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Abstract
We study multiple-prize contests where the set of prizes to be awarded

is a random variable. We determine the unique symmetric Nash equilib-
rium of the contest game. We analyze the equilibrium outcome from
the perspective of a contest designer aiming at maximizing the aggregate
contest expenditure. We show that the aggregate contest expenditure is
decreasing in the risk on the number of prizes (in the sense of second-order
stochastic dominance) and is increasing in the number of contestants. Ac-
cordingly, a contest designer aiming at maximizing the aggregate contest
expenditure should always reveal the number of prizes to be awarded and
open the contest game to all potential contestants.

1 Introduction.
Sisak (2009) surveyed the recent literature on multiple-prize contests.1 She
outlines that this setting can be relevant in many situations, taking examples
from rent-seeking activities, patents and R&D races, licences, labour markets,
sports and so on. Sisak (2009) classifies the literature along two main dimen-
sions, based on the choice of the contest success function (Tullock versus fully
discriminating contest success function) and on the adoption of single versus
multiple effort (the contestants exert an overall effort for all prizes or can allo-
cate it more specifically to a sub-group of prizes). The central finding is that
with risk-neutral and symmetric contestants, a contest designer aiming at max-
imizing the aggregate effort should always prefer to allocate a single prize rather
than splitting it in several smaller prizes. However, dividing the prize can be
optimal in situations with risk aversion and asymmetric players.

Surprizingly, the case of a contest with an uncertain number of prizes has
never been investigated, although this is a natural and immediate extension of
∗francois.maublanc@u-bordeaux.fr
†rouillon@u-bordeaux.fr
1The very first contributions on multiple-prize contests are Glazer and Hassin (1988) and

Berry (1993).
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the literature just surveyed. The pupose of the present paper is to provide a first
attempt to fill the gap. We consider a Tullock contest success function with risk-
neutral and symmetric players, assuming that the number of (identical) prizes
to be awarded is a random variable, with common knowledge probability dis-
tribution. We characterize the Nash equilibrium of the corresponding contest
game and identify some of its properties. In particular, we are interested in
verifying whether the normative prescription from the literature, that a single
prize contest maximizes the aggregate effort of the contestants, remains valid
in our setting. We actually show that a multiple-prize contest with an uncer-
tain number of prizes is dominated by the (certainty-equivalent) multiple-prize
contest allocating the same expected number of prizes for sure. By transitity,
this confirms that with risk-neutral and symmetric players, a contest designer
aiming at maximizing the aggregate effort should always prefer to allocate a
single prize for sure.

This paper can also be related to Münster (2006), Lim and Matros (2009),
Myerson and Wärneryd (2006), and Kahana and Klunover (2015), which extend
the contest literature to situations where the number of contestants is uncertain.
They show that the (ex-ante) aggregate effort in a contest with population
uncertainty is smaller than its counterpart in a contest with population certainty
and the same expected number of contestants. Clearly, our paper gives the
analog finding for contests with prize uncertainty.

The rest of the paper is organized as follows. Section 2 sets out the model.
Section 3 analyses the Nash equilibrium under certainty. Section 4 characterizes
Nash equilibrium under uncertainty. Section 5 compares the two situations.
Section 6 deals with some relevant comparative statics results. Most proofs are
given in the appendix.

2 The model.
We consider n (risk neutral) players competing in a nested contest awarding
k prizes, with 1 ≤ k < n. The value of each prize is denoted V (k).2 Each
contestant i simultaneously expends effort xi to win one prize and no more. The
vector of all efforts is denoted x. The prizes are awarded in k rounds, according
to the following iterative process (Clark and Riis, 1996). LetN (r) denote the set
of players still remaining in the contest at round r3. The conditional probability
that a player i in N (r) wins the prize of the r-th round is equal to

pri (x) = f(xi)∑
j∈N(r) f(xj)

,

where f(0) = 0 and f (.) is a strictly increasing and concave function. Ex post,
if player i really wins it, the set of the remaining players then evolves according

2For technical reason, it will be convenient to assume that V (k) is defined and twice
differentiable for all k ∈ [1, n].

