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Abstract. We show that a concept of aggregation can hold for games played on net-

works. We first provide a condition on a group of players in a network, called a module,

which ensures that the group can behave like a single player. Furthermore, we show that

a partition of players of a game into modules gives rise to an aggregate game, whose

Nash equilibria, together with the Nash equilibria of the games played at the module

level, correspond to Nash equilibria of the game. Then, we show that fitting aggregate

games into each other in an appropriate way provides a hierarchical decomposition of

the game, which can inform a recursive computation of Nash equilibria. Finally, we pro-

vide an application to the model of public goods in networks to illustrate the usefulness

of our results.
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1. introduction

The economic of networks, which focuses on modeling and understanding varied eco-

nomic interactions, has recently become one of the most active and dynamic fields in

economics, with the potential for important and lasting policy implications (see Goyal

(2007) and Jackson (2008)). Nevertheless, it is notable that most economic interactions

take place in large networks, whose sheer size and complex structures make economic anal-

ysis quite a challenging task. Throughout history, various concepts have been developed

to reduce the inherent complexity found in large economic systems, thereby rendering

them more amenable to economic analysis. A prominent example is aggregation, which

aims to devise representative concepts that can be analyzed in a more tractable manner.

For instance, a key question, which appeared in the seminal contributions of von Neu-

mann and Morgenstern (1944), Chapter IX, Gorman (1953, 1961), and Shapley (1964,

1967), is: when does a group of individuals behave as if it was a single individual?

In this paper we investigate whether a similar concept of aggregation could hold for

games played on networks, a subject of ongoing research (see Ballester, Calvó-Armengol,

and Zenou (2006), for criminal activity, Bramoullé and Kranton (2007) for public good

provision, and Bramoullé, Kranton, and D’Amours (2014) for various economic interac-

tions). A key ingredient of our analysis is a group of players, called a module, such that

players in the group have exactly the same neighbors outside the group. Obviously, both

single players and the entire set of players are always modules, called trivial modules,

which may well be the only modules for some networks.1 Connected components are

also always modules, and, in fact, a module can be thought of as a generalization of a

connected component.

We first show that a partition of players of a network game into modules gives rise to a

possibly smaller aggregate game, obtained by coalescing each module into a representative

player. More specifically, since players in a module are indistinguishable by players

outside the module in terms of their network position from outside players, outside players

can then substitute them for a representative player with suitably defined payoffs. This

aggregation procedure allows us to gain significant insights, since we establish that a Nash

equilibrium of the aggregate game, together with Nash equilibria of the games played at

1The notion of a modular set has been rediscovered several times in many fields and appeared under
various names, including committee in Shapley (1967).
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modules level, corresponds to a Nash equilibrium of the (full) game. More specifically, the

aggregate game determines the participation rates of the various modules, whose actions

are the Nash equilibria of the games played at the module level. Thereby, we establish a

systematic relationship between each player’s network position in each module, and his

Nash equilibrium actions in the full game

Furthermore, we show that a game on a network can be decomposed into a unique

hierarchy of aggregate games. Key to this are the modules that overlap with no other

modules, called strong modules, which, when ordered by inclusion, define a unique tree,

called the modular decomposition tree, whose root is the set of players and whose leaves

are the single players.2 By fitting aggregate games into each other along the nodes of

the modular decomposition tree we obtain a hierarchical decomposition of the game,

which may be useful for the analysis of strategic interactions. First, it determines the

nature of interactions between the strong modules, ranging from strategic complements

to strategic substitutes. Second, it can be used to carry out a recursive computation of

Nash equilibria, which could be of great algorithmic interest.

In the final part of the paper, we provide an application of our results to the model of

public goods in networks, introduced in Bramoullé and Kranton (2007). The key question

addressed in Bramoullé and Kranton (2007) is how the network architecture of spillovers

influences public goods provision, in the absence of coordination or government provision.

Our aggregation approach complements the analysis of Bramoullé and Kranton (2007),

as it determines a necessary condition on the modular decomposition of the network in

order to have a Nash equilibrium with strictly positive contributions by all players,3 which

despite the attractive normative feature of sharing the burden of public goods among all

players, is not always guaranteed to exist. The necessary condition, which also becomes

sufficient for a special class of networks, illustrates the role played by the intermediate

structures of the network architecture in determining public goods provision.

