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Abstract

In this article we revisit the classic comparison between Bertrand and Cournot com-
petition in the presence of a cartel of firms that faces outsiders acting individually.
This competition setting enables to deal with both non-cooperative and cooperative
oligopoly games. We concentrate on industries consisting of symmetrically differenti-
ated products where firms operate at a constant and identical marginal cost. First,
while the standard Bertrand-Cournot rankings still hold for Nash equilibrium prices,
we show that the results may be altered for Nash equilibrium quantities and profits.
Second, we define cooperative Bertrand and Cournot oligopoly games with transferable
utility on the basis of their non-cooperative foundation. We establish that the core of
a cooperative Cournot oligopoly game is strictly included in the core of a cooperative
Bertrand oligopoly game when the number of firms is lower or equal to 25. Other-
wise the cores cannot be compared. Moreover, we focus on the aggregate-monotonic
core, a subset of the core, that has the advantage to select point solutions satisfying
both core selection and aggregate monotonicity properties. We succeed in comparing
the aggregate-monotonic cores between Bertrand and Cournot competition regardless
of the number of firms.

Keywords: Bertrand; Cournot; Differentiated oligopoly; Cartel; Nash equilibrium; Core;
Aggregate-monotonic core

1 Introduction

The purpose of this article is to revisit the classic comparison between Bertrand and Cournot
competition in the presence of a cartel of firms. We concentrate on industries consisting
of symmetrically differentiated products represented by Shubik’s demand system (Shubik
1980), each one produced by a single firm. Furthermore, we assume that firms operate at a
constant and identical marginal cost. While cartel members maximize their joint profit by
correlating their strategies and play as a multiproduct firm, other firms, called outsiders, are
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supposed to act independently. The main interest of this competition setting is to exam-
ine the two most well-known solution concepts in non-cooperative and cooperative games,
namely, the Nash equilibrium (Nash 1950) and the core (Gillies 1953).

In oligopoly theory, a well-known result is that Bertrand competition is more compet-
itive and efficient than Cournot competition. More properly speaking, Bertrand competi-
tion yields lower prices and profits and higher quantities, consumer surplus, and welfare
than Cournot competition. Singh and Vives (1984) have first established these standard
Bertrand-Cournot rankings which have been extended by Cheng (1985), Vives (1985) and
Okuguchi (1987). Some years later the limitations of these results have been pointed out by
Dastidar (1997) exploiting cost asymmetries, and Häckner (2000), and Amir and Jin (2001)
using product differentiation. Other limitations have been put forward by, among others,
Lofaro (2002) with incomplete information on costs, Miller and Pazgal (2001) in environ-
ments with strategic managerial delegation, and Pal (2015) including networks externalities
in the latter approach.
To date, the literature comparing Bertrand and Cournot competition has exclusively fo-
cused on environments where all firms maximize their profits individually. In the first part
of this article, merely assuming that a cartel of firms has been formed and faces outsiders
acting individually, we provide new limitations of the standard Bertrand-Cournot rank-
ings discussed above. More accurately, while the standard Bertrand-Cournot rankings still
hold for Nash equilibrium prices, the results may be altered for Nash equilibrium quantities
and profits. Indeed, Bertrand competition yields higher quantities for cartel members than
Cournot competition but each outsider may raise or reduce its production depending on the
quantity change of cartel members. As a consequence, outsiders still earn lower profits in
Bertrand than in Cournot competition but the cartel joint profit may be larger in Bertrand
competition when the number of firms is sufficiently large. In spite of these results, we show
that the standard Bertrand-Cournot rankings on profits always hold when the number of
firms is lower or equal to 25 which corresponds, in practice, to the majority of differentiated
oligopolies with symmetric costs.

In economic welfare analysis, it is a well-established and old idea that monopoly power
can negatively affect social welfare. One of the main sources of monopoly power is collusion
between firms which has long been the focus of much theoretical and empirical work. While
tacit horizontal agreements have traditionally been modeled by means of repeated games
(Friedman 1971 and Abreu 1986, 1988), formal collusion1 has more recently been analyzed in
the framework of cooperative oligopoly games with transferable utility, henceforth oligopoly
TU-games. Besides the set of players, a TU-game consists of a characteristic function as-
signing to each subset of players, called coalition, a real number which represents the worth
that these players can obtain by agreeing to cooperate. In oligopolies, since the decision of
a cartel as well as its joint profit depend on the behaviors of outsiders, the determination
of the worth that a coalition can obtain requires to specify how such outsiders act. An ap-
propriate approach, called the γ-approach, is proposed by Hart and Kurz (1983) and, more
specifically, by Chander and Tulkens (1997). It consists in considering a competition setting

1An example of a cartel with formal collusion is California’s Raisin Administrative Committee created
in 1949 as a result of the Agricultural Marketing Agreement Act of 1937.
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in which cartel members face outsiders acting individually. The worth of any coalition is
then determined by the joint profit it obtains at any Nash equilibrium in the underlying
normal form oligopoly game.2

An appropriate set-valued solution for oligopoly TU-games that deals with the stability of
monopoly power is the core. Given a payoff vector in the core, the grand coalition, i.e., the
cartel comprising all firms, could form and distribute its worth as payoffs to its members in
such a way that no coalition can contest this sharing by breaking off from the grand coalition.
In oligopoly TU-games, the stability of monopoly power sustained by the grand coalition is
then related to the non-emptiness of the core. Balancedness is a necessary and sufficient con-
dition for the core to be non-empty (Bondareva 1963, Shapley 1967). Until now, the cores of
Bertrand and Cournot oligopoly TU-games have been independently studied by Zhao (1999),
Norde et al. (2002), Driessen and Meinhardt (2005), Lardon (2010, 2012) and Lekeas and
Stamatopoulos (2014) among others. In the second part of this article, we aim to build
bridges between the cores of Bertrand and Cournot oligopoly TU-games. More precisely,
based on the previous analysis on Nash equilibrium profits of cartel members, we establish
that the core of a Cournot oligopoly TU-game is strictly included in the core of a Bertrand
oligopoly TU-game when the number of firms is lower or equal to 25. Otherwise the cores
cannot be compared. Furthermore, we prove that the core of Cournot oligopoly TU-games is
non-empty which has not been established before under product differentiation. Afterwards,
we focus on the aggregate-monotonic core, a subset of the core, introduced by Calleja et al.
(2009). Whenever the core is non-empty, the aggregate-monotonic core selects point solu-
tions in the core that satisfy aggregate monotonicity property, proposed by Meggido (1974).
Roughly speaking, this natural property requires that the payoff of each player does not
decrease if the worth of the grand coalition grows. We prove that the aggregate-monotonic
core of a Cournot oligopoly TU-game is strictly included in the aggregate-monotonic core
of a Bertrand oligopoly TU-game regardless of the number of firms. Ultimately, most of our
results advocate that it is easier for firms to collude in Bertrand than in Cournot competi-
tion.
The remainder of the article is organized as follows. In Section 2, we introduce the non-
cooperative and cooperative models of differentiated Bertrand and Cournot oligopolies. Sec-
tion 3 compares Nash equilibrium prices, quantities and profits in normal form Bertrand and
Cournot oligopoly games in the presence of a cartel of firms. Section 4 is devoted to the
comparison of the cores and the aggregate-monotonic cores between Bertrand and Cournot
oligopoly TU-games. Section 5 gives some concluding remarks on the difficulty to extend
the analysis from symmetric to asymmetric product differentiation or costs. Lastly, Section
6 is the appendix where proofs of some results are presented.

