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Abstract

We consider a pure exchange asset model with a finite number of agents

and a finite number of states of nature where short sells are allowed. We

present the definition of weak no-arbitrage price, a weaker notion of no-

arbitrage price than the one of Werner, and prove that if the utility func-

tions satisfy the maximal and closed gradients conditions we propose in

this paper, then there exists an equivalence between existence of a general

equilibrium and existence of a price which is weak no-arbitrage price for

all the agents.
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1 Introduction

In economic models of financial markets, where short-sales are allowed, the

case of a finite number of states is well-treated in a huge literature. Since the

consumption set is not any more compact, the literature focus on conditions

which ensure the compactness of allocation set or of the utility set. These

conditions are known as no-arbitrage conditions. We can classify them in three

categories:
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• Conditions on prices, like Green [16], Grandmont [14], [15], Hammond

[12] and Werner [21],

• Conditions on net trade, like Hart [13], Page [18], Nielsen [17], Page and

Wooders [19], Allouch [1], Page, Wooders and Monteiro [20],

• Conditions on utility set, like Brown and Werner [5], Dana, Le Van, Mag-

nien [8].

A natural question arises. Under which conditions there is an equivalence

between these conditions. In [2], Allouch, Le Van and Page prove the equiv-

alence between Hart’s condition and No Unbounded Arbitrage of Page with

the assumption that the utility functions have no half-line, i.e. there exists

no trading direction in which the agent’s utility is constant. These conditions

imply existence of a general equilibrium. But the converse is not always true,

i.e., the existence of equilibrium does not ensure these no-arbitrage conditions

are satisfied. We can find in Ha-Huy and Le Van [11] an example of economy

where these conditions fail but an equilibrium exists.

In this paper, we extend the idea of Dana and Le Van in [7] by using weak

no-arbitrage price, a no-arbitrage price weaker than the one in Werner [21],

or in [2]. Following [7], we use the derivatives of utility functions as weak no-

arbitrage prices. Under the conditions of closed gradient (condition C), which

is similar of the one of Chichilnisky [6], or maximal condition (condition M)

for the utility functions, we can establish the equivalence between existence

of a price which is weak no-arbitrage for every agent and existence of general

equilibrium. Moreover, these conditions are equivalent to the compactness of

the individually rational utility set. We emphasize that in our paper existence

of half-lines i.e. trading directions in which the agent’s utility is constant is not

excluded.

The paper is organized as follows. In Section 2, we present the model with

the definitions of equilibrium, individually rational attainable allocations set,

individually rational utility set, useful vectors and useless vectors. In Section

3, we review some no-arbitrage conditions in the literature. In particular we

define weak no-arbitrage prices. Section 4 links usual no-arbitrage conditions

and existence of equilibrium. In Section 5, we introduce C,M conditions. In

particular we show that a separable utility satisfies these conditions. In Section

6, we introduce the assumption that the utility functions, if they do not satisfy

No Half-line condition then they satisfy either C or M. We then prove equiv-

alence between the existence of a price which is weak no-arbitrage for every

agent and existence of a general equilibrium. Moreover, these conditions are

equivalent ! to the compactness of the individually rational utility set. Section

7 is the appendix where we put most of the proofs.
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2 The model

We have an exchange economy E with m agents. Each agent is characterized

by a consumption set Xi = RS , an endowment ei and a utility function U i :

RS → RS . We suppose that supx∈RS U(x) = +∞.

For the sake of simplicity, we suppose that utility functions are concave,

strictly increasing and differentiable. In the general case of concave functions,

the sub differential of U i exists. The results and economic intuitions do not

change, but the computations become tedious.

We first define an equilibrium of this economy.

Definition 1 An equilibrium is a list
(
(x∗i)i=1,...,m, p

∗)
)

such that x∗i ∈ Xi for

every i and p∗ ∈ RS+ \ {0} and

(a) For any i, U i(x) > U i(x∗i)⇒ p∗ · x > p∗ · ei

(b)
∑m

i=1 x
∗i =

∑m
i=1 e

i.

Definition 2 A quasi-equilibrium is is a list
(
(x∗i)i=1,...,m, p

∗)
)

such that x∗i ∈
Xi for every i and p∗ ∈ RS+ \ {0} and

(a) For any i, U i(x) > U i(x∗i)⇒ p∗ · x ≥ p∗ · ei

(b)
∑m

i=1 x
∗i =

∑m
i=1 e

i.

Since short-sales are allowed, from Geistdorfer-Florenzano [10], actually any

quasi-equilibrium is an equilibrium.

Definition 3 1. The individually rational attainable allocations set A is de-

fined by

A = {(xi) ∈ (RS)m|
m∑
i=1

xi =

m∑
i=1

ei and U i(xi) ≥ U i(ei) for all i}.

2. The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ Rm | ∃ x ∈ A such that U i(ei) ≤ vi ≤ U i(xi) for all i}.

Definition 4 i) The vector w is called useful vector of agent i if for any

x ∈ RS, for any λ ≥ 0 we have U i(x+ λw) ≥ U i(x).

ii) The vector w is called useless vector of agent i if for any x ∈ R, for any

λ ∈ R we have U i(x+ λw) = U i(x).

iii) We say that w ∈ RS is a half-line direction for agent i if there exists

x ∈ RS such that U i(x+ λw) = U i(x), ∀ λ ≥ 0.

3



Denote by Ri the set of useful vectors. Li the set of useless vectors. By the

very definition, the set of useless vectors of agent i is the biggest linear subspace

included in Ri:

Li = Ri ∩ (−Ri).

We have that Ri is the positive dual cone of P i, i.e. Ri = −(P i)o. Observe

that Ri has no empty interior since RS+ ⊆ Ri.

