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Abstract

This paper studies private provision of a discrete public good using provision

point mechanism by assuming the social planner has the ability to set up an “as-

surance contract” in case of provision failure. Our research is motivated by the

positive prospects of dominant assurance contract (Tabarrok, 1998) to address the

increasing popularity of using voluntary contribution mechanisms to fund public

projects. We modify the existing assurance contract format with the inclusion of

a minimum price (MP) and an assurance payment (AP), where an individual will

obtain a compensation which equals to the assurance payment if she is willing to

contribute above the minimum price in case of a provision failure. We analyze the

Bayesian Nash equilibrium for a two-player public goods provision game allowing

continuous bids under the assurance contract as well as a N-player public goods

game allowing each player to either accept or reject an assurance contract. We

show that using an assurance contract, a threshold public good may be provided

with an arbitrarily high ex-ante provision probability while the social planner still

receive a positive expected profit.
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1 Introduction

In public good provision problems, individuals’ free-riding incentives constantly chal-

lenge the social planner’s ability to fund public projects using decentralized market mech-

anisms. Intuitively, the provision failure is a result of individuals’ dependence on others

to bear the cost while enjoying the benefit when the public good is provided by the

group. This paper explores the possibility of using assurance contract to counter individ-

uals’ free riding behaviors. The assurance contract changes the contribution behaviors by

compensating significant contributors upon a provision failure and creates incentives for

individuals to raise contribution to be eligible for an assurance payment, and eventually

leads to a higher probability of provision success.

Our framework is based on the threshold public good provision game (Rondeau et al.,

1999, 2005) where a minimum total of contributions is needed to provide one unit of a

public good. Compared to the linear public good game where always contributing zero

is the equilibrium strategy (Andreoni, 1995; Bernheim, 1986; Isaac and Walker, 1988),

in the threshold public good game, the minimum total contribution required to reach

the provision cost introduces an incentive for individuals to contribute to the public

good with the efficient outcome being a part of feasible equilibrium outcomes. Bagnoli

and Lipman (1989) prove that the non-provision outcome cannot be eliminated unless

a stronger refinement is used. Different rebate mechanisms are proposed to reduce the

non-provision outcomes (Marks and Croson, 1998; Spencer et al., 2009; Liu et al., 2016;

Li et al., 2016), however, most of the rebate rules, such as the proportional rebate rule

where excess contributions returned to individuals in proportion of their contributions,

do not alter the efficient equilibrium strategy set.

Our paper is motivated by the dominant assurance contract introduced by Tabarrok

(1998), under which the non-provision equilibria are successfully eliminated in a complete

information setting. When individuals are faced with a dichotomous choice, i.e., con-

tributing versus not contributing, contributing to the public good becomes a dominant

strategy if those who agreed to contribute can be compensated with a positive benefit in

situations where the public good is not provided. With the dominant assurance contract,

the pure free-riding equilibrium is eliminated due to the existence of assurance contract

and not contributing is no longer a best response. The assurance contract encourages

commitments to pay for public good provision by offering compensation to individuals

who commit to making a donation, and paying that compensation when the group fails

to provide the public good (and no donations are collected). Recently, Zubrickas (2014)

proposes a “rebate bonus” mechanism where individuals will be compensated proportion-
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ally to their contribution upon provision failure, and the rebate bonus mechanism achieves

Lindahl allocation (Lindahl, 1919) with complete information.

In our paper, we generalize the dominant assurance contract to a threshold public

good environment by investigating individuals’ equilibrium strategies under incomplete

information. In order to be eligible for the assurance payment upon provision failures,

individuals need to contribute at least the minimum price (MP); we also alter the level

of assurance payment (AP), the compensation that eligible individuals receive upon a

provision failure. We allow continuous contributions and specify the equilibrium bidding

strategy for a two-players game and allow dichotomous choice1 (i.e., accept or reject the

assurance contract) for a group of arbitrary size under incomplete information.

Different from experiments using mechanisms penalizing free or cheap riders (Masclet

et al., 2003; Bracht et al., 2008; Denant-Boemont et al., 2007) the assurance contract

mechanism encourages a higher contribution by rewarding those who are committed to

share the public good cost, which is in line of the spirits reflected in Tabarrok (1998)

and Zubrickas (2014). Also, we are exploring the idea of increasing the expected share

of consumers’ surplus (or the expected contributors’ surplus) to overcome the free or

cheap riding incentives. Under the assurance contract, a producer (the social planner or

the market maker) compensates the contributors if 1) the contributor entered a binding

agreement to pay a significant, specified amount (or more) in support of the public good

provision and 2) the public good is, nevertheless, not provided. As a consequence, the

individuals’ expected share of consumer surplus is higher than the provision point mecha-

nism where consumer-donors realize zero benefits if the public good is not provided. Note

that different rebate mechanisms, such as the proportional rebate redistributes all the

excess contribution back to the contributors and thus leave the producer exactly zero sur-

plus. Our assurance contract may either result in a positive or negative (or zero) producer

surplus depending on the model parameters.

The funding for public project has been an important topic in public finance as govern-

ment usually rely on tax (e.g., proportional or stepwise wage-income tax) to fund public

projects that usually benefit a subgroup of population. The recently emerged and fast-

growing crowd funding industry seeks potential possibilities to cover or partially offset the

R&D cost from the general public. For example, the Kickstarter2 and gofundme3 crowd

1It is analytical difficult to derive the individual equilibrium contribution strategy for a group size

larger than two in a standard threshold public good contribution without the assurance contract. Our

specifications further complicate the currently unsolved problem and thus we restrict our attention to the

discrete equilibrium strategies for a group size of N .
2https://www.kickstarter.com.
3http://www.gofundme.com.
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funding websites gathered $470 million and $444 million of private donation (or pledges)

in the year of 2014. Particularly, the Kickstarter specifies the “all-or-nothing” rule where

“no one will charged for a pledge towards a project unless it reaches its funding goal,”

which is effectively using the provision point mechanism that provides a threshold public

good (i.e., the project) while most of the projects listed carry some public good proper-

ties (such as the development of a new computer game). People with a similar preference

constitute the donation base and decide the group size for the provision of a particu-

lar project. Our results using the assurance contract can be helpful for crowdfunding

companies to test new rules in order to support more publicly valued projects.

Our analyses on the two-player threshold public good game with assurance contract

reveal a discontinuous equilibrium bidding strategy that contrasts the continuous Bayesian

Nash equilibrium strategy without the assurance contract (Alboth et al., 2001; Laussel

and Palfrey, 2003; Barbieri and Malueg, 2008). Particularly, we find that the maximum

contribution never exceeds the minimum price (minimum contribution required to be

eligible for assurance contract in case of provision failure) and the equilibrium bidding

strategy is closely linked to the specified minimum price in relation to the provision

cost. Our analyses on with group size N is related to the work by Tabarrok (1998) but

distinguish from the early work by considering the assurance contact using provision point

mechanism with a more flexible compensation scheme. We devote a significant portion of

discussion on the difference of allocative efficiency change due to the presence of assurance

contract. We also explore the implications when the social planner (which will used as

a general term for the market maker or entrepreneur in case of the crowding funding

industry) can gain a private benefit from the successful provision of public good, which is

compared to the extreme, less realistic scenario where the social planner has zero benefits

from a successful provision. Our results suggest that by using different combinations

of minimum price and assurance payment, the social planner has a large capacity and

flexibility to achieve a higher provision probability in even large groups, at the cost of

a smaller, even negative, producer surplus in cases where the social planer has a small

private value from the successful provision.

The rest of the paper is organized as follows. Section 2 describes the assurance con-

tract and analyzes the symmetric Bayesian Nash equilibrium for a 2-player public good

provision allowing continuous contributions. Section 3 applies the assurance contract to

N -player and characterizes the equilibrium outcome allowing each player to either accept

or reject an assurance contract. Section 4 discusses the results and concludes the paper.
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2 The Model, Two Players

A provision point mechanism is employed by a social planner to provide a discrete

public good with a predetermined cost c. There are N ∈ N = {2, · · · , n} individuals who

potentially contribute to the public good. Individual private value v follows an i.i.d. draw

from a commonly known distribution function F (·) on the support [v, v̄]. We consider a

mechanism (a.k.a “assurance contract”) where the social planner is able to compensate

individuals whose contributions surpass a certain amount in case of a provision failure.

The assurance contract is characterized by a contingent payment scheme (α, β) such that

an individual contributes at least the minimum price (MP) α. If the public good is not

provided, contribution will be returned and the individual will be compensated by an

assurance payment (AP) β. Note that we maintain the assumptions that individuals’

induced values are private while the value distribution F (·), the cost c, the number of

potential contributors N as well as the payment scheme (α, β) are common knowledge.

Additionally, we assume 0 < α ≤ v̄ and v̄ < c < 2v̄ to rule out the possibility that the

public good can be provided with only one individual.

Let bi be the contribution of individual i whose induced value is vi. Then her expected

payoff is given by

(vi − bi) Pr

(
N∑
j=1

bj ≥ c

)
+ 1(bi ≥ α)β Pr

(
N∑
j=1

bj < c

)
. (1)

Given the setting and information structure specified above, the public good provision

constitutes a game of incomplete information. Individual i’s contributing strategy, de-

noted by si(·), is a mapping from the private value to contribution.

