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Abstract

This paper analyzes the optimal partisan and bipartisan gerryman-
dering policies in a model with electoral competitions in policy positions
and transfer promises. With complete freedom in redistricting, partisan
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district profile. In contrast, with limited freedom in gerrymandering,
both partisan and bipartisan gerrymandering tend to prescribe the same
policy. Friedman and Holden (2009) find no significant empirical dif-
ference between bipartisan and partisan gerrymandering in explaining
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may not be as free in redistricting as popularly thought.
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1 Introduction

It is widely agreed that election competitiveness has decreased significantly in
recent decades. For example, the reelection rate of the House has increased
from 91.82% in 1950 to 98.25% in 2004 (Friedman and Holden 2009). Also,
74 House seats were won by a margin less than 55% in 2000, but this number
decreased to 24 in 2004 (Fiorina et al. 2011). A popular explanation for this in
US politics is gerrymandering.1 Thanks to the advance of computing technol-
ogy and comprehensive data sets like TIGER/Line Shapefiles, gerrymandering
has become extremely sophisticated today.2 Notorious examples include the
4th congressional district in Illinois and the 5th district of Florida among
others. It is argued that the gerrymandering biased toward incumbents, i.e.,
bipartisan gerrymandering, has an effect on the decrease in competitiveness.
Fiorina et al. (2011) state that “Many (not all) observers believe that the
redistricting that occurred in 2001-2002 had a good bit to do with this more
recent decline in competitive seats—the party behaved conservatively, concen-
trating on protecting their seats rather than attempting to capture those of
the opposition.” (see Fiorina et al. pp. 214-215).

During the same period, the US Congress has become quite polarized. The
distribution of the House representatives’ political positions was more concen-
trated at the center of political spectrum with considerable overlap between
Republican and Democratic representatives’ positions in the 1960s, while it
became sharply twin-peaked without overlap in the 2000s.3 Simultaneously,
Fiorina et al. (2011) argue that US voters have not polarized so much during
the same time period. These conflicting observations generate an obvious puz-
zle: How could the Congress polarize if voters didn’t? They argue that this
decrease in competitiveness from gerrymandering is one of the driving forces
behind the recent political polarization in Congress (see also Gilroux, 2001).

However, recent empirical studies show that the effects of gerrymander-
ing may be insignificant. Friedman and Holden (2009) investigate whether
or not the House-incumbent reelection rate depends on gerrymandering being

1Another possible explanation is that voters sorted out into Republican and Democratic
parties by their political positions during the period, and that the parties’ political positions
were polarized in party members’ preference aggregation. Levendusky (2009) suggests that
party elites’ polarization led voter sorting, although it is controversial how much mass
polarization actually occurred by voter sorting.

2See Friedman and Holden (2009) and the references therein for details.
3It is now standard to use a one-dimensional scaling score (DW-Nominate procedure

on economic liberal-conservative, Poole and Rosenthal, 1997) to measure representatives’
political positions.
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partisan or bipartisan.4 In partisan gerrymandering cases, the majority party
may try to oust the opposing party’s incumbents, and this may be reduc-
ing the incumbent reelection rate. In contrast, in bipartisan gerrymandering
cases, both parties try to secure their incumbents’ reelections, maximizing
safe seats.5 Fiorina et al. (2011) illustrate how bipartisan gerrymandering
can create noncompetitive districts under complete freedom in gerrymander-
ing by a simple example (Fiorina et al. pp. 214-217). Interestingly, Friedman
and Holden (2009) did not find significant differences between bipartisan and
partisan gerrymandering on the effect on the incumbent reelection rate. As
they mention, this result suggests that partisan gerrymandering may not be
as effective as popularly thought. In his interesting paper, Grainger (2010)
finds that legislatively-drawn districts have been less competitive with more
extreme voting positions (polarization) than panel-drawn districts by using a
quasi-natural experiment of alternating between legislatively and panel-drawn
districts in California.6 McCarty et al. (2006, 2009) document that the po-
litical polarization of the House of Representatives has increased in recent
decades, using data on roll call votes, but they find only a minimal relation
between polarization and gerrymandering.7 Regarding the recent decline in the
competitiveness of districts, Friedman and Holden (2009) investigate whether
or not gerrymandering caused the rising incumbent reelection rate by using
data up to 2004, finding evidence of the opposite effect, all else equal.8,9