2Initially, the first two approaches which permit to convert a normal form game into a TU-game, called
the α and β-approaches, are suggested by Aumann (1959). They consist in computing the max-min and the
min-max payoffs of each coalition respectively. However, these two approaches are not the most appropriate
with regard to the rational behaviors of firms in oligopolies as discussed by Lardon (2012).
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2 Bertrand and Cournot models

In this section, we first define normal form Bertrand and Cournot oligopoly games by taking
into account the possibility for some firms to cooperate. Then, we introduce the general ap-
proach of TU-games as well as the solution concepts of the core and the aggregate-monotonic
core. Finally, we convert normal form oligopoly games into oligopoly TU-games for both
competition types.

2.1 Normal form Bertrand and Cournot oligopoly games with a single
partnership

We consider a set of firms N = {1, 2, . . . , n} where n ≥ 3 in a differentiated oligopoly, each
producing a different variety of goods. Each producer i ∈ N operates at a constant marginal
and average cost of c ∈ R+.

In Bertrand competition, the environment of each producer i ∈ N is described by his
brand demand function, Di : Rn

+ −→ R, derived from Shubik’s demand system (Shubik
1980), and given by:

Di(p1, . . . , pn) = V − pi − r
(
pi −

1

n

n∑
j=1

pj

)
(1)

where pi ≥ 0 is the price charged by firm i, V > c is the intercept of demand3 and r > 0 is
the substitutability parameter. The quantity demanded of firm i’s good depends on its own
price pi and on the difference between pi and the average price in the industry

∑n
j=1 pj/n.

When r is close to zero, products become unrelated, and when r approaches infinity, they
become homogeneous. Profits for the ith producer in terms of prices, πBi : Rn

+ −→ R, are
expressed as:

πBi (p1, . . . , pn) = (pi − c)Di(p1, . . . , pn) (2)

In Cournot competition, each producer i ∈ N is associated with an inverse brand demand
function, Pi : Rn

+ −→ R, obtained by inverting Shubik’s demand system (1), and given by:

Pi(q1, . . . , qn) = V − qi +
r

(1 + r)

(
qi −

1

n

n∑
j=1

qj

)
(3)

where qi ≥ 0 is the quantity produced by firm i. The market price of firm i’s good depends on
its own quantity qi and on the difference between qi and the average quantity in the industry∑n

j=1 qj/n. Note that inverting Shubik’s demand system does not change the intercept V
which will make the comparative analysis in the next section easier. Profits for the ith
producer in terms of quantities, πCi : Rn

+ −→ R, are expressed as:

πCi (q1, . . . , qn) = (Pi(q1, . . . , qn)− c)qi (4)
3The condition V > c ensures that equilibrium quantities will be positive.
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Let 2N denotes the power set of N . We consider the situation in which a subset of firms
S ∈ 2N\{∅} form a cartel while outsiders continue to act independently. The size of cartel
S is denoted by s = |S|. From now on, in order to facilitate reading, we will use index i
to denote any cartel member and index j to refer to any outsider. The profit of any cartel
S ∈ 2N\{∅} is defined as the sum of the profits of its members for both competition types,
i.e.: ∑

i∈S
πBi (p1, . . . , pn) and

∑
i∈S

πCi (q1, . . . , qn) (5)

While cartel members behave as a multiproduct firm by the signature of a binding agreement
which enables them to correlate their strategies (prices or quantities), outsiders are assumed
to act independently and aim to maximize their individual profit.

2.2 TU-games and core solution concepts

Generally speaking, a cooperative game with transferable utility or, for short, a TU-game
consists of a set of players N and a characteristic function v : 2N −→ R with the convention
that v(∅) = 0. Subsets of N are called coalitions, and the number v(S) is the worth of
coalition S that these members can obtain by agreeing to cooperate. We denote by G the
set of TU-games.
A natural property of TU-games that will interest us is symmetry. A TU-game (N, v) ∈ G
is symmetric if there exists a function f : N −→ R such that for every coalition S ∈ 2N\{∅},
v(S) = f(s). In words, the worth of any coalition S only depends on its size and not on the
identity of its members.

In a TU-game (N, v) ∈ G, every player i ∈ N may receive a payoff xi ∈ R. A vector
x = (x1, . . . , xn) is a payoff vector. For any coalition S ∈ 2N\{∅} and any payoff vector
x ∈ Rn, we define x(S) =

∑
i∈S xi. Given a TU-game (N, v) ∈ G, a payoff vector x ∈ Rn

is efficient if x(N) = v(N), i.e., the worth of the grand coalition is fully distributed among
players. The set of efficient payoff vectors is denoted by X(N, v). A single-valued solution is
a function σ which assigns to every TU-game (N, v) ∈ G a payoff vector σ(N, v) ∈ X(N, v).
A payoff vector x ∈ Rn is acceptable if for every coalition S ∈ 2N\{∅}, x(S) ≥ v(S), i.e.,
the payoff vector provides a total payoff to the members of coalition S that is at least as
great as its worth. The core (Gillies 1953) of a TU-game (N, v) ∈ G, denoted by C(N, v),
is the set of efficient payoff vectors that are acceptable, i.e.:

C(N, v) = {x ∈ Rn : ∀S ∈ 2N\{∅}, x(S) ≥ v(S) and x(N) = v(N)} (6)

Given a payoff vector in the core, the grand coalition could form and distribute its worth
as payoffs to its members in such a way that any coalition cannot contest this sharing by
breaking off from the grand coalition.
According to the Bondareva-Shapley theorem (Bondareva 1963, Shapley 1967), balancedness
property is a necessary and sufficient condition to guarantee the non-emptiness of the core.
Let B ⊆ 2N\{∅} be a family of coalitions and denote by Bi = {S ∈ B : i ∈ S} the subset of
those coalitions of which player i is a member. Then B is said to be a balanced family of
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coalitions if for every S ∈ B there exists a balancing weight λS ∈ R+ such that
∑

S∈Bi λS = 1
for all i ∈ N . We denote by Λ(N) the set of balanced collections and Λ∗(N) the subset of
those collections not containing the grand coalition. A TU-game (N, v) ∈ G is balanced if
for every balanced collection B ∈ Λ(N) it holds that:∑

S∈B
λSv(S) ≤ v(N).

The Bondareva-Shapley theorem establishes that a TU-game (N, v) ∈ G has a non-empty
core if and only if it is balanced. Furthermore, a single-valued solution σ is said to satisfy
the core selection property if whenever the TU-game is balanced, then σ(N, v) ∈ C(N, v).

Another natural property is aggregate monotonicity, introduced by Meggido (1974). A
single-valued solution σ is said to satisfy the aggregate monotonicity property if for any two
TU-games (N, v), (N, v′) ∈ G, with v(S) = v′(S) for any S ⊂ N and v(N) < v′(N), it holds
that σ(N, v) ≤ σ(N, v′), where ≤ is the weak inequality for Rn, i.e., x ≤ y if xi ≤ yi for
all i ∈ N . Roughly speaking, this property requires that the payoff of each player does not
decrease if the worth of the grand coalition grows.
We now introduce the notion of root game that will be necessary for the definition of the
aggregate-monotonic core. Given a TU-game (N, v) ∈ G, the associated root game, denoted
by (N, vR), is defined as vR(N) = minx∈Rn{x(N) : ∀S ⊂ N , x(S) ≥ v(S)} and vR(S) =
v(S) for any S ⊂ N . The root game coincides with the original one except for the grand
coalition. Instead, we take the minimum level of efficiency in order to get balancedness.
Hence an alternative formula for the worth of the grand coalition in the root game is the
following:

vR(N) = max
B∈Λ∗(N)

∑
S∈B

λSv(S) (7)

Note that v(N) ≥ vR(N) if and only if C(N, v) 6= ∅. The aggregate-monotonic core (Calleja
et al. 2009) of a TU-game (N, v) ∈ G, denoted by AC(N, v), is defined as:

AC(N, v) = C(N, vR) + (v(N)− vR(N)) ·∆n (8)

where ∆n denotes the unit-simplex, i.e., ∆n = {x ∈ Rn
+ : x(N) = 1}.