Definition 1. A profile of contributing strategies s∗ = (s∗i (·), s∗−i(·)) is a pure strategy

Bayesian-Nash Equilibrium if for all i ∈ N and for all vi ∈ [v, v̄], we have that

s∗i (vi) ∈ arg max
0≤s′i≤c

{
(vi − s′i) Pr

(
s′i + s∗−i(v−i) ≥ c

)
+ 1(s′i ≥ α)β Pr

(
s′i + s∗−i(v−i) < c

)}
,

(2)

Without loss of generality, let v = 0, v̄ = 1. To simplify our analysis but still keep the

game interesting, we first consider the assurance contracts with two players, i.e, N = 2

where we provide a Bayesian-Nash equilibrium and then analyze the probability of a

successful provision as well as the expected payoff of the social planner in the equilibrium.

We focus our analysis on the symmetric equilibria (si, s−i) → (s, s) and assume the

assurance payment is set to equal the minimum price, α = β (we use α in the following

exposition) for now.
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2.1 Individuals’ Contributing Strategy

Before analyzing individuals’ equilibrium contributing strategies, we introduce several

important properties of the strategies defined in (2). If individual i’s contribution is given

to be s′i then at equilibrium the probability of providing the public good successfully

depends on the value distribution f(·). Explicitly, the probability is written as

Pr
(
s′i + s∗−i(v−i) ≥ c

)
=

∫
v−i:s′i+s

∗
−i(v−i)≥c

f(v−i)dv−i.

Lemma 1. Assume s1 and s2 are the equilibrium contribution strategies, then si(v) ≤
max{α, 1− α},∀α ∈ (0, 1) and i = 1, 2

Proof. See Appendix.

Lemma 2. In the Bayesian-Nash Equilibria defined in (2), the equilibrium strategy si(v)

is generally a nondecreasing function of vi if N = 2.

Proof. See Appendix.

Lemma 3. In the equilibrium, when α < 1
2
, no one contributes less than α.

Proof. See Appendix.

According to Lemma 2, the highest contribution is s(v̄). For the convenience of expo-

sition, we introduce a threshold v∗ such that

v∗ ≡ min {v ∈ [v, v] : s(v) + s(v̄) ≥ c} .

If there does not exist a v∗satisfies the above definition, then the public good will not be

provided at all when individuals follow the strategy s(·). Suppose v∗ exists, then the public

good is provided with positive probability if and only if vi > v∗, whereas the provision

probability is zero if vi ≤ v∗. Below we further assume the distribution of induced values

F (·) is a standard uniform distribution.

When the assurance contract is not available, Laussel and Palfrey (2003) characterize

the equilibrium conditions for a two-player threshold public good provision game under

incomplete information using a set of differential equations; Barbieri and Malueg (2008)

derive the linear equilibrium strategy under boarder circumstances. Particularly, under

our setting (uniformly distributed induced values on [0, 1] and N = 2) the symmetric

Bayesian Nash equilibrium strategy is

s(v) =

{
v for v ≤ 1

3
1
6

+ 1
2
v for v > 1

3
.

(3)
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In our analysis, we will compare the equilibrium strategy under assurance contract with

the strategy above in terms of provision probability and surplus allocation between con-

tributors and the social planner.

To solve the equilibrium strategy with the assurance contract, first note that if the

public good is provided with zero probability at the equilibrium, then s(v) = α and

individuals would just obtain the assurance payment. In fact, as we will prove later, an

equilibrium strategy is s(v) = α, ∀v ∈ [0, 1] when α < 1
2
, which is consistent with Lemma

3.

When α ≥ 1
2
, the public good maybe provided with some positive probability. If so,

there exists a v∗ ∈ (0, 1) such that s(v∗) + s(1) ≥ 1. In this case, note that s(v∗) ≤ α

according to Lemma 1. Assume otherwise s(v∗) > α, consider the strategy for the player

when v = 1, the expected profit of contributing s(1) = α dominates the strategy s′(1) > α,

because the provision probability is 1−v∗ under both strategies while the profit is strictly

less when the public good is provided. Note that the player when v = v∗ will not change

between s(1) and s′(1) since the probability of provision is unaffected. Therefore s(1) = α,

which violates the monotonicity result from Lemma 2.

Similarly, we can also demonstrate that s(1) = α whenever the public good is provided

with some positive probability (Lemma 1). Intuitively, this is because when s(1) increases

beyond α will only adversely affect one’s profit upon provision but the probability of

provision is unchanged in the equilibrium. Based on the above characterizations of the

equilibrium behaviors, we propose the equilibrium strategy below and prove that our

strategy constitute the Bayesian Nash equilibrium.

Proposition 1. (i). When α < 1
2
, an equilibrium bidding strategy is s(v) = α. (ii).

When α = 1
2
, an equilibrium bidding strategy is

s(v) =

{
v for v ≤ 1−

√
2
2

;
1
2

for v > 1−
√
2
2
.

(4)

(iii) When α ∈ (1
2
, 2
3
), an equilibrium bidding strategy is

s(v) =

{
v for v ≤ 1

2
(2α + 1−

√
4α2 + 1)

α for v > 1
2
(2α + 1−

√
4α2 + 1),

(5)

(iv) When α ≥ 2
3
,the equilibrium bidding strategy is

s(v) =


v for v < 1− α

1− α for v ∈ [1− α, 1− α +
√

3α2 − 2α]

α for v > 1− α +
√

3α2 − 2α

(6)
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Note that among the equilibrium strategies represented in equations (4), (5) and (6),

the strategy s(v) = v in the low value range can be generalized to s(v) = b, b ∈ [0, 1 −
α) and s(v) satisfies the monotonic constraint. In the low value range v < v∗, the

probability of provision is zero in equilibrium, thus, the bidding choice does not influence

the equilibrium outcome as long as b < 1− α.

Figure 1 illustrates the equilibrium bidding strategy when the minimum price MP

belongs to different ranges, as well as the liner equilibrium bidding strategy without

the assurance contract. The equilibrium strategies suggest three possible equilibrium

outcomes if we merge MP = 1
2

and MP ∈ (1
2
, 2
3
). When MP < 1

2
, both players will bid

exactly α and the public good will be provided with zero probability. When MP ∈ [1
2
, 2
3
),

players with relative low values (vi ∈ [0, 1
2
(2α+1−

√
4α2 + 1)) will bid their value and the

expected provision probability and equilibrium profit are zero, while players with relative

higher values (vi ∈ (1
2
(2α+ 1−

√
4α2 + 1, 1]) will bid α and claim the assurance payment

upon provision failure, thus receive a positive expected profit. When MP > 2
3
, a new

bidding strategy emerges as players with value in the middle range bid 1−α. If the player’s

value is higher than 1−α, bidding 1−α is strictly better than bidding below 1−α since

the provision probability is now positive and one can gain some surplus from provision,

however, unless one’s value reaches a threshold, in our case v∗∗ = 1 − α +
√

3α2 − 2α,

the expected benefit of biding α and be eligible for the assurance payment upon provision

failure is higher than the expected loss of paying an amount higher than one’s value upon

provision success.

The threshold value v∗ = 1
2
(2α+ 1−

√
4α2 + 1) in equilibrium strategy represented in

equation (4) and (5) is calculated by setting the player v∗ receives the same expected profit

from bidding α and bidding v; the threshold values v∗ = 1−α and v∗∗ = 1−α+
√

3α2 − 2α

in equilibrium strategy represented in equation (6) is calculated by setting the player v∗

receives the same expected profit from bidding 1 − α and bidding v, while at the same

time, the player with v∗∗ receives the same expected profit from bidding 1−α and bidding

α. Based on the equilibrium bidding strategy, we investigate the provision probability and

the surplus allocation between the social planner and the players under assurance contract.

2.2 The Allocation of Realized Social Surplus

A new feature of a threshold public good provision with assurance contract is that the

social planner may need to secure fund for the potential assurance payment. Thus it is

important to understand the determinants of the social planner’s expected payoff from

the provision. Individual equilibrium bidding strategy outlined in Proposition 1 enables

8



us to analyze the provision probability the expected payoff of the individuals as well as

the social planner. The results are summarized as follows.

Proposition 2. When α < 1
2
, the provision probability is zero. The expected profit of the

individuals and the social planner are α and −2α, respectively.

When MP = 1
2
, the provision probability P = 1

2
. The player’s expected profit

π(v) =

{
0 for v ≤ 1−

√
2
2√

2
2

(v − 1) + 1
2

for v > 1−
√
2
2
,

(7)

the social planner’s expected profit is πs = 2−
√
2

2
> 0.

When MP ∈ (1
2
, 2
3
), the provision probability P ∈ (4

9
, 1
2
), which decreases in α. The

player’s expected profit is

π(v) =

{
0 for v ≤ v∗

(1− v∗)v + (2v∗ − 1)α for v > v∗,
(8)

the social planner’s expected profit is πs = 2α(1 − v∗)(1 − 2v∗) ∈ (2−
√
2

2
, 8
27

), which is

increasing as MP increases, where v∗ = 1
2
(2α + 1−

√
4α2 + 1).

