72 17279, 36 38, 56 3, 985

VIL 451, 07 17140, 66 41, 72 4, 311

LPA 439, 03 16683, 14 27, 65 2, 857

SPO 417, 73 15873, 74 29, 84 3, 083

MLG 414, 32 15744, 16 38, 95 4, 025

GRA 409, 77 15571, 26 30, 99 3, 202

EIB 394, 29 14983, 02 28, 18 2, 912

ESP 384, 45 14609, 1 35, 57 3, 676

LEV 384, 07 14594, 66 33, 81 3, 494

GET 287, 52 10925, 76 31, 96 3, 303

Table 1. Audiences and revenues for the Spanish Football League in 2005/2016.

Table 1 lists the 20 teams, their average audiences (in thousands), their global audiences (in

broadcasted in a non-subscription channel. We do not treat those latter games distinctively in our empirical

analysis. The data refers only to national broadcasting (within Spain). Although large audiences are also

obtained abroad, not all games are broadcasted abroad. In order to avoid making the empirical analysis biased

in favor of the teams that are more frequently broadcasted, we decided to dismiss those data from our analysis.
18Recall that ||A|| =

P

i2N ↵i(A)/2.

24



thousands) and the actual revenues they made (in millions of euros), as well as in percentage

terms. As we can see, two teams dominated the sharing collecting a combined 30% of the pie.

Table 2 lists the allocations proposed by our two rules (Shapley and OLS). The numbers

are normalized under the premise of our model; namely, each viewer pays a pay-per-view fee of

1 euro per game, and the overall amount is allocated. That is, ||A|| = 308259610 euros. This

is almost one third of the real revenues that the teams made combined. That is why we also

provide the percentage levels obtained by each team under both rules.

TEAMS S
i

(N,A) % O
i

(N,A) %

RM 78656, 39 25, 52 148926, 845 48, 31

BCN 52059, 43 16, 89 92777, 707 30, 10

ATM 26361, 17 8, 55 38525, 825 12, 50

SVQ 12385, 91 4, 02 9022, 498 2, 93

BET 11768, 03 3, 82 7718, 085 2, 50

VAL 11076, 05 3, 59 6257, 238 2, 03

CEL 11037, 48 3, 58 6175, 813 2, 00

DPV 9967, 97 3, 23 3917, 958 1, 27

ATH 9239, 32 3, 00 2379, 697 0, 77

RVL 9005, 43 2, 92 1885, 929 0, 61

RSC 8639, 68 2, 80 1113, 791 0, 36

VIL 8570, 33 2, 78 967, 385 0, 31

LPA 8341, 57 2, 71 484, 447 0, 16

SPO 7936, 87 2, 57 �369, 919 �0, 12

MLG 7872, 08 2, 55 �506, 698 �0, 16

GRA 7785, 63 2, 53 �689, 204 �0, 22

EIB 7491, 51 2, 43 �1310, 124 �0, 42

ESP 7304, 55 2, 37 �1704, 817 �0, 55

LEV 7297, 33 2, 37 �1720, 059 �0, 56

GET 5462, 88 1, 77 �5592, 787 �1, 81

Table 2. The Shapley and OLS outcomes for the Spanish Football League in 2005/2016.

Several conclusions can be derived from our analysis. Maybe the most obvious one is that
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eight teams would be awarded negative values under the OLS rule. That is, they should be

compensating the other teams (for an overall amount of almost 4% of the pie) because they

are not bringing enough audiences on their own to the tournament, and they are somewhat

benefitting from competing in this tournament.

As we can also see, and contrary to what some might argue, the actual revenue sharing seems

to be biased against the two powerhouses. In particular, Real Madrid, should be obtaining a

quarter of the pie with the Shapley rule and almost half of it with the OLS rule. Barcelona

would also go up (from 14.5% to almost 17% and 30%, respectively). Atletico de Madrid would

increase considerably too. All the other teams would decrease, with the exception of Celta de

Vigo and Real Betis Balompié (the greatest team on earth) who would increase if the Shapley

rule would be implemented (but not if the OLS rule would be implemented).

Finally, under the Shapley rule, the two powerhouses would be obtaining (combined) slightly

above 40% of the pie. Under the OLS rule, they would be obtaining a staggering 78.4%. The

latter distribution, which also exhibits the feature of making eight teams pay (rather than

receive), thus seems di�cult to be accepted in this case. Nevertheless, if the real outcome is

the result of a bargaining process among the participating teams, we cannot deny the fact that

the two powerhouses have a very strong bargaining power, which might largely influence the

final outcome.

8 Discussion

We have presented a stylized model to deal with the problem of sharing the revenues from

broadcasting sports events. We have provided normative, empirical and strategic foundations

for rules sharing each game’s revenues equally or proportionally among the participating teams.

Both rules have distinguishing merits. One (the OLS rule) is supported by a linear regression

analysis and thus, it reflects the (potentially di↵erent) fan base of each team. Another (the

Shapley rule) is supported by a powerful (and normatively appealing) stability property pre-

venting secessions from participating players.

We have also provided as a case study an empirical application deriving what both rules

would suggest for the Spanish Football League (La Liga). Our results largely di↵er from the

current existing schemes, which we find (somewhat surprisingly) biased against the three teams
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driving the largest audiences.

It is left for further research to enrich the model in plausible ways. For instance, some

games are o↵ered for free (in non-subscription channels), instead of pay per view. That might

influence the audience numbers. In our case study (La Liga), not all teams are broadcasted

under that option. And its broadcasting rights are negotiated independently. Thus, it might

well make sense to talk about two di↵erent budgets: one coming from subscription channels

(to which all team have access) and another coming from non-subscription channels (to which

not all team have access, and which might be associated to di↵erent audience figures).

Similarly, several games might be broadcasted simultaneously, which might reduce the num-

ber of viewers for some games. And if all games are broadcasted in exclusive time windows (as

it happens, for instance, in our case study), prime time is only awarded to some games. All

these aspects might have an important impact on audience figures, which has been ignored in

our model.
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