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Abstract. We develop a theoretical framework to study the location-price

competition in a Hotelling-type network game, extending the Hotelling model,
with linear transportation costs, from a line (city) to a network (town). We

show the existence of a pure Nash equilibrium price if, and only if, some ex-

plicit conditions on the production costs and on the network structure hold.
Furthermore, we prove that the local optimal localization of the firms are at

the cross-roads of the town.

1. Introduction. Since the seminal work of Hotelling [13], the model of spatial
competition has been seen by many researchers as an attractive framework for
analyzing oligopoly markets (see [1, 7, 12, 16, 17, 18, 19, 20, 21, 22, 25, 6, 27]).

Hotelling [13] presented a city represented by a line segment where a uniformly
distributed continuum of consumers buy a single commodity. The consumers have
to support linear transportation costs when buying the commodity in one of the
two firms of the city. The firms compete in a two-staged location-price game, where
simultaneously choose their location and afterwards set their prices in order to max-
imize their profits. Hotelling concluded that firms would agglomerate at the center
of the line, an observation referred as the “Principle of Minimum Differentiation”.
In 1979, D’Aspremont et al. [2] showed that the “Principle of Minimum Differenti-
ation” is invalid, since there was no (pure) price equilibrium solution for all possible
locations of the firms, in particular when they are not far enough from each other.

Other models have been developed where the line in the Hotelling model is re-
placed by other topologies as for example in the Salop Model [25], where the line is
replaced by the circle, or in the Spokes model [6] (see, also, [15, 14]).
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In this work, we study the Hotelling town model (see [19, 26]). The Hotelling
town model extends the Hotelling model from a line (city) to a network (town).
Trying to mimic a real town, the roads of the town are the edges of the network,
the crossroad are the vertices with degree higher than two and the ends of no-exit
roads are the vertices with degree one. The firms are spread over the town and
the consumers are uniformly distributed along the roads (similar size houses). The
roads can have different lengths (market sizes) and the firms can have different
unitary productions costs (firm’s heterogeneity).

There is also a vast literature in network games (see, for instance [4, 9, 8, 10]).
Usually, following the modeling methodology common in social network analysis,
these studies locate firms and consumers at nodes and the edges are used to establish
relevant information among the agents. The Hotelling town model, presented here,
is different because the consumers are assumed uniformly distributed along the
edges of the network and not at the nodes.

A price strategy consists in associating to each firm a selling price of the com-
modity. As in the original Hotelling model, the expenditure of a consumer that
chooses to buy in a shop consists in the sum of the price practiced by that shop
plus the transportation cost that is proportional to the minimal distance between
his house (position at the network) and the shop.

The firms compete in a two-stage location-price game, where simultaneously
choose their location and afterwards set their prices in order to maximize their
profits; and each consumer will buy in the shop that will minimize its expenditure.

In the price subgame, the main goal is to compute the price strategy that has
the following two essential economic properties: (i) any small deviation of a price
of a firm provokes a decrease in its own profit (local strategic optimum); and (ii)
all firms have non-empty market (local market structure). Property (i) stabilizes
the prices because the firms do not have an incentive to do small changes in their
prices. Property (ii) stabilizes the set of competing firms because every firm has
a non-empty market (positive profit) and so, does not go to bankruptcy, and a
sufficiently high entry cost can avoid new firms to appear in the town. We call a
price strategy satisfying these two properties a local market optimum price strategy.

We prove that the price subgame has a local market optimum price strategy
if, and only if, some explicit conditions on the production costs and road lengths
hold. We show that if there is a local market optimum price strategy then it is
unique. Furthermore, we introduce the weak bounded costs condition that gives
a simple bound on the maximum difference between the production costs and on
the maximum difference between the road lengths in terms of the transportation
cost and the minimal road length. The weak bounded costs condition is a simple
sufficient condition for the existence of the local market optimum price strategy.

We give an explicit closed formula and an explicit series expansion formula for the
local market optimum price strategy. The series expansion formula shows explicitly
how the local market optimum price strategy of a firm depends on the production
costs, road market sizes and firms locations. Furthermore, the influence of a firm in
the local market optimum price strategy of other firm decreases exponentially fast
with the distance between the firms.

Assuming that the firms might not know the entire network, we introduce the
idea of space bounded information that determines how far from its location each
firm knows the network structure in terms of the production costs, node degrees
and road sizes. We show that each firm is able to compute an approximation of its
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own local market optimum price strategy that improves exponentially fast with the
space bounded information knowledge of the firm.

We say that a price strategy has the profit degree growth property if the profits of
the firms increase with the degree of the nodes in the neighborhoods in which they
are located. We give an example where the local market optimum price strategy
does not have the profit degree growth property. Hence, we introduce the degree-
bound condition, that is similar to the weak bounded condition, and we prove,
under this condition, that the local market optimum price strategy has the profit
degree growth property.

For the price-subgame, we note that a Nash equilibrium price with the local
market structure property is a local market optimum price strategy, but a local
market optimum price strategy might not be a Nash equilibrium price. However,
we prove that the local market optimum price strategy is a Nash equilibrium price
if, and only if, some explicit conditions on the production costs and road lengths
hold. Furthermore, we introduce the strong bounded condition that in comparison
with the weak bounded condition has the additional feature of depending also on
the maximum node degree of the network. The strong bounded costs condition is a
simple sufficient condition for the existence of the Nash equilibrium price. We note
that this condition avoids that firms can get too close, and so D’Aspremont et al.
[2] objection to the existence of a Nash equilibrium price does not occur.

For the location-subgame, we assume that, for every location allowed by the weak
bounded condition, the firms choose the corresponding local market optimum price
strategy for the price-subgame. A localization strategy for the firms in the network
is for every firm to choose his position in the Hotelling town. A local optimal
localization strategy is achieved when small perturbations in location do not result
in improved profits. Similarly to the original Hotteling model in the line, we prove
that the firms do not prefer to be located at the ends of no-exit roads. However,
in contrast with the original Hotteling model in the line, we prove that the firms
prefer maximum differentiation, in the sense that they prefer to be located at the
crossroads of the network. This result is observed in real towns because the owners
of the shops usually prefer to have them located at crossroads than along the roads.

2. Hotelling town. The Hotelling town model (see [19]) consists of a network of
consumers and firms. The consumers (buyers) are located along the edges (roads)
of the network. Every road has two endpoints (vertices). For simplicity of the
model, we assume that in a neighborhood of every vertex is located a single firm
(shop). The degree k of the vertex is given by the number of incident edges. If the
degree k is greater that 2 then the vertex is a crossroad of k roads; if the degree k
is equal to 2 then the vertex is a junction between two roads; and if k is equal to 1
the vertex is in the end of a road with no exit. Every consumer will buy one unit
of the commodity from only one firm in the network and each firm will charge its
customers the same price for the commodity.

2.1. Prices and profits. A Hotelling town price strategy P consists of a vector
whose coordinates are the prices pi of each firm Fi. Every firm Fi is located at a
position yi in a neighborhood of a vertex i ∈ V . A consumer located at a point x
of the network who decides to buy at firm Fi spends

E(x; i,P) = pi + t d(x, yi)
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the price pi charged by the firm Fi plus the transportation cost that is proportional
t to the minimal distance measured in the network between the position yi of the
firm Fi and the position x of the consumer. Given a price strategy P, the consumer
will choose to buy in the firm Fv(x,P) that minimizes his expenditure

v(x,P) = argmini∈V E(x; i,P),

where V is the set of all vertices of the Hotelling town. Hence, for every firm Fi,
the market

M(i,P) = {x : v(x,P) = i}
consists of all consumers who minimize their expenditures by opting to buy in firm
Fi. The road market size li,j of a road Ri,j is the Lebesgue measure (or length) of
the road Ri,j , because the buyers are uniformly distributed along the roads. The
market size S(i,P) of the firm Fi is the Lebesgue measure of M(i,P). The Hotelling
town production cost C is the vector whose coordinates are the production costs ci
of the firms Fi. The Hotelling town profit Π(P,C) is the vector whose coordinates

πi(P,C) = (pi − ci)S(i,P)

are the profits of the firms Fi.