The paper is organized as follows. In Section 2, we present the basic model of network

games. In Section 3, we introduce the concept of modular aggregation. In Section 4, we

show that a game on a network can be decomposed into a unique hierarchy of aggregate

games. In Section 5, we provide an application of our results to the model of public goods

in networks. Section 6 concludes the paper.

2The concept of modular decomposition of networks was introduced in Gallai (1967).
3That is, with no free-riders.
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2. The model

We consider a strategic form game Γ(g, δ) with N = {1, . . . , n} players embedded on

an undirected and unweighted network g of interactions and δ ∈ [0, 1] measures how

much player i’s action is affected by his neighbors actions. Each player i chooses an

action xi ∈ R+. Given a subset of players I and a profile of actions x = (x1, . . . , xn), let

xI = (xi)i∈I denote the actions of the players in I and xI =
∑

i∈I xi denote their sum.

As usual, let x−i = xN\{i} denote the actions of all other players than i. The payoffs of

player i for the profile of action x = (x1, . . . , xn) are

Ui(x) = Ui(xi,x−i).

Player i seeks to maximize his payoffs and has a best-reply function

xi = fi(x−i)
def
= max{1− δ xNi(g), 0},

where Ni(g) denote i’s neighbors in g and 1 is the action player i chooses in isolation.

As shown in Bramoullé, Kranton, and D’Amours (2014), this type of game, Γ(g, δ),

can be used to represent various types of economic interactions including, the model of

public goods in networks, introduced in Bramoullé and Kranton (2007), and the model

of negative externalities with linear-quadratic payoffs, introduced in Ballester, Calvó-

Armengol, and Zenou (2006).

At a Nash equilibrium x∗ = (x∗1, . . . , x
∗
n) of the game Γ(g, δ), each player’s action is

a best-reply to his neighbors’ actions, that is, x∗i = fi(x−i) for each player i ∈ N. The

existence of a Nash equilibrium of Γ(g, δ) is guaranteed by Brouwer’s fixed point theorem

by restricting strategies of players to [0, 1]n.

3. Modular aggregation

We now introduce a network structural similarity of a group of players, which ensures

that it can behave like a single player. A group of players M is called a module if they

have exactly the same neighbors outside the module, that is, for any player i ∈ N \M ,

either i is adjacent to every member of M , or i is adjacent to no member of M. It is

easy to notice that each single player {1}, . . . , {n}, as well as, the entire set of players

N = {1, . . . , n} are always modules, called trivial modules. Connected components are

also always modules.
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A partition p = {M1, . . . ,MK} of the set of players N is called a modular partition if

Mk is a module of g, for each k = 1, . . . , K.4 Given two disjoint modules Mk, Mh of p

then either every player in Mk is a neighbor of every player in Mh, or no player in Mk is

adjacent to a player in Mh. Thus, the relationship between two disjoint modules is either

adjacent or nonadjacent. Hence the modular partition p gives rise to a new network,

g/p, called the quotient network, whose vertices are the modules of the partition p and

links are the adjacencies of these modules.

Now we define an aggregate game played on the quotient network g/p, denoted by

Γ(g/p, δ; z), where z = (z1, . . . , zK) ∈ RK
+ is a vector of weights determined exogenously.

This set-up means that in the quotient network, player-positions are filled by representa-

tive players of the modules. For each module Mk, there is a representative player k, who

chooses an action rk ∈ [0, 1]. Representative player k’s payoffs depend on his own action

rk and the actions of the other representative players r−k. We denote the payoffs of the

representative player k by Vk, which are assumed to yield the best-reply function:

rk = Fk(r−k)
def
= max{1− δ

∑
h∈Nh(g/p)

zhrh, 0}.

At a Nash equilibrium r∗ = (r∗1, . . . , x
∗
K), each representative player’s action is a best-

reply to the actions of his neighbors, that is, r∗k = Fk(r−k), for each player k ∈ K.
The following theorem shows that a Nash equilibrium of the aggregate game, whose

vector of weights are the aggregate actions of Nash equilibria of the games played within

the modules, corresponds to a Nash equilibrium of the (full) game.

Theorem 1. Given a modular partition p = {M1, . . . ,MK} of the set of players N, the

following are equivalent:

(1) x∗ is a Nash equilibrium of Γ(g, δ)

(2) x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) such that

(a) y∗Mk
is a Nash equilibrium of Γ(gMk

, δ), for each k ∈ K, and

(b) r∗ is a Nash equilibrium of Γ(g/p, δ; y∗M1
, . . . , y∗MK

).

