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Abstract

We consider a model with a finite number of states of nature where

short sells are allowed. We present a notion of no-arbitrage price weaker

than the one of Werner [26], and prove that in the case of separable averse

at risk utility functions, the existence of one common weak no-arbitrage

price is equivalent to the existence of equilibrium.
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1 Introduction

Equilibrium conditions on financial markets differ with the ones on good mar-

ket when short-selling is accepted. This assumption makes useless traditional

techniques using fixed point theory. In the finite dimension case, there is a

huge literature on well-known conditions called no arbitrage conditions. These

conditions in general imply the compactness of the allocations set or the util-

ities set. We can classify them in three main categories. The first category

is based on conditions on net trade, for example Hart [20], Page [22], Nielsen

[21], Page and Wooders [23], Allouch [1], Page, Wooders and Monteiro [24]. We

define Individual arbitrage opportunity as the set of directions along which the

agent wants to trade with infinite quantities. In the case the agents disagree
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too much, some agents can make an arbitrage which is an opportunity with

a mutually compatible set of net trades which are utility non-decreasing and,

at most, costless to make (Hart [20]). Taking the fact that this opportunity

can be repeated indefinitely, equilibrium may not exist. The Weak-no-market-

arbitrage WNMA requires that that all mutually compatible net trades which

are non-decreasing be useless. Page [22] proposes the no-unbounded-arbitrage

NUBA, a situation in which there is no group of agents can make mutually

compatible, unbounded and utility increasing trades. In 2000, Page Wooders

and Monteiro [24], introduce Inconsequential arbitrage condition to ensure the

existence for an equilibrium.

The second category is based on conditions on prices, for example Green [16],

Grandmont [14], [15], Hammond [19] and Werner [26]. These authors define

Non-arbitrage price as element in the strictly positive dual of the set of use-

ful vectors. If the intersection of No-arbitrage price cones of all agents is non

empty (existence of No-arbitrage-price-system NAPS), then there exists a gen-

eral equilibrium.

The third category includes authors, like Brown and Werner [3], Dana, Le Van,

Magnien [8], who assume the compactness of attainable utility set to en- sure

the existence of equilibrium.

In the case utility functions are quasi-concave, Allouch, Le Van and Page [1],

Ha-Huy and Nguyen [18] by different approaches, prove the equivalence between

the existence of No-arbitrage-price-system NAPS and NUBA or WNMA. If the

agents in the economy have no trivial useless vectors, then NAPS and NUBA

are equivalent and they imply existence of a general equilibrium. Obviously, we

can wonder whether we can have equivalent conditions be- tween the existence

of general equilibrium and these no arbitrage conditions when the utility func-

tions are not strictly concave. Unfortunately, the answer is no. In this paper,

we give an example in which NAPS and NUBA, even WNMA conditions are

violated, but a general equilibrium does exist (Subsection 3.3). In 2010, Dana

and Le Van [9], by considering the relationships between the agents beliefs and

risk when there is ambiguity, propose to use the set of derivatives of the utility

function as no-arbitrage prices set. By using this trick, they give a description of

weak no-arbitrage prices and useful vectors. Furthermore, they give an equiv-

alence between non-emptiness of the intersection of interiors of no-arbitrage

price cones and NUBA condition, or non-emptiness of the intersection of rela-

tive interiors of no-arbitrage prices cones and WNMA condition. Hence, if this

intersection is non empty, existence of a general equilibrium is ensured. In this

paper, we reconsider the equilibrium theory of assets with short- selling when

there is risk and ambiguity. The agents have Von Newmann Morgenstern utility

functions. They are not only risk averse but also ambiguity averse. We suppose

the set of beliefs is a convex compact subset of the unit-simplex. Using the
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notion of weak no-arbitrage prices proposed by Dana and Le Van [9], we prove

the equivalence between existence of a general equilibrium and non-emptiness

of the intersection of no-arbitrage prices cones. To the best of our knowledge,

when the utility functions are not strictly concave, such a result does not exist

in the literature. Hence, our result is stronger than in Dana and Le Van [9]

when the sets of beliefs are convex compact. Our paper is organized as follows.

In Section 2 we recall several well-known conditions (No unbounded arbitrage -

NUBA, or Weak no market arbitrage - WNMA, or No arbitrage price system -

NAPS) for the existence of an equilibrium in a general framework. In Section 3,

we consider an economy in which any agent i has a Von Newmann Morgenstern

utility function. The agents are ambiguous in the probabilities of the outcomes

and they are averse at ambiguity. As in Gilboa and Schmeidler [17], each agent

faces a set of subjective probabilites.