2.2. Local market network structure. The local firms of a consumer located
at a point x in a road Ri,j with vertices i and j are the firms Fi and Fj . For every
vertex i let Ni be the set of all neighboring vertices j for which there is a road Ri,j

connecting the vertices. A price strategy P determines a local market structure if
every consumer buys from one of his local firms, i.e.

M(i,P) ⊂
⋃

j∈Ni

Ri,j .

If a price strategy P determines a local market structure then for every road Ri,j

there is one consumer located at a point xi,j ∈ Ri,j who is indifferent to the local
firm from which he going to buy his commodity, i.e. E(x; i,P) = E(x; j,P).

2.3. Inner network structure. The Hotelling town admissible market size L is
the vector whose coordinates are the admissible local firm market sizes

Li =
1

ki

∑
j∈Ni

li,j .

The Hotelling town neighboring market structure K is the matrix whose coordinates
are (i) ki,j = k−1i , if there is a roadRi,j between the firms Fi and Fj ; and (ii) ki,j = 0,
if there is not a road Ri,j between the firms Fi and Fj .

2.4. Nash equilibrium network price. The candidate Nash equilibrium with a
local market structure is

PL =
1

2

(
1− 1

2
K

)−1
(C + tL) =

∞∑
m=0

2−(m+1)Km (C + tL) . (1)

where 1 is the identity matrix. We note that K is a stochastic matrix and so has
spectrum radium one.

Equation (1) gives an explicit closed formula and an explicit series expansion
formula for the the candidate Nash equilibrium with a local market structure. The
series expansion formula shows explicitly how the candidate Nash equilibrium with
a local market structure of a firm depends on the production costs, road market
sizes and firms locations. Furthermore, the influence of a firm in the the candidate
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Nash equilibrium with a local market structure of other firm decreases exponentially
fast with the distance between the firms.

2.5. Heterogeneous network measures. Let cM (resp. cm) be the maximum
(resp. minimum) production cost of the Hotelling town

cM = max{ci : i ∈ V } and cm = min{ci : i ∈ V }.

Let lM (resp. lm) be the maximum (resp. minimum) road length of the Hotelling
town

lM = max{le : e ∈ E} and lm = min{le : e ∈ E},

where E is the set of all edges of the Hotelling town. Let

∆(c) = cM − cm and ∆(l) = lM − lm.

Let kM (resp. km) be the maximum (resp. minimum) node degree of the Hotelling
town

kM = max{ki : i ∈ V } and km = min{ki : i ∈ V }

3. Local best response price strategy. In the following sections, for simplicity
of exposition, we will assume that every firm is located at the corresponding node,
i.e. yi = i. In the section 10, we extend all the results to the general case where the
firms are not necessarily located at the nodes, but can choose their locations in the
neighbourhoods of the nodes. Furthermore, in the section 10, we give the proofs of
all the results presented through the paper.

We observe that, for every road Ri,j , there is an indifferent buyer located at a
distance

0 < xi,j =
pj − pi + t li,j

2 t
< li,j (2)

of firm Fi if, and only if, |pi − pj | < t li,j . Thus, a price strategy P determines a
local market structure if, and only if, |pi − pj | < t li,j for every road Ri,j .

The firms Fi and Fj (or vertices i and j) are neighbors if there is a road Ri,j with
end nodes i and j. Let Ni the set of all vertices that are neighbors of the vertex i
and, so, ki is the cardinality of the set Ni that is equal to the degree of the vertex i.
If the price strategy determines a local market structure then S(i,P) =

∑
j∈Ni

xi,j
and

πi(P,C) = (pi − ci)S(i,P) =
pi − ci

2 t

∑
j∈Ni

(pj − pi + t li,j). (3)

Given a pair of price strategies P and P∗ and a firm Fi, we define the price
vector P̃(i,P,P∗) whose coordinates are p̃i = p∗i and p̃j = pj , for every j ∈ V \ {i}.
Let P and P∗ be price strategies that determine local market structures. The price
strategy P∗ is a local best response to the price strategy P, if for every i ∈ V the
price strategy P̃(i,P,P∗) determines a local market structure and

∂πi(P̃(i,P,P∗),C)

∂p̃i
= 0 and

∂2πi(P̃(i,P,P∗),C)

∂p̃2i
< 0.

Recall from subsection 2.3 the definitions of the admissible market size L and of
the neighboring market structure K.
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Lemma 3.1. Let P and P∗ be price strategies that determine local market struc-
tures. The price strategy P∗ is the local best response to price strategy P if, and
only if,

P∗ =
1

2
(C + tL) +

1

2
KP (4)

and the price strategies P̃(i,P,P∗) determine local market structures for all i ∈ V .

4. Local market optimum price strategy. We prove that the price subgame
has a local market optimum price strategy if, and only if, some explicit conditions
on the production costs and road lengths hold. We show that if there is a local
market optimum price strategy then it is the candidate Nash equilibrium with a
local market structure PL introduced in subsection 2.4. We introduce the weak
bounded WB costs condition that gives a simple bound on the ∆(c) and ∆(l) in
terms of the transportation cost t and the minimal road length lm of the network.
We prove that if the WB holds then PL is the price subgame local market optimum
price strategy.

A price strategy P∗ is a local market optimum price strategy if (i) P∗ is the local
best response to P∗; and (ii) P∗ determines a local market structure.

Recall from subsection 2.4 the definition of the candidate Nash equilibrium PL

with a local market structure.

Theorem 4.1. If there is a local market optimum price strategy then it is the the
candidate price strategy PL. Furthermore, there is a local market optimum price
strategy if, and only if,

|pLi − pLj | < t li,j

for all firms Fi and Fj that are neighbors.

Recall from subsection 2.5 the definition of heterogeneous network measures.

Definition 4.2. A Hotelling town satisfies the weak bounded length and costs (WB)
condition, if

∆(c) + t∆(l) < t lm. (5)

Theorem 4.3. If the Hotelling town satisfies the WB condition, then the candidate
price strategy is the unique local market optimum price strategy. Furthermore, the
local market optimum prices pLi are uniformly bounded

t lm +
ci + cm

2
≤ pLi ≤ t lM +

ci + cM
2

(6)

and the local market optimum profits πL
i = πL

i (P,C) of firm Fi are uniformly
bounded

ki (2 t lm −∆(c))2

8 t
≤ πL

i =
ki (pLi − ci)2

2 t
≤ ki (2 t lM + ∆(c))2

8 t
.