In interpretation, the aggregate game determines the rates of participation of the mod-

ules in a Nash equilibrium of the full game. Note also that in view of the equivalence

in Theorem 1 a Nash equilibrium of the full game is always proportional to a Nash

4Note that this partition may not be unique.
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equilibrium of each module. Hence, finding the Nash equilibria of the modules provides

significant insights into the Nash equilibria of the full game. Understandably, the coarser

is the modular partition, the larger are the modules, the more significant are the insights.5

4. Hierarchical decomposition

Now, we show that a game on a network can be decomposed into a unique hierarchy

of aggregate games. A module M is called a strong module, if for any module M ′ 6= M

it holds that either M ′ ∩M = ∅ or one module is included into the other. We say that a

strong module M is a descendant of another strong module M ′ if M ⊂ M ′ and there is

no other strong module M∗ such that M ⊂M∗ ⊂M.

The descendant relation yields a tree on strong modules, called the modular decom-

position tree of the network, where the set of players {1, . . . , N} is the root, the single

players {1}, . . . {N} are the leaves, and any other strong module is an internal node.

The nodes of the modular decomposition tree are labeled in three ways: parallel when

the descendants are all non-neighbors of each other, series when the descendants are all

neighbors of each other, and prime otherwise. The modular decomposition tree is unique

and constitutes an exact alternative representation of the network whenever the structure

of each prime module is depicted. The following theorem relates the Nash equilibria of a

strong module to the Nash equilibria of its direct descendants.

Theorem 2. Given a strong module M with direct descendants partition pM = (D1, . . . , DT ).

Then the following are equivalent:

(1) x∗ is a Nash equilibrium of Γ(gM , δ)

(2) x∗ = (r∗1 y∗D1
, . . . , r∗T y∗DT

) such that

(i) y∗t is a Nash equilibrium of Γ(gDt , δ), for each t = 1, . . . , T, and

(ii) If M is parallel, then for each t ∈ T, it holds that r∗t = 1.

5In particular, the coarsest modular partition consisting of just one module N corresponds to the full
game.



7

(iii) If M is series, then for almost every δ,6 either for each t ∈ A it holds that

y∗Dt
> 1

δ
(or, for each t ∈ A = T it holds that y∗Dt

< 1
δ
), and

r∗t =

1
1−δy∗Dt

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

.

(iv) If M is prime, then r∗M is a Nash equilibrium of Γ(g/p, δ; y∗D1
, . . . , y∗DT

).

Theorem 2 shows the relationship between the Nash equilibria of a module and the

Nash equilibria of its descendants. In interpretation, the descendants of parallel modules

can be thought of as strategic complements, series modules can be thought of as strategic

substitutes, and prime modules can be thought of as a combination of strategic substitutes

and complements.

Given that a game on a network can be decomposed, along the nodes of the modular

decomposition tree, into a unique hierarchy of aggregate games, Theorem 2 can be used

to carry out a recursive computation of Nash equilibria of Γ(g, δ). In particular, for the

special class of networks known as cographs, which consist of networks with only parallel

and series modules in their modular decomposition tree, Theorem 2 provides an algorithm

to find all Nash equilibria of Γ(g, δ), for almost every δ.

6We say that a property holds for almost every δ if it holds for every δ except may be finite number of
values.
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Figure 1: Modular decomposition of a network.
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5. An application: public goods in networks

In this section, we provide an application of our results to the model of public goods

in networks, introduced in Bramoullé and Kranton (2007), which can be investigated as

a Γ(g, 1) game.

Recall that for a profile of contributions to be a Nash equilibrium, it has to be the

case that every player contributes nothing to the public good if the sum of his neighbor’s

contributions exceeds 1 or contributes exactly the difference between 1 and the sum of his

neighbor’s contributions. Therefore, at a Nash equilibrium we may distinguish three types

of players: free-riders, who contribute nothing, experts, who make full contributions, and

the others. Bramoullé and Kranton (2007) insightfully show that specialized equilibria,

that is, equilibria with only experts and free-riders, correspond to maximal independent

sets of the network and therefore are always guaranteed to exist.