3Clearly, N (1) = {1, ..., n}.
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to
N (r + 1) = N (r)− {i} .

The process is repeated until all prizes are allocated. Let Pi (x; k) denote the
(ex ante) probability that player i wins one prize at the end of the process.

The originality of our paper is that we assume that the players ignore the
exact number of prizes to be awarded and only know that it is distributed
between 1 and K, according to a probability distribution π (k). In this setting,
each player i expects to win one prize with the probability

E [Pi (x; k)] =
K∑
k=1

π(k)Pi (x; k) .

3 Equilibrium outcomes.
We characterize here the Nash equilibrium of the contest game. We consider
first the case where the players observe the number of prizes k to be allocated
before they choose their level of effort. We then deal with the case where the
players only know that the number of prizes k is distributed between 1 and K,
according the probability distribution π (k).

The case where the number of prizes is known with certainty is solved in
Clark and Riis (1996). Observing k, each player i chooses xi to maximize

Pi (x; k)V (k)− xi.
An equilibrium of the contest game satisfies the following first-order condition

∂

∂xi
Pi (x; k)V (k)− 1 = 0, for all i.

Clark and Riis (1996) have shown that the contest game admits a unique sym-
metric equilibrium. Thus, letting xi = x for all i, we can calculate that4

∂

∂xi
Pi (x; k) = n− k

n

(
n∑
r=1

1
r
−
n−k∑
r=1

1
r

)
f ′(x)
f(x) . (1)

It follows that the game admits a unique Nash equilibrium such that all players
exert an effort satisfying

f (x)
f ′ (x) = A (k, n) , (2)

where5

A (k, n) = V (k) n− k
n

(
n∑
r=1

1
r
−
n−k∑
r=1

1
r

)
. (3)

4For reasons that will become clear below, the expression here slighly differs from that in
Clark and Riis (1996). The proof is given in appendix.

5Clark and Riis (1996) use A (k, n) = V (k)
(

k −
∑k−1

r=1 (k − r) /(n− r)
)

/n, which is
equivalent.
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Consider now the case where the players choose their effort under uncer-
tainty. Knowing that k is is distributed between 1 and K, according to a prob-
ability distribution π (k), each player maximizes his expected utility according
to his own effort

K∑
k=1

π (k)Pi (x; k)V (k)− xi.

An equilibrium of the contest game satisfies the following first-order condition
K∑
k=1

π (k) ∂

∂xi
Pi (x; k)V (k)− 1 = 0, for all i.

Using (1), this game admits a symmetric Nash equilibrium where all players
exert an effort satisfying

f (x)
f ′ (x) =

K∑
k=1

π (k)A (k, n) . (4)

4 Comparative statics.
We derive here some comparative statics of the equilibrium outcome under un-
certainty. We implicitly adopt the point of view of a contest designer aiming
at maximizing the aggregate contest expenditure. By assumption, the param-
eters that the contest designer may be able to manipulate are the value of the
individual prizes, the probability distribution of the number of prizes and the
number of participants.

4.1 Value of the prizes.
We consider here the choice of each individual prize’s value. Unambiguously, for
all k, a larger value V (k) increases A (k, n) and the right-hand side of (4). Since
f (x) /f ′ (x) is strictly increasing for all x (by concavity of f (x)), it is immediate
that a larger value of the individual prizes induces a larger individual effort x
and aggregate effort X = nx.

4.2 Number of prizes.
We consider here the choice of the distribution of the number of prizes. In
particular, we analyse the effect of a greater uncertainty on the number of prizes.
Let π (k) and π (k) be any pair of probability distributions, such that π (k) is
obtained from π (k) by adding some uncorrelated noise (i.e., mean preserving
spread). Denote by x and x the equilibrium individual efforts corresponding to
π (k) and π (k) respectively. Below, we study the conditions such that for x > x.