Let a ∈ V , Rb,c ∈ E and d ∈ V \ {i}. The marginal rates of the local market
optimum prices pLi are positive with respect to the production costs ca, admissible
local firm market sizes La, transportation costs t and road lengths lb,c. The mar-
ginal rates of the local market optimum profits πL

i are negative with respect to the
production costs ci and positive with respect to the production costs cd, admissible
local firm market sizes La, transportation costs t and road lengths lb,c.
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5. Nash equilibrium price strategy. For the price-subgame, we note that a
Nash equilibrium price with the local market structure property is the local market
optimum price strategy PL, but the local market optimum price strategy might not
be a Nash equilibrium price. We introduce the strong bounded SB costs condition
that gives a simple bound on the ∆(c) and ∆(l) in terms of the transportation cost
t, the minimal road length lm of the network and also on the maximum node degree
kM of the network. We prove that if the SB holds then PL is the Nash equilibrium
price.

The price strategy P∗ is a best response to the price strategy P, if

(p̃i − ci)S(i, P̃(i,P,P∗)) ≥ (p′i − ci)S(i,P′i),

for all i ∈ V and for all price strategies P′i whose coordinates satisfy p′i ≥ ci and
p′j = pj for all j ∈ V \{i}. A price strategy P∗ is a Hotelling town Nash equilibrium

if P∗ is the best response to P∗.

Lemma 5.1. In a Hotelling town satisfying the WB condition, if there is a Nash
price P∗ then P∗ is unique and P∗ = PL.

Hence, the local market optimum price strategy PL is the only candidate to be
a Nash equilibrium price strategy. However, PL might not be a Nash equilibrium
price strategy because there can be a firm Fi that by decreasing his price is able to
absorb markets of other firms in such a way that increases its own profit. Therefore,
the best response price strategy PL,∗ to the local market optimum price strategy
PL might be different from PL.

Let ∪j∈Ni
Ri,j be the 1-neighbourhood N (i, 1) of a firm i ∈ V . Let ∪j∈Ni

∪k∈Nj

Rj,k be the 2-neighbourhood N (i, 2) of a firm i ∈ V .

Lemma 5.2. In a Hotelling town satisfying the WB condition,

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2)

for every i ∈ V .

Hence, a consumer x ∈ Rj,k might not buy in its local firms Fj and Fk. However,
the consumer x ∈ Rj,k still has to buy in a firm Fi that is a neighboring firm of its
local firms Fj and Fk, i.e. i ∈ Nj ∪Nk.

For every firm Fi and every 0 < p < pLi , let N̂i(p) ⊂ Ni be the set of all j ∈ Ni

such that
|p− pj | < t li,j .

Let

Ŝi(p) =
∑

j∈N̂i(p)

pj − p+ t li,j
2 t

+
∑

j∈N\N̂i(p)

∑
k∈Nj

li,j +
pk − p+ t (lj,k − li,j)

2 t
.

Theorem 5.3. The local market optimum price strategy PL is a Nash equilibrium
price if, and only if,

Ŝi(p) p ≤ πL
i

for every firm Fi and every 0 < p < pLi .

Recall from subsection 2.5 the definition of heterogeneous network measures.

Definition 5.4. A Hotelling town satisfies the strong bounded length and costs (SB)
condition, if

∆(c) + t∆(l) ≤ (2 t lm −∆(c))2

8 t kM lM
. (7)
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The SB condition implies the WB condition, and so under the SB condition the
only candidate to be a Nash equilibrium price strategy is the local market optimum
price strategy PL. On the other hand, the condition

∆(c) + t∆(l) ≤ t min

{
lm,

lM
8 kM

}
.

implies the SB condition.

Theorem 5.5. If a Hotelling town satisfies the SB condition then there is a unique
Hotelling town Nash equilibrium price strategy P∗ = PL.

Hence, the Nash equilibrium price strategy for the Hotelling town satisfying the
SB condition determines a local market structure, i.e. every consumer located at
x ∈ Ri,j spends less by shopping at his local firms Fi or Fj than in any other firm
in the town and so the consumer at x will buy either at his local firm Fi or at his
local firm Fj .

6. Firm position stability. For the location-subgame, we assume that, for every
location allowed by the weak bounded condition, the firms choose the corresponding
local market optimum price strategy for the price-subgame. A localization strat-
egy for the firms in the network is for every firm Fi to choose his position in the
neighborhood of its vertex i. A local optimal localization strategy is achieved when
small perturbations in location do not result in improved profits. We prove that a
Hotelling town network satisfying the WB condition and with the minimum node
degree km ≥ 3 has a local optimal localization strategy, whereby every firm Fi is
located at the corresponding node i.

Consider that a firm Fi located a node i changes its location to a point yi in a
road Ri,j at distance x for the node i. In the last section, we prove that there is an
ε > 0 such that, for every x < ε, the price vector P(x; i, j) is the Nash equilibrium
price strategy, given by the local market optimum price strategy, taking in account
the new localization of the firm Fi. Let πi(x; i, j) denote the profit of firm Fi with
respect to the price strategy P(x; i, j).

Definition 6.1. We say that a firm Fi is node local stable if there is εi > 0 such
that πi(0; i, j) > πi(x; i, j) for every 0 < x < εi, with respect to the local market
optimum price strategy. A Hotelling network is firm position local stable if every
firm in the network is node stable.

Theorem 6.2. A Hotelling town satisfying the WB condition and with km ≥ 3 is
firm position local stable.

Hence, a Hotelling town network satisfying the WB condition and with km ≥ 3
has a local market optimum price strategy, whereby every firm Fi is located at the
corresponding node i.

In the subsection 10.4, we observe that firms Fi, with node degree ki = 1, are
node local unstable. Firms Fi, with ki = 2 , are node local unstable, except for
networks satisfying special symmetric properties. Firms Fi, with ki = 3, whose
neighboring firms have nodes degree greater or equal to 3 are node local stable.
Furthermore, firms Fi, with ki ≥ 4, whose neighboring firms have nodes degree
greater or equal to 2 are node local stable.
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7. Space bounded information. Assuming that the firms might not know the
entire network, we introduce the idea of n-space bounded information. We say that
a firm has n-space bounded information, if the firm knows the production costs of
the other firms and the road lengths of the network up to n consecutive nodes of
distance. Given a Hotelling town network satisfying the WB condition, every firm
with n-space bounded information can compute a price pi(n) that estimates its own
local market optimum price pLi , with exponential precision depending upon n. In
addition, the firm can also estimate its profit with exponential precision depending
upon n. Given m + 1 vertices x0, . . . , xm with the property that there are roads
Rx0,x1

, . . . , Rxm−1,xm
the (ordered) m path R is

R = (Rx0,x1 , . . . , Rxm−1,xm).

Let R(i, j;m) be the set of all m (ordered) paths R = (Rx0,x1
, . . . , Rxm−1,xm

) start-
ing at i = x0 and ending at j = xm. Given a m order path R = (Rx0,x1

, . . . ,
Rxm−1,xm

), the corresponding weight is

k(R) =

m−1∏
q=0

kxq,xq+1 .

The matrix K0 is the identity matrix and, for n ≥ 1, the coordinates of the matrix
Km are

kmi,j =
∑

R∈R(i,j;m)

k(R).

Definition 7.1. A Hotelling town has n-space bounded information (n-I) if for
every 1 ≤ m ≤ n, for every firm Fi and for every non-empty set R(i, j;m): (i) firm
Fi knows the cost cj and the average length road Lj of firm Fj ; (ii) for every m
path R ∈ R(i, j;m), firm Fi knows the corresponding weight k(R).

The n local market optimum price vector is

P(n) =

n∑
m=0

2−(m+1) Km (C + tL) .

We observe that in a n-I Hotelling town, the firms might not be able to compute
K, C or L. However, every firm Fi is able to compute his n local market optimum
price pi(n)

pi(n) =

n∑
m=0

2−(m+1)
∑
v∈V

kmi,v (cv + t Lv) .