Our proof proceeds in two stages. At the first stage we assume that the set of

beliefs of each agent is the convex hull of a finite number of strictly positive

probabilities. We introduce the cone of common weak no- arbitrage prices and

state the equivalence between existence of equilibrium and existence of a weak

no-arbitrage price common to all the agents. In the second we take a sequence

of convex polyhedrons which converge to the initial sets of beliefs. With each

set of polyhedrons we associate an appropriate equilibrium. We prove that the

limit of this sequence is an equilibrium. In Subsection 3.3, we give an exam-

ple of economy which does not satisfy either NUBA or WNMA or NAPS and

however has an equilibrium since it satisfies our no- arbitrage condition.

2 Existence of equilibrium: the general case

We consider now the economy in which any agent i has a Von Newmann Mor-

genstern utility function. Define ∆ = {π ∈ RS+ such that
∑S

s=1 πs = 1}. The

agents are ambiguous in the probabilities of the outcomes and they are averse

at ambiguity. As in Gilboa and Schmeidler [17], each agent faces a set of subjec-

tive probabilites ∆i ⊂ ∆ = {π ∈ RS+ such that
∑S

s=1 πs = 1} and their utility

functions take the form

U i(x) = inf
π∈∆i

m∑
s=1

πsu
i(xs),

where ui : R→ R is a concave, strictly increasing, differentiable function 1, and

∆i ⊂ ∆ is a convex, compact subset in the interior of ∆.

1For the sake of simplicity the presentation, we assume the differentiability. The results

do not change for general case with sub-differentials.
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Definition 1 An equilibrium is a list
(
(xi∗)i=1,...,m, p

∗)
)

such that p∗ ∈ RS+\{0}
and

(a) For any i, U i(x) > U i(xi∗)⇒ p∗ · x > p∗ · x∗i.
(b)
∑m

i=1 x
i∗ =

∑m
i=1 e

i.

Definition 2 An quasi equilibrium is a list
(
(xi∗)i=1,...,m, p

∗)
)

such that p∗ ∈
RS+ \ {0} and

(a) For any i, U i(x) > U i(xi∗)⇒ p∗ · x ≥ p∗ · x∗i.
(b)
∑m

i=1 x
i∗ =

∑m
i=1 e

i.

We recall the definitions of the attainable allocations set and the individually

rational utility set.

Definition 3 1. The individually rational attainable allocations set A is de-

fined by

A = {(x1, x2, · · · , xm) ∈ (RS)m |
m∑
i=1

xi =

m∑
i=1

ei and U i(xi) ≥ U i(ei) for all i}.

2. The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ Rm | ∃ x ∈ A s.t U i(ei) ≤ vi ≤ U i(xi) for all i}.

Theorem 1 If U is compact then there exists an equilibrium.

Proof : See Dana, Le Van and Magnien [10] for the existence of quasi-equilibrium.

Since short sales are allowed, in our model quasi equilibrium is also equilibrium.

For this result, see Florenzano [12].

Theorem 2 We have

NUBA⇒ NAPS⇒ Inconsequential arbitrage ⇒ U is compact ⇒ There exists a general equilibrium.

Proof : See Allouch, Le Van and Page [1].

Theorems 1 and 2 hold also in the general case.

Easily, we can prove that U i is concave. We define Ri the set of useful

vectors of U i.
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2.1 Characterization of useful vectors

The following lemma characterizes the useful vectors set of agent i.

Denote 2

ai = inf
z∈R

ui′(z) = ui′(+∞)

bi = sup
z∈R

ui′(z) = ui′(−∞).3

Lemma 1 The vector w ∈ RS is useful for agent i if and only if for any x ∈ RS,

any π ∈ ∆i we have
S∑
s=1

πsu
i′(xs)ws ≥ 0.

Proof : See Proposition 2 in Dana and Le Van [9].

For each vector w ∈ Rs, define S+(w) = {s such that ws > 0}, and S−(w) =

{s such that ws < 0}. The following proposition is a direct consequence of

Lemma 1.

Proposition 1 The vector w is useful for agent i, if and only if, for any π ∈ ∆i

we have

ai
∑

s∈S+(w)

πsws + bi
∑

s∈S−(w)

πsws ≥ 0. (1)

Proof : Suppose that w is a useful vector of agent i. We use Lemma 1. By

letting xs converge to +∞ when s ∈ S+(w), and xs converge to −∞ when

s ∈ S−(w), we obtain (1).