3 No-arbitrage conditions in the literature

We will review some well-known no-abitrage conditions in the literature.

1. Hart [13] proposed the Weak No Market Arbitrage (WNMA) condition:

Definition 5 The economy satisfies WNMA if (w1, w2, . . . , wm) ∈ R1 ×R2 ×
. . .×Rm satisfies

∑m
i=1w

i = 0 then wi ∈ Li for every i.

2. Page [18] proposed the No Unbounded Arbitrage ( NUBA) condition:

Definition 6 The economy satisfies NUBA if (w1, w2, . . . , wm) ∈ R1 × R2 ×
. . .×Rm satisfies

∑m
i=1w

i = 0 then wi = 0 for every i.

3. We present the definition of no-arbitrage prices proposed by Werner [21].

Definition 7 The vector p ∈ RS is a no-arbitrage price for agent i if for any

w ∈ Ri \ Li we have p · w > 0, and for w ∈ Li, p · w = 0.

Denote by Si the set of no-arbitrage prices of agent i. It is a cone. The no-

arbitrage condition is
⋂m
i S

i 6= ∅.
We have identity between no-arbitrage condition of Werner and WNMA of

Hart:

Proposition 1
⋂m
i S

i 6= ∅ ⇔ WNMA

For a proof see e.g. Allouch, Le Van and Page [2].

4. In [20], Page, Wooders and Monteiro introduced the notion of Inconsequential

arbitrage.

Definition 8 The economy satisfies Inconsequential arbitrage condition if for

any (w1, w2, . . . , wm) with wi ∈ Ri for all i and
∑m

i=1w
i = 0 and (w1, w2, . . . , wm)

is the limit of λn(x1(n), x2(n), . . . , xm(n)) with (x1(n), x2(n), . . . , xm(n)) ∈ A
and λn converges to zero when n tends to infinity, there exists ε > 0 such that

for n sufficiently big we have U i(xi(n)− εwi) ≥ U i(xi(n)).

In [7], Dana and Le Van propose to use the derivative of utility function as

no-arbitrage price. They introduce weak no-arbitrage prices.
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Definition 9 A vector p is a weak no-arbitrage price for agent i if their exists

λ > 0 and xi ∈ RS such that p = λU i′(xi).

Let P i denote the set of weak no-arbitrage prices for the agent i. Their no-

arbitrage condition is
⋂m
i P

i 6= ∅
We have Si ⊂ convP i ⊂ Si where convP i denotes the convex hull of P i and S

i

is the closure of Si. Actually we have Si = ri(clconvexP i) (the relative interior

of the closure of convex hull of P i).

The next Lemma gives a property of useful vectors.

Lemma 1 The vector w is useful a vector for agent i if, and only if, for all

p ∈ P i, we have: p · w ≥ 0.

Proof : (⇒): Let p = µU i′(x) for some µ > 0 some x ∈ RS . From the concavity

of U we have:

0 ≥ µU i(x)− µU i(x+ λw) ≥ µU i′(x) · (−λw) = p · (−λw) for all λ ≥ 0.

Hence µU i′(x) · w ≥ 0.

(⇐): Observe that for all λ ≥ 0, all µ > 0 :

µU i(x+ λw)− µU i(x) ≥ µU i′(x+ λw) · (λw) ≥ 0.

Hence U i(xi + λw) ≥ U i(x), ∀ x.

4 No-arbitrage condition and existence of equilib-

rium

Existence of equilibrium can be derived from the following result.

Theorem 1 The compactness of U implies the existence of equilibrium.

Proof : For the existence of a quasi-equilibrium, see e.g. Brown and Werner [5]

or Dana, Le Van and Magnien [9]. Since short-sales are allowed, in our model

quasi-equilibrium is also equilibrium. See Geistdorfer-Florenzano [10].

Theorem 2 NUBA ⇒ WNMA ⇒ Inconsequential Arbitrage ⇒ Compactness

of U ⇒ Existence of equilibirum.

For a proof see e.g. Allouch, Le Van and Page [2].

It is well known that, with the assumptions we state until now, if an equilibrium

exists, we are not sure either that the equilibrium price belongs to the set

S =
⋂
i S

i , or the set U is compact.

However we have with the weak no-arbitrage prices the following result.
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Proposition 2

If an equilibrium exists then the equilibrium price is a weak no-arbitrage price for any agent.

Hence

m⋂
i=1

P i 6= ∅.

Proof : Denote by (p∗, (x∗i)i) the equilibrium. The equilibrium allocation (x∗i)

solves the problems:

maxU i(xi)

s.t. p∗ · xi = p∗ · ei.

From Theorem V.3.1, page 91, in Arrow-Hurwicz-Uzawa (1958) [3], for any i,

there exists ζi > 0 s.t.

U i(x∗i)− ζip∗ · x∗i ≥ U i(xi)− ζip∗ · xi

for any xi ∈ RS . Hence U i′(x∗i) = ζip
∗,∀ i. Let λi = 1

ζi
, we have p∗ =

λiU
i′(x∗i) ∈ P i for all i. Hence

⋂
i P

i 6= ∅.

When any agent has no half-line direction, we have

Theorem 3 Assume no agent has half-line direction. Then the following claims

are equivalent

•
⋂
i S

i 6= ∅

• NUBA holds

• A is compact

• WNMA holds

• U is compact

• Inconsequential Arbitrage holds

• Existence of equilibrium

For a proof see Allouch, Le Van and Page [2].

The interesting case is when at least one agent has half line directions. Our

aim is to prove now

m⋂
i=1

P i 6= ∅ implies an equilibrium exists,
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even one agent has half line directions. In this case, we will have the equivalence

m⋂
i=1

P i 6= ∅ ⇔ Existence of an equilibrium.