Let NV denote the number of nodes in the network.

Theorem 7.2. A Hotelling town satisfying the WB condition has a local market
optimum price strategy PL that is well approximated by the n local market optimum
price P(n) with the following 2−n bound

0 ≤ pLi − pi(n) ≤ 2−(n+1)NV (cM + t lM ).

Furthermore, P(n+ 1) is the best response to P(n) for n sufficiently high.

Hence, by theorem 7.2, the profit πi(P
L) is well approximated by πi(P(n)) with

the following bound

|πi(PL)− πi(P(n))| ≤ 2−(n+2) kiNV t
−1 (cM + t lM ) (∆(c) + 3 t lM ) .
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8. Profit degree growth. We say that a price strategy has the profit degree growth
property if the profits of the firms increase with the degree of the nodes in the
neighborhoods in which they are located. We give an example where the local
market optimum price strategy does not have the profit degree growth property.
Hence, we introduce the degree-bound condition, that is similar to the weak bounded
condition, and we prove, under this condition, that the local market optimum price
strategy has the profit degree growth property. Hence, we introduce the degree-
bound DB condition that gives a new bound for ∆(c) and ∆(l). We prove that for
a Hotelling town network satisfying the DB condition the local market optimum
price strategy PL has the profit degree growth property.

We say that a price strategy P has the profit degree growth property if

ki > kj ⇒ πi(P,C) > πj(P,C)

for every i, j ∈ V .

Lemma 8.1. Let Fi be a firm located in a node of degree ki and Fj a firm located
in a node of degree kj. Then, πL

i > πL
j if, and only if,

ki − kj
kj

>
(pLj − cj)2 − (pLi − ci)2

(pLi − ci)2
.

Recall from subsection 2.5 the definition of heterogeneous network measures.

Definition 8.2. A Hotelling town network satisfies the degree-bound lengths and
costs (DB) condition if

∆(c) + t∆(l) < t lm min

{
1,
(√

1 + 1/kM − 1
)(

1− ∆(c)

2 t lm

)}
. (8)

Theorem 8.3. A Hotelling town network satisfying the DB condition has the profit
degree growth property.

9. Examples: Homogeneous town models. We show that a homogeneous
Hotelling town satisfies the SB and DB conditions. We present an example of
a network with a local market optimum price strategy that is not a Nash equilib-
rium price.

A Hotelling town has homogeneous costs if cm = cM . Hence, for a Hotelling town
with homogeneous costs, the WB condition is reduced to

2 kM lM∆(l) ≤ l2m;

the SB condition is reduced to

∆(l) ≤ l2m
2 kM lM

;

and the DB condition is reduced to

∆(l) < lm

(√
1 + 1/kM − 1

)
.

A Hotelling town has homogeneous lengths if lm = lM . Hence, for a Hotelling town
with homogeneous lengths, the WB condition is reduced to

8 kM∆(c) ≤ t lM ;

and the SB condition is reduced to

4 t l (2 kM + 1)∆(c) ≤ 4t2 l2 + ∆(c)2;
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Therefore, the condition

(2 kM + 1)∆(c) ≤ t l.
implies the SB condition. The DB condition is reduced to(√

1 + 1/kM + 1
)

∆(c) < 2
(√

1 + 1/kM − 1
)
t l.

A Hotelling town is homogeneous if cm = cM and lm = lM . For a homogeneous
Hotelling town, the WB, SB and DB conditions are satisfied independently of the
degree of the nodes. Hence, there is a Nash equilibrium price. Furthermore, the
Nash equilibrium price satisfies the profit degree growth property.

We are going to present an example satisfying the WB condition but not the SB
condition. Furthermore, we will show that in this example the local market optimum
price strategy do not form a Nash equilibrium price. Consider the Hotelling town
network presented in figure 1. The parameter values are ci = 0, lm = 4, lM = 7,

1

2

3

4

4

5

7

Figure 1. Star Network

∆(l) = 3 and kM = 3. Hence, Network 1 satisfies the WB condition. By Theorem
4.3, the local market optimum prices and the correspondent profits are

PL = t

(
16

3
,

14

3
,

31

6
,

37

6

)
; πL = t

(
128

3
,

98

9
,

961

72
,

1369

72

)
.

We will show that the local market optimum price strategy is not a Nash equilib-
rium. The profits of the firms are given by πL

i = pi S(i,PL), and the local market

sizes S(i,PL) are

S(i,PL) =
πL
i

pLi
=
ki p

L
i

2 t

Hence, the local market sizes are

S(1,PL) = 8; S(2,PL) =
14

6
; S(3,PL) =

31

12
; S(4,PL) =

37

12
.

Suppose that firm F2 decides to lower its price in order to capture the market of
firm F1. The firm F2 captures the market of F1, excluding F1 from the game, if
the firm F2 charges a price p2 such that p2 + 4 t < pL1 or, equivalently p2 < 4/3 t.
Let us consider p2 = 4/3 t − ε, where ε is sufficiently small. Hence, for this new

price, firm F2 keeps the market M(2,PL) and, since the price of F2 at location of
F1 is less that pL1 , firm F2 gains at least the market of firm F1. Thus, the new
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market M(2,P) of firm F2 is such that S(2,P) > S(1,PL) + S(2,PL). Therefore,
S(2,P) > 31/3 and so

π2 > p2 S(2,P) =

(
4

3
t− ε

)
31

3
=

124

9
t− 31

3
ε.

Thus π2 > 98 t/9 = πL
2 , and so firm F2 prefers to alter its price pL2 . Therefore, PL

is not a Nash equilibrium price.
We are going to present an example satisfying the WB condition but not the DB

condition. Furthermore, we will show that this example does not have the profit
degree growth property. Consider the Hotelling town network presented in Figure
2.

1

2

3

4

5

5 8

85

5

Figure 2. Network not satisfying the DB condition

The parameter values are εi = 0, ci = 0, lm = 5, lM = 8, ∆(l) = 3 and kM = 3.
Hence, the network 2 satisfies the WB condition. Thus, by Proposition 10.3,

there is a local optimum price strategy PL. The profits valued at the local optimal
prices are given by

πL = t

(
48387

1058
,

21904

529
,

27556

529
,

21904

529
,

14641

1058

)
.

We observe that k1 > k3 and πL
3 > πL

1 . Hence, the profit degree growth property is
not satisfied and so the DB condition does not hold.

10. Firms at nodes neighborhoods. In this section, we extend all the results to
the general case where the firms are not necessarily located at the nodes, but can
choose their locations in the neighbourhoods of the nodes. Furthermore, we give
the proofs of all the results presented through the paper.

For every v ∈ V , let εv = d(v, yv) and j(v) be the node with the property that yv
is at the road Rv,j(v). The shift location matrix S(v) associated to node v is defined
by

si,j(v) =


εv if i = v and j ∈ Nv \ {j(v)} ;
−εv if i = v and j = j(v) ;
εv if j = v and i ∈ Nv \ {j(v)} ;
−εv if j = v and i = j(v) ;
0 otherwise.
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The distance l̃i,j = d(yi, yj) between the location of firms Fi and Fj is given by

l̃i,j = li,j +
∑

v∈{i,j}

si,j(v). (9)

Let ε = maxv∈V εv. Hence, for every i, j ∈ V we have

li,j − 2 ε ≤ l̃i,j ≤ li,j + 2 ε.