Traditionally, the literature often discusses two tactics in partisan gerry-
mandering: one is to concentrate or “pack” those who support the opponent
in losing districts, and the other is to evenly distribute or “crack” support-
ers in winning districts. Packing serves to waste the opponent party’s strong

4Redistricting in the US is usually conducted by state legislatures (partisan gerryman-
dering), but in Arizona, Hawaii, Idaho, Montana, New Jersey, and Washington it is con-
ducted by bipartisan redistricting commissions. In California and Iowa, redistricting lines
are drawn by nonpartisan redistricting committees.

5According to Cain (1985), the goal of a bipartisan gerrymander is to protect incumbents
of both parties, wheras a partisan gerrymander seeks to provide advantage to one party.

6Grainger (2010) provides a detailed history of Californian redistricting: in 1970s and
1990s, district lines drawn by independent panels of judges, wheras in the 1960s, 1980s, and
2000s, redistricting was done legistlatively. He uses this quasi-natural experiment to test
the hypotheses. Interestingly, the 1960s and 2000s redistrictings were bipartisan, wheras
the 1980s one was partisan led by the Democrats.

7Krasa and Polborn (2015) argue that their answer may be incomplete if the political
positions of district candidates are mutually interdependent.

8As an early evidence, Ferejohn (1977) finds little support for gerrymandering being
the cause of declines in competitiveness of congressional districts from the mid-1960s to the
1980s.

9After 2008, the incumbent reelection rate went down significantly.
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supporters’ votes, while cracking utilizes the votes of party supporters as ef-
fectively as possible. Owen and Grofman (1988) show that a pack-and-crack
policy is optimal when a partisan gerrymanderer has limited freedom in redis-
tricting.10 In contrast, Friedman and Holden (2008) argue that advances in
computing technologies and availability of big data sets allow gerrymanderers
higher degrees of freedom in redistricting, and they obtained a very differ-
ent optimal policy from pack-and-crack : the slice-and-mix policy, in which
districts are created by first mixing the strongest opposition group of voters
and the strongest supporter group, then mixing the second strongest opposi-
tion and supporting groups, and so on. This policy wastes opposition groups’
votes, generating the most one-sided allocation from the most extreme to the
most moderate districts.

In this paper, we consider a two-party political competition model in
which policy-motivated party leaders compete with their candidates’ (unidi-
mensional) political positions and pork-barrel promises in each electoral dis-
trict. We assume that there exist minimum units of indivisible localities with
the same population, and that a gerrymanderer partitions the set of locali-
ties freely to create electoral districts. Each locality has a voter distribution,
and we say that the gerrymanderer has more freedom in redistricting if the
voter distribution is concentrated on a point in the political spectrum. We
investigate the optimal gerrymandering policies within the same political com-
petition model. With pork-barrel politics, the party leader understands that
pork-barrel policies in competitive districts are costly, and therefore she has
strong gerrymandering incentives to collect their supporters in the winning
districts in order to avoid large pork-barrel promises.

In particular, we compare the optimal policies under partisan and biparti-
san gerrymandering when the gerrymanderer(s) face different levels of freedom
in redistricting. This has never been done in the literature. We show that
the slice-and-mix policy is optimal for the party leaders in charge of gerry-
mandering when they can redistrict with complete freedom, but the resulting
outcomes in partisan and bipartisan gerrymandering are very different: bi-
partisan gerrymandering results in most polarized electoral districts without
leaving moderate and competitive ones, while partisan gerrymandering results
in an one-sided allocation, leaving some competitive districts. In contrast,
we obtain essentially the same optimal policy when they face the constraint
in redistricting imposed by Owen and Grofman (1988) and voters and party
leaders are more policy-sensitive (roughly speaking): a consecutive partition

10Owen and Grofman (1988) assume that the average of district median voter’s position
must stay constant in redistricting (a constant average constraint).
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of localities stratified by limited freedom in redistricting, since each locality
is composed of a spectrum of voters (slice-them-all). Given Friedman and
Holden’s (2009) empirical finding on insignificant differences on the effect of
district competitiveness between bipartisan and partisan gerrymandering, the
results may suggest that despite recent advances in computing technologies
and availability of comprehensive election data, gerrymanderers’ freedom in
redistricting may still be rather limited.