The aggregate-monotonic core is well-defined since (N, vR) is balanced. We observe that it
results from two sequential steps. First, it selects an element in the core of the root game
(N, vR). Second, it consists in adding a non-negative or a non-positive vector to go back
to the initial level of efficiency of (N, v). Whenever the core is non-empty, it holds that
AC(N, v) ⊆ C(N, v). Calleja et al. (2009) have proved that the aggregate-monotonic core
is the subset of X(N, v) which any single-valued solution σ should pick up to satisfy both
core selection and aggregate monotonicity properties.

2.3 Bertrand and Cournot oligopoly TU-games

Based on the two previous subsections, we now define Bertrand and Cournot oligopoly TU-
games following the γ-approach (Hart and Kurz 1983, Chander and Tulkens 1997) which is
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appropriate in oligopolies. The worth of any coalition is then determined by the total profit
of its members at any Bertrand (Cournot, respectively)-Nash equilibrium.4 Given a set of
firms N , the Bertrand and Cournot oligopoly TU-games, denoted by (N, vB) and (N, vC)
respectively, are defined for any coalition S ∈ 2N\{∅} as:

vB(S) =
∑
i∈S

πBi (p∗s, p̃s),

and

vC(S) =
∑
i∈S

πCi (q∗s , q̃s),

where (p∗s, p̃s) and (q∗s , q̃s) are the unique Bertrand and Cournot-Nash equilibria5 respec-
tively with the understanding that each cartel member i ∈ S charges a price p∗s and produces
a quantity q∗s , and each outsider j ∈ N\S charges a price p̃s and produces a quantity q̃s.
Since products are symmetrically differentiated and firms operate at a constant and identical
marginal cost both Nash equilibria only depend on the size s of coalition S. As a consequence,
identical parties (cartel members or outsiders) earn identical profits for both competition
types. Hence the worth of any coalition S can be expressed as either vB(S) = sπBi (p∗s, p̃s)
or vC(S) = sπCi (q∗s , q̃s) where i ∈ S is a representative cartel member. It follows from these
remarks that Bertrand and Cournot oligopoly TU-games (N, vB) ∈ G and (N, vC) ∈ G are
symmetric.
When the grand coalition forms, cartel members behave as a multiproduct monopoly max-
imizing its total profit. In oligopolies, we ascertain that any efficient payoff vector in the
core permits to stabilize the monopoly power into the grand coalition. Furthermore, the
aggregate-monotonic core selects a subset of those payoff vectors for which if the profit of
multiproduct monopoly grows, no cartel member can suffer from it.

3 Comparative analysis of Nash equilibrium prices, quantities
and profits

In this section, we first derive from the maximization of profits given by (2), (4) and (5)
the reaction functions of any cartel member and any outsider for both competition types.
Then, we proceed to a comparative analysis of Nash equilibrium prices, quantities and
profits involving a cartel of firms. Since products are symmetrically differentiated and firms
operate at a constant and identical marginal cost, any Bertrand (Cournot, respectively)-
Nash equilibrium implies that identical parties (cartel members or outsiders) must choose
identical prices (quantities, respectively) denoted by pi (qi, respectively) for each cartel
member, and pj (qj , respectively) for each outsider. Given a coalition S ∈ 2N\{∅, N}, this
will permit us to represent the reaction functions into simple two-dimensional diagrams in

4A Nash equilibrium involving a subset of players correlating their strategies is also called a partial
agreement equilibrium.

5This uniqueness result is proved in Section 3.
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price space (quantity space, respectively) where the vertical dimension indicates the price
pi charged (quantity qi produced, respectively) by any cartel member i ∈ S, and where the
horizontal dimension indicates the price pj charged (quantity qj produced, respectively) by
any outsider j ∈ N\S. Furthermore, we assume that c = 0. This is without loss of generality
as we can perform the transformations V̄ = V − c, p̄i = pi− c and p̄j = pj− c in price space.

3.1 Reaction functions

In Bertrand competition, denote by RB
I (pj) the price charged by each cartel member for any

given price pj charged by each outsider. This reaction function derived from the maximiza-
tion of the joint profit

∑
i∈S π

B
i (p1, . . . , pn) given by (5) is upward sloping:

RB
I (pj) =

nV + r(n− s)pj
2(n+ r(n− s))

(9)

Denote by RB
O(pi) the price charged by each outsider for any given price pi charged by

each cartel member. This reaction function derived from the maximization of the profit
πBj (p1, . . . , pn), j ∈ N\S, given by (2), is upward sloping:

RB
O(pi) =

nV + rspi
2n+ r(n+ s− 1)

(10)

Both curves have slopes less than one and intersect at the unique Bertrand-Nash equilibrium
(p∗s, p̃s). In Figure 1, this Bertrand-Nash equilibrium occurs at B where reaction functions
RB

I (pj) and RB
O(pi) intersect.

In Cournot competition, denote by RC
I (qj) the production of each cartel member for

any given quantity qj produced by each outsider. This reaction function derived from the
maximization of the joint profit

∑
i∈S π

C
i (q1, . . . , qn) given by (5) is downward sloping:

RC
I (qj) =

n(1 + r)V − r(n− s)qj
2(n+ rs)

(11)

Denote by RC
O(qi) the quantity reaction of each outsider for any given quantity qi produced

by each cartel member. This reaction function derived from the maximization of the profit
πCj (q1, . . . , qn), j ∈ N\S, given by (4), is downward sloping:

RC
O(qi) =

n(1 + r)V − rsqi
2n+ r(n− s+ 1)

(12)

Both curves intersect at the unique Cournot-Nash equilibrium (q∗s , q̃s). In Figures 2, 3 and
4, this Cournot-Nash equilibrium occurs at C where reaction functions RC

I (qj) and RC
O(qi)

intersect.

3.2 Comparative analysis of Nash equilibrium prices

In order to make price comparison, we study reaction functions of both competition types
in price space. In Cournot competition, Shubik’s demand system given by (1) permits to
express the reaction function of any cartel member given by (11) in price space as:
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R
C
I (pj) =

(n+ rs)(nV + r(n− s)pj)
2n2(1 + r) + nr2s− r2s2

(13)

and the reaction function of any outsider given by (12) as:

R
C
O(pi) =

(n+ r)(nV + rspi)

n2(2 + r) + nr(s+ 1) + r2s
(14)

In price space, both curves intersect at the unique Cournot-Nash equilibrium in terms of
prices (Pi(q

∗
s , q̃s), Pj(q

∗
s , q̃s)) with the understanding that each cartel member and each out-

sider sells its products at price Pi(q
∗
s , q̃s) and Pj(q

∗
s , q̃s) respectively. In Figure 1, this

Cournot-Nash equilibrium occurs at C where reaction functionsRC
I (pj) andR

C
O(pi) intersect.

pj

pi

RB
I (pj)

R
C
I (pj)

RB
O(pi) R

C
O(pi)

Pi(q
∗
s , q̃s)

Pj(q
∗
s , q̃s)

p∗s

p̃s

B

C

p1i

Figure 1: Dynamic adjustment process in price
space from Cournot to Bertrand competition

In price space, both the y-intercepts and the slopes of the reaction functions in Cournot
competition are higher than those of reaction functions in Bertrand competition (the proofs
are given in Subsection 6.1 in the appendix). One conclusion immediately follows from these
geometrical properties.

Proposition 3.1 All prices are larger in Cournot than in Bertrand competition.