10.1. Local best response price strategy. Under a local market structure, for
every road Ri,j there is an indifferent buyer located at a distance

0 < xi,j = (2 t)−1(pj − pi + t l̃i,j) < l̃i,j (10)

of firm Fi. Thus, a price strategy P determines a local market structure if, and
only if, |pi − pj | < t l̃i,j for every road Ri,j . Hence, if

|pi − pj | < t li,j − 2 t ε (11)

then condition (10) is satisfied. Therefore, if condition (11) holds then the price
strategy P determines a local market structure.

If the price strategy determines a local market structure then

S(i,P) =
∑
j∈Ni

xi,j − (ki − 2) εi

and

πi(P,C) = (pi − ci)S(i,P)

= (2 t)−1(pi − ci)

∑
j∈Ni

(pj − pi + t l̃i,j)− 2 t (ki − 2) εi

 . (12)

The Hotelling town firm deviation is the vector Y whose coordinates are

Yi = k−1i

∑
j∈Ni

si,j(j)− εi (ki − 2)

 .

Lemma 10.1. Let P and P∗ be price strategies that determine local market struc-
tures. The price strategy P∗ is the local best response to price strategy P if, and
only if,

P∗ =
1

2
(C + t (L + Y)) +

1

2
KP (13)

and the price strategies P̃(i,P,P∗) determine local market structures for all i ∈ V .

Lemma 10.1 implies Lemma 3.1.

Proof of Lemma 10.1. By (12), the profit function πi(P,C) of firm Fi, in a local
market structure, is given by

πi(P,C) = (2 t)−1(pi − ci)

∑
j∈Ni

(pj − pi + t l̃i,j)− 2 t (ki − 2) εi

 .

Let P̃(i,P,P∗) be the price vector whose coordinates are p̃i = p∗i and p̃j = pj , for
every j ∈ V \{i}. Since P and P∗ are local price strategies, the local best response of
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firm Fi to the price strategy P, is given by computing ∂πi(P̃(i,P,P∗),C)/∂p̃i = 0.
Hence,

p∗i =
1

2

ci − 2 t (ki − 2)

ki
εi +

1

ki

∑
j∈Ni

t l̃i,j + pj

 . (14)

By (9), we obtain

p∗i =
1

2

ci − 2 t (ki − 2)

ki
εi +

t

ki

∑
j∈Ni

∑
v∈{i,j}

si,j(v) +
1

ki

∑
j∈Ni

t li,j + pj

 .

We note that∑
j∈Ni

∑
v∈{i,j}

si,j(v) =
∑
j∈Ni

si,j(i) +
∑
j∈Ni

si,j(j) = (ki − 2) εi +
∑
j∈Ni

si,j(j).

Hence,

p∗i =
1

2

ci +
t

ki

∑
j∈Ni

si,j(j)− εi(ki − 2)

+
1

ki

∑
j∈Ni

t li,j + pj

 .

Therefore, since ∂2πi(P̃(i,P,P∗),C)/∂p̃2i = −ki/t < 0, the local best response
strategy prices P∗ is given by

P∗ =
1

2
(C + t (Y + L) + K P) .

10.2. Local market optimum price strategy.

Definition 10.2. A Hotelling town satisfies the weak bounded length and costs
(WB) condition, if

∆(c) + t∆(l) < t lm − 6 t ε. (15)

Hence, the WB condition implies ε < lm/6.
Let

PL =
1

2

(
1− 1

2
K

)−1
(C + t (L + Y))

=

∞∑
m=0

2−(m+1)Km (C + t (L + Y)) . (16)

Theorem 10.3. If there is a local market optimum price strategy then it is the the
candidate price strategy PL. Furthermore, there is a local market optimum price
strategy if, and only if,

|pLi − pLj | < t l̃i,j

for all firms Fi and Fj that are neighbors. If the Hotelling town satisfies the WB
condition, then the candidate price strategy is the unique local market optimum price
strategy. Furthermore, the local market optimum prices pLi are uniformly bounded

t lm +
1

2
(ci + cm)− 2 t ε ≤ pLi ≤ t lM +

1

2
(ci + cM ) + 2 t ε. (17)

The local market optimum profit πL
i (P,C) of firm Fi is given by

πL
i (P,C) = (2t)−1 ki (pLi − ci)2



LOCAL MARKET STRUCTURE IN A HOTELLING TOWN 89

and it is uniformly bounded

(8t)−1 ki (2t lm −∆(c)− 4 t ε)2 ≤ πL
i (P,C) ≤ (8t)−1 ki (2 t lM + ∆(c) + 4 t ε)2.

Theorem 10.3 implies Theorem 4.1 and Theorem 4.3.

Proof of Theorem 10.3. The matrix K is a stochastic matrix (i.e.,
∑

j∈V ki,j = 1,

for every i ∈ V ) we have ‖K‖ = 1. Hence, the matrix Q is well-defined by

Q =
1

2

(
1− 1

2
K

)−1
=

∞∑
m=0

2−(m+1) Km

and Q is also a non-negative and stochastic matrix. By Lemma 10.1, a local market
optimum price strategy satisfies equality (13). Therefore,

PL =
1

2

(
1− 1

2
K

)−1
(C + t (L + Y))

=

∞∑
m=0

2−(m+1) Km (C + t (L + Y)) , (18)

and so PL satisfies (16). By construction,

pLi =
∑
v∈V

Qi,v(cv + t (Lv + Yv)). (19)

Let us prove that the price strategy PL is local, i.e., the indifferent consumer xi,j
satisfies 0 < xi,j < l̃i,j for every Ri,j ∈ E. We note that

lm ≤ Lv = k−1v

∑
j∈Nv

lv,j ≤ lM . (20)

We note that

−kv ε ≤
∑
j∈Nv

sv,j(j) ≤ kv ε

Hence, if kv = 1 then

− ε ≤ −ε+ εv ≤ Yv = k−1v

∑
j∈Nv

sv,j(j) + εv

 ≤ ε+ εv ≤ 2 ε; (21)

if kv = 2 then

− ε ≤ Yv = k−1v

∑
j∈Nv

sv,j(j) ≤ ε; (22)

and if kv ≥ 3 then

−ε− εv
kv − 2

kv
≤ Yv = k−1v

∑
j∈Nv

sv,j(j)− εv(kv − 2)

 ≤ 1

kv
(kv ε− εv(kv − 2)) .

Hence,

− 2 ε ≤ −ε− εv ≤ Yv = k−1v

∑
j∈Nv

sv,j(j)− εv(kv − 2)

 ≤ ε− εv kv − 2

kv
≤ ε. (23)
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Therefore, from (21), (22) and (23), we have

− 2 ε ≤ Yv = k−1v

∑
j∈Nv

sv,j(j)− εv(kv − 2)

 ≤ 2 ε. (24)

Since Q is a nonnegative and stochastic matrix, we obtain∑
v∈V

Qi,v(cm + t lm − 2 t ε) = cm + t lm − 2 t ε

and ∑
v∈V

Qi,v(cM + t lM + 2 t ε) = cM + t lM + 2 t ε.

Hence, putting (19), (20) and (24) together we obtain that

cm + t lm − 2 t ε ≤ pLi ≤ cM + t lM + 2 t ε.

Since the last relation is satisfied for every firm, we obtain

− (cM − cm + t(lM − lm) + 4 t ε) ≤ pLi − pLj ≤ cM − cm + t(lM − lm) + 4 t ε.

Therefore,

|pLi − pLj | ≤ ∆(c) + t∆(l) + 4 t ε.

Hence, by the WB condition, we conclude that

|pLi − pLj | < t lm − 2 t ε.