An additional finding of this paper for partisan gerrymandering case is
that it matters whether a party leader in charge of redistricting is policy-
motivated or not. Without policy-motivation, “pack-and-crack” is optimal
when the freedom in redistricting is limited as Owen and Grofman (1988)
has shown. In contrast, with policy-motivation, “slice-them-all” tends to be
optimal especially if leaders and voters are more policy-sensitive.

The rest of the paper is organized as follows. Section 2 discusses related
literature. In Section 3, we start with analyzing political-position and pork-
barrel competition and characterizing the party leader’s payoff from each win-
ning district by the district median voter’s position (Lemmas 2, 3, and 4).
In Section 4, we investigate the optimal gerrymandering strategy when the
party leader has complete freedom as in Friedman and Holden (2008), and
show that their “slice-and-mix” is also an optimal strategy in partisan ger-
rymandering cases, generating the most one-sided allocation (Proposition 1).
In contrast, in bipartisan gerrymandering cases, we obtain a rule that first
partitions voters into two consecutive sets in their political positions, and
both parties apply “slice-and-mix” to their groups. This policy generates the
most polarized allocation (Proposition 2). In Section 5, we proceed to cases
where the gerrymanderer’s freedom is limited by indivisibility of localities.
We also assume that each district has normally distributed voters to justify
the constant-average constraint imposed by Owen and Grofman (1988). We
show that the gerrymanderer optimally packs the opponent’s supporters and
slices her own supporters in order from the strongest to moderate when voters
and party leaders are policy-sensitive, in the sense that their cost functions
have positive third derivatives (Proposition 3). One of these optimal strate-
gies is the one that slices the entire localities in order: “slice-them-all.”With
bipartisan gerrymandering, the result is again “slice-them-all” under the same
conditions, since both parties want to slice their supporters and to pack their
opponents’ (Proposition 4). Thus, the two parties’ preferences totally coincide
with each other. Although it is hard to generalize it, an example shows that
the positive third derivative conditions may not be essential to this slice-them-
all result (Example 1). Section 6 concludes the study. All proofs are collected
in Appendix A.
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2 Related Literature

Our paper is related to three branches of literature. The first one is parti-
san and bipartisan gerrymandering literature. Introducing uncertainty in each
district’s median voter’s position, Owen and Grofman (1988) consider the situ-
ation where a partisan gerrymanderer redesigns districts in order to maximize
the expected number of seats. They assume that the uncertainty in the me-
dian voter’s political position is local and is independent across districts when
the objective is expected number of seats. Assuming that the average of the
positions of district median voters must stay the same after redistricting (a
constant average constraint), they show that the optimal strategy is “pack-
ing” the opponents in losing districts, and “cracking” the rest of voters evenly
across the winning districts with substantial margins, so that the party can
win districts even in the cases of negative shocks.11,12 Friedman and Holden
(2008), on the other hand, assume that a partisan gerrymanderer has full free-
dom in allocating population over a finite number of districts, and that she
maximizes the expected number of seats when there is only valence uncer-
tainty in median voters’ utilities (thus, there is no uncertainty in the median
voter’s political position). In this idealized situation, they find that the opti-
mal strategy is “slice-and-mix”which is similar to our optimal strategy under
a different model. Thus, theoretically, the levels of freedom in gerrymandering
can affect the optimal policy.

In bipartisan gerrymandering, Gul and Pesendorfer (2010) extend Owen
and Grofman (1988) by introducing a continuum of districts, and voters’ party
affiliations. Here, bipartisan gerrymandering means that the two parties own
their territories and redistrict exclusively within each territory. They assume
that each party leader can redistrict her party’s territory (the districts with
her party’s seats) independently, maximizing the probability of winning the
majority of seats.13 They show that the optimal policy is again a version of
“pack-and-crack.” However, these papers do not compare the optimal parti-

11They also consider the case where the partisan gerrymanderer maximizes the proba-
bility to win a working majority of seats for her party by assuming that the uncertainty is
global. They again get pack-and-crack policy as the optimal policy.