To obtain this result we require the utility functions satisfy some more proper-

ties (Closed Gradient Condition or Maximality Condition).

In [11], we give an example of economy where the no-arbitrage condition,

NUBA, WNMA are not satisfied. However this economy has an equilibrium

because there exists a common weak no-arbitrage price.

5 The closed gradient condition and the maximality

condition

In this section, if there is no confusion, we will use U(x) instead of U i(x), the

set R will denote the set of useful vectors associated with U . Firstly, we present

some preliminary results about the limits of a utility function along a useful

direction.

Definition 10 Given a concave function U , and w ∈ R. Define V [U ] : RS ×
R→ R:

V [U ](x,w) = sup
λ∈R

U(x+ λw) = lim
λ→+∞

U(x+ λw).

We will present here some properties of the function V [U ]. From now on,

when there exists no confusion, we will write V (x,w) instead of V [U ](x,w).

The proofs of lemmas 3, 4, 5 and 6 are given in Appendix.

Lemma 2 The vector w is a useless vector of V (·, w).

Proof : Let µ ∈ R. We have

V (x+ µw,w) = lim
λ→+∞

U(x+ µw + λw)

= lim
λ→+∞

U(x+ (µ+ λ)w)

= lim
ζ→+∞

U(x+ ζw)

= V (x,w).

Lemma 3 • (a) V is concave.

• (b) If there exists x such that V (x,w) = +∞ then V (x,w) = +∞, ∀x ∈
RS.

7



• (c) If V (x,w) < +∞ ∀x ∈ RS, V (·, w) is continuous on RS.

Lemma 4 If w ∈ intR then V (x,w) = +∞ for all x.

Remark 1 Let ∂R denote the boundary of R. From Lemma 4, the necessary

condition to have V (x,w) < +∞ is w ∈ ∂R.

The set of useful vector of U is included in the set of useful vectors of V .

Lemma 5 Given w ∈ ∂R such that V (x,w) ∈ R, a useful vector of U is a

useful vector of V (·, w).

Lemma 6 gives us the derivative of the function V at the points x satisfying

V (x,w) = maxλ U(x+ λw).

Lemma 6 Given w ∈ ∂R, x ∈ RS. Suppose that there exists λ ≥ 0 such that

U(x + λw) = U(x + λw) for all λ ≥ λ. Then V is differentiable at x and

V ′x(x,w) = U ′(x+ λw).

We recall that w ∈ RS is a half-line direction if there exists x ∈ RS such

that U(x+λw) = U(x), ∀ λ ≥ 0. Let HL denote the set of half-line directions.

Proposition 3 (a) HL ⊂ ∂R.

(b) Assume that for any α ∈ R, the set { U ′(x)
‖U ′(x)‖}x∈σα is closed, then HL =

∂R.

Proof : See Appendix.

Given an affine space H of RS such that supx∈H U(x) = +∞, define the

function UH : H → R as the restriction of U on H. Define U ′H the projection of

gradient of U on H. Let σα denote an indifference surface, σα = {x | U(x) = α}
with α ∈ R. We set the following assumptions.

C (Closed gradient condition): For any α ∈ R, any H affine space such that

supH U(x) = +∞, define σHα as the indifference surface of U on H. Then the

map x ∈ σHα → U ′H(x)/‖U ′H(x)‖ is closed.

M (Maximality) condition: For all affine space H of RS , only one of the

two following cases holds:

(i) supH U(x) = +∞.

(ii) maxH U(x) exists.

Remark 2 C condition is borrowed from Chichilnisky [6].
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Proposition 4 Let U satisfy C condition. Let w ∈ ∂R.Then for all x, the

function λ 7→ U(x+ λw) has a maximum.

Proof : See Appendix.

Proposition 5 Suppose w ∈ R is such that for all x, maxλ≥0 U(x+λw) exists.

Define V (x,w) = maxλ≥0 U(x + λw). If U satisfies the C condition, then so

does V (·, w).

Proof : See Appendix.

Proposition 6 Suppose that U satisfies M condition. Given a vector w ∈ R
such that there exists x̃ satisfying supλ≥0 U(x̃ + λw) < +∞, then the function

V (x,w) = supλ≥0 U(x+ λw) also satisfies M.

Proof : See Appendix.

The next Proposition 7 gives us an example of utility function which satisfies

C and M conditions.

Proposition 7 We consider the case where the utility function is defined as

U(x) =
∑m

s=1 πsu(xs), with u : R → R is a concave, strictly increasing, differ-

entiable function, π is a probability measure on {1, . . . , S}, with πs > 0, ∀ s.
Define a = u′(+∞), b = u′(−∞). Suppose that 0 < a ≤ b < +∞ and there

exists z > 0 such that u′(x) = a, ∀ x > z and u′(x) = b, ∀ x < −z. Then we

have:

(a) U satisfies C condition.

(b) U satisfies M condition.

Proof : See Appendix.

6 Equivalence between the existence of general equi-

librium and the existence of common weak no-

arbitrage price under C and M

Let E = {(U i, ei, Xi)i} be the initial economy, with Xi = RS for any i.

Lemma 7 Suppose that
⋂
i P

i 6= ∅. Then U is bounded.
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Proof : Take any p ∈
⋂
i P

i. For each i, there exists λi > 0, xi ∈ RS such that

p = λiU
i′(xi). For (x1, x2, . . . , xm) ∈ A, we have:

m∑
i=1

λi[U
i(xi)− U i(xi)] ≤

m∑
i=1

p · (xi − xi)

= p · (
m∑
i=1

xi − e)

then for all i:

λiU
i(ei) ≤ λiU i(xi) ≤ p · (

m∑
i=1

xi − e)−
∑
j 6=i

λjU
j(ej) +

∑
j 6=i

λjU
j(xj).