When MP ≥ 2
3
, the provision probability P = (1− v∗∗)2 + 2(1− v∗∗)(v∗∗− v∗) ∈ [0, 4

9
],

which decreases as MP increases. The player’s expected profit is

π(v) =


0 for v < v∗

(1− v∗∗)(v − v∗) for v ∈ [v∗, v∗∗]

(1− v∗)v + (2v∗ − 1)α for v > v∗∗
(9)

the social planner’s expected profit is πs = (1−v∗∗)(2α2−v∗+(1−2α)v∗∗) ∈ [0, 8
27

], which

is decreasing as MP increases, where v∗ = 1− α and v∗∗ = 1− α +
√

3α2 − 2α.

The player’s expected profit is expected profit upon provision plus the expected profit

upon provision failure, which is always positive if the assurance contract is applicable.

The social planner’s expected profit is calculated as

πs =
∑
i

biP − α
∑
i

p′i, (10)

where P is probability of success, p′i is the probability that player i is eligible to receive the

assurance payment and the expected profit equals the expected revenue (
∑

i biP ) minus

the expected assurance payment.

The above profit function does not subtract the cost for providing the public good

if we are willing to assume that the social planner can also benefit from the provision
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of the public good through decentralized contributions instead of supporting the public

good from other sources, such as distortionary tax, or in case of crowdfunding where the

entrepreneur holds a positive value from the successful provision of the project. Note that

we can also specify the social planner receives a fixed profit (S) from provision of the

public good, in this case, the social planner’s expected profit becomes:

πs = (
∑
i

bi + S − c)P − αP ′, (11)

thus, equation (10) is a special case of equation (11) where S = c. Proposition 2 uses

equation (10) to calculate the social planner’s expected profit. Proposition 2 also suggests

that the public good is provided with the highest probability 1
2

when MP = 1
2

while the

social planner receives the highest expected profit when MP = 2
3
, which can vary depends

on the assumption we impose on the social planner’s benefit from providing the public

good.

When the assurance contract is not available, according to the linear equilibrium

bidding strategy, the public good is provided when s(v1) + s(v2) = 1
2
v1 + 1

6
+ 1

2
v2 + 1

6
≥ 1,

vi ≥ 1
3
. Note that vi follows a uniform distribution on [0, 1]. Therefore, P (v1 + v2 ≥

4
3
, v1 ≥ 1

3
, v2 ≥ 1

3
) = P (v1 + v2 ≥ 4

3
). Let vs = v1 + v2, then the probability distribution

f(vs) = vs if vs ∈ [0, 1] and f(vs) = 2 − vs if vs ∈ [1, 2], which leads to the provision

probability P (vs ≥ 4
3
) = 2

9
.

When the assurance payment is available, and particularly, when MP = 1
2
, the pro-

vision portability is 1
2
, which increases by 125% compared when there is no assurance

payment. Furthermore, we find that as long as MP ∈ [1
2
, 1
2

+
√
5
6

), the assurance payment

will increases the provision probability compared to the equilibrium outcome where such

assurance payment scheme is not available.

The social planner’s expected profit without assurance contract is πs =
∫
vs∈[ 23 ,1]

vsf(vs) =
28
81

. When MP = 1
2
, the social planner’s expected profit about 15% smaller (approximate

0.05 in absolute term) compared to the situation without assurance contract. In this

case, the assurance contract increases the provision probability significantly while only

moderately reduces the social planner’s expected profit. If the social planner’s value from

providing the public good S is higher than c, it is possible that the assurance contract

increases the both the provision probability and the social planner’s expected profit. To

see this, when MP = 1
2
, πs = (

∑
i bi + S − c)P − αP ′ = 1

2
S + 1

2
−
√
2
2

, while without

assurance contract, πs =
∫
vs∈[ 23 ,1]

(vs + S − 1)f(vs) = 28
81

+ 2
9
(S−1). Thus, when the social

planner’s value for the public good S ≥ 9
√
2

5
− 61

45
≈ 1.19, the assurance contract increases

both expected provision probability and the social planner’s expected profit. Note that

when S > c = 1, the social planner has the incentive to provide the public good all by
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herself. However, it is possible that a social planner or an entrepreneur has a budget or

liquidity constraint so that the project can only be provided using private contributions.

In terms of player’s expected profit, the assurance contract always yields a higher

expected profit at MP = 1
2
. Specifically, when v ∈ [1−

√
2
2
, 1
3
), the difference in expected

profit is ∆π(v) =
√
2
2

(v−1)+ 1
2

and when v ∈ [1
3
, 1], ∆π(v) =

√
2
2

(v−1)+ 1
2
−(1

2
v− 1

6
)(v− 1

3
).

Thus, the assurance contract weakly increases the expected profit for players of all values.

Efficiency The social efficiency is evaluated from an ex-post perspective and a socially

efficient mechanism provides the public good whenever the sum of realized values are

higher than (or equal to) the cost. When assurance contract is not available4 and according

to the strategy in equation (3), if in the equilibrium, the players can provide the public

good, it must be socially desirable to provide the public good since each player contributes

lower than their values. Thus, the realized social surplus from the equilibrium when S = c

is,

Rs =

∫
v1∈[ 13 ,1]

∫
v2∈[s−1(c−s(v1)),1]

(v1 + v2 + S − 1)dv2dv1,

or

Rs =

∫ 1

1
3

∫ 1

4
3
−v1

(v1 + v2 + S − 1)dv2dv1 =
28

81
.

The potential maximum social surplus is

Ms =

∫ 1

0

∫ 1

1−v1
(v1 + v2 + S − 1)dv2dv1 =

2

3
.

Therefore, the equilibrium strategy can realize about 24% potential social surplus without

the assurance contract.

When the assurance contract is available, it is possible the public good will be provided

when the sum of players’ value is smaller than the cost, however, after considering the

benefit to the social planners, the benefit from providing the public good still outweigh

the provision cost. Thus,

Rs =

∫ 1

1−
√
2

2

∫ 1

1−
√
2
2

(v1 + v2 + S − 1)dv1dv2 = 1− 1

2
√

2
,

which is approximately 97% of the total social surplus. When MP ∈ (1
2
, 2
3
), the social

surplus can be calculated by

Rs =

∫ 1

1
2
(2α+1−

√
4α2+1)

∫ 1

1
2
(2α+1−

√
4α2+1)

(v1 + v2 + S − 1)dv1dv2 ∈ (
16

27
, 1− 1

2
√

2
),

4For comparison purpose, we assume players will bid v when they are indifferent between a contribu-

tion in [0, v] with and without assurance contract.
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which ranges from 89% to 97% of the total social surplus and decreases as α increases.

When MP ∈ [2
3
, 1], the realized social surplus can be calculated by

2

∫ 1

1−α+
√
3α2−2α

∫ 1−α+
√
3α2−2α

1−α
(v1 + v2 + S − 1)dv1dv2

+

∫ 1

1−α+
√
3α2−2α

∫ 1

1−α+
√
3α2−2α

(v1 + v2 + S − 1)dv1dv2,

which belongs to [0, 16
27

] and decreases as the α increases. Thus, the social efficiency ranges

from 0% to 89% in this situation. In summary, the above results show that the realized

social surplus (or the social efficiency) is highest when MP = α = 1
2
, while the social

planner’s expected profit is highest when MP = α = 2
3
.

The extreme case when S = 0 It is obvious that a benevolent social planner prefers

to provide the public good as it constitutes a Pareto improvement as long as the sum

of individual values are higher than the provision cost, and prefers to provide the public

good through cost-sharing among individuals who benefit from the public good rather

than through transfer payment such as tax dollars raised from other sectors. While it is

largely an empirical question what’s the true magnitude of S, we analyze the extreme case

where the social planner derives zero utility from providing the public good by setting

S = 0. Compared with Proposition 2, when α < 1
2
, the social planner’s expected profit

is still −2α; when MP = 1
2
, the social planner’s expected profit is πs = 1−

√
2

2
< 0;

when MP ∈ (1
2
, 2
3
), the social planner’s expected profit is πs = −2αv∗(1− v∗) < 0, where

v∗ = 1
2
(2α+1−

√
4α2 + 1); whenMP ≥ 2

3
, the provision probability P = 2α(1−α) ∈ [0, 4

9
],

which decreases as MP increases. The player’s expected profit is (α−
√

3α2 − 2α)(4α2−
3α−2α

√
3α2 − 2α), which is always smaller than 0 when MP ∈ [2

3
, 1]. The consideration

of the extreme case indicates the use of assurance payment may always lead to a negative

expected profit for the social planner if the social planner cannot benefit from the provision

of the public good, which is very unlikely as the social planner is assumed to care about

the overall social welfare and distortionary tax will surely introduce some inefficiency.

This is less a problem for crowd fundraising companies since the public contribution to

jump start a project has the potential to bring in a huge future profit, i.e., S is large,

where the assurance payment may increase both the success probability and the social

planner’s expected profit, at least in the restricted circumstance we considered above.

The realized social surplus from the equilibrium when S = 0 is,

Rs =

∫ 1

1
3

∫ 1

4
3
−v1

(v1 + v2 − 1)dv2dv1 =
181

1296
.
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The potential maximum social surplus is

Ms =

∫ 1

0

∫ 1

1−v1
(v1 + v2 − 1)dv2dv1 =

1

6
.