12The original “cracking” tactics create the maximum number of winning districts with
the smallest margins. In the traditional literature, some argue that gerrymandering will
increase political competition by this reason. In this paper, we use “cracking” tactics in the
sense of Owen and Grofman (1988).

13They consider two feasibility constraints. The first is the constant mean of median
voters’ positions which is the same as the one in Owen and Grofman (1988). The second
one is that the status quo needs to be a mean-preserved spread of a feasible redistricting
plan.
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san and bipartisan gerrymandering policies. They also do not model spatial
competition in policy positions, and the elected representatives’ positions are
implicitly assumed to be the district median voters’ positions (Downsian com-
petition).

The second branch is the pork-barrel literature. Our model is most closely
related to Lindbeck and Weibull (1987) and Dixit and Londregan (1996). The
former introduces a two-party competition model in which (extreme) parties
use pork-barrel policies to attract agents with heterogeneous policy prefer-
ences. The latter generalizes Lindbeck and Weibull (1987) to allow that par-
ties have different abilities in practicing pork-barrel policies, and this differ-
ence determines whether the pork-barrel policy’s target is swing voters or loyal
supporters. Our model is different from theirs in that we introduce parties’
platform decisions besides pork-barrel politics, and party leaders choose these
two policies simultaneously.14 Moreover, the political competition result is de-
terministic in our model, which is different from the setup with uncertainty
in the literature. A similar political competition model has been used in the
recent vote-buying literature, e.g., Dekel, Jackson, and Wolinsky (2008).

The third branch is normative gerrymandering literature. The focus is on
how gerrymandering affects the relation between seats and the vote shares
won by a party, the so-called “seat-vote curve.”Coate and Knight (2007) iden-
tify the social welfare optimal seat-vote curve and then the conditions under
which the optimal curve can be implemented by a districting plan. With fixed
and extreme parties’ policy positions, they find that the optimal seat-vote is
biased toward the party with larger partisan population. However, Bracco
(2013) shows that, when parties strategically choose their policy position, the
direction of seat-vote curve bias should be the opposite. Besley and Preston
(2007) construct a model similar to Coate and Knight (2007) and show the
relation between the bias of seat-vote curve and parties’ policy choices. They
further empirically test the theory and the result shows that reducing the
electoral bias can make parties’ strategy more moderate.

14Dixit and Londregan (1998) propose a pork-barrel model with strategic ideological
policy decision based on their previous work. However, the ideology policy in their paper
is the equality-efficiency concern engendered by parties’ pork-barrel strategies. Therefore,
the ideology decision in their work is a consequence of pork-barrel politics, instead of an
independent policy dimension.
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3 The Model

We consider a two-party (L and R) multidistrict model. There are many (pos-
sibly infinite) localities in the state, each of which is considered the minimal
unit in redistricting (a locality cannot be divided into smaller groups in redis-
tricting, e.g., a street block). We assume that there are L discrete localities,
each of which has population 1

L . The state has K districts, and L is a multiple
of K. To comply with the equal population requirement, the party in power
needs to create those K districts by combining L

K
= n localities in each one.

Locality ` = 1, ...,L has a voter distribution function F` : (−∞,∞) → [0, 1],
where (−∞,∞) is the one-dimensional ideology (or political) spectrum and
F`(θ) is non-decreasing with F`(−∞) = 0 and F`(∞) = 1. Ideology θ < 0 is
regarded left, and θ > 0 is right. With a slight abuse of notation, we denote the
set of localities also by L ≡ {1, ...,L}. A redistricting plan π = {D1, ..., DK}
with |Dk| = n for all k = 1, ..., K, is a partition of L.15 The gerrymandering
party’s leader chooses the optimal district partition π from the set of all possi-
ble partitions Π.16 In each district k, the voter distribution function F k is an
average of distribution functions of n localities: F k(θ) = 1

n

∑
`∈Dk F`(θ). Dis-

trict k’s median voter is denoted by xk = xk(Dk) ∈ (−∞,∞) with F k(xk) = 1
2
.