Denote

W = {(w1, w2, . . . , wm) ∈ R1 ×R2 × · · · ×Rm such that
m∑
i=1

wi = 0}.

The set W is a cone and will be called the cone of mutual opportunities of

arbitrage. Fix a vector w = (w1, w2, . . . wm) ∈ W , as in Definition 10, define

V i(xi, wi) = V [U i](xi, wi). We define EV the economy with m agents where

each agent i has a utility function defined by V i, endowment ei and consumption

set Xi = RS . The attainable allocation set AV is defined as:

AV = {(x1, x2, . . . , xm) ∈ (RS)m
∣∣ m∑
i=1

xi =
m∑
i=1

ei and V i(xi, wi) ≥ U i(ei)}.

The attainable utility set UV is defined as:

UV = {(v1, v2, . . . , vm) ∈ Rm
∣∣ ∃x ∈ AV : U i(ei) ≤ vi ≤ V i(xi, wi), ∀i}.

We have the result:

Proposition 8 Suppose that for all (x1, x2, . . . , xm) ∈ A, there exists maxλ≥0 U
i(xi+

λwi), ∀ i. Then UV = U .

Proof : Evidently, since U i(xi) ≤ V i(xi, wi), we have U ⊂ UV .

Take (v1, v2, . . . , vm) ∈ UV . There exists (x1, x2, . . . , xm) ∈ UV such that

U i(ei) ≤ vi ≤ V i(xi, wi), ∀i. By assumption, there exists λ ≥ 0 big enough such

that V i(xi, wi) = U i(xi + λwi). Observe that (x1 + λw1, x2 + λw2, . . . , xm +

λwm) ∈ A. This implies (v1, v2, . . . , vm) ∈ U .
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Theorem 4 Consider economy E. Suppose that for all i, if U i does not satisfy

No Half-line condition then it satisfies C condition. In this case we have

m⋂
i=1

P i 6= ∅ ⇔ U is compact⇔ there exists an equilibrium.

Proof : Suppose there exists an equilibrium. By Proposition 2, we have
⋂
i P

i 6=
∅.

We prove the converse. Suppose that
⋂
i P

i 6= ∅. We will prove that U is

compact, and this implies the existence of equilibrium. Take any p ∈
⋂
i P

i.

There exists λi > 0, xi ∈ RS such that p = λiU
i′(xi), ∀ i.

Suppose that (w1, w2, . . . , wm) ∈W . From the Lemma 1, we know that for

all i, p · w ≥ 0, so we have:

0 = p ·
m∑
i=1

wi ≥ 0.

This implies p · wi = 0 for all i.

Define L(W ) := W
⋂

(−W ), the biggest sublinear space included in W . If

W is a linear subspace, then the WNMA condition is satisfied. By Theorem 2,

U is compact and there exists an equilibrium.

Suppose that W 6= L(W ), or there exists w = (w1, w2, . . . , wm) ∈ W such

that −w /∈ W , i.e. w /∈ L(W ). Denote U i1(xi) = V [U i](xi, wi) as in Definition

10.

Suppose U i satisfies No Half-line condition. In this case, wi = 0. Indeed, we

have p ·wi = 0. This implies U i′(xi) ·wi = 0, so U i(xi + λwi) = U i(xi),∀λ ≥ 0.

If wi 6= 0, this direction will be a half-line of i which is a contradiction. Hence

if U i has no half-line, wi = 0 and this implies U i1 = U i. Evidently, U i1 satisfies

no half-line property.

Now suppose U i does not satisfy No Half-line condition. In this case, U i

satisfies C condition. By Proposition 5, U i1 also satisfies C condition.

Now we define E1 the economy which is characterized by {(U i1, ei, Xi)}. As

above, denote by W1 the cone of mutual opportunities of arbitrage.

Observe that any useful vector of U i is also a useful vector of U i1. So,

W ⊂W1. From the very definition of V [U i], we have that, for all i, wi is a useless

vector of U i1. Thus, (w1, w2, . . . , wm) ∈ L(W1). Hence we have dimL(W1) ≥
dimL(W ) + 1.

We will prove that the utility set U1 equals U . Recall that wi is a half-line. If

U i satisfies no half-line condition, then wi = 0, and evidently maxλ U
i(xi+λwi)

exists. If U i does not satisfy no half-line condition, then U i satisfies C condition.

By Proposition 4, maxλ U
i(xi+λwi) exists. By applying Proposition 8, we have

U1 = U .
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If we denote by P i1, the set of weak no-arbitrage prices of agent i, we have

p ∈ P i1 for all i. Indeed, p · wi = 0, this implies U i(xi) = V i(xi, wi). Hence by

Lemma 6, p = λiV
i′
x (xi, wi).

The economy E1 satisfies
⋂
i P

i
1 6= ∅. Its utility functions satisfy either

no half-line condition, or C condition. If W1 is linear, using the WNMA

condition, we have the compactness of U1. In the contrary case, take w̃ =

(w̃1, w̃2, . . . , w̃m) ∈W1 such that −w̃ /∈W1. We define U2(xi) = V [U i1](xi, w̃i).

By induction and the same arguments, suppose that we have constructed

the economy Et, with t ≥ 1. If Wt is not a linear space, we can construct a

new economy Et+1, with dimL(Wt+1) ≥ dimL(Wt) + 1. Our economies have

the same utility sets Ut = U , ∀ t.
For all t, Wt ⊂ RS×m. So, we have to stop at some step T . In economy ET ,

WT is a linear space, and hence satisfies WNMA condition. By Theorem 2, we

have UT is compact. This implies U is compact and our initial economy E has

an equilibrium.