Hence the standard Bertrand-Cournot rankings on prices still hold. The dynamic adjust-
ment process from Cournot to Bertrand competition can be described as follows (Figure
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1). In Bertrand competition, at the unique Cournot-Nash equilibrium in terms of prices
(Pi(q

∗
s , q̃s), Pj(q

∗
s , q̃s)), any cartel has negative marginal revenue and therefore must reduce

price from Pi(q
∗
s , q̃s) to p1

i which is its best response to Pj(q
∗
s , q̃s) charged by each outsider.

Then, because reaction functions are upward sloping (due to strategic complementarity of
the price strategies) each outsider will react to this new price configuration by reducing its
own price. In response, the cartel further reduces price and so until reaching the unique
Bertrand-Nash equilibrium (p∗s, p̃s).

3.3 Comparative analysis of Nash equilibrium quantities

In order to make quantity comparison, we study reaction functions of both competition
types in quantity space. In Bertrand competition, Shubik’s inverse demand system given by
(3) permits to express the reaction function of any cartel member given by (9) in quantity
space as:

R
B
I (qj) =

(n+ r(n− s))((1 + r)nV − r(n− s)qj)
2n2(1 + r) + nr2s− r2s2

(15)

and the reaction function of any outsider given by (10) as:

R
B
O(qi) =

(n(1 + r)− r)((1 + r)nV − rsqi)
n2(2 + 3r + r2)− nr(1 + r)(s+ 1) + r2s

(16)

In quantity space, both curves intersect at the unique Bertrand-Nash equilibrium in terms
of quantities (Di(p

∗
s, p̃s), Dj(p

∗
s, p̃s)) with the understanding that the quantity demanded of

each cartel member and each outsider are Di(p
∗
s, p̃s) and Dj(p

∗
s, p̃s) respectively. In Figures

2, 3 and 4 this Bertrand-Nash equilibrium occurs at B where reaction functionsRB
I (qj) and

R
B
O(qi) intersect.

In quantity space, both the y-intercepts and the absolute value of the slopes of the reaction
functions in Bertrand competition are higher than those of reaction functions in Cournot
competition (the proofs are given in Subsection 6.2 in the appendix). Unlike Nash equilib-
rium prices, these geometrical properties don’t permit to compare Nash equilibrium quan-
tities. However, we analytically establish that the quantity change of each cartel member is
negative from Bertrand to Cournot competition.

Proposition 3.2 Quantity produced by each cartel member is larger in Bertrand than in
Cournot competition.

The proof is given in Subsection 6.4 in the appendix. We observe that the same conclusion
does not hold for the quantity change of each outsider. For example, on the basis of a de-
mand intercept V = 1000, a number of firms n = 25 and a substitutability parameter r = 2
we compare the quantity change of each outsider from Bertrand to Cournot competition by
distinguishing three illustrative cases:6

- when s = 2, the quantity change q̃s −Dj(p
∗
s, p̃s) ' 736− 745 = −9 is negative. Since the

6The expressions of Nash equilibrium quantities produced by each cartel member and each outsider in
Bertrand and Cournot competition are given by (19), (20), (22) and (23) in the appendix.

10



two cartel members have incentive to act as price-taking profit maximizer in Cournot com-
petition, their low quantity change q∗s −Di(p

∗
s, p̃s) ' 709− 735 = −26 does not significantly

impact on price for all outsiders. With this low increase in price, each outsider has negative
marginal revenue and must decrease its quantity too.
- when s = 10, the quantity change q̃s − Dj(p

∗
s, p̃s) ' 774 − 767 = 70 is positive. Since

the ten cartel members have incentive to act as price-making profit maximizer in Cournot
competition, there is a significant quantity change q∗s −Di(p

∗
s, p̃s) ' 575− 657 = −82. Each

outsider has then a positive marginal revenue and will take advantage of this price raising
by increasing its own quantity.
- when s = 24, the quantity change q̃s−Dj(p

∗
s, p̃s) ' 944−956 = −12 is negative. Since the

cartel has quasi-monopoly power, the quantity produced by each cartel member in Bertrand
competition is close to its optimal production in Cournot competition. Hence, the quantity
change q∗s −Di(p

∗
s, p̃s) ' 501 − 513 = −12 is low. As in the first case, the unique outsider

will respond by decreasing its quantity.
Thus, the quantity change of each outsider from Bertrand to Cournot competition is not
monotonic with respect to the size of the cartel which leads to distinguish two complemen-
tary cases in quantity space depending on whether each outsider decides to reduce (Figure
2) or raise (Figure 3) its own quantity.

qj

qi

R
B
I (qj)

RC
I (qj)

R
B
O(qi)

RC
O(qi)

Dj(p
∗
s, p̃s)

Di(p
∗
s, p̃s)

q̃s

q∗s A

B

C

D

Figure 2: Nash equilibrium quantities when each outsider re-
duces its quantity from Bertrand to Cournot competition
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qj

qi

R
B
I (qj)

RC
I (qj)

R
B
O(qi)RC

O(qi)

Di(p
∗
s, p̃s)

Dj(p
∗
s, p̃s)

q∗s

q̃s

A

B

C

Figure 3: Nash equilibrium quantities when each outsider
raises its quantity from Bertrand to Cournot competition

In light of the above example, we identify typical oligopoly cases in which each outsider
raises its quantity from Bertrand to Cournot competition.

Proposition 3.3 Quantity produced by each outsider is smaller in Bertrand than in Cournot
competition providing that we consider a cartel of size s = n/k for some k > 17 and the
number of firms n is sufficiently large.

Proof: Consider the asymptotic case of an industry containing an infinite number of firms
n→∞ with a cartel of significant size s→∞/k =∞ as illustrated in Figure 4. As a con-
sequence, the asymptotic reaction functions of any cartel member RB

I (qj) and RC
I (qj) differ

for any k > 1.8 By contrast, since each outsider acts as a price-taking profit maximizer
its asymptotic reaction functions RB

O(qi) and RC
O(qi) are equal (see footnote 8). In quantity

space, decompose the quantity change from B to C into two stages. First, it follows from
Proposition 3.2 that each cartel member reduces its quantity from Di(p

∗
s, p̃s) to q∗s to achieve

A which raises price for all outsiders. Second, in response each atomic outsider must increase
its own quantity from Dj(p

∗
s, p̃s) to q̃s. �

7Rational number k can be interpreted as the weight of the cartel in the industry. For example, k = 2
means that the cartel represents half of the total number of firms in the industry. This permits to study
asymptotically when n→ ∞ the behaviors of cartel members and outsiders.

8The expressions of asymptotic reaction functions are given in Subsection 6.3 in the appendix. Further-
more, it is proved that both the y-intercepts and the absolute value of the slopes of asymptotic reaction
function RB

I (qj) are higher than those of reaction function RC
I (qj).
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qj

qi

R
B
I (qj)

RC
I (qj)

R
B
O(qi) = RC

O(qi)

Di(p
∗
s, p̃s)

Dj(p
∗
s, p̃s) q̃s

q∗s
A

B

C

Figure 4: Asymptotic Nash equilibrium quantities

3.4 Comparative analysis of Nash equilibrium profits

Although the comparison of Nash equilibrium profits according to the type of product dif-
ferentiation has already been drawn (Häckner 2000) the influence of the market structure on
the profit change of firms from Bertrand to Cournot competition remains to be determined.

Proposition 3.4 Each outsider earns lower profits in Bertrand than in Cournot compe-
tition. Each cartel member earns lower profits in Bertrand than in Cournot competition
providing that each outsider reduces its quantity from Bertrand to Cournot competition.