Therefore, the equilibrium strategy can realize about 83.80% potential social surplus

without the assurance contract.

When the assurance contract is available, it is possible the public good will be provided

when the sum of players’ value is smaller than the cost, which introduces inefficiency to

the economy. In this case,

Rs =

∫ 1

1−
√
2

2

∫ 1

1−
√
2

2

(v1 + v2 − 1)dv1dv2 =
1

4
(2−

√
2),

which is approximately 87.87% of the total social surplus. The assurance contract in-

creases the social efficiency even in the extreme case and such efficiency gain becomes

larger when the social planner has a higher value S from public good provision, as the

provision probability is increased substantially with assurance contract.

When MP ∈ (1
2
, 2
3
), the social surplus can be calculated by

Rs =

∫ 1

1
2
(2α+1−

√
4α2+1)

∫ 1

1
2
(2α+1−

√
4α2+1)

(v1 + v2 − 1)dv1dv2 ∈ (
1

4
(2−

√
2),

4

27
),

which ranges from 87.87% to 88.89% of the total social surplus and increases as α increases.

When MP ∈ [2
3
, 1], the social surplus can be calculated by

2

∫ 1

1−α+
√
3α2−2α

∫ 1−α+
√
3α2−2α

1−α
(v1 + v2 − 1)dv1dv2+

∫ 1

1−α+
√
3α2−2α

∫ 1

1−α+
√
3α2−2α

(v1 + v2 − 1)dv1dv2,

which belongs to [0, 4
27

] and decreases as the α increases. Thus, the social efficiency ranges

from 0% to 88.89% in this situation. Different from above when S = c, the realized social

surplus (or the social efficiency) is highest when MP = α = 2
3
.

3 Model Extensions

Section 2 analyzes the assurance contract in a two-player setting in great details. One

interesting observation is that compared with no assurance contract (cf. Alboth et al.,

2001; Laussel and Palfrey, 2003; Barbieri and Malueg, 2008) where the bidding function

depends on one’s realized value, our equilibrium strategy depends on the level of the min-

imum price and the assurance payment and is discontinuous at certain value thresholds.
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When we generalize the assurance contract to N players, it is almost impossible to derive

the equilibrium bidding strategy allowing for continuous bids. Therefore, we restrict each

player’s choice to s(v) = 0, which means reject the assurance contract and s(v) = α,

which means accept the assurance contract. We first set MP = c
N

and analyze provision

probability of the public good with N players and then generalize the results from a more

flexibility assurance contract.

3.1 N Players

In the case of N players, let the set N = {1, 2, . . . , N} denote the individuals who may

contribute to the public good, with the same value support [v, v̄], following a commonly

known distribution F (·). We consider an assurance contract where the social planner

can compensate individuals who accept to contribute the minimum price (MP = α)

case of provision failure. Each individual’s strategy space is limited to either accept

(s(v) = MP ) or reject (s(v) = 0). Thus, the assurance contract is a contingent payment

scheme (MP,AP ) such that an individual either accept the contract and pay the minimum

price (MP ) and if the public good is not provided, then her contribution will be returned

and she will be compensated by an amount, assurance payment (AP = β). Let si denote

the decision of individual i whose induced value is vi. Then her expected payoff is given

by

(vi − si) Pr

(
N∑
j=1

sj ≥ c

)
+ 1(si = α)β Pr

(
N∑
j=1

sj < c

)
. (12)

Individual i’s strategy is a mapping from her private value to her contribution given all

other individuals’ strategies, denoted by si(·).

Definition 2. A profile of strategies s∗ = (s∗1(·), s∗2(·), . . . , s∗N(·)) is a pure strategy Bayesian-

Nash Equilibrium if for all i ∈ N and for all vi ∈ [v, v̄], we have that

s∗i (vi) ∈ arg max
s′i∈(0,α)

{
(vi − s′i) Pr

(
s′i + s∗−i(v−i) ≥ c

)
+ 1(s′i = α)β Pr

(
s′i + s∗−i(v−i) < c

)}
,

(13)

Similar to the 2-player case, given a fixed bidding strategy s∗−i(·), the probability of

providing the public good depends on the value distribution f(v−i) for player −i and thus

can be calculated by:

Pr
(
s′i + s∗−i(v−i) ≥ c

)
=

∫
v−i:s′i+s

∗
−i(v−i)≥c

f(v−i)dv−i.
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We still focus on the symmetric equilibria (si, s1, . . . si−1, si+1, . . . )→ (s, . . . , s). Con-

sider the case where v = 0, v̄ = 1, v follows a uniform distribution on [0, 1] and c = αN

with N ≥ 2 players, α ∈ ( 1
N
, 1). Each player’s choice is to either accept the contract or

reject the contract.

Proposition 3. When MP = α,

s(v) =

{
0 for v < ṽ

α for v ≥ ṽ,

where (ṽ − 2α)(1− ṽ)N−1 + α = 0. In addition, there exists one and only one ṽ ∈ (0, a).

Proposition 3 implies that players with value above the threshold ṽ will accept the

assurance contract and agrees to contribute α while players with value below ṽ will reject

the assurance contract. Realistically, the cost c for the public good can either be constant

or changes as N changes. Denote the sequence of ṽn as {ṽn}∞n=1 and the sequence of

corresponding provision probability as {Pn}∞n=1 where Pn = (1 − ṽn)n. We show that

when 1) the cost increases proportionally as N changes (α is constant) and 2) the cost is

fixed, the provision probability approaches to 1
2

as N →∞ in both cases.

Proposition 4. When α is fixed and MP = α, limn→∞ Pn = 1
2
; when the provision cost

c is fixed and MP = c
N

, limn→∞ Pn = 1
2
.

Intuitively, as the group size N groups large, if each individual above the same thresh-

old value ṽ still contributing according to MP , then the probability of provision is smaller,

which will in turn make people with value smaller ṽ want to contribute MP , which coun-

ters the influence of group size on decreasing the provision probability. Proposition 4

suggests the public good will be provided half of the time when N is sufficiently large.

We conduct a series of numerical simulation5 given a fixed value of α ranges from 0 to 1

and the group size N ranges from 2 to 101. Figure 2 the threshold (smallest) value of ac-

cepting the contract and the expected provision probability, under different combination

of α and N . Our simulation results show that when α > 0.3 with N > 10 or α > 0.1 with

N > 20, the provision probability is very close to 0.5.

3.2 MP 6= AP

When MP 6= AP , if one contributes higher than α but the group fail to provide the

public good, the received assurance payment is β instead of α when MP = AP .

5Note that in the assumption α is constraint to ( 1
N , 1) so that v̄ < c, thus, the meaningful region in

the figures are α > 1
N ; points close to the axes are not attainable.
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Proposition 5. Consider an assurance contract (MP,AP ) where MP does not equal to

AP , when MP = α and let AP = β, the equilibrium strategy

s(v) =

{
b ∈ [0, α) for v < ṽ

α for v ≥ ṽ,
(14)

where (ṽ − α − β)(1 − ṽ)N−1 + β = 0. In addition, there is exists one and only one

ṽ ∈ (0, a).

Rewrite (ṽ − α− β)(1− ṽ)N−1 + β = 0,

PN = (1− α + β)
PN

1− ṽN
+ β.

Thus,

PN =
β(1− ṽ)

α + β − ṽ
.

Proposition 6. When α is fixed and MP = α,AP = β, limn→∞ Pn = β
α+β

; when the

provision cost c is fixed and MP = c
N

, limn→∞ Pn = 1.

The above equation shows that when α is fixed, if N → ∞ and β < α, the expected

provision probability is smaller than 0.5 while β > α, the expected provision probability

is higher than 0.5. The above equation also implies that the when α is fixed, social

planner can always choose a higher β so that the public good will be provided with a

higher probability, while if the public good is more difficult to provide from the start

(a high α), the social planner need to set a higher assurance payment β relative to α to

achieve a higher provision probability. When c is fixed, the expected provision probability

approaches 1. Figure 3 shows the threshold (smallest) value of accepting the assurance

contract and the expected provision probability for N = 10 and N = 100 respectively

under different combination of α and β. The expected provision probability sub-figures

in Figure 3 show that when N is very large, α = c
N

can be very small and the points close

to x axis (assurance payment level, β) can be very close to 1.

3.3 The General Case

More generally, consider the case where v = 0, v̄ = 1, v follows a uniform distribution

on [0, 1] and c = αN with N ≥ 2 players, α ∈ ( 1
N
, 1) with MP = c

N−k , k = 0, 1, 2, ..., N−c,
where α is now the cost sharing ratio and AP = β. We restrict MP < 1 so that the

minimum price is strictly lower than the upper bound of the value distribution. Each

player’s choice is to either accept the contract or reject the contract.
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Proposition 7. When MP = c
N−k , k = 1, 2, ..., N − 2 and AP = β,

s(v) =

{
0 for v < ṽ

MP for v ≥ ṽ,

constitutes an equilibrium strategy where

ṽ

(
N − 1

k

)
ṽk(1− ṽ)N−k−1 + β = (

c

N − k
+ β)P1.

with

P1(ṽ, k) = (1−ṽ)N−1+

(
N − 1

1

)
ṽ(1−ṽ)N−2+...