From our previous analysis, we know that x and x satisfy
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f (x)
f ′ (x) =

K∑
k=1

π (k)A (k, n) and f (x)
f ′ (x) =

K∑
k=1

π (k)A (k, n) .

As f (x) /f ′ (x) is strictly increasing for all x, the condition for x > x writes

K∑
k=1

π (k)A (k, n) >
K∑
k=1

π (k)A (k, n) . (5)

According to Rothschild and Stiglitz (1970), given that π (k) is less risky than
π (k), this condition will hold true if A (k, n) is concave in k.

Our strategy for studying the “curvature” of A (k, n) is the following6. For
all χ ∈ [1, n], we first construct a twice differentiable function F (χ), such that
F (k) = A (k, n) for all (integers) k < n. We then deduce sufficient conditions
for the concavity of F (χ) from its second-order derivative.

For all χ ∈ [1, n], let us define

F (χ) = V (χ) n− χ
n

(ψ (n+ 1)− ψ (n− χ+ 1)) ,

where ψ is the psi (or digamma) function (Abramowitz and Stegun, 1964)

ψ (χ) = −γ +
∞∑
j=0

χ− 1
(j + 1) (j + χ) , (6)

with γ the Euler constant. Knowing that

ψ (η + 1) = −γ +
η∑
j=1

1
j
,

where η denotes any positive integer (Abramowitz and Stegun, 1964), we can
show that

F (k) = V (k) n− k
n

(
n∑
r=1

1
r
−
n−k∑
r=1

1
r

)
= A (k, n)

for all (integers) k < n. Moreover, knowing that the first- and second-order
derivatives of ψ are (Abramowitz and Stegun, 1964)

ψ′ (χ) =
∞∑
j=0

1
(j + χ)2 and ψ′′ (z) = −

∞∑
j=0

2
(j + χ)3 , (7)

6Remark that (3) is a discrete (non differentiable) function of k because of the term∑n−k

r=1 1/r.
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we know that F (χ) is twice differentiable and we can calculate that

F ′′ (χ) =V ′′ (χ)
n

∞∑
j=0

(n− χ)χ
(j + n+ 1) (j + n− χ+ 1)

− 2V
′ (χ)
n

∞∑
j=0

(j + n− χ+ 1)χ− (j + n+ 1) (n− χ)
(j + n+ 1) (j + n− χ+ 1)2

− 2V (χ)
n

∞∑
j=0

j + 1
(j + n− χ+ 1)3 .

Recall that if F ′′ (χ) < 0, then F (χ) is concave, condition (5) is true and
x > x. Hence, the expression of F (χ) implicitly defines a class of contest
games, as represented by the schedule V (k) of the prizes values, such that the
contestants will exert less effort when there is greater uncertainty on the number
of prizes.

We will not try to fully characterize the set of functions V (k) such that
F ′′ (χ) < 0. Instead, we first note that it is stable to positive combinations of
its elements. Indeed, it should be clear that if V1 (χ) and V2 (χ) are such that
F ′′ (χ) < 0, then V (χ) = λV1 (χ) + µV2 (χ), with λ > 0 and µ > 0, also implies
that F ′′ (χ) < 0.Moreover, we show that all functions V (χ) of the form V/χσ,
where 0 ≤ σ ≤ 1, belong to this set.7 Indeed, we then have

F ′′ (χ) = − V

nχ1+σ

 σ (1− σ)
∑∞
j=0

n−χ
(j+n+1)(j+n−χ+1)

+
∑∞
j=0

(j+1)χ2

(j+n+1)(j+n−χ+1)3

+2 (1− σ)χ
∑∞
j=0

j+1
(j+n−χ+1)3


which is negative under the condition that 0 ≤ σ ≤ 1.

This result implies that under standard and reasonable assumptions, a con-
test designer aiming at maximizing the aggregate contest expenditure should
always reveal the number of prizes to be awarded before the contest takes place.