Specialized equilibria are of interest as they illustrate in an acute form how the net-

work can lead to specialization. However, beyond specialized equilibrium, very little

is known about other equilibria such as distributed equilibria, where all players make

positive contributions, and hybrid equilibria, which are are neither specialized nor dis-

tributed. Distributed equilibria can be also of interest given their normative importance,

because all players share the burden of contributing to the public good, but they are not

always guaranteed to exist. For instance, distributed equilibria are not possible in star

networks. Moreover, even when distributed equilibria exist very little is known about

their properties beyond the symmetric contribution equilibrium in regular networks.

In the following we will provide a condition on the modular decomposition of the

network that is necessary for the existence of distributed equilibrium. We say that a

series model is uncentered if all (or, none) of its descendants are single players.

Proposition 1. If a distributed equilibrium exists then all series modules are uncentered.

The next result shows that the necessary condition becomes also sufficient for a special

class of networks.

Proposition 2. If the network is a cograph, then a distributed equilibrium exists if and

only if all series modules are uncentered.
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6. Conclusion

In this paper, we have investigated a concept of aggregation in games played on net-

works based on a hierarchical structural decomposition of the network. The concept of

aggregation allows us to gain significant insights into strategic interactions by investigat-

ing smaller networks.

Understanding, and making sense, of large networks is an increasingly important prob-

lem from an economic perspective, due to the ever-widening gap between technological

advances in constructing such networks, and our ability to predict and estimate their

properties. In this regard modular decomposition, by breaking up large networks into

smaller pieces, seems to provide an interesting method for summarizing complex strate-

gic interactions by simple ones. While our findings could potentially have applications

to many network models in economics, it remains to be seen whether other approaches

from the vast and important literature on structural decompositions of networks across

myriad disciplines, ranging from biology to computer science,7 could be useful to analyze

complex strategic interactions.

7. Appendix

Proof of Theorem ??. First, observe that a profile of actions x∗ = (x∗1, . . . , x
∗
n) is a

Nash equilibrium of Γ(g, δ) if and only if for each player i ∈ N

x∗i =

{
1− δx∗Ni(g)

if δx∗Ni(g)
≤ 1,

0 if δx∗Ni(g)
> 1.

(7.1)

Since Mk is a module, for each i ∈ Mk and for each h 6= k, it holds that the set of

neighbors of i in Mh, that is, Ni(gMh
), is independent of the choice of i ∈Mk. Let’s posit

r∗k
def
= max{1− δ

∑
h∈Nh(g/p)

x∗Ni(gMh
), 0}

Then, since for each i ∈Mk

Ni(g) =
⋃

h∈k∪Nh(g/p)

Ni(gMh
)

7See, for example, Gagneur et al (2004) and Newman (2006).
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it holds that

δ x∗Ni(g)
= δ

∑
h∈k∪Nh(g/p)

x∗Ni(gMk
) = δ x∗Ni(gMk

) + r∗k. (7.2)

Let also

y∗Mk

def
=


x∗
Mk

rMk

if r∗k > 0,

a Nash equilibrium of Γ(gMk
, δ) if r∗k = 0,

Hence, in view of (??) and (??) , x∗ is a Nash equilibrium of Γ(g, δ) if and only if for

each module k = 1, . . . , K,

r∗k = max{1− δ
∑

h∈Nh(g/p)

y∗Ni(gMh
)r
∗
h, 0}

and for each player i ∈Mk it holds that

x∗i =

r∗k − δ x∗Ni(gMk
) if δ x∗Ni(gMk

) ≤ r∗k,

0 if δ x∗Ni(gMk
) > r∗k,

or, equivalently,

y∗i =

1− δ y∗Ni(gMk
) if δ y∗Ni(gMk

) ≤ 1,

0 if δy∗Ni(gMk
) > 1.

Therefore, x∗ is a Nash equilibrium of Γ(g, δ) if and only if x∗ = (r∗k y∗Mk
)k∈K such that

r∗ is a Nash equilibrium of Γ(g/p, δ; y∗M1
, . . . , y∗MK

) and y∗Mk
is a Nash equilibrium of

Γ(gMk
, δ), for each k = 1, . . . , K.�

Proof of Theorem ??. From Theorem ?? it holds that x∗M is a Nash equilibrium of

Γ(gM , δ) if and only if x∗M = (r∗1 y∗D1
, . . . , r∗T y∗DT

) such that r∗M is a Nash equilibrium

of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

) and y∗Dt
is a Nash equilibrium of Γ(gDt , δ), for each t =

1, . . . , T .