Now, we prove the converse. Suppose that the vector w satisfies (1). For

any x ∈ RS we have ai ≤ ui′(xs) ≤ bi. This implies

S∑
s=1

πsu
i′(xs)ws ≥ ai

∑
s∈S+(w)

πsws + bi
∑

s∈S−(w)

πsws ≥ 0.

From Lemma 1, the vector w is useful for agent i.

Corollary 1 If ai = 0 or bi =∞, then Ri = RS+.

2We rule out the case ai = bi = 0 which is not interesting. The utility function is constant

in this case.
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2.2 Weak No-Arbitrage prices and existence of equilibrium

Using the idea of Dana and Le Van [9], we define the set of weak no-arbitrage

prices.

P i = {p ∈ RS such that ∃λ ≥ 0, x ∈ Rs, π ∈ ∆i, satisfying ps = λπsu
i′(xs) ∀ s = 1, 2, · · · , S}.

Lemma 2 For all i, P i is a convex cone.

Proof : See Dana and Le Van [9].

We have two cases.

Case 1: For all i except at most one agent, for any z ∈ R, either ai < ui′(z) or

bi > ui′(z).

Proposition 2 Suppose for any z ∈ R, either ai < ui′(z) or bi > ui′(z). Then

P i is open.

Proof : See Dana and Le Van [9].

Lemma 3 Fix x ∈ RS. Then ∂U i(x) is the set

Q = {p : p = (π1u
i′(x1), π2u

i′(x2), . . . , πSu
i′(xS))}

where π ∈ ∆i satisfies U i(x) =
∑S

s=1 πsu
i(xs).

Proof : First observe Q ⊂ ∂U i(x). Conversely, from Clarke [7], ∂U i(x) is the

convex hull of the derivatives (π̃1u
i′(x1), π̃2u

i′(x2), . . . , π̃Su
i′(xS)), the probabil-

ities (π̃) satisfy U i(x) =
∑S

s=1 π̃su
i(xs). Hence ∂U i(x) ⊂ Q. 4

Proposition 3 Suppose that for all i except at most one agent, we have either

ai < ui′(z), ∀ z ∈ R, or bi > ui′(z), ∀ z ∈ R, then we have:

m⋂
i=1

P i 6= ∅ ⇔ NUBA condition ⇔ U is compact ⇔ there exists equilibrium.

Proof : Consider first the case for all i, we have either ai < ui′(z), ∀ z ∈ R,

or bi > ui′(z), ∀ z ∈ R. Since P i is convex, the set of weak no-arbitrage prices

coincides with the set of no-arbitrage prices Si. See Dana and Le Van [9].

4A more simplified version of Clarke’s one, which can be used for the case of utility functions

in theorem 3, can be found in [13].
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Consider the second case in which the above condition is satisfied for all

i 6= i0. We can chose p ∈ ∩i 6=i0P i, and p ∈ intP i0 . The argument is the same

as in the first case.

Case 2: Now we consider the case where for some i, the utility function ui

becomes affine when the consumption is large enough, i.e. there exists zi such

that

ui′(z) = ai for z ≥ z̄i and ui′(x) = bi for z ≤ −z̄i.

Lemma 4 Fix x ∈ RS. Then ∂U i(x) is the set

Q = {p : p = (π1u
i′(x1), π2u

i′(x2), . . . , πSu
i′(xS))}

where π ∈ ∆i satisfies U i(x) =
∑S

s=1 πsu
i(xs).

Proof : First observe Q ⊂ ∂U i(x). Conversely, from Clarke [7], ∂U i(x) is the

convex hull of the derivatives (π̃1u
i′(x1), π̃2u

i′(x2), . . . , π̃Su
i′(xS)), the probabil-

ities (π̃) satisfy U i(x) =
∑S

s=1 π̃su
i(xs). Hence ∂U i(x) ⊂ Q.

3 Existence of equilibrium when agents are risk averse

and ambiguity averse

3.1 Step 1: The sets of beliefs are polyhedral

Theorem 3 Suppose that each probabilities set ∆i is a convex hull of the set

of M i points, i.e. ∆i = conv{πi0, πi1, . . . , πiM i}. Then:

m⋂
i=1

P i 6= ∅ ⇔ U is compact ⇔ there exists a general equilibrium.