Thus, by equation (11), we obtain that the indifferent consumer is located at 0 <

xi,j < l̃i,j for every road Ri,j ∈ E. Hence, the price strategy PL is local and is the
unique local market optimum price strategy.

From (19), we have that

pLi =
∑
v∈V

Qi,v (cv + t (Lv + Yv)).

From (20) and (24), we obtain

pLi ≥
∑
v∈V

Qi,v(t lm − 2 t ε) +
∑

v∈V \{i}

Qi,v cm +Qi,i ci.

By construction of matrix Q, we have Qi,i > 1/2. Furthermore, since Q is stochas-
tic, ∑

v∈V \{i}

Qi,v < 1/2,

∑
v∈V Qi,vt lm = t lm and

∑
v∈V Qi,v2 t ε = 2 t ε. Hence,

pLi ≥ t lm − 2 t ε+
1

2
(ci + cm).

Similarly, we obtain

pLi ≤ t lM + 2 t ε+
1

2
(ci + cM ),

and so the local local market optimum prices pLi are uniformly bounded and satisfy
(17).
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We can write the the profit function (12) of firm Fi for the price strategy PL as

πL
i = πi(P

L,C) = (2t)−1(pLi − ci)

−ki pLi − 2 t (ki − 2) εi +
∑
j∈Ni

(pLj + t l̃i,j)


(25)

Since PL satisfies the best response function (14), we have

2 pLi = ci −
2 t (ki − 2)

ki
εi +

1

ki

∑
j∈Ni

(
t l̃i,j + pLj

)
.

Therefore,
∑

j∈Ni

(
t l̃i,j + pLj

)
= 2 ki p

L
i − ki ci + 2 t (ki − 2) εi, and replacing this

sum in the profit function (25), we obtain

πL
i = (2t)−1(pLi − ci)

(
−ki pLi + 2 ki p

L
i − ki ci

)
= (2t)−1 ki (pLi − ci)2.

Hence, using the price bounds (17), we conclude

(2t)−1 ki (t lm −∆(c)/2− 2 t ε)2 ≤ πL
i ≤ (2t)−1 ki (t lM + ∆(c)/2 + 2 t ε)2.

10.3. Nash equilibrium price strategy.

Lemma 10.4. In a Hotelling town satisfying the WB condition, if there is a Nash
price P∗ then P∗ is unique and P∗ = PL.

Lemma 10.4 implies Lemma 5.1.

Proof of Lemma 10.4. Suppose that P ∗ is a Nash price strategy and that P∗ 6= PL.
Hence, P∗ does not determine a local market structure, i.e., there exists i ∈ V such
that

M(i,P∗) 6⊂ ∪j∈Ni
Ri,j .

Hence, there exists j ∈ Ni such that M(j,P∗) = 0 and, therefore, π∗j = 0. Moreover,
in this case, we have that

p∗j > p∗i + t l̃i,j .

Consider, now, that Fj changes his price to pj = cj + t∆(l) + 4 t ε. Since p∗i > ci
and cj − ci ≤ ∆(c) we have that

pj − p∗i = cj + t∆(l) + 4 t ε− p∗i < cj + t∆(l) + 4 t ε− ci ≤ ∆(c) + t∆(l) + 4 t ε

Since the Hotelling town satisfies the WB condition, ∆(c)+t∆(l)+4 t ε < t lm−2 t ε,
we have

pj − p∗i < t lm − 2 t ε ≤ t li,j − 2 t ε ≤ t l̃i,j .
Hence, M(j, P̃(j,P∗,P)) > 0 and πj = (cj + t∆(l) + 4 t ε)S(j, P̃(j,P∗,P)) > 0.
Therefore, Fj will change its price and so P∗ is not a Nash equilibrium price strategy.

Hence, if there is a Nash price P∗ then P∗ = PL.

Lemma 10.5. In a Hotelling town satisfying the WB condition,

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2)

for every i ∈ V .

Lemma 10.5 implies Lemma 5.2.
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Proof of Lemma 10.5. By contradiction, let us consider a consumer z ∈ M(i,

P̃(i,PL,PL,∗)) and z /∈ N (i, 2). The price that consumer z pays to buy in firm Fi

is given by

e = pi + t (li1,i2(ε) + li2,i3(ε) + d (yi3 , z)) ≥ pi + t (li1,i2 + li2,i3 − 2 ε+ d (yi3 , z))

where pi = pL,∗
i is the coordinate of the vector P̃(i,PL,PL,∗) and for the 2-path

(Ri1,i2 , Ri2,i3) with i1 = i. If the consumer z buys at firm Fi3 , then the price that
has to pay is

ẽ = pLi3 + t d (yi3 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi3 − t (li1,i2 + li2,i3 − 2 ε) .

By (17), pLi ≤ t lM + 2 t ε+
1

2
(ci + cM ) for all i ∈ V . Since li,j ≥ lm for all Ri,j ∈ E,

pi < t lM +
1

2
(cM + ci3)− 2 t lm + 4 t ε ≤ cM + t∆(l)− t lm + 4 t ε.

Furthermore,

pi − ci < ∆(c) + t∆(l)− t lm + 4 t ε.

By the WB condition, pi − ci < 0. Hence, πL,∗
i < 0 which contradicts the fact

that pi is the best response to PL (since πL
i > 0). Therefore, z ∈ N (i, 2) and

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2).

For every firm Fi and every 0 < p < pLi , let N̂i(p) ⊂ Ni be the set of all j ∈ Ni

such that

|p− pj | < t l̃i,j .

Let

Ŝi(p) =
∑

j∈N̂i(p)

pj − p+ t l̃i,j
2 t

+
∑

j∈N\N̂i(p)

∑
k∈Nj

l̃i,j +
pk − p+ t (l̃j,k − l̃i,j)

2 t
.

Theorem 10.6. The local market optimum price strategy PL is a Nash equilibrium
price if, and only if,

Ŝi(p) p ≤ πL
i

for every firm Fi and every 0 < p < pLi .

Theorem 10.6 implies Theorem 5.3.

Proof. For every firm Fi and every 0 < p < pLi , let

P̂i(p) = (pL1 , . . . , p
L
i−1, p, p

L
i+1, . . . p

L
N ).

Let N i(p) ⊂ Ni be the set of all j ∈ Ni such that

|p− pj | = t l̃i,j .

Let

Si(p) =
∑

j∈N̂i(p)

pj − p+ t l̃i,j
2 t

+
∑

j∈Ni(p)

∑
k∈Nj

l̃i,j
2

+
pk − p+ t (l̃j,k − l̃i,j)

4 t

+
∑

j∈N\(N̂i(p)∪Ni(p))

∑
k∈Nj

l̃i,j +
pk − p+ t (l̃j,k − l̃i,j)

2 t
.
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By Lemma 10.5 and by construction of Ŝi(p), we obtain

S(i, P̂i(p)) = Si(p) ≤ Ŝi(p).

Hence,

πi(P̂i(p)) = pS(i, P̂i(p)) = pSi(p) ≤ p Ŝi(p) ≤ πL
i .

Definition 10.7. A Hotelling town satisfies the strong bounded length and costs
(SB) condition, if

∆(c) + t∆(l) ≤ (2 t lm −∆(c)− 4 t ε)2

8 t kM (lM + ε)
− 3 t ε. (26)

Theorem 10.8. If a Hotelling town satisfies the SB condition then there is a unique
Hotelling town Nash equilibrium price strategy P∗ = PL.

Theorem 10.8 implies Theorem 5.5.