Proof: In quantity space, decompose the quantity change from B to C into two stages as
illustrated in Figures 2 and 3. First, each cartel member reduces its quantity from Di(p

∗
s, p
∗
j )

to q∗s to achieve A. By gross substitutability, this raises price for all outsiders, and hence
benefits them. Second, facing q∗s , each outsider reduces its quantity (Figure 2) or raises it
(Figure 3) to q̃s to achieve C which is profit-maximizing.
When each outsider reduces its quantity from Bertrand to Cournot competition, a similar
argument permits to conclude that each cartel member earns larger profits by decomposing
the quantity change from B to C via D (Figure 2). �

The number of firms turns out to be a key parameter in order to ensure larger profits to
cartel members in Cournot than in Bertrand competition for at least two reasons. First,
when n is small each outsider has an incentive to act as a price-making profit maximizer
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by reducing its quantity (Figure 2). Second, even if a small number of outsiders raise their
quantity (Figure 3), this does not cause a substantial damage on the profit of each cartel
member. For example, when V = 1000, n = 15, s = 12 and r = 2, although the quantity
change of each outsider q̃s−Dj(p

∗
s, p̃s) ' 862− 860 = 2 is positive, the profit change of each

cartel member πCi (q∗s , q̃s)− πBi (p∗s, p̃s) ' 225985− 224000 = 1985 also remains positive.9

Proposition 3.5 If n ≤ 25, then each cartel member earns higher profits in Cournot than
in Bertrand competition.

This result is proved by resorting to iterative computations detailed in Subsection 6.4 in
the appendix. It suggests to distinguish two oligopoly types: oligopoly of small or medium
size (n ≤ 25) for which the standard Bertrand-Cournot rankings on profits still hold and
oligopoly of large size (n > 25) for which one asymptotic conclusion can be established.

Proposition 3.6 If we consider a cartel of size s = n/k for some k > 1 and the number of
firms n is sufficiently large, then each cartel member earns higher profits in Bertrand than
in Cournot competition.

This result is analytically proved in Subsection 6.4 in the appendix. To get the intuition
behind this result, note that for any k > 1 and n → ∞, outsiders become enough to cause
a substantial damage on the profit of each cartel member by increasing their quantity from
Bertrand to Cournot competition (Proposition 3.3). For example, when V = 1000, n = 50,
k = 2 (hence there are 25 outsiders) and r = 2, the profit change πCi (q∗s , q̃s)− πBi (p∗s, p̃s) '
200485 − 200152 = 333 is positive (see footnote 9). However, with the same parameters
V , k and r if the number of firms increases from 50 to 100 (hence there are 50 outsiders)
the profit change πCi (q∗s , q̃s) − πBi (p∗s, p̃s) ' 199423 − 199797 = −374 becomes negative as
predicted by Proposition 3.6.

4 Comparison of the cores and the aggregate-monotonic cores

In this section, based on the previous analysis on Nash equilibrium profits of cartel members,
we first establish the result on the cores. Then, we prove that the core of Cournot oligopoly
TU-games is non-empty. Finally, we proceed to the comparison of the aggregate-monotonic
cores.

First, the maximizations of the joint profit of the grand coalition
∑

i∈N πBi (p1, . . . , pn)
and

∑
i∈N πCi (q1, . . . , qn) given by (5) lead to the same worth since both problems are

perfectly dual, i.e., vB(N) = vC(N). Moreover, it follows from Proposition 3.5 that
vB(S) = sπBi (p∗s, p̃s) < sπCi (q∗s , q̃s) = vC(S) when n ≤ 25. Hence we deduce from (6)
the following result.

Corollary 4.1 For any n ≤ 25, the core of (N, vC) is strictly included in the core of (N, vB).
9The expressions of Nash equilibrium profits of each cartel member in Bertrand and Cournot competition

are given by (21) and (24) in the appendix.
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This result highlights that it is easier for firms to collude in Bertrand than in Cournot
competition when n ≤ 25 which corresponds, in practice, to the majority of differenti-
ated oligopolies with symmetric costs. Otherwise Proposition 3.6 suggests that the cores
of Bertrand and Cournot oligopoly TU-games cannot be compared. For example, on the
basis of a demand intercept V = 10, a number of firms n = 50 and a substitutability pa-
rameter r = 28, we want to establish that C(N, vC) 6⊆ C(N, vB). The worth of the grand
coalition is given by vB(N) = vC(N) = 1250 (see footnote 9). Now, consider coalition
S = {1, 2, . . . , 41} and payoff vector x = ((305

41 )41
i=1, (105)50

i=42) ∈ Rn. Hence any player in S
obtains the lowest payoff according to x. It follows from x(N) = 1250 that x ∈ X(N, vB) =
X(N, vC). The worth of coalition S is given by either vB(S) = 498688919375

1633129744 ' 305, 3578 or
vC(S) = 7122110000

23551609 ' 302, 4044. Note that vB(S) > vC(S) as predicted by Proposition 3.6.
Furthermore, we deduce from x(S) = 305 < vB(S) that x 6∈ C(N, vB). It remains to show
that x ∈ C(N, vC). To this end, we distinguish two complementary cases. First, consider
any coalition S ∈ 2N\{∅} such that S ⊆ S. Then, it holds that:

x(S)− vC(S) =
305s

41
− 237568s(28s+ 50)104

(2800(s+ 51) + 784(52− s)s+ 104)2

=
5s(146461s4 − 16278094s3 + 395208569s2 + 1041879300s+ 1758552500)

41(49s2 − 2723s− 9550)2
,

which is non-negative for any s ≤ 41. Since any player in S obtains the lowest payoff
according to x, it follows from the symmetry of (N, vC) ∈ G that x(S)− vC(S) ≥ 0 for any
S ∈ 2N\{∅} such that s ≤ 41. Second, consider any coalition S ∈ 2N\{∅} such that S ⊇ S.
Then, it holds that:

x(S)− vC(S) = 305 + 105(s− 41)− 237568s(28s+ 50)104

(2800(s+ 51) + 784(52− s)s+ 104)2

=
5(50− s)(−50421s4 + 5003684s3 − 99354409s2 − 824884550s− 1459240000)

(49s2 − 2723s− 9550)2
,

which is non-negative for any s ≥ 42. By the same argument as above, the symmetry of
(N, vC) ∈ G implies that x(S)− vC(S) ≥ 0 for any S ∈ 2N\{∅} such that s ≥ 42. Thus, we
conclude that x ∈ C(N, vC).

Then, we aim to establish that the core of Cournot oligopoly TU-games is non-empty.
We first need the following lemma.

Lemma 4.2 In Cournot competition, when s < n, the profit of each cartel member attains
its maximum at s = 1 or at s = n− 1. Furthermore, when n ≥ 5, this profit is maximum at
s = n− 1, i.e., for any s ∈ {1, . . . , n− 2}, πCi (q∗n−1, q̃n−1) > πCi (q∗s , q̃s).

This result is analytically proved in Subsection 6.4 in the appendix.

Proposition 4.3 The core of any Cournot oligopoly TU-game (N, vC) ∈ G is non-empty.
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Proof: It follows from (7) that a Cournot oligopoly TU-game (N, vC) ∈ G is balanced,
and so has a non-empty core, if and only if vC(N) ≥ vCR(N) where (N, vCR) is the root
game of (N, vC). Furthermore, we deduce from Lemma 4.2 that the worth of the grand
coalition vCR(N) is obtained either at the balanced collection {{k} : k ∈ N} or at the balanced
collection {N\{k} : k ∈ N}. Hence, it holds that:

vCR(N) = nmax{πCi (q∗1, q̃1), πCi (q∗n−1, q̃n−1)} (17)

It remains to show that πCi (q∗n, q̃n) ≥ max{πCi (q∗1, q̃1), πCi (q∗n−1, q̃n−1)}. Using the expression
of Nash equilibrium profit of any cartel member in Cournot competition (see footnote 9),
one gets:

πCi (q∗n, q̃n)− πCi (q∗1, q̃1) =
(V r(n− 1))2

4(r(1 + n) + 2n)2

> 0,

and

πCi (q∗n, q̃n)− πCi (q∗n−1, q̃n−1) =
V 2r2((5n2 − 14n+ 9)r2 + (8n3 − 16n2 + 4n)r + 8n3 − 12n2)

4(3r2(n− 1) + 4n2(1 + r))2

> 0.

