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Abstract. The preferences of a decision-maker who faces risk on two different dimensions

depend both on the curvature of her indifference map under certainty, which is a distinctly

ordinal property, and on the degree of concavity of the utility function representing pref-

erences under risk, which is a cardinal property. The weight of these two components is

shown to depend on the direction of the change in risk. Bidimensional stochastic orders

accounting for risks on any possible direction are first defined by generalizing the concept

of submodularity. Three different factors are shown to shape individual preferences under

risk in the bidimensional case: the degree of substitutability among goods, the intensity

of risk aversion on each single dimension and the degree of correlation aversion of the

decision-maker. Their contributions to the amount of risk premium is assessed and a new

notion of “compensated risk aversion” is introduced.
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1 Introduction

When choices under risk involve two dimensions, the Von Neumann-Morgenstern (VNM)

utility functions used to represent individual preferences are defined on bundles of two

attributes varying across two or more states of the world. As in the unidimensional case

the effects of risk depend on the initial quantity of wealth, in the bidimensional the effects

of risk on one attribute on individual preferences depend on the initial quantity of such

an attribute, but also on the available quantity of the second good, which can also vary

over states of the world. The nature of substitute/complement of the two goods and the

association between good and bad outcomes in the different dimensions over states of the

world then become crucial to understand the impact of risk on individual utility. The

sign of the cross derivatives of the utility function is a key property, and has been used to

describe risk aversion (Richard 1975), but it has also been used to identify complement

and substitute goods under certainty (the so called ALEP substituability) 1 as well as

for characterizing correlation aversion between good and bad outcomes in two dimensions

over different states of the world (Eeckhoudt et al. 2007). It is however unclear how all

these ingredients combine each other in order to describe individual preferences.

Kihlstrom and Mirman (1974) remarked that changes in risk aversion, which depend

on cardinal properties of the utility function, can be mixed up with changes in the degree

of substituability of goods, which is an ordinal property of individual preferences. To

skip this difficulty, they limited their analysis of risk aversion to the case of agents with

identical indifference curves under certainty. However, also under this simplification, it

is difficult to separate the consequences of the ordinal properties of preferences under

certainty from those depending on the cardinal properties of the utility function. The

objective of this paper is to disentangle these different components, in the case where

changes in risks are possible along any possible direction.

In Section 2 risks along general directions are considered and their effects on individual

utility are shown to depend on the sign of cross derivatives. More precisely, stochastic

1Two goods are Auspitz and Lieben - Edgeworth - Pareto (ALEP) substitute (complement) at x if

and only if u12(x) < 0 (u12(x) > 0). See Samuelson (1974).
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orders are investigated to determine the broadest families of utility functions able to

guarantee an increase in the level of the EU under well-defined types of changes in risk

over two dimensions. The effects of changes in risk on the utility function are shown to

depend on submodularity of the utility function, up to a change of variables depending on

the direction of the risk. Section 3 develops new results on comparative risk aversion. The

sensitivity of the risk premium to the cardinal and the ordinal properties of the utility

function used to represent individual preferences is investigated. The risk premium is split

into two components: the first one depends on ordinal properties of the utility function

used to represent individual preferences over the two attributes in a certain environment.

This component reflects the degree of substituability of the two attributes. Since the

effects of an hypothetical risk moving an initial allocation to another one lying on the

same indifference curve are not sensitive to the degree of concavity of the utility function,

the more divergent is the risk direction from the slope of the indifference curve, the higher

the impact of the degree of concavity of the utility function on individual preferences.

This effect is embedded in the cardinal component of the risk premium. These results

are discussed in Section 4, which concludes the paper with some suggestions for further

developments.

2 Changes in risk and submodularity

Let u : R2 → R be a non decreasing and concave VNM utility function differentiable as

times as necessary, defined on two attributes x1, x2. Let ui(.) denote the marginal utility

∂u(x)/∂xi and uij(.) the second derivatives ∂2u(x)/∂xi∂xj, for i, j = 1, 2. Given an initial

allocation, we study the effects of different zero-mean risks on the EU, depending on the

direction and the intensity of gains and losses in each dimension. As in Eeckhoudt et al.

(2007) we consider simple lotteries where two outcomes have an equally likely chance of

occurrence.