Proof : See Ha-Huy and Le Van [18].

The following Corollary is the direct consequence.

Corollary 2 If for any i, ∆i is a singleton, i.e ∆i = {πi}, then P i = {p ∈
Rs such that there exists λ > 0, x ∈ RS : ps = λπisu

i′(xs), for any 1 ≤ s ≤ S}.
We also have

m⋂
i=1

P i 6= ∅ ⇔ there exists general equilibrium.
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3.2 Step 2: the sets of beliefs are convex compact in the unit-

simplex

In the following theorem, we prove the equivalent between the existence of a

common weak no-arbitrage price the existence of general equilibrium. But we

do not ensure the compactness of utility set U .

Theorem 4 We have

m⋂
i=1

P i 6= ∅ ⇔ there exists a general equilibrium.

Proof : Suppose that
⋂m
i=1 P

i 6= ∅. Take any p ∈
⋂m
i=1 P

i. The exist πi0 ∈ ∆i,

xi ∈ RS , λi > 0 for any i satisfying

ps = λiπ
i
0u
i′(xis) for any s = 1, 2, · · · , S.

For each i, we can construct a sequence of subset {∆i
n}∞n=1 ⊂ ∆i satisfying

• For any n, ∆i is a convex hull of finite number of elements of ∆i.

• For any n, πi0 ∈ ∆i
n.

• For any π ∈ ri(∆i), the relative interior of ∆i, there exists N big enough

such that π ∈ ∆i
n for any n ≥ N .

For each n, define real function U in on RS :

U in(x) = inf
π∈∆i

n

S∑
s=1

πisu
i(xs).

Claim 1 Let {xin}n be a sequence which converges to xi. We have limn→∞ U
i
n(xin) =

U i(xi).

Proof :

• We have

U in(xin) =
∑
s

πis(n)ui(xin,s), for some πi(n) ∈ ∆i
n

≥ U i(xin)

=⇒ lim inf
n

U in(xin) ≥ lim
n
U i(xin) = U i(xi)

8



• We also have U i(xi) =
∑

s π
i
su
i(xis) for some πi ∈ ∆i.

There exists a sequence {πi(n)}n ⊂ ∆i
n, ∀n which converges to πi.

Then

U i(xi) = lim
n

∑
s

πis(n)ui(xin,s)

but
∑
s

πis(n)ui(xin,s) ≥ U in(xin)

=⇒ U i(xi) ≥ lim sup
n

U in(xin)

Observe that for any x ∈ RS , we have limn→∞ U
i
n(x) = U i(x).

We consider now the economy En in which the agent i has utility function

U in, endowment ei.

Denote by P in and Rin the set of weak no-arbitrage prices of agent i in

economy En:

P in = {p ∈ RS such that ∃λ ≥ 0, x ∈ Rs, π ∈ ∆i
n, satisfying ps = λπsu

i′(xs) ∀ s = 1, 2, · · · , S}.

Denote by Rin the set of useful vectors of agent i in economy En. We have

Rin is a positive polar cone of P in.

Observe that P in ⊂ P i, and hence Ri ⊂ Rin.

Since πi0 ∈ ∆i
n for any n, we have

⋂m
i=1 P

i
n 6= ∅. Hence the economy En has

general equilibrium. Denote by Gn the set {x∗ = (x∗1, x∗2, · · · , x∗m) ∈ (RS)m}
such that there exists p∗ ∈ (RS++)m satisfying (p∗, x∗) is a general equilibrium

of economy En.

Firstly, observe that Gn is closed. Indeed, suppose that x∗ is a limit of

a sequence {x∗(k)} ⊂ Gn. Define p∗(k) the sequence associated equilibrium

prices, which are (without loss of generality) normalized:
∑S

s=1 p
∗
s(k) = 1. We

can assume that p∗(k) converges to p∗. If U in(x) > U in(x∗i), then for k big

enough we have U in(x) > U in(x∗i(k)), hence p∗(k) · x > p∗(k) · x∗i(k). Let k

converges to infinity we get: if U in(x) > U in(x∗i), we have p∗ · x ≥ p∗ · x∗i. This

implies (p∗, x∗) is a quasi-equilibrium of the economy En. Since short-sales are

allowed, quasi-equilibrium is equilibrium, see [12]. We have x∗ ∈ Gn.

Let dn = infx∗∈Gn

∑m
i=1 ‖x∗i‖. Let ε > 0 . The set x∗ in Gn such that∑m

i=1 ‖x∗i‖ ≤ dn + ε is non empty. This set is compact since Gn is closed.