Proof of Theorem 10.8. By Theorem 10.3 and Lemma 10.4, if there is a Nash equi-
librium price strategy P∗ then P∗ is unique and P∗ = PL.

We note that ifM(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1) for every i ∈ V then P̃(i,PL,PL,∗)

= pLi and so PL is a Nash equilibrium.

By Lemma 10.5, we have that M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2) for every i ∈ V .
Now, we will prove that condition (26) implies that firm Fi earns more competing
only in the 1-neighborhood than competing in a 2-neighborhood.

By Lemma 10.5,

πi(P̃(i,PL,PL,∗)) ≤ (pi − ci)
∑
j∈Ni

l̃i,j +
∑

k∈Nj\{i}

lj,k(ε)


≤ (pi − ci)

∑
j∈Ni

∑
k∈Nj

lj,k(ε),

where pi = pL,∗
i is the coordinate of the vector P̃(i,PL,PL,∗). Hence,

πi(P̃(i,PL,PL,∗)) ≤ (pi − ci)
∑
j∈Ni

∑
k∈Nj

(lj,k + ε) ≤ (pi − ci)ki kM (lM + ε). (27)

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PL,PL,∗)) and z /∈
N (i, 1). Let i2 ∈ Ni be the vertex such that z ∈ N (i2, i). The price that consumer
z pays to buy in firm Fi is given by

e = pi + t li,i2(ε) + t d (yi2 , z) ≥ pi + t li,i2 + t d (yi2 , z)− t ε.

If the consumer y buys at firm Fi2 , then the price that has to pay is

ẽ = pLi2 + t d (yi2 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi2 − t li,i2 + t ε.

By (17), pLi2 ≤ t lM + 2 t ε+
1

2
(cM + ci2). Since li,i2 ≥ lm, we have

pi < t lM +
1

2
(cM + ci2) + 2 t ε− t lm + t ε ≤ cM + t∆(l) + 3 t ε.
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Thus,

pi − ci < ∆(c) + t∆(l) + 3 t ε.

Hence, from (27) we obtain

πi(P̃(i,PL,PL,∗)) < ki kM (lM + ε) (∆(c) + t∆(l) + 3 t ε) .

By the SB condition,

πi(P̃(i,PL,PL,∗)) < (2 t)−1 ki (t lm −∆(c)/2− 2 t ε)2. (28)

By Theorem 10.3 and (28),

πL
i ≥ (2 t)−1 ki (t lm −∆(c)/2− 2 t ε)

2
> πi(P̃(i,PL,PL,∗)),

which contradicts the fact that pi is the best response to PL. Therefore, z ∈ N (i, 1)

and M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1). Hence, P̃(i,PL,PL,∗) = pLi and so PL is a
Nash equilibrium.

10.4. Firm position stability. For every firm Fi, with ki = 2, let v(i) ∈ Ni\{j(i)}
be the neighboring vertex of i that is different from j(i). Let us denote

Ui =
Qi,v(i)

kv(i)
−
Qi,j(i)

kj(i)
.

Theorem 10.9. The marginal rate of the price of a firm Fi with respect to the
deviation of the localization of the firm from the node is given by

∂pLi /∂εi = t

Qi,i ∂Yi/∂εi +
∑
j∈Ni

Qi,j ∂Yj/∂εi


= t

Qi,i
2− ki
ki

−
2Qi,j(i)

kj(i)
+
∑
j∈Ni

Qi,j

kj

 .

The marginal rate of the profit of a firm Fi with respect to the deviation of the
localization of the firm from the node is given by

∂πL
i /∂εi =

ki (pLi − ci)
t

· ∂pLi /∂εi.

Furthermore,

(i) Case ki ≥ 1. Then ∂πL
i /∂εi > 0.

(ii) Case ki = 2. Let j = i(j) and v the other adjacent node of i.
If Ui > 0 then ∂πL

i /∂εi > 0; if Ui < 0 then ∂πL
i /∂εi < 0; and if Ui = 0

then ∂πL
i /∂εi = 0.

(iii) Case ki ≥ 3 and kv ≥ 3, for every v ∈ Ni. Then ∂πL
i /∂εi < 0.

(iv) Case ki ≥ 4 and kv ≥ 2, for every v ∈ Ni. Then ∂πL
i /∂εi < 0.

Theorem 10.9 implies Theorem 6.2.

Proof of Theorem 10.9. From Theorem 10.8, we have

pLi =
∑
v∈V

Qi,v(cv + t Lv + t Yv), (29)

and

πL
i = (2 t)−1 ki (pLi − ci)2.
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Hence,

∂πL
i /∂εi =

ki (pLi − ci)
t

· ∂pLi /∂εi.

Hence, to study the influence of εi in the profit πL
i , we only have to study the signal

of ∂pLi /∂εi. By (29), we have

∂pLi /∂εi =
∑
v∈V

∂pLi /∂Yv · ∂Yv/∂εi.

Since, for every v ∈ V , ∂pLi /∂Yv = tQi,v, we have

∂pLi /∂εi = t
∑
v∈V

Qi,v ∂Yv/∂εi.

Recall that

Yv =
1

kv

∑
j∈Nv

sv,j(j)− εv (kv − 2)


Hence, for v = i, we have

∂Yi/∂εi =
2− ki
ki

;

for v ∈ Ni, we have

∂Yv/∂εi = ∂/∂εi

(
1

kv
sv,i(i)

)
= ± 1

kv
;

and for v /∈ Ni, we have ∂Yi/∂εi = 0. Therefore,

∂pLi /∂εi = t

Qi,i
2− ki
ki

−
2Qi,j(i)

kj(i)
+
∑
j∈Ni

Qi,j

kj


If ki = 1, then

∂pLi /∂εi = tQi,i > 0.

If ki = 2, then

∂pLi /∂εi = t

(
Qi,v(i)

kv(i)
−
Qi,j(i)

kj(i)

)
= t Ui.

If ki ≥ 3, then

∂pLi /∂εi ≤ t

Qi,i
2− ki
ki

+
∑
j∈Ni

Qi,j
1

kj


By construction, Qi,i > 1/2 and

∑
j∈Ni

Qi,j < 1/2. Hence, if kv ≥ 3, for every
v ∈ Ni, then

∂pLi /∂εi < t

(
−1

6
+

1

6

)
= 0.

Furthermore, if ki ≥ 4 and kv ≥ 2, for every v ∈ Ni, then

∂pLi /∂εi < t

(
−1

4
+

1

4

)
= 0.
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10.5. Space bounded information.

Definition 10.10. A Hotelling town has n-space bounded information (n-I) if for
every 1 ≤ m ≤ n, for every firm Fi and for every non-empty set R(i, j;m): (i)
firm Fi knows the cost cj and the average length road Lj and the firm deviation Yj
of firm Fj ; (ii) for every m path R ∈ R(i, j;m), firm Fi knows the corresponding
weight k(R).

The n-local market optimum price vector is

P(n) =

n∑
m=0

2−(m+1) Km (C + t (L + Y)) .

We observe that in a n-I Hotelling town, the firms might not be able to compute K,
C, L or Y. However, every firm Fi is able to compute his n local market optimum
price pi(n)

pi(n) =

n∑
m=0

2−(m+1)
∑
v∈V

kmi,v (cv + t (Lv + Yv)) .

Theorem 10.11. A Hotelling town satisfying the WB condition has a local market
optimum price strategy PL that is well approximated by the n local market optimum
price P(n) with the following 2−n bound

0 ≤ pLi − pi(n) ≤ 2−(n+1)NV (cM + t (lM + 2 ε)).