The link between the shape of the utility function and the directions of the change in

risk that guarantee an EU improvement is well-known in the stochastic orders literature:
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Figure 1: Changes in risk

Definition 2.1. (Müller and Scarsini 2012, Müller 2013) Given a function u : R2 → R

and two lotteries with equally probable outcomes B and C, or A and D, then:

u(C) + u(B) ≤ u(A) + u(D)

i) for any A,B,C,D in R2 such that A = αB + (1 − α)C, D = (1 − α)B + (α)C, with

α ∈ [0, 1] iff the function u is concave;

ii) for any A,B,C,D in R2 such that B = A ∨D and C = A ∧D (submodular changes

in risk) 2 iff the function is submodular, that is uij ≤ 0, for any i 6= j;

iii) for any A,B,C,D in R2 such that C ≤ D ≤ B, C ≤ A ≤ B and A + D = C + B

(directionally concave changes in risk) iff the function u is directionally concave3,

that is uij ≤ 0, for any i, j = 1, 2.

The changes in risk considered in the definition above are illustrated in the three panels

of Figure 1. In the first panel the alternative outcomes in equally-probable states of the

world lie along the same line. An equally-probable lottery on the “internal” outcomes A

and D is preferred to an equally-probable lottery on the “external” outcomes B and C if

and only if u is concave.4

2We denote with ∨ and ∧ the componentwise supremum and infimum, respectively.
3This function is called “inframodular” by Marinacci and Montrucchio (2005).
4This implies that the correspondence between concavity and risk-aversion can be extended from the

unidimensional case to the bidimensional one only for a very restricted type of changes in risk. (See

Section 3).
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Figure 2: Generalized directional changes

The second panel illustrates case ii), where a negative sign of the cross derivative

uij describes an individual who prefers a lottery where the shortage of one good is com-

pensated for by an increase of the other good in each state of the world, rather than a

lottery where affluence in both attributes in one state of the world is opposed to shortage

of both attributes in the other state of the world (see Richard 1975 and Crainich et al.

2013). 5 The third panel illustrates case iii), where more general directions are allowed

for losses and gains in the two dimensions, such that the rectangle of case ii) becomes a

parallelogram. In case iii) the lottery over the best outcome B and the worst outcome

C is compared to a lottery over A and D where gains and losses on both dimensions are

allowed. Both in cases ii) and iii) the order structure of the vector space, joined with

the monotonicity of u, guarantees that points B and C can be ranked in terms of all

non-decreasing utility functions, while A and D guarantee a level of utility intermediate

between u(B) and u(C) but can be ranked only specifying the functional form of u.

In the next paragraph the previous definition ii) is extended by allowing risk in any

direction, such that the following condition holds:

u(B) ≥ u(D) ≥ u(C) and u(B) ≥ u(A) ≥ u(C). (2.1)

Looking at the lotteries’ oucomes in Figure 2, neither C,A nor D,B can be ranked by

using the orthant order, but (2.1) holds.

5To save space we skip the opposite case where “joining bad with bad and good with good” increases

the EU.
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To analyze this case, it is convenient to introduce a more general order structure in

R2. Let B = (x1, x2) and C = (y1, y2) = (x1 − k, x2 − `), with k, ` > 0 , two points that

can be ranked as before by the elementary order structure of R2 and the monotonicity of

u. The outcomes A and D are constructed such that the rectangle of case ii) becomes a

parallelogram.

Drawing the lines joining A, B, C and D, as illustrated in Figure 2, it is possible

to rank C,A and D,B in the space Ω composed of all the couples (a, b), such that a =

α1x1 + α2x2 and b = β1x1 + β2x2. More precisely, in the space Ω, we get:6

B = (a, b),

C = (a− κ, b− λ),

A = (a− κ, b),

D = (a, b− λ).

Note that in the first panel of Figure 2, we have −β1/β2 > `/k. This condition guarantees

that the relative positions of the worst off and the best off individuals are preserved, when

β1/β2 < 0.7

The notion of submodularity is then extended by defining a function Ψ : Ω→ R, such

that Ψ(a, b) ≡ u(x1, x2).