We assume the uniqueness of xk in each districting plan. Although xk is solely
determined by Dk, we can write xk = xk(Dk(π)) = xk(π) for all k = 1, ..., K
with a slight abuse of notation. Finally, let F (θ) = 1

L
∑

` F`(θ) be the state
population distribution, and θm, the state median voter, be determined by
F (θm) = 1

2
.

We will consider two cases later: one case is with complete freedom in
redistricting as in Friedman and Holden (2008), and the other is with limited
ability in the line of Owen and Grofman (1988). Throughout the paper, we
order localities by the political positions of the median voter.

We also introduce uncertainty in the position of median voter after redis-
tricting is done. At each election time, the economic and social state at that
moment and which party is in power affect voters’ political positions in the
same direction: i.e., the voter distribution is shifted by common shocks. For-
mally, let y be a realization of the uncertain shock term. The median voter of

15A partition π of L is a collection of subsets of L, {D1, ..., DK}, such that ∪Kk=1D
k = L

and Dk ∩Dk′
= ∅ for any distinct pair k and k′.

16In reality, there are many restrictions on what can be done in a redistricting plan. For
example, a district is required to be connected geographically. Despite the complication
involved, our analysis can still be extended to the case with geographic restrictions by
introducing the set of admissible partitions ΠA ⊆ Π (see Puppe and Tasnadi, 2009)
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the actual election in district k is denoted by x̂k = xk + y.17 We assume that
y follows a probabilistic distribution function G : [−ȳ, ȳ]→ [0, 1], where ȳ > 0
is the largest value of relative economic shock and G(0) = 1

2
. We assume that

electoral competition occurs after y is realized: the resulting median voter’s
position after the shock realization is x̂k.

We model pork-barrel elections in a similar manner with Dixit and Lon-
dregan (1996). A type θ voter in district k evaluates party j according to
the utility function with two arguments: one is the policy position of the can-
didate representing the corresponding party, βkj ∈ R, and the other is the
party’s pork-barrel transfer tkj ∈ R+. We interpret this pork-barrel transfer as
a promise of local public good provision (measured by the amount of monetary
spending) in the case where the party’s candidate is elected. Formally, a voter
θ in district k evaluates party j’s offer by

Uθ(j) = tkj − c(|θ − βkj |) (1)

where c(d) ≥ 0 is the ideology cost function, which is increasing in the distance
between a candidate’s position and her own position. We assume that c(·) is
continuously differentiable, and satisfies c(0) = 0, c′(0) = 0, and c′(d) > 0 and
c′′(d) > 0 for all d > 0 (strictly increasing and strictly convex).

Therefore, voter θ votes for party L if and only if

Uθ(L)− Uθ(R) = [c(|θ − βkR|)− c(|θ − βkL|)] + tkL − tkR > 0 (2)

Since the (after shock) median voter’s type in district k is x̂k = xk + y,
given βkL, βkR, tkL and tkR, L wins in district k if and only if

Ux̂k(L)− Ux̂k(R) = [c(|x̂k − βkR|)− c(|x̂k − βkL|)] + tkL − tkR > 0 (3)

Each party leader in the state (composed of these K districts) cares about
(i) the influence or status within her party based on the number of winning
districts in her state, (ii) the candidate’s policy position in each district, and
(iii) the district-specific pork-barrel spending. We assume that the party leader
prefers to win a district with a candidate’s position closer to her own ideal ide-
ological position and a smaller pork-barrel promise. The former is regarded

17The results are not affected even if we assume that each district k has district-specific
shocks drawn from Gk, since the party leader’s payoff function is additive across districts (see
below). To be specific, our results hold for the general case in which one consider location
specific shocks (y1, ..., yk) with p.d.f. g(y1, ..., yk) and the realized district k median voter’s
position being x̂k = xk +yk. Our benchmark model describes the case that yks are prefectly
correlated. Another possible case is yks being i.i.d. and g(y1, ..., yk) = g(y1)g(y2)...g(yk).
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as the “policy-motivation” in the literature. By formulating the latter, we
consider a situation where the leader bears some costs when implementing
the promised local public spending, as in the example of the bargaining ef-
forts needed to push for federal funding. To simplify the analysis, we assume
that the negative utility by pork-barrel is measured by the amount of money
promised. We denote the ideal political positions of the leaders of party L and
R by θL and θR, respectively, with θL < θR. Without loss of generality, we set
θL = −θR, but we will stick to notations θL and θR until the gerrymandering
analysis starts to help the reader comprehend the model more easily. Formally,
by winning in district k, party j’s leader gets utility