Theorem 5 Suppose that for any agent i, if U i does not satisfy No Half-line

condition then it satisfies M condition. In this case we have

m⋂
i=1

P i 6= ∅ ⇔ U is compact ⇔ there exists an equilibrium.

Proof : Suppose that there exists equilibrium. From Theorem 2 we have⋂
i P

i 6= ∅.
We now prove the converse. Suppose that there exists a common weak no-

arbitrage price or equivalently,
⋂
i P

i 6= ∅. Take p ∈
⋂
i P

i. There exists λi > 0,

xi ∈ RS such that p = λiU
i′(xi). Suppose that (w1, w2, . . . , wm) ∈ W . Denote

V i(xi, wi) = supλ U
i(xi + λwi). We have for all λ > 0, U i(xi + λwi) = U i(xi)

and hence, V i(xi, wi) < +∞. By Lemma 3, we have V i(xi, wi) < +∞ for all

xi ∈ RS .

If U i satisfies No-half-line condition, then evidently wi = 0, and V i(xi, wi) =

U i(xi).

If U i does not satisfy No-half-line condition then U i satisfies M condition. By

Lemma 6, the function xi → V i(xi, wi) = maxλ≥0 U
i(xi+λwi) also satisfies this

condition. So V i(., wi) satisfies either No Half-line condition or M condition.

Observe that, by Lemma 6, we have V i(·, wi) is differentiable, and if we

denote

P iV = {p ∈ RS | ∃ λ > 0, ∃x ∈ RS such that p = λV i′(xi, wi)}

we have
⋂
i P

i
V 6= ∅. Indeed, since p ·wi = 0, we have U i(xi) = V (xi, wi). Using

Lemma 6, we have p ∈ V i′(xi, wi), for any i.
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We have constructed a new economy with m agents where the utility func-

tions V i(·, wi) satisfy either No Half-line condition or M condition, and
⋂
i P

i
V 6=

∅. By using the same arguments as in the proof of Theorem 4, we have U is

compact and hence, there exists an equilibrium for the initial economy E .

Remark 3 The condition
⋂
i P

i 6= ∅ is weaker than
⋂
i S

i 6= ∅. In [11], we

have an example in which
⋂m
i=1 S

i = ∅, but
⋂
i P

i 6= ∅. In this example, an

equilibrium exists.

Corollary 1 Suppose the utility functions are separable, i.e for any agent i,

U i(x) =

S∑
s=1

πisu
i(xs)

with πis > 0 for all i, for all s. We have

m⋂
i=1

P i 6= ∅ ⇔ U is compact ⇔ an equilibrium exists.

Proof : For each agent i, if ui′(z) < ui′(−∞) for any z, or ui′(z) > ui′(+∞) for

any z, then the function U i has no half-line. For this result, see [7]. In the other

case, U i satisfies C and M conditions. The corollary is a direct consequence of

theorems 4, 5 and 7.

Another proof of the corollary can be found in [11].

7 Appendix

7.1 Proof of Lemma 3

• (a) Consider two couples (x,w), (x′, w′) with w ∈ R,w′ ∈ R and θ ∈ [0, 1].

We have

U
(
θx+ (1− θ)x′ + λ(θw + (1− θ)w′)

)
≥ θU(x+λw)+(1−θ)U(x′+λw′)

By taking the limits

lim
λ→+∞

U
(
θx+ (1− θ)x′ + λ(θw + (1− θ)w′)

)
≥ lim

λ→+∞
[θU(x+ λw) + (1− θ)U(x′ + λw′)]

= θ lim
λ→+∞

U(x+ λw) + (1− θ) lim
λ→+∞

U(x′ + λw′).

Equivalently

V (θx+ (1− θ)x′, θw + (1− θ)w′) ≥ θV (x,w) + (1− θ)V (x′, w′).
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• (b) Let x ∈ RS . There exist θ ∈ (0, 1) and y ∈ RS such that x =

θx+ (1− θ)y. We use the concavity of U :

Let λ ∈ R+. U(x+ λw) = U
(
θ(x+ λw) + (1− θ)(y + λw)

)
≥ θU(x+ λw) + (1− θ)U(y + λw)

≥ θU(x+ λw) + (1− θ)U(y).

Take the limits:

V (x,w) = lim
λ→+∞

U(x+ λw) ≥ θ lim
λ→+∞

U(x+ λw) + (1− θ)U(y)

= θV (x,w) + (1− θ)U(y) = +∞.

• (c) The function V (., w) is concave, real valued over RS is therefore con-

tinuous everywhere on RS .

7.2 Proof of Lemma 4

Take w = (1, 1, . . . , ). Since U is strictly increasing, RS+ ⊂ R. Therefore,

w ∈ intR since w ∈ intRS+. Let x be given and let {yn} be a sequence which

satisfies limn U(yn) = supz∈RS U(z) = +∞. For any n there exists λn > 0 such

that xs + λnws > yns for any s = 1, . . . , S. That implies U(x + λnw) > U(yn)

since U is strictly increasing. Hence V (x,w) = supλ∈R U(x+ λw) = +∞.
Now let w ∈ intR. There exist θ ∈ (0, 1), r ∈ R such that w = θw + (1− θ)r.
Let {λn}n be an increasing sequence of positive numbers which converge to

+∞. We have x+ λnw = θ(x+ λnw) + (1− θ)(x+ λnr) and hence

U(x+ λnw) ≥ θU(x+ λw) + (1− θ)U(x+ λnr) ≥ θU(x+ λw) + (1− θ)U(x).

Since limn U(x + λnw) = +∞ we have also limn U(x + λnw) = +∞ and

V (x,w) = +∞.