If M is prime, then the equivalence follows from the result above.

If M is parallel, then r∗M is a Nash equilibrium of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

) is equiv-

alent to

r∗Dt
= 1, for each t = 1, . . . , T,

since Nt(gM/pM) = ∅ for each t = 1, . . . , T.
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If M is series, then r∗M is a Nash equilibrium of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

) is equivalent

to

r∗t = 1− δ
∑

s∈A\{t}

y∗Ds
r∗s for each t ∈ A (7.3)

and

δ
∑
s∈A

y∗Ds
r∗s ≥ 1, if A 6= T. (7.4)

Let

v
def
= (

δy∗Ds

1− δy∗Ds

)s∈A and U
def
= diag(1− δy∗Ds

)s∈A.

Then, (??) is equivalent that

(I + 1vT )Ur∗A = 1.

From the Sherman–Morrison formula, provided that 1 + vT1 6= 0, it holds that

r∗A = U−1(I + 1vT )−11 = U−1(I− 1vT

1 + vT1
)1 = U−1(1− vT1

1 + vT1
1) =

1

1 + vT1
U−11.

Hence, or each t ∈ A, it holds that

r∗t =

1
1−δy∗D1

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

,

Note that since r∗t > 0 for each t ∈ A, it follows from above that either y∗Dt
> 1

δ
, for

each t ∈ A or y∗Dt
< 1

δ
for each t ∈ A. Moreover, in view of (??), if A 6= T then∑

s∈A
δy∗Ds

1−δyD1

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

= 1− 1

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

≥ 1,

which implies that ∑
s∈A

δy∗Ds

1− δy∗Ds

< −1.

Hence if A 6= T, then it holds that y∗Dt
> 1

δ
, for each t ∈ A.

Conversely, it is easy to check that if either for each t ∈ A it holds that y∗Dt
> 1

δ
(or,

for each t ∈ A = T it holds that y∗Dt
< 1

δ
), and

r∗t =

1
1−δy∗Dt

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

then r∗M is a Nash equilibrium of Γ(g/p, δ; y∗D1
, . . . , y∗DT

).�



13

Proof of Proposition ??. Let x∗ be a Nash equilibrium of Γ(g, 1) such that x∗i > 0,

for each i ∈ N . Let M be a series module. From Theorem 1 there exists a real number

rM > 0 such that x∗ = rMy∗M , where yM
∗ is a Nash equilibrium of Γ(gM , 1). Suppose that

M is not uncentered. Let pM = (D1, . . . , DT ) denote the direct descendants partition of

M . Then, there exists 1 ≤ t1 6= t2 ≤ T such that Dt1 = {i1} is a single player and Dt2 is

not a single player. Note that there is (at least) one player i2 ∈ Dt2 , that is not connected

to all players in Dt2 . Otherwise, all players in Dt2 are connected, which implies Dt2 is

not a direct descendant of M .

At the Nash equilibrium y∗M , each player’s action is a best-reply to his neighbors’

actions. In particular, it holds for player i1

y∗i1 +
∑
i∈Dt2

y∗i +
∑
t6=t1,t2

y∗Dt
= 1,

and for player i2

y∗i2 +
∑

i∈Ni2
(gM)∩Dt2

y∗i + y∗i1 +
∑
t6=t1,t2

yDt = 1,

which together imply ∑
i∈{i2∪Ni2

(gM)}c∩Dt2

y∗i = 0.

This is a contradiction since {i2 ∪Ni2(gM)}c ∩Dt2 6= ∅ and y∗i > 0, for each i ∈M.�

Proof of Proposition 2. Suppose the network g is a cograph. Therefore, the network

g has only parallel and series modules in its modular decomposition tree. If no series

module is uncentered. Then, given a series module M , with direct descendants partition

pM = (D1, . . . , DT ) either all or none of direct descendants are single players. If all direct

descendants are single players then the symmetric contribution 1
n+1

is a Nash equilibrium

of Γ(gM , 1). If none of M direct descendants is a single player, then for each t = 1, . . . , T,

and for any Nash equilibrium y∗t of Γ(gDt , δ) it holds that y∗Dt
≥ 2 since Dt is a parallel

module with at least two direct descendants. Therefore one can use (ii) and (iii) in

Theorem 2 recursively along the nodes of the modular decomposition tree in order to

construct a distributed Nash equilibrium.�
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