(
N − 1

k − 1

)
ṽk−1(1−ṽ)N−k+

(
N − 1

k

)
ṽk(1−ṽ)N−k−1.

The social planner’s expected profit when MP = c
N−k is

πs = (1− ṽ)N(S + Nc
N−k − c) +

(
N

1

)
ṽ(1− ṽ)N−1(S + (N−1)c

N−k − c) + ...

+

(
N

k

)
ṽk(1− ṽ)N−k(S + (N−k)c

N−k − c)

− β

(
(N − k − 1)

(
N

k + 1

)
ṽk+1(1− ṽ)N−k−1 + ...+

(
N

N − 1

)
ṽN−1(1− ṽ)1

)
(15)

Since players can always choose to reject the assurance contract which yield an expected

utility of zero, thus, each player’s expected profit in equilibrium is at least weakly positive.

Numerical Analyses An analytical solution to the threshold value ṽ is almost impos-

sible since there is no closed form solution to the partial sum of binomial coefficient. As

a result, we are able to derive an closed form solution to the threshold value nor calculate

the social planner’s expected profit in the general case. However, we are able construct an

computer algorithm to numerically analyze the influence of different assurance contracts

on the threshold value, provision probability and the social planner’s expected surplus.

To proceed, we choose the group sizeN = {10, 100}, the provision cost c = {0.4N, 0.8N},
the social planner’s benefit S = {0, c}, the assurance paymentAP = {0, 0.5MP,MP, 2MP}
with each players’ value independently and identically drawn from U [0, 1]. For example,

if N = 10, c = 0.4N , which indicate that there will be 10 players and the public good

provision cost is 4. Thus, we can set k = {0, 1, 2, 3, 4, 5} and the corresponding minimum

price MP = {10
10
, 10

9
, 10

8
, 10

7
, 10

6
, 10

5
}. We choose four different assurance payment levels: 1)

AP = 0 with no assurance payment available, players are only asked whether or not they

want to contribute the minimum price; 2) AP = 0.5MP , the assurance payment is half
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of the minimum price, e.g., if MP = 2 and if a player decide to accept the assurance con-

tract and commit to pay $2, she will receive $1 upon provision failure; 3) AP = MP , the

assurance payment equals the minimum price and 3) AP = 2MP , the assurance payment

is twice as much as the minimum price.

In addition, we assume the social planner can either benefit S = c or S = 0 from

the provision of the public good, which we think put a boundary on the social planner’s

actual benefit since if S > c, the social planner would just provide the public good herself

and if S = 0, the social planner has no incentive to provide the public good. Note that

the social planner’s value S plays no role in determining the threshold values nor the

provision probability; it only influences the social planner’s expected profit as well as the

social efficiency results due to a change in the social planner’s value. threshold value

Figure 4 depict the social planner’s expected profit when S = c, the social planner’s

expected profit when S = 0, the threshold value and the expected provision probability

when the group size N = 10; Figure 5 show the corresponding scenarios when the group

size N = 100. In each graph, we consider a range of minimum prices (with different

k), two provision cost (cost = 40, cost = 80), as well as differential ratio of assurance

payment over minimum price (β = 0, 0.5MP,MP, 2MP ). Our numerical results reveal

several systematic features using the assurance contract that we summarize below.

From Figure 4 and Figure 5, our numerical results indicate that when S = c, the

assurance contract will result positive expected profit for the social planner; such profits

generally first increase and then stabilize or decrease as the minimum price increases (a

higher k). With a large group (N = 100), neither the provision cost nor the assurance

payment has a huge impact on the social planner’s expected profit, and social planner’s

expected profit is more sensitive to the change minimum price. When assurance contract

is not available, the social planner’s expected profit is positive and very close to zero.

When the social planner’s benefit S = 0, our results show that the expected profit is

strictly negative and such loss will increase with a larger group size N , in exchange to a

higher provision probability. With a relative small group size (N = 5), the expected loss

increases with the provision cost and level of assurance payment; however, with a relative

large group size (N = 100), the expected loss only varies with respect to the assurance

payment and changes little for different provision cost.

Our results also show the change in the threshold value (ṽ) of accepting the assurance

contract in different scenarios. We find that when the assurance contract is not available

(β = 0), the threshold value basically equals to the minimum price; that is, players

whose values are higher than the minimum price will accept the assurance contract and

contribute the minimum price, otherwise contribute zero, as each player only faces a binary
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choice. We also find that the provision cost has little influence on the threshold value ṽ.

When the group size is small (N = 10), the threshold value decreases as the assurance

payment level increases; when the group size becomes large (N = 100), the assurance

payment level has little influence on the threshold value. As expected, the threshold

value increases significantly as the required minimum price increases; the threshold value

is strictly lower than the minimum price since players with values (slightly) less than the

minimum price may have incentive to contribute the minimum price due to a positive

probability of provision failure and the ability to claim the assurance payment.

In terms of the expected provision probability, we find that it remains relative stable

when the minimum price changes (k changes), more so when the group size is large. We

also find that the provision cost has little influence on the expected provision probability.

The expected provision probability can be reasonably approximated by the ratio β
α+β

,

which suggest that the expected provision probability is mostly determined by the cost

sharing ratio ( c
N

) and assurance payment level; the minimum price has little impact on

the expected provision probability, especially when the group size is large.

Efficiency With a group size of N and a provision of c, the potential maximum surplus

is ∫
· · ·
∫
∑
vi≥c

(v1 + v2 + · · ·+ vN)dv1 . . . dvN .

Since vi ∈ U [0, 1], then
∑N

1 vi ∈ I(N), where I(·) is the Irwin-Hall distribution with

the probability density function,

f(x;N) =
1

2(N − 1)!

N∑
l=0

(−1)l
(
N

l

)
(x− l)N−1sgn(x− l).

The potential maximum surplus can be rewritten as

MSurplus =

∫ dce
c

xf(x;N)dx+
N∑

l=dce

∫ l+1

l

xf(x;N)dx, l ∈ N+.

When S = c, MP = c
N−k , k = 0, 1, 2, ..., N − c, the realized surplus can be rewritten

as (assuming the equilibrium strategies)
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RSurplus =
∑k

l=0

(
N

l

)∫ 1

ṽ

· · ·
∫ 1

ṽ︸ ︷︷ ︸
N−l

∫ ṽ

0

· · ·
∫ ṽ

0︸ ︷︷ ︸
l

(v1 + v2 + · · ·+ vN)dv1 . . . dvN ,

=
∑k

l=0

(
N

l

)
1
2
ṽl(1− ṽ)N−l(ṽ ∗N +N − l).

If S = 0,

RSurplus =
∑k

l=0

(
N

l

)∫ 1

ṽ

· · ·
∫ 1

ṽ︸ ︷︷ ︸
N−l

∫ ṽ

0

· · ·
∫ ṽ

0︸ ︷︷ ︸
l

(v1 + v2 + · · ·+ vN − c)dv1 . . . dvN ,

=
∑k

l=0

(
N

l

)
1
2
ṽl(1− ṽ)N−l(ṽ ∗N +N − l − 2c),

where ṽ is the threshold value above which players will accept the assurance contract.

Figures 5 shows the realized social surplus in different scenarios for selected parameters.

The numerical results suggest that when the social planner’s value for the public good

S = c, in all cases, the presence of assurance payment significantly increases the realized

social surplus. This result greatly contrasts the situations when no assurance payment

are available, which is likely to lead to close zero social surplus (due to a close to zero

provision probability). We also find that when S = c, the provision cost makes a small

difference in terms of realized social surplus, which is consistent with the results from

the expected provision probability. When the minimum price is fixed, an increase in the

assurance payment is likely to increase the social surplus due to an increased probability of

provision success, and also due to assumption the social planner’s value alone is sufficient

to justify the cost of provision, which makes it always a Pareto improvement to provide

the public good.

Figure 6 also includes the situations when the social planner’s value S = 0. We find

that in these situations, the cost of the public good is critical to assess the ranking realized

social surplus with different specifications of assurance contracts. When the provision cost

is chosen at 40% of the sum of the expected individual values, the assurance contract still

increase the realized social surplus compared to a close to zero social surplus without the

assurance contract. When the cost is relative high, i.e., in our situation, when the cost is

set at 80% of the sum of the expected individual values, the assurance contract is most

likely to lead to negative realized social surplus. We find the threshold values ṽ are largely

invariant with respect to the change of the provision cost, which indicate that when there

cost is higher, it is more likely that the sum of realized values will be smaller than the cost

even though individuals with the same induced values are both equally likely to accept
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the assurance contract regardless the provision cost. As a result, in the high provision

cost case, there is higher likelihood that sum of realized individuals values are smaller

than the provision the cost but the public good still gets provided, which brings in social

inefficiency as the social planner has zero benefits from provision by assumption.