7.3 Proof of Lemma 5

Indeed, take r ∈ R. For all λ, µ ≥ 0 we have:

U(x+ µr + λw) ≥ U(x+ λw).

This implies supλ U(x+ µr + λw) ≥ supλ U(x+ λw).

7.4 Proof of Lemma 6

Take p ∈ ∂V (x,w). We have p · w = 0. Indeed, observe that w is an useless

vector of V (·, w), then for all λ ∈ R, by the concavity of V we have:

0 = V (x+ λw)− V (x,w) ≤ λp · w.

14



Hence p · w = 0.

By assumption, U(x+ λw) = U(x+ λw) ∀ λ ≥ λ, so V (x,w) = U(x+ λw).

For all y ∈ RS we have:

U(y)− U(x+ λw) ≤ V (y, w)− V (x,w) ≤ p · (y − x) = p · (y − (x+ λw)).

Then p = U ′(x+ λw).

Take p = U ′(x+ λw). Observe that p · w = 0. We have:

V (y, w)− V (x,w) = lim
λ→+∞

[U(y + λw)− U(x+ λw)]

≤ lim
λ→+∞

p · (y − x+ λw − λw)

= lim
λ→+∞

p · (y − x) = p · (y − x).

Then p ∈ ∂V (x,w).

7.5 Proof of Proposition 3

(a) Suppose that w is HL, by using Lemma 4, we have w ∈ ∂R.

(b) With α ∈ R, let σα = {x | U(x) = α}.
We will prove that if w ∈ ∂R, then there exists x̂ ∈ σα such that U(x̂+λw) =

U(x̂) = α for all λ ≥ 0. If w = 0, obviously, the claim is true. We assume now

that w ∈ ∂R\{0}.
Take some x ∈ σα. If U(x+λw) = U(x) ∀ λ ≥ 0, the claim is true. Assume

that there exists µ > 0 such that U(x+ µw) > U(x). If µ > 1, the concavity of

U implies that U(x+w) > U(x). If µ ≤ 1, then U(x+w) ≥ U(x+µw) > U(x).

This implies that U(x + w) > U(x). From the continuity of U , there exists

ρ > 0 such that for all y ∈ B(x + w, ρ), a ball center x + w and radius ρ, we

have U(y) > U(x). Since w ∈ ∂R, we can take a sequence wn converging to

w such that x + wn ∈ B(x + w, ρ) and wn /∈ R. We have U(x + wn) > U(x).

Therefore, for any n, there exists λn > 1 such that U(x + λnwn) = U(x) and

U(x+ λwn) < U(x) for all λ > λn.

Define xn := x+ λnwn. We claim that λn → +∞. Indeed, in the contrary,

λn → λ ≥ 1. We have U(x+ λw) ≥ U(x+w) > U(x): a contradiction because

U(x+ λw) = limn U(xn) = U(x).

Since λn →∞, we have ‖xn‖ → ∞.

By the concavity of U we have:

0 = U(xn)− U(x) ≥ U ′(xn) · (xn − x).

This implies:
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U ′(xn)

‖U ′(xn)‖
· xn

‖xn‖
≤ U ′(xn)

‖U ′(xn)‖
· x

‖xn‖
.

Observe that when n→∞, ‖xn‖ → +∞, and xn

‖xn‖ → w. From the closeness

of { U ′(x)
‖U ′(x)‖}x∈σα we have:

U ′(xn)

‖U ′(xn)‖
→ U ′(x̂)

‖U ′(x̂)‖
where x̂ ∈ σα. We obtain that:

U ′(x̂)

‖U ′(x̂)‖
· w ≤ 0.

So U ′(x̂) · w = 0 and that implies U(x̂+ λw) = U(x̂) ∀ λ ≥ 0.

7.6 Proof of Proposition 4

From Proposition 3, there exist x̂ such that U(x̂ + λw) = U(x̂), ∀ λ ≥ 0.

Hence V (x̂, w) < +∞. By Lemma 3, we have V (x,w) < +∞ ∀ x ∈ RS , or

limλ→+∞ U(x+ λw) < +∞.

Suppose that there exists x such that U(x+ λw) has no maximum.

Take any p ∈ ∂V (x,w). Take any z in interior of R. Let Π denote the plane

spanned by (w, z) and Πx = Π + {x}. We will prove that p is orthogonal to Π

and then orthogonal to z.

By the way of choosing z and Lemma 3, we have supλ U(x+ λz) = +∞, so

supΠx U(x) = +∞. Let α := limλ→∞ U(x+λw) = V (x,w). Since U(x+λw) <

α and U(x + λz) → +∞ when λ → ∞, there exists y ∈ Πx which satisfies

U(y) = α. In other words, Cα := Πx
⋂
σα 6= ∅.

By using the same argument as in the proof of Proposition 3 and the closed

gradient condition for the affine space Πx, we can prove that there exists x̂ ∈ Cα
such that

U(x̂) = U(x̂+ λw) = α,∀ λ ≥ 0.

We have V (x,w) = V (x̂, w) = α, so

0 = V (x,w)− V (x̂, w) ≥ p · (x− x̂).

We obtained p · (x− x̂) ≤ 0.

By Lemma 6, we have V ′x(x̂, w) = U ′(x̂), and then V ′x(x̂, w) · w = 0.

Denote q = V ′(x̂, w). Let p1, q1 respectively the orthogonal projections of p

and q on Π. Since p ·w = q ·w = 0, then p1 and q1 are orthogonal to w, and so

p1 = µq1 with µ ∈ R. Since z ∈ int(R), z is also a useful vector of V (·, w), and

V ′(x,w) ·z ≥ 0 which implies p1 ·z ≥ 0. We have also U ′(x̂) ·z > 0⇒ q1 ·z > 0.