V k
j = Qj − tkj − C(

∣∣βkj − θj∣∣),
where Qj > 0 is the fixed payoff that party j’s leader obtains from each win-
ning district, and C(d) is a party leader’s ideology cost function with C(0) = 0,
C ′(0) = 0, C ′(d) > 0 and C ′′(d) > 0 (strictly increasing and strictly convex).
This cost function C can be different from the voter’s cost function c. If the
party leader loses in district k, she gets zero utility from the district. The na-
tional party elites are ultimately interested in the number of seats their party
gets, so the number of seats a state party leader wins is important in recog-
nizing her contribution to the national party. Also, since we are considering
a state’s gerrymandering problem, it is reasonable to assume that the benefit
from winning a district does not depend on which district is won.

We introduce a tie-breaking rule in each district based on the relative levels
of the state party leaders’ utilities V k

L and V k
R . We assume that if two parties’

offers are tied for the median voter x̂k (Ux̂k(L) = Ux̂k(R)) while one party’s
leader gets strictly higher (indirect) utility than the other’s, the median voter
will vote for that party. That is,

Assumption 1. (Tie-Breaking) Given two parties’ offers are such that
Ux̂k(L) = Ux̂k(R), L (R) wins if V k

L > V k
R (V k

L < V k
R).

This assumption is justified by the fact that the higher utility is equivalent
to the higher ability to provide a better offer to the median voter. In particular,
consider the case in which two parties are tied and, say, V k

L > V k
R = 0, and

party L has the ability to provide ε > 0 more pork-barrel promise. Therefore,
we break the tie by assuming the median voter prefers L, which is a standard
assumption.

Our second assumption is a simple sufficient condition that assures interior
solutions for both parties.

Assumption 2. (Relatively Strong Office Motivation) For all feasible
x̂k, Qj ≥ min

β
{C(|θj − β|) + c(|β − x̂k|)} holds for j = L,R.
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Notice that if the party leader gets 0 utility, she must offer pork-barrel
promise equal to Qj − C(|θj − β|). Therefore, the median voter get utility
Ux̂k = Qj − C(|θj − β|)− c(|β − x̂k|) if party j wins. This assumption means
that the payoff from winning a district, Qj, is large enough so that for any x̂k,
both parties can offer the median voter positive utility, which is a sufficient
condition for the candidate selection problem to have an interior solution. Note
that the set of feasible x̂k is not the entire real line. The model only allows
bounded finite median voters’ positions and ȳ being also finite. Therefore,
there must exist a Qj to satisfy this assumption. Moreover, the implication of
this assumption is that it guarantees that in equilibrium both parties promise
positive pork-barrel. We will see this more clearly in the next section.

The state redistricting may be decided by one or both parties. It is straight-
forward that, in the first case, one party leader chooses π. In the later one, we
assume that KL districts belong to L and the remaining KR = K−KL districts
belong to R. Without loss of generality, we assume L choosing {D1, ..., DKL}
and R choosing {DKL+1, ..., DK}. We will discuss the bipartisan case in details
later.

The timing of the game is as follows:18

1. One party, say L, or both parties jointly choose a redistricting plan
π = (Dk)Kk=1, and thus a median voter vector (x1, ..., xk, ..., xK).

2. The common shock y ∈ [−ȳ, ȳ] is realized.

3. Given the districting plan in stage 1 and the realized median voter x̂k =
xk + y in stage 2, party leaders L and R simultaneously choose local
policy positions and pork-barrel promises (βkL, t

k
L)Kk=1 and (βkR, t

k
R)Kk=1,

respectively.

4. All voters vote sincerely (with our tie-breaking rule). The winning party
is committed to its policy position and its pork-barrel promise in each
district k = 1, ..., K. All payoffs are realized.