According to Definition 2.1, a function Ψ : Ω→ R is submodular if for any quadruple

A,B,C,D in Ω such that B = A ∨D and C = A ∧D, the following inequality holds:

Ψ(C) + Ψ(B) ≤ Ψ(A) + Ψ(D). (2.2)

Then a lottery on A,D is preferred to another on C,B if and only if
∂2Ψ

∂a∂b
(a, b) ≤ 0.

Observe that just as the partial derivatives are taken with respect to a change in one

variable, the directional derivatives evaluate the rate at which the utility changes when

both inputs move, with positive or negative dependence.

The conditions on the cross derivative of Ψ can be also expressed in terms of the

second derivatives of u:

6It is also necessary that α1β2 − α2β1 6= 0 for the invertibility of the transformation
7Note that, in the opposite case, i.e. −β1/β2 < `/k, we have B = (a, b − λ), C = (a − κ, b),

A = (a− κ, b− λ), D = (a, b).
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Proposition 2.1. Given Ψ : Ω→ R, such that Ψ(a, b) = u(x1, x2), with a = α1x1 +α2x2

and b = β1x1 + β2x2.

∂2Ψ

∂a∂b
(a, b) < 0⇔ α2β2u11(x1, x2) +α1β1u22(x1, x2)− (α1b2 +α2β1)u12(x1, x2) > 0. (2.3)

Proof. From conditions a = α1x1+α2x2 and b = β1x1+β2x2 and applying the substitution

x1 = (aβ2 − bα2)/(α1β2 − α2β1) and x2 = (bα1 − aβ1)/(α1β2 − α2β1), we calculate the

cross derivative of Ψ(a, b) = u(x1, x2). Then ∂Ψ(a,b)
∂a

= (β2u1(x1, x2)−β1u2(x1, x2))/(α1β2−

α2β1), and ∂2Ψ
∂a∂b

= −(α2β2u11(x1, x2)+α1β1u22(x1, x2)− (α1β2 +α2β1)u12(x1, x2))/(α1β2−

α2β1)2.

This result shows that all the second derivatives of u, combined with the directions of

the risk, determine the effects of the risk on the EU.

Note that, by the introduction of the function Ψ, all the standard cases, presented in

Definition 2.1 and represented in Figure 1, can be covered. In fact, we can obtain case

i) in a degenerate case, where Ψ is a function of only one variable and computing the

second order derivative of Ψ, for instance, with respect to the first component a,8 and

it is negative if and only if the utility function u is concave by the definition of negative

semidefinite Hessian matrix. Case ii) corresponds to independent changes in risk, that is

a = α1x1 and b = β2x2, see panel ii) of Figure 1. In this case, ∂2Ψ
∂a∂b

= α1β2u12(x1, x2) and

it is negative if and only if u12 is negative, with α1, β2 > 0. Finally, to recover case iii) we

need that the slopes of a = α1x1 + α2x2 and b = β1x1 + β2x2 are both positive. The only

feasible cases are given by αi, αj and βi, βj discordant with also αi, βi discordant ∀i = 1, 2.

In this case, if all the second order derivatives of u are negative, then Ψab is negative.

In order to separate the aspects of preferences under certainty from those depending

on the cardinal properties of the utility function, it is useful to start from Kannai (1980),

who noticed that, for any utility function u, ALEP complements can become substitutes

by applying a sufficiently concave transformation f to u. In fact, given v = f(u(x)), its

second cross derivative is vij = fuuuiuj + fuuij and its sign can be changed by selecting

an appropriate concave function f . More precisely, if the goods are ALEP complement

8Recall that Ψaa = (β2
2u11 + β2

1u22 − 2β1β2u12)/(α1β2 − α2β1)2.
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(uij > 0), they can become substitute (vij > 0). However, such a transformation alters

only the cardinality of the utility function. Therefore, the cross derivative of u used in

the ALEP definition cannot capture ordinal aspects, as substitutability or complemen-

tarity among goods. Submodularity is not preserved in general and this is also true for

generalized submodular functions. The sensitivity of submodularity to concave transfor-

mations, however, depends on the direction of the risk. For instance, if the risk changes

the allocations along the direction of the MRS, then generalized submodularity is not

affected by the cardinalization of the utility function. If α1/α2 = −β1/β2 = u1/u2, with