These inequalities imply µ ≥ 0.
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Observe that:

U(x̂)−U(x+λw) ≥ U ′(x̂) · (x̂− x)−λU ′(x̂) ·w = U ′(x̂) · (x̂− x) = q1 · (x̂− x).

Let λ→ +∞. We obtain q1 · (x̂−x) ≤ 0. And then p1 · (x̂−x) ≤ 0. Remember

that p · (x− x̂) ≤ 0 or p1 · (x− x̂) ≤ 0. Then, we have p1 · (x− x̂) = 0.

By the assumption of the non existence of a maximum of U(x + λw), x̂ does

not belong to the line {x + λw}, so w and x − x̂ are linearly independent and

orthogonal to p1, so p is orthogonal to Π, or p · z = 0.

Since z is arbitrarily chosen, p is orthogonal to all vectors who belongs to

intR, and hence to all vectors in RS+. This implies p = 0. Then V (x,w) ≥
V (y, w) ≥ U(y) for all y, or supy U(y) < +∞: a contradiction.

7.7 Proof of Proposition 5

By Proposition 4, for all x ∈ RS , there exists λ ≥ 0 big enough such that

V ′(x,w) = U ′(x+ λw).

Suppose that H is an affine space of RS , and supx∈H V (x,w) = +∞. We

consider two cases:

1. H is parallel to w: ∀ x ∈ H, x+ w ∈ H.

2. H is not parallel to w.

Denote σV,Hα := {x ∈ H | V (x,w) = α} and consider the sequence {xn}n ⊂
σw,Hα such that limn

V ′H(xn,w)

‖V ′H(xn,w)‖ = p. For each n, there exists λn ≥ 0 such

that V (xn, w) = U(xn + λnw), or xn + λnw ∈ σα, and using Lemma 6,

limn
U ′H(xn+λnw)

‖U ′H(xn+λnw)‖ = p.

For any affine subspace F , πF denotes the projection on F .

Consider the first case. In this case, xn+λnw ∈ H for all n, and supx∈H U(x) =

supx∈H V (x,w) = +∞. By applying the closed gradients condition for the

affine space H, there exists x̂ ∈ σV,Hα such that
U ′H(x̂)

‖U ′H(x̂)‖ = p. Observe that

U ′(xn + λnw) · w = 0 ⇒ πH [U ′(xn + λnw)] · w = 0 ⇒ πH [U ′(x̂)] · w = 0 ⇒
U ′(x̂) · w = 0 and so V (x̂, w) = U(x̂) = α, or U(x̂ + λw) = U(x̂) = α for all

λ ≥ 0, and V ′(x̂, w) = U ′(x̂). So we have

V ′H(x̂, w)

‖V ′H(x̂, w)‖
=

πH(V ′(x̂, w))

‖πH(V ′(x̂, w))‖
=

πH(U ′(x̂))

‖πH(U ′(x̂)))‖
=

U ′H(x̂)

‖U ′H(x̂)‖
= p.

Consider the second case. Let G := H + {λw}λ∈R. Then G is parallel to w.

Observe that supx∈G U(x) = supx∈H V (x,w) = +∞.

Suppose that
V ′H(xn,w)

‖V ′H(xn,w)‖ = p with xn ∈ H and V (xn, w) = α for all n.

Without loss of generality, we can suppose that
U ′G(xn+λnw)

‖U ′G(xn+λnw)‖ → p. Observe

that H ⊂ G, so πH(πG(q)) = πH(q) for all vector q ∈ RS .
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Firstly, we prove that p is not orthogonal to H. Using the same argument

as the first case, applying closed gradient condition for the affine space G, we

know that there exists x̂ ∈ G such that

U ′G(x̂)

‖U ′G(x̂)‖
= p and U ′(x̂) · w = 0

or we can write
V ′G(x̂, w)

‖V ′G(x̂, w)‖
= p.

H is not parallel to w, so there exists λ ∈ R satisfies x̂ + λw ∈ H. Denote

x = x̂+ λw. Observe that V (x,w) = V (x̂, w) and V ′(x,w) = V ′(x̂, w).

If p is orthogonal to H then V ′(x,w) is orthogonal to H, then for all y ∈ H
we have:

V (y, w)− V (x,w) ≤ V ′(x,w) · (y − x) = 0.

Thus V (x,w) = supy∈H V (y, w) = +∞: a contradiction.

Since p is not orthogonal to H, we have πH(p) 6= 0.

Secondly, we prove that πH(p)
‖πH(p)‖ = p. Indeed, for all n we have

πH(πG(U ′(xn + λnw))

‖πH(πG(U ′(xn + λnw))‖
=

πH( πG(U ′(xn+λn))
‖πG(U ′(xn+λn))‖)

‖πH( πG(U ′(xn+λn))
‖πG(U ′(xn+λn))‖)‖

.

And we let n → ∞, the left hand side tends to p, and the right hand side

tends to πH(p)
‖πH(p)‖ . Hence, πH(p)

‖πH(p)‖ = p.

Finally we have

V ′H(x,w)

‖V ′H(x,w)‖
=

πH(V ′(x̂, w))

‖πH(V ′(x̂, w))‖
=

πH(πG(V ′(x̂, w)))

‖πH(πG(V ′(x̂, w)))‖
)) =

πH( πG(V ′(x̂,w))
‖πG(V ′(x̂,w))‖)

‖πH( πG(V ′(x̂,w))
‖πG(V ′(x̂,w))‖)‖

⇒

V ′H(x,w)

‖V ′H(x,w)‖
=

πH(p)

‖πH(p)‖
= p.

V (·, w) satisfies C condition.

7.8 Proof of Proposition 6

Firstly, observe that from the property of condition M, if supλ U(x+λw) < +∞
for some x, then there exists λ such that U(x+λw) = supλ U(x+λw) = V (x,w).