4.3 Number of contestants
Consider finally the effect of a larger population of contestants. To ease the
presentation, assume that f (x) = axr, with a > 0 and 0 < r ≤ 1.8 Condition
(4) then writes as

x

r
=

K∑
k=1

π (k)A (k, n) ,

7This includes as particular cases V (k) = V and V (k) = V/k, which are standard in the
literature.

8This specification is standard in the literature. Moreover, we generalize our result in the
appendix to the class of all functions f (x) such that the elasticity of g (x) = f (x) /f ′ (x) is
larger than 1.
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implying that the aggregate contest expenditure is

X = nr

K∑
k=1

π (k)A (k, n) .

Using

A (k, n) = V (k)
n

k − k−1∑
j=0

k − j
n− j

 ,

we can calculate

X = r
K∑
k=1

π (k)V (k)

k − k−1∑
j=0

k − j
n− j

 .

From this, it is clear that the aggregate contest expenditure is an increasing and
concave function of n. Moreover, it converges to r

∑K
k=1 π (k) kV (k) when n

tends to infinity. In the special case where r = 1, we obtain that the (expected)
rent is fully dissipated when there is free entry to the contest. This is a standard
result in the literature.

5 Numerical illustrations
THIS PART IS IN PROGRESS

In this section, we propose some examples to highlight our results. We
consider that f(x) = x and we are particularly interested in looking at the rate
of rent dissipation, defined as total effort divided by the total value distributed
in the contest, i.e. total spending per unit of prize.

In the next subsection, we compare rent dissipation rate for different uniform
distributions by fixing the expected number of prizes and varying the risk.

5.1 The uniform distribution
Figures 1(a) and (b) represent rent dissipation rate as a function of the number
of players when the number of prizes follows a uniform distribution. Several
plots are obtained using distributions with the same expectancy, but differently
risky9. We verify that given the number of players and the expected number of
prizes, total effort is higher for contests where the risk on the number of prizes
is lower.

In passing, we also verify that the rent dissipation rate converges to 1 when
the number n of players increases.
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(a) V (k) = 1, E [k] = 5
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Figure 1: Rent dissipation rate when n = 40, E [k] = 5

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
K = 2
K = 4
K = 6
K = 8
K = 10

K = 12

K = 14

K = 16

K = 18

λ

R
en
t
di
ss
ip
at
io
n
ra
te

(a) V (k) = 1/k
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(b) V (k) = 1

Figure 2: Rent dissipation rate when n = 20

5.2 The binomial distribution
In this subsection we examine the situation where the number of prizes k is
distributed according to a binomial distribution. As we consider in our model
that there is at least one prize to win, we suppose that the number of prizes
awarded is equal to one plus a variable following a binomial distribution of
parameters (K−1, λ). We focus on the impact of λ on the rent dissipation rate.

In the case V (k) = V/k, the result is immediate : indeed, Clark and Riis
9For instance, the uniform distribution on the interval J3, 7K stochastically dominates at

the second order the uniform distribution on the interval J1, 9K, but the expected number of
prizes is identical and equal to 5.
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(1996) have shown that in a certain contest, total effort is decreasing with the
number of prizes. Therefore, as k = 1 maximizes equilibrium spending in a
contest under certainty, and as effort is strictly decreasing with the number of
prizes, then λ = 0 maximizes total effort. Figure 2(a) illustrates our purpose
: total effort is strictly decreasing with λ and the maximum effort is therefore
obtained for λ = 0.

In the case V (k) = V , we observe a similar result : the maximal rent dissi-
pation rate is obtained for λ = 0, meaning K = 1 (figure 2(b)).

5.3 First order Stochastic Dominance (V (k) = V/k)
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Figure 3: Rent dissipation rate when n = 40

Figure 3 represents effort produced by all the players when the number of
prizes follows uniform distributions with a similar structure, but differ from
their expected number of prizes.