4 Conclusions

In this paper, we explore the use of assurance contract to provide threshold public good

for both the 2-player and the N -player environment. We derive the Bayesian Nash equi-

librium strategy allowing continuous contribution for the 2-player and allowing discrete

actions for the N -players. Our results illustrate the potential improvement over provision

probability, and possibly the social planner’s expected profit comparing to the situation

where the assurance contract is not available. We find potential efficiency improvement

from apply the assurance contract under certain circumstances, especially with a relative

low provision cost.

Our framework can be easily generalized to any other distribution F (v) with an ar-

bitrary value boundary though we choose a uniform distribution for exposition purpose.

When we replace the uniform distribution with other distribution, e.g., a normal distri-

bution, the provision probability may still converge to the same value but the rate of

convergence might change. Future research can explore the convergence rate of provision

probability using different distributions. Also, in our framework, the group size N is a

common information known by both the social planner and the contributors. Empiri-

cally, the number of individuals who will contribute to a project is hard to know; e.g.,

it is very difficult to predict how many backups a particular project can receive from

the crowdfunding website, which is often crucial to the outcome. Thus, it is interesting

to extend the model by introducing some uncertainties to the group size N and explore

the implication of using assurance contract. We speculate that assurance contract may

be able to overcome disadvantages due to uncertain group size compared to straight up

donation approach.

Our results show important implications for real world fundraising practices, either

for the social planner to implement a public project or for the entrepreneurs to offset

the research cost using crowdfunding approach to collect contributions from individuals

who can benefit from the research products. However, behavioral economics may better

predict individual actual decisions compared to the equilibrium assumption as incentive

system may crowd out some intrinsic motivations and achieve a less desirable outcome;

thus, lab and field experiment results are useful. In other separate ongoing researches, Li
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et al. (2014) and Liu and Swallow (2015) find supporting evidences from both lab and field

experiments that the assurance contract will increase the social efficiency based on the

student subjects playing public good provision game and the assurance contract is likely

to increase the participation rate for residents to support a local environmental project.
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Figure 1: Equilibrium Bidding Strategies when MP belongs to Different Ranges
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Figure 2: Threshold Value of Accepting the Assurance Contract and Expected Provision

Probability when MP = AP
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Figure 3: Threshold Value of Accepting the Assurance Contract and Expected Provision

Probability when MP 6= AP
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Figure 4: The Social Planner’s Expected Profit, Threshold Value of Accepting the Assur-

ance Contract and Expected Provision Probability when N = 10
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Figure 5: The Social Planner’s Expected Profit, Threshold Value of Accepting the Assur-

ance Contract and Expected Provision Probability when N = 100
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Figure 6: The Realized Social Surplus
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Appendix

Proof for Lemma 1 Lemma 1 can be alternatively stated as{
s(v) ≤ α if α ≥ 1

2
, ∀v ∈ [0, 1]

s(v) ≤ 1− α if α < 1
2
, ∀v ∈ [0, 1].

(16)

First, note the expected profit of contribution α is

Eπ(s1(v) = α) = (v − α)Pr(s2 ≥ 1− α) + α(1− Pr(s2 ≥ 1− α)), (17)

where Pr(·) is the probability that the public good is provided. For any ε > 0,

Eπ(s1(v) = α+ ε) = (v− (α+ ε))(Pr(s2 ≥ 1−α) +p(ε)) +α(1− (Pr(s2 ≥ 1−α) +p(ε))),

(18)

where p(ε) denotes the incremental probability due to the increase of ε from s1 and

p(ε) ≥ 0. Thus, Pr(s2 ≥ 1− α) ≤ Pr(s2 ≥ 1− α− ε). Therefore,

Eπ(s1(v) = α)− Eπ(s1(v) = α + ε)

= (v − α)Pr + α(1− Pr)− ((1− α)Pr + (v − α)p(ε)− ε− εp(ε) + α(1− Pr)− αp(ε))
= −(v − 2α)p(ε) + ε(Pr + p(ε))

= ε(Pr + p(ε))− (v − 2α)p(ε).

(19)

When α ≥ 1
2
, 2α ≥ 1 ≥ v for all v ∈ [0, 1]. As a result

Eπ(s1(v) = α)− Eπ(s1(v) = α + ε) ≥ 0. (20)

When α < 1
2
,

Eπ(s1(v) = α)− Eπ(s1(v) = α + ε) = εPr + (ε+ v − 2α)p(ε). (21)

If ε + 2α ≥ 1, i.e., ε ≥ 1 − 2α > 0, which implies ε + α ≥ 1 − α > 0. We also have

Eπ(s1(v) = α)−Eπ(s1(v) = α+ ε) ≥ 0. Individual will always choose α instead of 1−α.

Proof for Lemma 2 Assume s1(·) and s2(·) are equilibrium contribution functions.

For any vh > vl, we have {
Pr(s1(vh) + s2(·) ≥ c) > 0

Pr(s1(vl) + s2(·) ≥ c) > 0.
(22)
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By the definition of equilibrium, we have

(vh − sh)Pr(sh + sl ≥ c) + 1(sh ≥ α)α(1− Pr(sh + s2 ≥ c))

≥ (vh − sl)Pr(sl + s2 ≥ c) + 1(sl ≥ α)α(1− Pr(sl + s2 ≥ c))
(23)

and
(vl − sl)Pr(sl + s2 ≥ c) + 1(sl ≥ α)α(1− Pr(sl + s2 ≥ c))

≥ (vl − sh)Pr(sh + s2 ≥ c) + 1(sh ≥ α)α(1− Pr(sh + s2 ≥ c)).
(24)

Combing the above two equations, we have

(vh − vl)(Pr(sh + s2 ≥ c)− Pr(sl + s2 ≥ c)) ≥ 0. (25)

When Pr(sh + s2 ≥ c) > Pr(sl + s2 ≥ c), Pr(s2 ≥ c − sh) > Pr(s2 ≥ c − sl). As a

result, sh > sl.

When Pr(sh + s2 ≥ c) = Pr(sl + s2 ≥ c) > 0, we have

(sl − sh)Pr ≥ [1(sl ≥ α)− 1(sh ≥ α)]α(1− Pr) (26)

and

(sh − sl)Pr ≥ [1(sh ≥ α)− 1(sl ≥ α)]α(1− Pr). (27)

If sl > sh, in order to be consistent with the above two inequalities, we need sh < α ≤ sl

since (sl − sh)Pr > 0 and (sh − sl)Pr < 0.

According to Lemma 1, si(·) ≤ max{α, 1−α} for all α ∈ (0, 1) and v ∈ [0, 1], i = 1, 2.

When α ≥ 1
2
, s(·) ≤ α, therefore, sh < α = sl. Since Pr > 0 and s2 ≤ α, we can also

infer sh ≥ 1− α. Therefore, we can conclude when α ≥ 1
2
,

1− α ≤ sh < α = sl. (28)

When α = 1
2
, sh does not exist. In this case, sl < sh.

When α > 1
2
, since Pr(sh+s2 ≥ c) = Pr(α+s2 ≥ c) > 0 (sh < α), we can infer s2(·) is

discontinuous at s2(·) at s2(·) = c−sh, in particular, there is a jump between [c−α, c−sh]
for s2(·) because Pr(α + s2 ≥ c) > Pr(sh + s2 ≥ c). Since Pr > 0, s2 ∈ [1− sh, α], then

we have

(vh − sh)Pr ≥ (vh − α)Pr + α(1− Pr), (29)

or (2α− sh)Pr ≥ α, and

(vl − α)Pr + α(1− Pr) ≥ (vl − sh)Pr (30)

or α ≥ (2α− sh)Pr. The above two inequalities imply α = (2α− sh)Pr, or

Pr =
α

2α− sh
∈ [0, 1]. (31)

33



Note that, for sl > sh to hold, equation (31) is required. In other words, sh ≥ sl whenever

equation (31) doe not hold.

When α ≤ 1
2
, s(·) ≤ 1−α for all v ∈ [0, 1], then s2 ≤ 1−α and sh < sl together imply

that sh ≥ 1− (1− α) = α = sl.

In summary, we find that the monotonicity condition is satisfied unless Pr = α
2α−sh

when α > 1
2

which is quite arbitrary.

Proof for Lemma 3 First, we show that in equilibrium, when α < 1
2
, no one contributes

less than α. If not, the probability of provision is zero, then any agents would be strictly

better of by contribution α. Assume s(v) = α, when Eπ(α) ≥ Eπ(1−α+ ε), ε > 0, then

s2 ∈ [0, 1−α), which implies Eπ(s1(v) < α) = 0 < Eπ(α) = α. Therefore, si ∈ [α, 1−α].

When α < 1
2
, s(v) ≥ α in equilibrium.

If s(v) ≥ α in equilibrium, for any v ∈ [0, 1], s(v) < 1− α since

Eπ(1− α) = (v − (1− α))Pr(s2(·) ≥ 1− (1− α)) = v − 1 + α < α = Eπ. (32)

Note that Pr(s(v) = α) = 0 as s(v) < 1− α for all v ∈ [0, 1]. Thus,

Eπ(α + ε) = (v − (α + ε))p(ε) + α(1− p(ε)) = α + (v − 2α− ε)p(ε). (33)

When v ≤ 2α, Eπ(α) ≥ Eπ(α+ ε), combined with s(v) ∈ [α, 1−α), we can show that

if v ≤ α, s(v) = α, if v > 2α, s(v) ∈ [α, 1− α).