Suppose that supH V (x,w) < ∞. Let G = H + {λw}λ∈R. It is an affine

subspace. We can verify easily that supG U(x) = supH V (x,w) < +∞, so there

exists x ∈ G such that U(x) = supG U(x). Observe that V (x,w) = supλ U(x+
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λw) ≥ U(x) = supG U(x) = supH V (x,w), so V (x,w) = supH V (x,w). Since

x ∈ H + {λw}λ, there exists x̂ ∈ H, λ ∈ R such that x = x̂ + λw. We have

V (x̂, w) = supH V (x,w).

7.9 Proof of Proposition 7

Before beginning the proof, for each vector w ∈ R, define S+(w) = {s such that ws >

0}, S−(w) = {s such that ws < 0}.
(a) Fix an affine subspaceH. Denote by σHα the set {x ∈ H such that U(x) =

α}. Suppose that p is a limit point of { U ′(x)
‖U ′(x)‖}σHα . Since U ′(x) ·w ≥ 0 we have

p · w ≥ 0. For each n, define

An = {x ∈ σHα such that ‖p− U ′(x)

‖U ′(x)‖
‖ ≤ 1

n
}.

Denote by xn the element of An which has the smallest norm: ‖xn‖ ≤ ‖x‖ for

all x ∈ An. We prove that the set {xn} is bounded.

Suppose the contrary, limn ‖xn‖ = ∞. Without loss of generality, we can

suppose that limn
xn
‖xn‖ = w. Observe that w is parallel to H. Since U(xn) = α

for all n, the vector w is a useful vector. We have also p ·w = 0. Indeed, denote

by 0 the vector (0, 0, . . . , 0). We have U(xn)− U(0) ≥ U ′(xn) · xn. Hence

α− U(0)

‖xn‖
≥ U ′(xn) · xn

‖xn‖
.

Let n converges to infinity, the LHS converges to 0. Observe that since 0 < a ≤
b < +∞, we have {U ′(x)} is bounded. Hence without loss of generality, assume

that U ′(xn) converges to a vector q, with q
‖q‖ = p. The inequality above implies

that p · w ≤ 0, that implies p · w = q · w = 0.

Dana and Le Van in [7] prove that for all x we have

U ′(x) · w ≥ a
∑

s∈S+(w)

πsws + b
∑

s∈S−(w)

πsws ≥ 0.

Since limn U
′(xn) · w = 0, we have a

∑
s∈S+(w) πsws + b

∑
s∈S−(w) πsws = 0.

Fix 0 < ε < 1. Take N big enough such that for all n ≥ N we have

xn,s − εws > z for s ∈ S+(w) and xn,s − εws < −z for s ∈ S−(w). This implies
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‖xn − εw‖ < ‖xn‖. We will prove that U(xn − εw) = α, ∀ n ≥ N . Indeed,

U(xn − εw)− U(xn) ≥ −εU ′(xn − εw) · w

= −ε
S∑
s=1

πsu
′(xn,s − εws)ws

= −ε
∑

s∈S+(w)

πsu
′(xn,s − εws)ws − ε

∑
s∈S−(w)

πsu
′(xn,s − εws)ws

= −εa
∑

s∈S+(w)

πsws − εb
∑

s∈S−(w)

πsws

= −ε[a
∑

s∈S+(w)

πsws + b
∑

s∈S−(w)

πsws]

= 0.

Hence U(xn − εw) ≥ U(xn) ≥ U(xn − εw). This implies U(xn − εw) = α.

Observe that for s ∈ S+ ∪ S−, we have u′(xn,s − εws) = u′(xn,s), which is

equal to a if s ∈ S+(w), and to b if s ∈ S−, so U ′(xn − εw) = U ′(xn). Since w

is parallel to H, xn − εw ∈ H. We have proved above ‖xn − εw‖ < ‖xn‖. This

is a contradiction to the definition of xn.

So, the set {xn} is bounded. Take a limit point x of this set, we have x ∈ H,

U(x) = α, and U ′(x)
‖U ′(x)‖ = p. We have proved that C condition holds.

(b) Fix an affine space H such that supH U(x) = a < +∞. For each n,

define

An = {x ∈ H such that U(x) ≥ a− 1

n
}.

Take xn ∈ An such that ‖xn‖ ≤ ‖x‖ for all x ∈ An. We prove that the set

{xn} is bounded. Suppose the contrary. We can suppose that limn
xn
‖xn‖ = w.

Since {U(xn)} is bounded below, w is a useful vector. We will prove that

a
∑

s∈S+(w) πsws+b
∑

s∈S−(w) πsws = 0. Indeed, suppose that a
∑

s∈S+(w) πsws+

b
∑

s∈S−(w) πsws > 0. Fix x ∈ H. For λ > 0 big enough we have xs + λws > z,

∀s ∈ S+(w), and xs + λws < −z, ∀s ∈ S−. Hence

U(x+ λw)− U(x) ≥ λU ′(x+ λw) · w

= λ

a ∑
s∈S+(w)

πsws + b
∑

s∈S−(w)

πsws

 .
Let λ converges to infinity, the RHS tends to +∞. Observe that since w is par-

allel to H, x+λw ∈ H for all λ. This implies supH U(x) = +∞, a contradiction.

We have a
∑

s∈S+(w) πsws + b
∑

s∈S−(w) πsws = 0. By using the same argu-

ments in the part (a), we have U(xn − εw) ≥ U(xn) ≥ a− 1
n , and ‖xn − εw‖ <
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‖xn‖, a contradiction. Hence the set {xn} is bounded. Since limn U(xn) = a,

we have that maxH U(x) exists. We have proved that M condition holds.
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