For instance, the uniform distribution on the interval J5, 7K stochastically
dominates at the first order the uniform distribution on the interval J4, 6K. We
obtain that in the case V/k, total effort is higher for contests where the expected
number of prizes is lower : this comes from the fact that total effort is decreasing
with the number of prizes (Clark and Riis, 1996). Note that this relation is
true in the situation V (k) = V/k but is in general not checked for other value
functions.

6 Conclusion
THIS PART IS IN PROGRESS.
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7 Appendix
Proof of equation (1)
Clark and Riis (1996) have shown that the contest game admits a unique sym-
metric equilibrium. From this, considering player i’s point of view, we assume
that xj = x, for all j 6= i. Then, for all r, we can write

pri (x) = f(xi)
f(xi) + (n− r) f(x) .

If k = 1, player i chooses xi to maximize

f(xi)
f(xi) + (n− 1) f(x)V (1)− xi.

Therefore, the first-order condition for xi to maximize player i’s payoff is

(n− 1) f(x)f ′(xi)
(f(xi) + (n− 1) f(x))2V (1)− 1 = 0.

If xi = x, this simplifies to

V (1) n− 1
n2

f ′(x)
f(x) − 1 = 0.

If k > 1, player i chooses xi to maximize

Pi (x; k)V (k)− xi,

where

Pi (x; k) = f(xi)
f(xi) + (n− 1) f(x)+

k∑
r=2

[
r−1∏
s=1

(
1− f(xi)

f(xi) + (n− s) f(x)

)]
f(xi)

f(xi) + (n− r) f(x)

An equivalent expression is

Pi (x; k) =
k∑
r=1

f(xi)
(n− r) f(x)

(
r∏
s=1

(n− s) f(x)
f(xi) + (n− s) f(x)

)
.

By differentiation, we can get

∂

∂xi
Pi (x; k) =

k∑
r=1

 f ′(xi)
(n−r)f(x)

(∏r
s=1

(n−s)f(x)
f(xi)+(n−s)f(x)

)
+ f(xi)

(n−r)f(x)

(
−
∑r
s=1

(n−s)f(x)f ′(xi)
(f(xi)+(n−s)f(x))2

∏
t 6=s

(n−t)f(x)
f(xi)+(n−t)f(x)

)  .
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If xi = x, this simplifies to

∂

∂xi
Pi (x; k) = 1

n

k∑
r=1

(
1−

r∑
s=1

1
n+ 1− s

)
f ′(x)
f(x) .

We can show by induction that

k∑
r=1

(
1−

r∑
s=1

1
n− s+ 1

)
= (n− k)

(
n∑
r=1

1
r
−
n−k∑
r=1

1
r

)
,

which implies that

∂

∂xi
Pi (x; k) = n− k

n

(
n∑
r=1

1
r
−
n−k∑
r=1

1
r

)
f ′(x)
f(x) .

Comparative statics with respect to n

To simplify the notations in this proof, let us denote

g (x) = f (x) /f ′ (x)

and

B (n) =
K∑
k=1

π (k)A (k, n) .

In equilibrium, from condition (4), we have

g (x) = B (n) .

Using the implicit function theorem, this implies that

dx
dn = B′ (n)

g′ (x)

and
dX
dn = x+ n

B′ (n)
g′ (x) .

From this, we can show that

dX
dn > 0⇔ g′ (x)x

g (x) > −nB
′ (n)

B (n) .

Now, using

nB (n) = n

K∑
k=1

π (k)A (k, n)
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and

A (k, n) = V (k)
n

k − k−1∑
j=1

k − j
n− j

 ,

we calculate

nB (n) =
K∑
k=1

π (k)V (k)

k − k−1∑
j=1

k − j
n− j

 .

Since nB (n) is clearly increasing in n, we can write

B (n) + nB′ (n) > 0

and
−nB

′ (n)
B (n) < 1.

This finally implies that a sufficient condition for dX/dn > 0 is

g′ (x)x
g (x) ≥ 1 > −nB

′ (n)
B (n) .
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