Ψ(a, b) = u(x1, x2) and Ψ̃(a, b) = v(x1, x2) = f(u(x1, x2)), where f is concave, it is easy

to check that Ψab(a, b) and Ψ̃ab(a, b) have the same sign. In a neighbourhood of a starting

position C, moving along the MRS, without changing the level curve, going to D and

doing the opposite from B to A, does not change the preferences of the agent towards

the goods, even after a concave transformation of the given utility function, as showed in

Figure 2

The links between the direction of the risk, the risk premium and the cardinalization

of the VNM utility is analyzed in the next section, which studies comparative risk aversion

in the bidimensional case.
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3 Comparative risk aversion with two attributes

3.1 Basic concepts

We recall the definitions of risk aversion in the one-dimensional case. Let ε̃ be a zero-mean

risk:

Definition 3.1. An individual is risk averse if he dislikes all zero-mean risks at all wealth

levels:

Eu(x0 + ε̃) ≤ u(x0), ∀ε̃ s.t.E(ε̃) = 0. (3.1)

An individual (with utility) v is more risk averse than an individual (with utility) u if

v dislikes all lotteries that u dislikes, for any common level of initial wealth. Pratt (1964)

characterized comparative risk aversion by introducing absolute and relative measures

based on the curvature of the utility function. He demonstrated that any increasing and

concave transformation v = f(u(x)) raises the degree of risk aversion and the amount of

the risk premium (see Gollier 2001 for details).

Richard (1975) studied multivariate risk aversion in terms of the preferences of an agent

for mixing bad and good outcomes, and provided a characterization based on the cross

derivative of the utility function (see Richard 1975, p.13). Unfortunately, this definition

leads to confound two different aspects: risk aversion and correlation aversion. Duncan

(1977) and Karni (1979) proposed to complement the Arrow-Pratt absolute risk aversion

coefficient on single dimensions i, defined as RAi(x) = −uii
ui

(x), by an index of absolute

correlation aversion:

Definition 3.2. The absolute correlation aversion index between attributes i and j (com-

puted with respect to the ith attribute) is

CAi(x) = −uij
ui

(x).

The attitude towards risk is not fully captured by the cross derivative of the utility

function and correlation aversion. Risk aversion implies that one prefers with certainty

(5, 5), instead of the lottery {(0, 0), (10, 10)} with equal probability of the outcomes,

regardless of the sign of the cross derivative. In fact, risk aversion is related with the
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degree of concavity of the utility function also in the multivariate case, as pointed out by

Kihlstrom and Mirman (1974). These authors associate “more risk aversion” to a “more

concave” utility function (p. 366), extending the Pratt approach to the bidimensional

case. Under a specific definition of risk premium (directional and multiplicative, see

Proposition 1, p. 368), they also extend the Pratt result that a higher risk premium is

paid by a more risk averse agent. Nevertheless, their definition of risk premium does

not allow to fully generalize equation (3.1) in the multidimensional context, due to their

definition of risk, a share of the vector of the attributes, that scales all the components

in the same way. In the next paragraphs, we investigate three different factors that play

a role when an agent faces risk over two dimensions along more general directions: 1)

differences in preferences on the goods under certainty (the goods can be complement or

substitute), 2) differences in risk attitudes (preferences for sure outcomes instead of risky

ones, in terms of utility values) and 3) differences in risk characteristics: the risks can be

negatively or positively correlated.

3.2 The risk-premium for a risk along two dimensions

Let us consider the random vector (ε̃, δ̃), where ε̃ is a zero-mean risk on the first variable

x1, and δ̃ is a zero-mean risk on x2. We denote with V = [σij] the positive semi-definite

variance-covariance matrix. If the two risks are simultaneous, we get:

Eu(x1 + ε̃, x2 + δ̃) ≤ u(x1, x2), ∀ε̃, δ̃ s.t. E(ε̃) = 0, E(δ̃) = 0. (3.2)

The second order approximation of this expression around (x1, x2) leads to:

u11(x1, x2)σ2
1 + u22(x1, x2)σ2

2 + 2u12(x1, x2)σ12 ≤ 0. (3.3)

Notice that with negative correlation between the two risks and a positive cross deriva-

tive of u, (3.3) is always satisfied and the agent is risk averse for any (x1, x2).