We will employ weakly undominated subgame perfect Nash equi-
librium as the solution concept. We require that in stage 3, party leaders

18We can separate stage 3 into two substages: policy position choices followed by pork-
barrel promises. If we do so, the loser of a district k will get zero payoff in every subgame,
so it becomes indifferent among policy positions. Thus, we need equilibrium refinement to
predict the same allocation. By assuming that the loser party chooses the policy position
that minimizes the opponent party leader’s payoff, we can obtain exactly the same allocation
in SPNE.
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play weakly undominated strategies so that the losing party leader does not
make cheap promises to the district median voters.19 We will call a weakly
undominated subgame perfect Nash equilibrium simply an equilibrium.

3.1 Stage 3: Electoral Competition with Pork-Barrel
Politics

We solve the equilibria of the game by backward induction. We start with
stage 3, knowing that voters vote sincerely in stage 4. Notice that the key
player is the median voter in the voting stage. Thus, when the leader of party
L makes her policy decisions in district k, she at least needs to match R’s offer
in terms of median voter’s utility in order to win. First, we consider the case
that party L wins with the tie-breaking rule (the party R’s leader wins only by
providing a strictly better offer to the median voter). In this case, the leader
of party L tries to offer the same utility to the median voter x̂k. Formally, the
party leader’s problem is described by

max
βkL,t

k
L

{QL − tkL − C(
∣∣θL − βkL∣∣)}

subject to tkL − c(|x̂k − βkL|) ≥ Ūk
R, tkL ≥ 0, and (4)

QL − tkL − C(
∣∣θL − βkL∣∣) ≥ 0,

where Ūk
R is the median voter’s utility level from R’s offer. Notice that tkL ≥ 0

and QL− tkL−C(
∣∣θL − βkL∣∣) ≥ 0 may or may not be binding while tkL− c(|x̂k−

βkL|) ≥ Ūk
R must be binding. The solution for this maximization problem is

straightforward. Define β̂j(x̂
k, θj) by the following equation

c′(|x̂k − β̂j(x̂k, θj)|) = C ′(
∣∣∣θj − β̂j(x̂k, θj)∣∣∣). (5)

Notice that (5) is simply the first-order condition of optimization problem (4)
after substituting tkL = c(|x̂k−βkL|) + Ūk

R into the objective function. Also, the

optimal policy βk
∗
L = β̂L(x̂k, θL) when −c(|x̂k − β̂L(x̂k, θL)|) ≤ Ūk

R. That is, it

19This game is the first price auction under complete information. In general, there
is a continuum of pure strategy equilibria. The losing party does not suffer from cheap
promise, since she gets zero utility in losing districts anyway. The winning party needs
to match the offer as long as she can get a positive payoff by doing so. Demanding that
players play weakly undominated strategies, we can eliminate these unreasonable equilibria.
Another justification for this is to require mixed strategy equilibrium. There is a unique
mixed strategy equilibrium in which the winning party plays a pure strategy while the losing
party plays a mixed strategy equilibrium. The outcome of this mixed strategy equilibrium
coincides with the weakly undominated Nash equilibrium in pure strategies.
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is not enough for the winning party to win just by using the policy platform.
In this case, it is clear that the optimal pork barrel promise is

tk
∗

L (Ūk
R) = Ūk

R + c(|x̂k − β̂L(x̂k, θL)|)

Although it seems unclear at first that −c(|x̂k − β̂L(x̂k, θL)|) ≤ Ūk
R holds

or not, it turns out this condition always holds. This is because a similar
optimization problem applies for the losing party and Assumption 2.

It is obvious that the winning party’s pork-barrel promise is related to what
the losing party proposes in equilibrium. The following lemma shows that the
losing party cannot lose with a nonzero surplus.

Lemma 1. Suppose R is the losing party in district k. In equilibrium, R
proposes the policy pair (βk

∗
R , t

k∗
R ), which is the solution of the following problem

max
βkR,t

k
R

Ux̂k(R) = tkR − c(|x̂k − βkR|)

subject to tkR ≥ 0 and QR − tkR − C(
∣∣θR − βkR∣∣) ≥ 0

That is, the losing party leader offers a policy position and a pork-barrel
promise that leave herself zero surplus in equilibrium.