Furthermore, P(n+ 1) is the best response to P(n) for n sufficiently high.

Theorem 10.11 implies Theorem 7.2.

Proof of Theorem 10.11. By Theorem 10.3, if a Hotelling town satisfies the WB
condition then there is local market optimum price strategy PL given by

PL =

∞∑
m=0

2−(m+1)Km (C + t (L + Y)) .

Considering Q =
∑∞

m=0 2−(m+1)Km, we can write the equilibrium prices as

pLi =
∑
v∈V

Qi,v (cv + t (Lv + Yv)), where Qi,v =

∞∑
m=0

2−(m+1)kmi,v.

For the space bounded information Hotelling town, the n local market optimum
price P(n) is given by

P(n) =

n∑
m=0

2−(m+1)Km (C + t (L + Y))

and

pi(n) =
∑
v∈V

Qi,v(n) (cv + t (Lv + Yv)), where Qi,v(n) =

n∑
m=0

2−(m+1)kmi,v.

The difference Ri(n) between pLi and pi(n) is positive and is given by

Ri(n) =
∑
v∈V

(Qi,v −Qi,v(n)) (cv + t (Lv + Yv)).
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We note that

Qi,v −Qi,v(n) =

∞∑
m=n+1

2−(m+1)kmi,v.

Since 0 ≤ kmi,v ≤ 1, for all m ∈ N and all i, v ∈ V and
∑∞

m=n+1 2−(m+1) = 2−(n+1),
we have that

Qi,v −Qi,v(n) ≤ 2−(n+1).

Hence,

Ri(n) ≤
∑
v∈V

2−(n+1) (cv + t (Lv + Yv)).

Since Lv ≤ lM , Yv ≤ 2 ε and cv ≤ cM , we have that

Ri(n) ≤ 2−(n+1)NV (cM + t (lM + 2 ε)). (30)

Therefore,

0 ≤ pLi − pi(n) ≤ 2−(n+1)NV (cM + t (lM + 2 ε)).

By (13), the best response P′ to P(n) is given by

P′ =
1

2
(C + t (L + Y)) +

1

2
K P(n)

=
1

2
(C + t (L + Y)) +

n∑
m=0

2−(m+2)Km+1 (C + t (L + Y))

=

n+1∑
m=0

2−(m+1)Km (C + t (L + Y)) = P(n+ 1).

10.6. Profit degree growth. Let Fi be a firm located in a node of degree ki and
Fj a firm located in a node of degree kj . Let p̄i = pLi −ci and p̄j = pLj −cj represent
the unit profit of firm Fi and Fj , respectively.

Let θ(p) = pLi −pLj , θ(c) = ci−cj , θ(k) = ki−kj and θ(p̄) = p̄i− p̄j = θ(p)−θ(c).

Lemma 10.12. Given the local market optimum price strategy PL, πL
i > πL

j if and
only if

ki − kj
kj

>
p̄2j − p̄2i
p̄2i

.

Lemma 10.12 implies Lemma 8.1.

Proof of Lemma 10.12. If Fj is a firm located in a node of degree kj , then

πL
j = (2t)−1 kj (pLj − cj)2 = (2t)−1 kj p̄

2
j .

Similarly, if Fi is a firm located in a node of degree ki, then

πL
i = (2t)−1 ki (pLi − ci)2 = (2t)−1 ki p̄

2
i = (2t)−1 (kj + θ(k)) (p̄j + θ(p̄))

2
.

Hence,

2 t πL
i = kj p̄

2
j + kj θ(p̄) (2 p̄j + θ(p̄)) + θ(k) (p̄j + θ(p̄))2

= 2 t πL
j + kj θ(p̄) (p̄j + p̄i) + θ(k) p̄2i ,

and so

2 t (πL
i − πL

j ) = kj (p̄i − p̄j) (p̄j + p̄i) + θ(k) p̄2i = kj (p̄2i − p̄2j ) + (ki − kj) p̄2i .
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Therefore,

πL
i > πL

j if, and only if,
ki − kj
kj

>
p̄2j − p̄2i
p̄2i

.

Definition 10.13. A Hotelling town network satisfies the degree-bound lengths and
costs (DB) condition if

∆(c) + t∆(l) <
(√

1 + 1/kM − 1
)

(t lm −∆(c)/2− 2 t ε)− 4 t ε. (31)

Theorem 10.14. A Hotelling town network satisfying the WB and DB conditions
has the profit degree growth property.

Theorem 10.14 implies Theorem 8.3.

Proof of Theorem 10.14. Let Fi and Fj be firms in the Hotelling town network such
that ki > kj . We need to prove that πL

i > πL
j . From Lemma 10.12 we say that

πL
i > πL

j , if and only, if

kj θ(p̄) (p̄j + p̄i) + θ(k) p̄2i > 0. (32)

Since ki > kj , then θ(k) > 0. Hence, if θ(p̄) > 0, i.e. p̄i > p̄j , then condition (32) is
satisfied.

Let us now consider the case where θ(p̄) < 0. Condition (32) is equivalent to

kj θ(p̄)
2 − 2 ki p̄i θ(p̄)− θ(k) p̄2i < 0. (33)

Solving the second degree equation kj θ(p̄)
2 − 2 ki p̄i θ(p̄)− θ(k) p̄2i = 0, we obtain

θ(p̄)± = p̄i

(
1±

√
1 + θ(k)/kj

)
.

Let f(θ(k), kj) be the function given by

f(θ(k), kj) =
√

1 + θ(k)/kj − 1.

We note that f(θ(k), kj) > 0 and θ(p̄)− = −f(θ(k), kj) p̄i. If θ(p̄)− < θ(p̄) < 0 then
condition (33) is satisfied. By hypothesis θ(p̄) < 0 and, so, if

f(θ(k), kj) p̄i > −θ(p̄) (34)

then (33) is satisfied.
Since θ(p̄) = p̄i − p̄j , from (17) we have |θ(p̄)| < ∆(c) + t∆(l) + 4 t ε. Hence, if

f(θ(k), kj) p̄i > ∆(c) + t∆(l) + 4 t ε (35)

then (34) is satisfied. Noting that f(θ(k), kj) > f(1, kM ) =
√

1 + 1/kM − 1, if

∆(c) + t∆(l) + 4 t ε <
(√

1 + 1/kM − 1
)
p̄i (36)

then (35) is satisfied. By (17), we have p̄i ≥ t lm −∆(c)/2− 2 t ε. Hence, if

∆(c) + t∆(l) + 4 t ε <
(√

1 + 1/kM − 1
)

(t lm −∆(c)/2− 2 t ε) (37)

then (36) is satisfied. Hence, if condition (37) is satisfied, then (32) is satisfied,
πL
j > πL

i for every firms Fi and Fj such that kj > kj , and, so, the network has the
profit degree growth property.
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11. Conclusion. Under the weak bounded costs condition, we proved that the
price subgame has a unique local market optimum price strategy. We gave an ex-
plicit closed formula and an explicit series expansion formula for the local market
optimum price strategy. We showed that the influence of a firm in the local market
optimum price strategy of other firm decreases exponentially fast with the distance
between the firms. We showed that each firm is able to compute an approxima-
tion of its own local market optimum price strategy that improves exponentially
fast with the space bounded information knowledge of the firm. Under the strong
bounded condition, we proved that the local market optimum price strategy is a
Nash equilibrium price strategy. We proved that the firms prefer to be located at
the crossroads of the network but they do not prefer to be located at the ends of
no-exit roads.
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