The corresponding definition of risk premium π1 to pay in one dimension, for instance

x1, to get rid of risk on both dimensions is given by:9

Eu(x1 + ε̃, x2 + δ̃) = u(x1 − π1, x2), ∀ε̃, δ̃, s.t. E(ε̃) = 0, E(δ̃) = 0. (3.4)

9We follow Karni (1979) and Courbage (2001).
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π1 ≈ −1/2

[
σ2

1u11 + σ2
2u22 + 2σ12u12

u1

]
. (3.5)

Notice that the premium is positive if and only if the utility function is concave (see

Theorem 1, Karni 1979).

From expression (3.3) we will explore the combined role of risk and correlation aversion

coefficients in determining individual preferences under risk. Following Kihlstrom and

Mirman (1974), we consider the effects of a concave transformation f ◦u. It is well-known

that it raises the risk-aversion coefficient on each single dimension while it also raises the

absolute correlation aversion coefficient, as shown in the previous section.

In what follows, we study the impact of these effects on the intensity of risk aversion,

measured in terms of the amount of the risk premium. For instance, with negatively

correlated risks, it might be the case that a concave transformation, by raising the risk

aversion coefficient in each dimension, increases the risk premium, but its effect on the

correlation aversion decreases it. This “compensative effect” is the main object of the

next paragraph.

3.3 Compensated risk aversion and risk premium

The effect of the cross derivative of the utility function on the risk premium depends

on the correlation between the outcomes of the risks. Considering the simple case of

equiprobable lotteries as in Richard (1975), for negatively correlated outcomes the risk

premium is given by:

1/2[u(x1 + ε1, x2 − δ1) + u(x1 − ε1, x2 + δ1)] = u(x1 − πN1 , x2), (3.6)

πN1 ≈ −1/2

[
ε2

1u11 + δ2
1u22 − 2δ1ε1u12

u1

]
, or equivalently (3.7)

πN1 ≈ ε2
1/2

[
RA1 +

δ2
1u2

ε2
1u1

RA2 − 2
δ1

ε1

CA1

]
. (3.8)

The risk premium locally depends on the sum of the risk aversion coefficient of the ref-

erence good, that of the other good weighted by the marginal rate of substitution, and
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negatively on the correlation aversion. A positive CA means that a lottery allowing to

substitute to some extent one good with another, reduces the total riskiness. 10

In the unidimensional case the Pratt absolute coefficient measures the relative change

in the shape of the utility function, when income changes. When we deal with two

variables, the relative variation of the total differential of ui, due to a change dxi, can be

computed:

−dui(xi, xj)/dxi
ui(xi, xj)

≈ −uii
ui
− uij
ui

dxj
dxi

. (3.9)

If this approximation is computed at a fixed level of utility, then
dxj
dxi

= − ui
uj

and we get:

dui(xi, xj)/dxi
ui(xi, xj)

≈ −uii
ui

+
uij
uj
. (3.10)

Hence, this means that the change in the marginal utility measured by the usual Pratt

coefficient is compensated by taking by the other variable’s indirect effect.

We then define the Compensated Risk Aversion (CRA) coefficients:

CRA1 = −u11

u1

+
u12

u2

= RA1 +MRS21 × CA1 (3.11)

CRA2 = −u22

u2

+
u12

u1

= RA2 +MRS12 × CA2 (3.12)

The previous results prove the following

Proposition 3.1. Given the risks (ε̃, δ̃), the risk premium can be decomposed as follows:

πN1 ≈
1

2
ε2

1

(
CRA1 +

δ2
1u2

ε2
1u1

CRA2

)
− 1

2
ε2

1

u12

u2

(
1− δ1u2

ε1u1

)2

. (3.13)

The interest in this decomposition of the risk premium is supported by the following

property of CRA.

Proposition 3.2. The measure of risk aversion CRAi is invariant to any monotonic

transformation of the utility function.