Hence we conclude that vC(N) ≥ vCR(N) which is equivalent to C(N, vC) 6= ∅. �

This result establishes that there always exists an efficient payoff vector which permits to
stabilize the monopoly power in Cournot competition.

Third, we compare the aggregate-monotonic cores between Bertrand and Cournot com-
petition. To this end, we need the following result.

Theorem 4.4 (Deneckere and Davidson 1985) In Bertrand competition, the profit of
each cartel member is strictly increasing with respect to s, i.e., for any s ∈ {1, . . . , n− 1},
πBi (p∗s+1, p̃s+1) > πBi (p∗s, p̃s).

Theorem 4.5 The aggregate-monotonic core of (N, vC) is strictly included in the aggregate-
monotonic core of (N, vB).

Proof: First, we determine the aggregate-monotonic cores of (N, vB) ∈ G and (N, vC) ∈ G
respectively. It follows from Theorem 4.4 that the worth of the grand coalition vBR (N) is
obtained at the balanced collection {N\{k} : k ∈ N}. Hence, it holds that:

vBR (N) = nπBi (p∗n−1, p̃n−1) (18)
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where (N, vBR ) is the root game of (N, vB). Moreover, since oligopoly TU-games (N, vB)
and (N, vC) are symmetric, the cores of their associated root games C(N, vBR ) and C(N, vCR)
respectively are singletons.10 We deduce from (17) and (18) that:

C(N, vBR ) = {(πBi (p∗n−1, p̃n−1))ni=1},

and

C(N, vCR) = {(max{πCi (q∗1, q̃1), πCi (q∗n−1, q̃n−1)})ni=1}.

It follows from (8) that:

AC(N, vB) = {(πBi (p∗n−1, p̃n−1))ni=1 + (vB(N)− nπBi (p∗n−1, p̃n−1)) ·∆n},

and

AC(N, vC) = {(max{πCi (q∗1, q̃1), πCi (q∗n−1, q̃n−1)})ni=1

+(vC(N)− nmax{πCi (q∗1, q̃1), πCi (q∗n−1, q̃n−1)}) ·∆n},

where ∆n denotes the unit-simplex.
Second, since vB(N) = vC(N) it is sufficient to show that πCi (q∗n−1, q̃n−1) > πBi (p∗n−1, p̃n−1)
in order to establish that AC(N, vC) ⊂ AC(N, vB). Using the expressions of Nash equilib-
rium profits of any cartel member in Bertrand and Cournot competition (see footnote 9),
one gets:

πCi (q∗n−1, q̃n−1)− πBi (p∗n−1, p̃n−1) =
V 2nr3(n− 1)(2 + r)

(3r2(n− 1) + 4n2(1 + r))2

> 0,

which concludes the proof. �

Finally we verify that the aggregate-monotonic core may be strictly included in the core for
both competition types. For example, when N = {1, 2, 3, 4}, V = 9 and r = 2, the worth of
any coalition is given in the following table (see footnote 9).

10On the set of balanced TU-games, the core of a root game (N, vR) coincides with the contraction core
introduced by Gonzalez and Lardon (2016). For any symmetric TU-game, Gonzalez and Lardon (2016) have
proved that the contraction core is a singleton.
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s 1 2 3 4

vB(S)
2268

121
' 18, 74

54675

1444
' 37, 86

1093500

18769
' 58, 26 81

vC(S)
3240

169
' 19, 17

19683

512
' 38, 44

1102248

18769
' 58, 73 81

The aggregate-monotonic cores of (N, vB) ∈ G and (N, vC) ∈ G are given by:

AC(N, vB) =

{
x ∈ Rn : ∀i ∈ N, xi ≥

364500

18769
' 19, 42 and x(N) = 81

}
,

and

AC(N, vC) =

{
x ∈ Rn : ∀i ∈ N, xi ≥

367416

18769
' 19, 57 and x(N) = 81

}
,

respectively. Now, consider payoff vectors xB = (364499
18769 ,

1155790
56307 , 1155790

56307 , 1155790
56307 ) and xC =

(367415
18769 ,

1152874
56307 , 1152874

56307 , 1152874
56307 ). We can verify that xB ∈ C(N, vB) but xB 6∈ AC(N, vB),

and xC ∈ C(N, vC) but xC 6∈ AC(N, vC).

5 Concluding remarks

Throughout this work we have revisited the classic comparison between Bertrand and
Cournot competition. First, we have shown that merely assuming the formation of a cartel
of firms or, equivalently, the existence of a multiproduct firm in an industry are sufficient to
alter the standard Bertrand-Cournot rankings on quantities and profits. Second, comparing
the cores and the aggregate-monotonic cores of Bertrand and Cournot oligopoly TU-games,
we have proved that in most cases it is easier for firms to collude in Bertrand than in Cournot
competition.

Although our analysis is restricted to industries with symmetric product differentiation
and costs, we argue that it becomes a very difficult task to compare asymmetric Nash equi-
librium prices, quantities and profits both analytically and geometrically. Moreover, without
symmetry assumptions Bertrand and Cournot oligopoly TU-games are not symmetric any-
more which makes the set of linear inequalities in (6) much more difficult to analyze even
with a small number of firms. For example, when N = {1, 2, 3}, r = 2, and constant
marginal costs of firms 1, 2 and 3 are given by c1 = 0, c2 = 2δ, and c3 = 4δ respectively,
where 0 ≤ δ < (1/8)V ,11 the worth of any coalition in Bertrand and Cournot competition
is given in the following table.

11This condition ensures that equilibrium quantities are positive.
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S vB(S) vC(S)

{1} 21(4V + 7δ)2

1600

45(2V + 3δ)2

784

{2} 21(V − 2δ)2

100

45(V − 2δ)2

196

{3} 21(4V − 23δ)2

1600

45(2V − 11δ)2

784

{1, 2} 160V 2 − 40δV + 547δ2

363

56V 2 − 28δV + 185δ2

121

{1, 3} 2(80V 2 − 320δV + 1409δ2)

363

2(28V 2 − 112δV + 475δ2)

121

{2, 3} 160V 2 − 1240δV + 2947δ2

363

56V 2 − 420δV + 969δ2

121

{1, 2, 3} 3(V 2 − 4δV + 12δ2)

4

3(V 2 − 4δV + 12δ2)

4

Calculating the difference between vC(S) and vB(S) for any S ∈ 2N\{∅, N} leads to:

vC({1})− vB({1}) =
3(512V 2 − 1208δV − 3307δ2)

78400
,

vC({2})− vB({2}) =
24(V − 2δ)2

1225
,

vC({3})− vB({3}) =
3(512V 2 − 2888δV + 53δ2)

78400
,

vC({1, 2})− vB({1, 2}) =
4(2V 2 − 11δV + 2δ2)

363
,

vC({1, 3})− vB({1, 3}) =
8(V − 2δ)2

363
,
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and

vC({2, 3})− vB({2, 3}) =
4(2V 2 − 5δV − 10δ2)

363
.