Minimizing over this set we get x∗n = argminx∗∈Gn

∑m
i=1 ‖x∗i‖ or

m∑
i=1

‖x∗in ‖ = min
x∗∈Gn

m∑
i=1

‖x∗i‖.
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Denote by p∗n the associated equilibrium price, with
∑S

s=1 p
∗
n,s = 1.

We will prove that {x∗n} is bounded. Suppose the contrary, limn→∞
∑m

i=1 ‖x∗in ‖ =

+∞. Without loss of generality, we can assume that for any i, there exists

lim
n→∞

x∗in∑m
j=1 ‖x

∗j
n ‖

= wi.

Since for any n,
∑m

i=1 x
∗i
n =

∑m
i=1 e

i, we have
∑m

i=1w
i = 0. Observe that∑m

i=1 ‖wi‖ = 1.

Firstly, we will prove that wi is a useful vector of agent i in the initial

economy E : wi ∈ Ri. Indeed, fix π ∈ ri(∆i). For any n big enough such that

π ∈ ∆i
n, we have {π} ⊂ ∆i

n ⊂ ∆i, hence

S∑
s=1

πsu
i(x∗in,s) ≥ U in(x∗in ) ≥ U in(ei) ≥ U i(ei) for large n.

Since wi is a limit of the sequence
{

x∗i∑m
j=1 ‖x∗j‖

}
, this inequality implies wi is

a useful vector of the function Uπ(x) =
∑S

s=1 πsu
i(xs), hence we have for any

x ∈ RS :
S∑
s=1

πsu
i′(xs)w

i
s ≥ 0.

Since
∑S

s=1 πsu
i′(xs)w

i
s ≥ 0 for any π ∈ ri(∆i), we have

∑S
s=1 πsu

i′(xs)w
i
s ≥

0 for any π ∈ ∆i. We have proved that wi ∈ Ri, and hence wi ∈ Ri ⊂ Rin for

any n.

For each n, denote by ∆̂i
n the set of extreme points of ∆i

n. By the definition

of ∆i
n, the set ∆̂i

n has a finite number of elements. Define ∆̃i
n be the subset of

∆̂i
n satisfying for π ∈ ∆̃i

n, we have

U in(x∗in ) =
S∑
s=1

πsu
i(x∗in,s).

Denote by I the set of agents such that: there exists zi > 0 satifying

ui′(z) = ai for x ≥ zi and ui′(z) = bi for x ≤ −zi.

Using the same arguments in [18], we have for i /∈ I, wi = 0. Fix n

sufficiently big such that for any i ∈ I, we have x∗in,s > zi if s ∈ S+(wis) and

x∗in,s < −zi if s ∈ S−(wis).

Recall that (x∗in )mi=1 is an equilibrium of En, and wi ∈ Rin with
∑m

i=1w
i = 0,

we have for any i, for any λ ≥ 0,

U in(x∗in + λwi) = U in(x∗in ),
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since in the contrary case, there exists λ > 0 with U in(x∗in +λwi) > U in(x∗in ), the

allocation (x∗i)mi=1 can not be Pareto optimal.

The equality implies that for any p ∈ ∂U i(x∗in ), we have p · wi = 0. This

implies for any π ∈ ∆̃i
n we have

S∑
s=1

πsu
i′(x∗in,s)w

i
s = 0.

The equality is equivalent to

ai
∑

s∈S+(wi)

πsw
i
s + bi

∑
s∈S−(wi)

πsw
i
s = 0

for any π ∈ ∆̃i
n.

Since wi ∈ Rin, we have p∗n · wi = 0 for any i.

Observe that for any π̂ ∈ ∆̂i
n \ ∆̃i

n, and any π ∈ ∆̃i
n, we have

S∑
s=1

π̂su
i(x∗in,s) >

S∑
s=1

πsu
i(x∗in,s) = U in(x∗in,s).

We can fix εn > 0 satisfying the following properties:

• For any π̂ ∈ ∆̂i
n \ ∆̃i

n, and any π ∈ ∆̃i
n, we have

S∑
s=1

π̂su
i(x∗in,s − εnwis) >

S∑
s=1

πsu
i(x∗in,s − εnwis). (2)

• If s ∈ S+(wi), x∗in,s − εnwis > zi, and if s ∈ S−(wi), x∗in,s − εnwis < −zi.