10Another way to restate equation (3.7) can be used to show that the impact of the risk depends both

on the absolute correlation aversion and on the Arrow-Pratt indices:

πN
1 ≈ −

ε21
2

(
u11
u1
− δ1
ε1

u12
u1

)
− δ21

2

u2
u1

(
u22
u2
− ε1
δ1

u12
u2

)
.
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Proof. By considering the transformation v = f ◦ u, from the definition of absolute risk

and correlation aversion we get:

−vij
vj

= −fuu
fu
ui −

uij
uj

and − vii
vi

= −fuu
fu
ui −

uii
ui

and, hence,
vij
vj
− vii
vi

=
uij
uj
− uii
ui
. (3.14)

The CRA is invariant to concave transformations of the utility function, which implies

that the increase of the absolute risk aversion coefficient on a single variable is perfectly

balanced by an increase of correlation aversion
uij
ui

.

It is then possible to separate the risk premium in two terms: π̃N1 + ρ. The first term

π̃N1 = 1
2
ε2

1

(
CRA1 +

δ21u2
ε21u1

CRA2

)
is invariant to any transformation of the utility function,

while the second term ρ = −1
2
ε2

1
u12
u2

(
1− δ1u2

ε1u1

)2

is sensitive to different cardinalizations

of the utility function. Notice that when ε1/δ1 = u2/u1, then πN1 = π̃N1 : when the risk

follows exactly the direction of the marginal rate of substitution, this invariance property

implies that the risk premium does not change, even after a concave transformation of

the utility function.

As the risk direction moves away from the MRS, a more concave utility function

implies a stronger impact on the risk premium. It is then important to disentangle the

cardinal and the ordinal components for determining individual preferences under risk.

The cross derivative of u is not itself a marker of the presence of multivariate risk

aversion, but has a role in measuring the intensity of risk aversion and to determine the

sign of ρ, as shown in the following example.

Example 3.1. Consider an agent with the Cobb-Douglas utility function u(x1, x2) =

(x1x2)1/2 . Suppose now that she faces a lottery with negatively correlated risks along the

directions ε1 = 1 and δ1 = 0.3, starting from the initial position x̄1 = 100 and x̄2 = 5. The

EU results 1
2

[u(100− 1, 5 + 0.3) + u(100 + 1, 5− 0.3)] . Using (3.7), the risk premium is

πN1 = 0.1225. From (3.13) we find that the “ordinal” component is π̃N1 = 0.185 while the

“cardinal” component is ρ = −0.0625.
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We can consider a more risk averse agent, with ρ equal to zero, because of the null

cross derivative. We have, for instance, v(x1, x2) = ln(x1x2)1/2, and the risk premium

becomes πN1 = 0.185, that coincides with the ordinal component.

Otherwise, we can also have a more risk averse agent, that is also correlation averse.

In this case, we consider v(x1, x2) = −2(x1x2)−1/4, with risk premium πN1 = 0.21625,

decomposable in π̃N1 = 0.185 and ρ = 0.03125.

Therefore, if the risks are negatively correlated, and the agent is correlation averse,

she is more willing to pay for the risk elimination, then an agent indifferent or prone to

correlation.

The following corollary links the previous results with gereralized submodularity, de-

fined in Section 2 as the negative cross derivative of Ψ(a, b).

Corollary 3.1. Ψab < 0 is equivalent to πN1 < πP1 .

Proof. Equation (2.3) determines the sign of the cross derivatives of Ψ on the basis of the

derivatives of u, for a risk along general directions. Then, the result immediately follows

from equations (2.2), (3.6), (??) and Proposition 2.1.

Therefore, we can conclude that, as the rate of substitution of the goods shows how

much one individual is willing to exchange one good with another under certainty and

the cross derivative of u, given orthogonal variations of the goods, indicates preferences

for joining or spread gains and losses across states of the world, the cross derivative of Ψ

describe preferences for changes in the quantity of the goods across states of the world

which are not orthogonal, but arise along general directions.

4 Concluding Remarks

In this paper we have studied the properties of the directional derivatives of an utility

function that associate to directional risks an increase of expected utility. We have in-

vestigated the consequences of directional changes in risk on the risk premium and we
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have proposed a decomposition of the risk premium in order to disentangle the degree of

substituability among the attributes from the degree of risk and correlation aversion. Our

results on multidimensional risk assessment can be of interest for inequality measurement,

whose formal analogy with the risk setting is well known in the economic literature (see

Atkinson 1970 for the unidimensional case or Gajdos and Weymark 2012 for a survey).
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