Proof for Proposition 1 When α < 1
2
, for any player who tries to get a higher profit

by providing the public good, s(v) ≥ 1 − α, while the profit is π(s(v)|v) = v − 1 + α <

α = π(α|v).

When MP = 1
2
, obviously, contribute s(v) = c to provide the public good is not

profitable for any v ∈ [0, 1]. Notice that for v ≤ 1−
√
2
2

, in order to influence the provision

outcome, the new contribution s(v) ≥ 1
2
. Contributing s(v) > 1

2
is dominated by s(v) = 1

2

since the profit is less (more negative in this case) when the public is provided. When

s(v) = 1
2
, the expected profit is π(s = 1

2
|v ≤ 1 −

√
2
2

) =
√
2
2

(v − 1
2
) + 1

2
(1 −

√
2
2

) =
1
2
(
√

2v + 1 −
√

2) ≤ 0, while maintaining the original strategy yields an expected profit

of 0.

For v > 1 −
√
2
2

, deviate to s(v) > 1
2

is less profitable when good is provided, equally

profitable when the good is not provided and such a deviation is not consequential in

terms of the provision outcome. Any deviation to s(v) < 1
2

will yield exactly zero profit,

while for any v > 1−
√
2
2

has a strictly positive expected profit since π(s = 1
2
|v > 1−

√
2
2

) =

34



√
2
2

(v− 1
2
) + 1

2
(1−

√
2
2

) = 1
2
(
√

2v + 1−
√

2) > 0. Note that when v = 1−
√
2
2

, contributing

either α or v yields the same expected profit of 0.

When MP ∈ (1
2
, 2
3
), When v ≤ 1

2
(2α + 1 −

√
4α2 + 1) and s(v) = v < 1 − α,

∀MP ∈ (1
2
, 2
3
), the expected profit is 0. To prove this, let f(α) = 1 − α − v = 1 − α −

1
2
(2α+ 1−

√
4α2 + 1), we can first show that f(α) is a decreasing function and f(2

3
) = 0.

If s(v) = 1− α, then the expected profit of contributing 1− α is

π(1− α|v) = (v − 1 + α)(1− 1
2
(2α + 1−

√
4α2 + 1))

≤ (1
2
(2α + 1−

√
4α2 + 1− 1 + α)(1− 1

2
(2α + 1−

√
4α2 + 1))

= f(α).

We can show that the f(α) immediate above is an increasing function w.r.t. α and

f(2
3
) = 0. Thus, when MP ∈ (1

2
, 2
3
), π(1 − α|v) ≤ f(α) < 0. If s(v) = α when

v ≤ 1
2
(2α + 1−

√
4α2 + 1),

π(α|v) = (v − α)(1− 1
2
(2α + 1−

√
4α2 + 1)) + 1

2
α(2α + 1−

√
4α2 + 1)

≤ (1
2
(2α + 1−

√
4α2 + 1)− α)(1− 1

2
(2α + 1−

√
4α2 + 1)) + 1

2
α(2α + 1−

√
4α2 + 1)

= 0.

Clearly, when v ≤ 1
2
(2α+1−

√
4α2 + 1), s(v) ∈ (1−α, α) yields less profit than s(v) = 1−α

and s(v) > α yields less profit than s(v) = α. Therefore, in this case, s(v) = v and one

receives an expected value of zero.

When v > 1
2
(2α + 1−

√
4α2 + 1) and s(v) = α, the expected profit is

π(α|v) = (v − α)(1− 1
2
(2α + 1−

√
4α2 + 1)) + 1

2
α(2α + 1−

√
4α2 + 1)

> (1
2
(2α + 1−

√
4α2 + 1)− α)(1− 1

2
(2α + 1−

√
4α2 + 1)) + 1

2
α(2α + 1−

√
4α2 + 1)

= 0.

In this situation, if s(v) > α, the probability of provision is unchanged but one’s profit

upon provision success is strictly less; if s(v) < 1 − α, the expected profit is 0; if s(v) =

1− α, the expected profit compared when s(v) = α is,

π(1− α|v)− π(α|v) = (v − 1 + α)(1− 1
2
(2α + 1−

√
4α2 + 1))

−
(
(v − α)(1− 1

2
(2α + 1−

√
4α2 + 1)) + 1

2
α(2α + 1−

√
4α2 + 1)

)
= (2α− 1)(1− 1

2
(2α + 1−

√
4α2 + 1))− 1

2
α(2α + 1−

√
4α2 + 1)

= f(α).

We can show that the f(α) immediate above is an increasing function w.r.t. α and

f(2
3
) = 0. Thus, when MP ∈ (2

3
, 1), π(1−α|v) < f(α|v). Finally, if s(v) ∈ (1−α, α), the
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expected profit is smaller compared when s(v) = 1 − α. Therefore, when MP ∈ (1
2
, 2
3
),

s(v) = α for v > 1
2
(2α + 1−

√
4α2 + 1).

When MP ≥ 2
3
, first note that no one is willing to provide the good alone even when

MP = 1, under which only the highest type with v = 1 is indifferent between provision

and not provision. For players with v ≤ 1− α, contribution higher than 1− α but lower

than α will enable the good to be provided some with positive probability, however, since

the profit is negative upon provision and the player is unable to receive the assurance

payment when fails, the expected profit of contributing s(v) ∈ [1 − α, α) is negative. If

s(v) = α when v ≤ 1 − α, the probability of provision success is α while the probability

of failure is 1 − α, thus, (v − α)α + α(1 − α) = (v + 1 − 2α)α < (2 − 3α)α ≤ 0 since

α = MP ≥ 2
3
.

When v ∈ [1− α, 1− α +
√

3α2 − 2α]:

• If s(v) < 1− α, the probability of provision fails to zero and the expected profits is

smaller compared when s(v) = 1−α, where π(1−α|v) = (v−1+α)(α−
√

3α2 − 2α) ≥
α−
√

3α2 − 2α > 0.

• If s(v) ∈ (1− α, α), the probability of provision is the same while the profit condi-

tional on provision is smaller as the assurance contract does not apply, the expected

profit is smaller compared when s(v) = 1− α.

• If s(v) = α, π(α|v) = (v − α)α + α(1 − α), since π(1 − α|v) = (v − 1 + α)(α −√
3α2 − 2α), then

π(1− α|v)− π(α|v) = (v − 1 + α)(α−
√

3α2 − 2α)− (v + 1− 2α)α

=
√

3α2 − 2α(
√

3α2 − 2α− (v − 1 + α))

≥
√

3α2 − 2α(
√

3α2 − 2α + 1− α− 1 + α−
√

3α2 − 2α)

= 0

• If s(v) > α, π(s(v) > α|v) < (v−α)α+α(1−α) = π(s(v) = α|v) < π(s(v) = 1−α|v).

Therefore, when v ∈ [1− α, 1− α +
√

3α2 − 2α], s(v) = 1− α.

When v > 1−α+
√

3α2 − 2α, following similar steps as v ∈ [1−α, 1−α+
√

3α2 − 2α]:

• If s(v) < 1 − α, the probability of provision fails to zero and the expected profits

is smaller compared when s(v) = α, where π(α|v) = (v − α)α + α(1 − α) = (v +

1 − 2α)α > 0 requires that v > 2α − 1. Since v > 1 − α +
√

3α2 − 2α, and

1 − α +
√

3α2 − 2α − 2α + 1 = 2 − 3α +
√

3α2 − 2α > 0 when α ∈ (2
3
, 1), then

π(α|v) > 0 = π(s(v) < 1− α|v).
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• If s(v) = 1 −MP , π(1 − α|v) = (v − 1 + α)(α −
√

3α2 − 2α) and since π(α|v) =

(v − α)α + α(1− α), compare the two expected profit,

π(1− α|v)− π(α|v) = (v − 1 + α)(α−
√

3α2 − 2α)− (v + 1− 2α)α

=
√

3α2 − 2α(
√

3α2 − 2α− (v − 1 + α))

<
√

3α2 − 2α(
√

3α2 − 2α + 1− α− 1 + α−
√

3α2 − 2α)

= 0.

• If s(v) > α, π(s(v) > α|v) < (v − α)α + α(1− α) = π(s(v) = α|v).

Therefore, when v > 1− α +
√

3α2 − 2α, s(v) = α.

Proof for Proposition 3 When MP = α, for v < ṽ, if s(v) = α, then

π(α|v) = (v − α)(1− ṽ)N−1 + α(1− (1− ṽ)N−1) < (ṽ − 2α)(1− ṽ)N−1 + α = 0.

For v ≥ ṽ, if s(v) = 0, then

π(s(v) = 0|v) = 0 < π(α|v).

To prove there is exists one and only one ṽ ∈ (0, α), let

F (x) = (x− 2α)(1− x)N−1 + α,

F (0) = −2α + α = −α < 0, F (α) = −α(1 − α)N−1 + α > 0 and F (·) is a continous

function, then there exist ṽ ∈ (0, α) such that F (ṽ) = 0 (Intermediate Value Theorem).