Since ∆̂i
n is finite set, the function ∆̂i

n ∈ π 7→
∑S

s=1 πsu
i(x∗in,s − εnwis) attaches

minimum. By (2),

argmin
π∈∆̂i

n

S∑
s=1

πsu
i(x∗in,s − εnwis) ∈ ∆̃i

n.

Using the same calculus in [18], we have U in(x∗in − εnwi) = U in(x∗in ).

Since p∗n · wi = 0, if U in(x) > U in(x∗i − εnwi) = U in(x∗in ), we have p∗n · x >
p∗n ·x∗in = p∗n ·(x∗in −εnwi). This implies (p∗n, (x

∗i
n −εnwi)∗i=1) is also an equilibrium

of En.

Claim 2 We have
m∑
i=1

‖x∗in − εnwi‖ <
m∑
i=1

‖x∗in ‖,

a contradiction with the definition of x∗n.
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Proof : For s ∈ S+(wi), we have

0 < zi < x∗in,s − εnwis ≤ x∗in,s (3)

For s ∈ S−(wi), we have

0 > −zi > x∗in,s − εnwis ≥ x∗in,s (4)

Since i ∈ I, we have wi 6= 0. Hence, in (3) or (4) at least one strict inequality

must hold for the last RHS inequalities. Therefore

m∑
i=1

‖x∗in − εnwi‖ <
m∑
i=1

‖x∗in ‖

The contradiction means that the sequence {x∗n}must be bounded. Without

loss of generality, suppose that it converges to x∗, and the equilibrium price

sequence {p∗n} converges to p∗.

Apply Claim 1 to have limn→∞ U
i
n(x∗in ) = U i(x∗i).

Suppose that U i(x) > U i(x∗i). For n big enough we have U in(x) > U in(x∗in),

which implies p∗n ·x > p∗n ·x∗in . Let n converges to infinity we have p∗ ·x ≥ p∗ ·x∗i.
Hence (p∗, x∗) is a quasi-equilibrium. Using [12], this quasi-equilibrium is an

equilibrium.

3.3 Example

We present here an example in which the weak no-arbitrage prices cones are

closed, their intersection is non empty, the model does not satisfy NAPS, NUBA

or WNMA conditions, but there exists an equilibrium.

We consider an economy with two agents, the number of states is S = 2. The

belief of agent 1 is represented by the probability π1
1 = π1

2 = 1
2 . The belief of

agent 2 is π2
1 = 1

3 , π
2
2 = 2

3 . Their endowments are 0. Their utility functions are

defined as follows:

u1(x) =


ln(x) if x ∈ [1/3, 1/2]

2x− 1− ln 2 if x ≥ 1/2

3x− 1− ln 3 if x ≤ 1/3

u2(x) =


ln(x) if x ∈ [1/3, 4/9]

9
4x− 1 + ln(4

9) if x ≥ 4
9

3x− 1− ln 3 if x ≤ 1
3

We have u1′(+∞) = 2, u1′(−∞) = 3 and u2′(+∞) = 9
4 , u

2′(−∞) = 3.

Therefore, the cone of no-arbitrage prices of agent 1 is P 1 = {λ(ζ1, ζ2)}λ>0
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with 1 ≤ ζ1 ≤ 3
2 , 1 ≤ ζ2 ≤ 3

2 . The one of agent 2 is P 2 = {λ(ζ1, ζ2)}λ>0 with
3
4 ≤ ζ1 ≤ 1, 3

2 ≤ ζ2 ≤ 2.

The set of common weak no-arbitrage prices is the intersection of the two

cones P 1 ∩ P 2 = {λ(1, 3
2)}λ>0. If S1, S2 are the interiors of P 1 and P 2, then

S1 ∩ S2 = ∅.
Our economy does not satisfies either NUBA or WNMA conditions. Indeed,

if we consider the useful vector w1 = (1,−2
3) of agent 1, the useful vector

w2 = (−1, 2
3) of agent 2. We obtain that w1 + w2 = 0. That means NUBA

is not satisfied. But −w1, −w2 are not useful vectors of agent 1 and agent 2.

These vectors are not in the linearity space. That means WNMA does not hold.

However, from our main Theorem ??, an equilibrium exists in this model. The

equilibrium allocations are

x∗11 = 1, x∗12 = −2/3, x∗21 = −1, x∗22 = 2/3

The equilibrium prices are p∗1 = 1, p∗2 = 3/2.
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