Hence, for any S ∈ 2N\{∅, N}, it holds that vC(S) − vB(S) > 0 which implies that
C(N, vC) ⊂ C(N, vB). Thus, the result on the cores given by Corollary 4.1 still holds
in this example. The analysis of the aggregate-monotonic cores becomes much more difficult
too, in part because Bertrand and Cournot oligopoly TU-games with asymmetric costs make
the minimum level of efficiency given by (7) hard to compute.
To finish, our work indicates that much more remains to be explored in understanding the
collusive behaviors of firms in oligopolies. Following in the footsteps of this work, it is pos-
sible to extend our analysis from symmetric to asymmetric product differentiation or costs
assuming a restricted number of firms. Such extensions will be a significant step to help
social planner as well as competition authorities to make optimal decisions.
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6 Appendix

6.1 Geometrical properties of the reaction functions in price space

- Comparison of the y-intercepts of RB
I (pj) and RC

I (pj) given by (9) and (13) respectively:

(n+ rs)nV

2n2(1 + r) + nr2s− r2s2
− nV

2(n+ r(n− s))
=

nV r2s(n− s)
2(n+ r(n− s))(2n2(1 + r) + nr2s− r2s2)

> 0.

- Comparison of the slopes of RB
I (pj) and RC

I (pj) given by (9) and (13) respectively:

(n+ rs)r(n− s)
2n2(1 + r) + nr2s− r2s2

− r(n− s)
2(n+ r(n− s))

=
r3(n− s)2s

2(n+ r(n− s))(2n2(1 + r) + nr2s− r2s2)

> 0.

- Comparison of the y-intercepts of RB
O(pi) and RC

O(pi) given by (10) and (14) respectively:

(n+ r)nV

n2(2 + r) + nr(s+ 1) + r2s
− nV

2n+ r(n+ s− 1)

=
nV (n− 1)r2

(2n+ r(n+ s− 1))(n2(2 + r) + nr(s+ 1) + r2s)
> 0.

- Comparison of the slopes of RB
O(pi) and RC

O(pi) given by (10) and (14) respectively:

(n+ r)rs

n2(2 + r) + nr(s+ 1) + r2s
− rs

2n+ r(n+ s− 1)

=
r3(n− 1)s

(2n+ r(n+ s− 1))(n2(2 + r) + nr(s+ 1) + r2s)
> 0.

6.2 Geometrical properties of the reaction functions in quantity space

- Comparison of the y-intercepts of RC
I (qj) and RB

I (qj) given by (11) and (15) respectively:

(n+ r(n− s))(1 + r)nV

2n2(1 + r) + nr2s− r2s2
− (1 + r)nV

2(n+ rs)
=

nV r2(1 + r)(n− s)s
2(n+ rs)(2n2(1 + r) + nr2s− r2s2)

> 0.

- Comparison of the absolute value of the slopes of RC
I (qj) and RB

I (qj) given by (11) and
(15) respectively:
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(n+ r(n− s))r(n− s)
2n2(1 + r) + nr2s− r2s2

− r(n− s)
2(n+ rs)

=
r3(n− s)2s

2(n+ rs)(2n2(1 + r) + nr2s− r2s2)

> 0.

- Comparison of the y-intercepts of RC
O(qi) and RB

O(qi) given by (12) and (16) respectively:

(n(1 + r)− r)(1 + r)nV

n2(2 + 3r + r2)− nr(1 + r)(s+ 1) + r2s
− nV (1 + r)

2n+ r(n− s+ 1)

=
nV (n− 1)r2(1 + r)

(2n+ r(n− s+ 1))(n2(2 + 3r + r2) + nr(−rs− s− r − 1) + r2s)
> 0.

- Comparison of the absolute value of the slopes of RC
O(qi) and RB

O(qi) given by (12) and
(16) respectively:

(n(1 + r)− r)rs
n2(2 + 3r + r2)− nr(1 + r)(s+ 1) + r2s

− rs

2n+ r(n− s+ 1)

=
r3(n− 1)s

(2n+ r(n− s+ 1))(n2(2 + 3r + r2) + nr(−rs− s− r − 1) + r2s)
> 0.

6.3 The asymptotic reaction functions in quantity space

By substituting s by n/k into (11), (12), (15) and (16), and taking the limit n → ∞, the
cartel asymptotic reaction functions are expressed as:

RC
I (qj) =

(1 + r)kV − r(k − 1)qj
2(k + r)

,

and

R
B
I (qj) =

(r(k − 1) + k)((1 + r)kV − r(k − 1)qj)

(k − 1)r2 + 2k2r + 2k2
.

The asymptotic reaction functions of any outsider are given by:

RC
O(qi) =R

B
O(qi) =

(1 + r)kV − rqi
2k + (k − 1)r

.

- Comparison of the y-intercepts of RC
I (qj) and RB

I (qj) in the asymptotic case:

(r(k − 1) + k)(1 + r)kV

(k − 1)r2 + 2k2r + 2k2
− (1 + r)kV

2(k + r)
=

(k − 1)kr2(1 + r)V

2(k + r)((k − 1)r2 + 2k2r + 2k2)
> 0.

- Comparison of the absolute value of the slopes of RC
I (qj) and RB

I (qj) in the asymptotic
case:
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(r(k − 1) + k)(k − 1)r

(k − 1)r2 + 2k2r + 2k2
− r(k − 1)

2(k + r)
=

(k − 1)2r3

2(k + r)((k − 1)r2 + 2k2r + 2k2)
> 0.

6.4 Proofs of Propositions 3.2, 3.5 and 3.6, and Lemma 4.2

Proof of Proposition 3.2: In quantity space, the intersections of reaction functions RC
I (qj)

and RC
O(qi), and R

B
I (qj) and RB

O(qi) given by (11), (12), (15) and (16) respectively, provide
Nash equilibrium quantities produced by each cartel member in Bertrand and Cournot
competition respectively:

Di(p
∗
s, p̃s) =

V (2n(1 + r)− r)(r(n− s) + n)

4n2 + r(n(6n− 2(s+ 1)) + r(n− s)(2n+ s− 2))
(19)

and

q∗s =
nV (2n+ r)(1 + r)

4n2 + 2rn(1 + n) + rs((n+ 2)r + 2n)− r2s2
.

Calculating the difference between these two quantities leads to:

Di(p
∗
s, p̃j)− q∗s =

V r2(n− s)p(r)
AB

,

where A > 0 and B > 0 denote the denominators of Di(p
∗
s, p̃s) and q∗s respectively, and p(r)

is defined as:

p(r) = r2(2n((n− s)(s− 1) + 1) + s(s− 2))

+ r2n(s(2n− s) + n(s− 1) + 1)

+ 4n2s

> 0,

which concludes the proof. �

A similar argument to the one in the proof of Proposition 3.2 permits to determine Nash
equilibrium quantities produced by each ousider in Bertrand competition:

Dj(p
∗
s, p̃s) =

V (2n(1 + r)− rs)(r(n− 1) + n)

4n2 + r(n(6n− 2(s+ 1)) + r(n− s)(2n+ s− 2))
(20)

Proof of Proposition 3.5: In price space, the intersection of reaction functions RB
I (pj)

and RB
O(pi) given by (9) and (10) respectively, provides Nash equilibrium prices charged by

each cartel member:

p∗s =
V
(
2n(1 + r)− r

)
n

2
(
2n+ r(n+ s− 1)

)(
n+ r(n− s)

)
− r2s(n− s)

,
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and by each outsider:

p̃s =
V
(
2n(1 + r)− rs

)
n

2
(
2n+ r(n+ s− 1)

)(
n+ r(n− s)

)
− r2s(n− s)

.