Take the first order derivative,

F ′(x) = (1− x)N−1 − (x− 2α)(N − 1)(1− x)N−2 = (1− x)N−2(−Nx+ 2α(N − 1) + 1)

Since F ′(0) = 2α(N − 1) + 1 > 0 and F ′(α) = (1− α)N−2(α(N − 2) + 1) > 0,

F ′′(x) = −N(1− x)N−2 − (N − 2)(1− x)N−3(−Nx+ 2α(N − 1) + 1) < 0,

therefore, F (x) is strictly increasing on (0, α) and F (x) = 0 has one and only one solution,

which is defined by (x− 2α)(1− x)N−1 + α = 0

Proof for Proposition 4 When α is fixed, since ṽ < α from Proposition 3, we have

∂ṽ(α,N)

∂N
=

(2α− ṽ)(1− ṽ) ln (1− ṽ)

1− 2α + (2α− ṽ)N
< 0,
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which implies that ṽ is decreasing as N increases for a given α. Note that

(1− ṽN)N = (1− 2α)(1− ṽN)N−1 + α,

which implies

PN = (1− 2α)
PN

1− ṽN
+ α.

For any N ,
α

2α− ṽN
≤ PN =

α(1− ṽN)

2α− ṽN
≤ α(1− ṽN)

2α
.

The above equation suggests when limN→∞ ṽN = 0,

lim
N→∞

PN = lim
N→∞

α

2α− ṽN
= lim

N→∞

α(1− ṽN)

2α
=

1

2
.

Note that {ṽn}∞n=1 is a decreasing and bounded sequence, then it is convergent. Let

lim
N→∞

ṽN = lim
N→∞

ṽN+1 = K,

thus (ṽN − 2α)(1− ṽN)N−1 + α = (ṽN+1 − 2α)(1− ṽN+1)
N + α, then

ṽN − 2α

ṽN+1 − 2α
=

(
1− ṽN+1

1− ṽN

)N
(1− ṽN).

Take the limit on both side, we have,

1 = 1× (1−K),

therefore,

lim
N→∞

ṽN = 0 and lim
N→∞

P̃N =
1

2
.

When c is fixed,α = c
N

, still, denote the sequence of ṽn as {ṽn}∞n=1 and the sequence

of corresponding provision probability as {Pn}∞n=1 where Pn = (1 − ṽn)n. Acceding to

(ṽ − 2 c
N

)(1− ṽ)N−1 + c
N

= 0, we have

∂ṽ(N)
∂N

=
(1−ṽ)[−c+cṽ+(1−ṽ)N(2c−2cN ln (1−ṽ)+ṽN2 ln (1−ṽ))]

(1−ṽ)NN(2c−N−2cN+ṽN2)

=
(1−ṽ)2[(2(1−ṽ)N−1−1)+(1−ṽ)N−1N ln (1−ṽ)(ṽN−2c)]

(1−ṽ)NN(2c−ṽN)(1−N)

< 0

which implies that ṽ is decreasing when c is fixed. Note that {ṽn}∞n=1 is a decreasing and

bounded sequence, then it is convergent. Let

lim
N→∞

ṽN = lim
N→∞

ṽN+1 = K.
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Since (ṽN − 2 c
N

)(1− ṽN)N−1 + c
N

= (ṽN+1 − 2 c
N+1

)(1− ṽN+1)
N + c

N+1
, then take the

limit on both side, we have,

K(1−K)N−1 = K(1−K)N−1(1−K).

Since K ∈ [0, c
N

], if K > 0, then

1−K = 0,

which contradicts sup (K) = c
N
< 1. Therefore, K = 0 and

lim
N→∞

ṽN = 0, lim
N→∞

P̃N =
1

2
.

Proof for Proposition 5 This proof is similar to Proposition 3. When MP = α, for

v < ṽ, if s(v) = α, then

π(α|v) = (v − α)(1− ṽ)N−1 + β(1− (1− ṽ)N−1) < (ṽ − α− β)(1− ṽ)N−1 + β = 0

For v ≥ ṽ, if s(v) = 0, then

π(s(v) = 0|v) = 0 < π(α|v)

To prove there is exists one and only one ṽ ∈ (0, α), let

F (x) = (x− α− β)(1− x)N−1 + β,

F (0) = −α − β + β = −α < 0, F (α) = −β(1 − α)N−1 + β > 0 and F (·) is a continuous

function, then there exist ṽ ∈ (0, α) such that F (ṽ) = 0 (Intermediate Value Theorem).

Take the first order derivative,

F ′(x) = (1− x)N−1 − (x− α− β)(N − 1)(1− x)N−2 = (1− x)N−1(−Nx+ (α + β)(N − 1) + 1).

Since F ′(0) = (α + β)(N − 1) + 1 > 0 and F ′(α) = (1− α)N−2(β(N − 1) + 1) > 0,

F ′′(x) = −N(1− x)N−2 − (N − 2)(1− x)N−3(−Nx+ (α + β)(N − 1) + 1) < 0,

therefore, F (x) is strictly increasing on (0, α) and F (x) = 0 has one and only one solution,

which is defined by (x− α− β)(1− x)N−1 + β = 0
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Proof for Proposition 6 This proof is similar to Proof for Proposition 4. When α is

fixed, since ṽ < α from Proposition 3, we have

∂ṽ(α,N)

∂N
=

(α + β − ṽ)(1− ṽ) ln (1− ṽ)

1− α− β + (α + β − ṽ)N
< 0,

which implies that ṽ is decreasing as N increases for a given α. Note that {ṽn}∞n=1 is a

decreasing and bounded sequence, then it is convergent. Let

lim
N→∞

ṽN = lim
N→∞

ṽN+1 = K,

thus (ṽN − α− β)(1− ṽN)N−1 + β = (ṽN+1 − α− β)(1− ṽN+1)
N + β, then

ṽN − α− β
ṽN+1 − α− β

=

(
1− ṽN+1

1− ṽN

)N
(1− ṽN).

Take the limit on both side, we have,

1 = 1× (1−K),

therefore,

lim
N→∞

ṽN = 0 and lim
N→∞

P̃N =
1

2
,

since PN = β(1−ṽN )
α+β−ṽN

.

When c is fixed,α = c
N

, still, denote the sequence of ṽn as {ṽn}∞n=1 and the sequence

of corresponding provision probability as {Pn}∞n=1 where Pn = (1 − ṽn)n. According to

(ṽ − c
N
− β)(1− ṽ)N−1 + β = 0, we have

∂ṽ(N)
∂N

= − (ṽ− c
N
−β)(1−ṽ) ln(1−ṽ)

1+c−β+(β−ṽ)N− c
N

= − (ṽ− c
N
−β)(1−ṽ) ln(1−ṽ)

c−ṽN+(N−1)β+1− c
N

< 0

which implies that ṽ is decreasing when c is fixed. Note that {ṽn}∞n=1 is a decreasing and

bounded sequence, then it is convergent. Let

lim
N→∞

ṽN = lim
N→∞

ṽN+1 = K.

Since (ṽN − c
N
− β)(1− ṽN)N−1 + c

N
= (ṽN+1− c

N+1
− β)(1− ṽN+1)

N + c
N+1

, then take

the limit on both side, we have,

(K − β)(1−K)N−1 = (K − β)(1−K)N−1(1−K).
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Since K ∈ [0, c
N

], if K > 0 and K 6= β, then

1−K = 0,

which contradicts sup (K) = c
N
< 1. IfK = β, then limN→∞ P̃N =∞, which is impossible.

Therefore, K = 0 and

lim
N→∞

ṽN = 0, lim
N→∞

P̃N = 1.

Proof for Proposition 7 First, note that

P1(ṽ, k) = (1−ṽ)N−1+

(
N − 1

1

)
ṽ(1−ṽ)N−2+...

(
N − 1

k − 1

)
ṽk−1(1−ṽ)N−k+

(
N − 1

k

)
ṽk(1−ṽ)N−k−1

is the probability that the public good will be provided if the player with value ṽ accept

the the contract, and

P0(ṽ, k) = P1(ṽ, k−1) = (1− ṽ)N−1+

(
N − 1

1

)
ṽ(1− ṽ)N−2+ ...+

(
N − 1

k − 1

)
ṽk−1(1− ṽ)N−k

is the probability that the public good will be provided if the player with value ṽ reject

the the contract. The expected profit of accepting the contract for the player ṽ is

π(MP |ṽ) = (ṽ −MP )P1 + β(1− P1);

The expected profit of rejecting the contract for the player ṽ is

π(0|ṽ) = ṽP0

By equating the above two equations we can find the ṽ above which players will accept

the contract and vice versa. Thus,

ṽ(P1 − P0)−
c

N − k
P1 + β(1− P1) = 0,

or

ṽ(P1 − P0) + β(1− P1) =
c

N − k
P1.

The LHS of the above equation is the marginal benefit of accepting the contract, which

equals to the RHS the marginal cost of accepting the contract.

ṽ

(
N − 1

k

)
ṽk(1− ṽ)N−k−1 = (

c

N − k
+ β)P1 − β.

Thus,

ṽ

(
N − 1

k

)
ṽk(1− ṽ)N−k−1 = (

c

N − k
+ β)P1 − β.

If k = 0, the above equation reduces to the condition described in Section 4.2.
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