The profit of each cartel member at Bertrand-Nash equilibrium (p∗s, p̃s) is expressed as:12

πBi (p∗s, p̃s) =
V 2(2n(1 + r)− r)2n(n+ r(n− s))(

4n2 + 6n2r − 2nrs+ 2n2r2 − r2s2 − 2nr − 2nr2 + 2r2s− nr2s
)2 (21)

In quantity space, the intersection of reaction functions RC
I (qj) and RC

O(qi) given by (11)
and (12) respectively, provides Nash equilibrium quantities produced by each cartel member:

q∗s =
V (2n+ r)(1 + r)n

4n2 + 2rn(1 + n) + rs((n+ 2)r + 2n)− r2s2 (22)

and by each outsider:

q̃s =
V (2n+ rs)(1 + r)n

4n2 + 2rn(1 + n) + rs((n+ 2)r + 2n)− r2s2 (23)

The profit of each cartel member at Cournot-Nash equilibrium (q∗s , q̃s) is expressed as (see
footnote 12):

πCi (q∗s , q̃s) =
V 2((2n+ r)2n(n+ rs)(1 + r))

(4n2 + 2rn(1 + n) + rs((n+ 2)r + 2n)− r2s2)2
(24)

Calculating the difference between the profits given by (21) and (24) leads to:

πCi (q∗s , q̃s)− πBi (p∗s, p̃s) =
nr3(2 + r)(n− s)V 2p(r)

A2B2 ,

where A2 and B2 denote the denominators of πCi (q∗s , q̃s) and πBi (p∗s, p̃s) respectively, and
p(r) is defined as:

p(r) = r4(s(n− s)(2n+ s− 2)2)

+ r34n2(n2(−s2 + 4s+ 1) + n(2s3 − 3s2 − 3s− 2)− s4 − s3 + 4s2 − s+ 1)

+ r24n2(4n3 + n2(−s2 + 4s− 3) + n(2s3 − 3s2 − 3s− 2)− s4 − s3 + 4s2 − s+ 1)

+ r(32n5 − 32n4)

+ 16n5 − 16n4.

It remains to study p(r). Note that for any n and any s < n, it holds that p(r) > 0 when r
is sufficiently small or sufficiently large. Two cases can occur:

12This expression is a special case of a more general expression of profits with asymmetric costs provided
by Wang and Zhao (2010).
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- for any r > 0, p(r) > 0, i.e., p(r) has no positive root.
- there exists a root r1 > 0 which implies that p(r) < 0 at the neighborhood of r1.
A simple algorithm permitting to compute roots of p(r) shows that no positive root appears
for any n ≤ 25 and any s < n.13 �

Proof of Proposition 3.6: By substituting s by n/k into (21) and (24), the difference
between these two profits becomes:

πCi (q∗s , q̃s)− πBi (p∗s, p̃s) =
(k − 1)k3r3(r + 2)V 2p(n)

A2B2 ,

where (An/k2)2 and (Bn/k2)2 denote the denominators of πCi (q∗s , q̃s) and πBi (p∗s, p̃s) respec-
tively, and p(n) is defined as:

p(n) = − n4(4(r3 + r2)(k2 − 2k + 1))

+ n3k(r3(16k2 − 12k − 4) + r2(16k3 + 16k2 − 12k − 4) + 16k3(2r + 1))

+ n2(r4(4k3 − 3k − 1) + r3k2(4k2 − 12k + 16) + r2k2(−12k2 − 12k + 16)

− 16k4(2r + 1))

+ nk(r4(−8k2 + 4k + 4) + r3k2(−8k − 4) + r2k3(−8k − 4))

+ 4k2r2(r2(k − 1) + k2(1 + r)).

Thus, there exists n̄ > 0 such that for any n > n̄, it holds that p(n) < 0 which concludes
the proof. �

Proof of Lemma 4.2: First, for simplicity, we assume that the size s of cartel S is a real
number in the interval [1, n− 1]. Then differentiating πCi (q∗s , q̃s) with respect to s leads to:

d

ds
πCi (q∗s , q̃s) =

V 2nr2(1 + r)(2n+ r)2(3rs2 − (r(n+ 2)− 2n)s− 2n)

(4n2 + 2rn(1 + n) + rs((n+ 2)r + 2n)− r2s2)3
.

We aim to study the polynomial function of degree 2, p : [1, n− 1] −→ R, defined as:

p(s) = 3rs2 − (r(n+ 2)− 2n)s− 2n.

The discriminant of p(s) is given by:

∆ = (n+ 2)2r2 + (16n− 4n2)r + 4n2,

and is positive for any n ≥ 3 and any r > 0. Hence p(s) has two distinct real roots:

s1,2 =
r(n+ 2)− 2n±

√
(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r
.

13The matlab program that we used in this proof is available to readers upon request. In a lexicographical
order on (n, s), the first two positive roots r1 ' 14.91 and r2 ' 22.26 appear when n = 26 and s = 11. This
implies that p(r) < 0 for any r ∈]r1, r2[.

25



We want to prove that s1 < 0 and 1 < s2 < n− 1. We proceed in three steps.
First, we distinguish two cases. If r(n+ 2)− 2n ≥ 0 then:

s1 =

√
(r(n+ 2)− 2n)2 −

√
(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r

=

√
(n+ 2)2r2 + (−8n− 4n2)r + 4n2 −

√
(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r
< 0.

Otherwise if r(n+ 2)− 2n < 0 then we can easily verify that s1 < 0.
Second, it holds that:

s2 − 1 =
r(n− 4)− 2n+

√
(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r
.

We distinguish two cases. If r(n− 4)− 2n ≤ 0 then:

s2 − 1 =
−
√

(2n− r(n− 4))2 +
√

(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r

=
−
√

(n− 4)2r2 + (16n− 4n2)r + 4n2 +
√

(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r
> 0.

Otherwise if r(n− 4)− 2n > 0 then we can easily verify that s2 − 1 > 0.
Third, it holds that:

n− 1− s2 =
r(5n− 8) + 2n−

√
(n+ 2)2r2 + (16n− 4n2)r + 4n2

6r
.

We distinguish two cases. If n = 3 then:

2− s2 =
7r + 6−

√
25r2 + 12r + 36

6r

=

√
49r2 + 84r + 36−

√
25r2 + 12r + 36

6r
> 0.

Otherwise if n ≥ 4 then:

n− 1− s2 ≥
r(5n− 8) + 2n−

√
(n+ 2)2r2 + 4n2

6r

>
r(5n− 8) + 2n−

√
(n+ 2)2r2 −

√
4n2

6r

=
4n− 10

6
> 0.
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It follows from the above three steps that p(s) is strictly decreasing in the interval [1, s2]
and strictly increasing in the interval [s2, n − 1]. This implies that πCi (q∗s , q̃s) attains its
maximum either at s = 1 or at s = n− 1 which proves the first part of Lemma 4.2.
It remains to compare the two following profits of each cartel member derived from (24):

πCi (q∗1, q̃1) =
V 2n(1 + r)(n+ r)

(2n+ r(n+ 1))2
,

and

πCi (q∗n−1, q̃n−1) =
V 2n(1 + r)(2n+ r)2(n+ r(n− 1))

(4n2(1 + r) + 3r2(n− 1))2
.

Calculating the difference between these two individual profits leads to:

πCi (q∗n−1, q̃n−1)− πCi (q∗1, q̃1) = V 2n(n− 2)r2(1 + r)

× (n2 − 6n+ 5)r3 + (4n3 − 16n2 + 8n)r2 + (4n4 − 8n3 − 4n2)r + 4n4 − 8n3

(2n+ r(1 + n))2(3r2(n− 1) + 4n2(1 + r))2
.

We can verify that πCi (q∗n−1, q̃n−1)−πCi (q∗1, q̃1) is positive for any n ≥ 5.14 We conclude that
for any s ∈ {1, . . . , n− 2}, πCi (q∗n−1, q̃n−1) > πCi (q∗s , q̃s). �
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