βk
∗

R = β̂R(x̂k, θR)

tk
∗

R = QR − C(
∣∣∣θR − β̂R(x̂k, θR)

∣∣∣)
Moreover, this policy pair is the best she can offer for the realized median voter
x̂k.

The intuition of this lemma is straightforward. If the losing party does not
offer the median voter the best one, then since the winning party will provide
the median voter the same utility level, the losing one can always offer the me-
dian voter something better than her original offer and win the district. This
cannot happen in equilibrium. Therefore, for the losing party R, the equilib-
rium strategy is βk

∗
R = β̂(x̂k, θR) and tk

∗
R = QR − C(

∣∣θR − βk∗R ∣∣). The policy
pair provides the median voter with the utility Ūk∗

R = QR − C(
∣∣θR − βk∗R ∣∣) −

c(|x̂k − βk∗R |). Using this Ūk∗
R , one can solve the winning party’s equilibrium

pork-barrel promise tk
∗
L = QR − C(

∣∣θR − βk∗R ∣∣)− c(|x̂k − βk∗R |) + c(|x̂k − βk∗L |).
One thing left to decide is which party should be the winning party. Notice

that, by Lemma 1, the losing party always proposes the best offer by depleting
all her surplus. Therefore, the party that can potentially provide the median
voter with a higher utility level is the winner. Notice that j party’s pork-
barrel promise is bounded above by the j party leader’s payoff evaluated at
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βk∗j (otherwise, the leader gets a negative utility):

Qj − C(
∣∣θj − βk∗j ∣∣).

Substituting this into the median voter’s utility, we obtain

W k
R = QR − C(

∣∣θR − βk∗R ∣∣)− c(|x̂k − βk∗R |),
and similarly, for party L,

W k
L = QL − C(

∣∣θL − βk∗L ∣∣)− c(|x̂k − βk∗L |),
where W k

R and W k
L are the (potential) maximum utilities that the median voter

gets from the corresponding party’s offer. Therefore, party L wins in the third
stage if and only if

QL −QR >[
c(|x̂k − βk∗L |) + C(

∣∣θL − βk∗L ∣∣)]− [c(|x̂k − βk∗R |) + C(
∣∣θR − βk∗R ∣∣)], (6)

If QL = QR, then L wins if and only if∣∣θL − x̂k∣∣ < ∣∣θR − x̂k∣∣ . (7)

Summarizing the above, we have the following results in stages 3 and 4.

Lemma 2. Suppose that Assumptions 1 and 2 are satisfied. Define β̂j(x̂
k, θ)

by (5). We have

1. For the losing party j, the optimal choice is βk
∗
j = β̂j(x̂

k, θj) which lies
in the interval (x̂k, θj) (or (θj, x̂

k)) and tk
∗
j = Qj − C(|θj − βk

∗
j |)

2. For the winning party i, the optimal choice is βk
∗
i = β̂i(x̂

k, θi), which
lies in the interval (x̂k, θi) (or (θi, x̂

k)), and tk
∗
i = Qj − C(|θj − βk

∗
j |)−

c(|x̂k − βk∗j |) + c(|x̂k − βk∗i |).

3. Irrespective of x̂k ≷ θi, we have ∂β̂i
∂x̂k

=
c′′i

C′′i +c′′i
, where c′′i = c′′(|x̂k −

βk
∗
i (x̂k, θi)|) and C ′′i = C ′′(

∣∣∣θi − β̂i(x̂k, θi)∣∣∣).
4. Party i wins in the kth district if and only if

Qi −Qj > C(
∣∣θi − x̂k∣∣)− C(∣∣θj − x̂k∣∣),

where C(
∣∣θi − x̂k∣∣) ≡ C(

∣∣∣θi − β̂i(x̂k, θi)∣∣∣) + c(|x̂k − β̂j(x̂k, θj)|).
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The above lemma directly implies that if party i wins, party i’s leader’s
realized payoff from district k given x̂k = xk + y is written as:

Ṽ k
i (x̂k, θi, θj) = (Qi −Qj)−

(
C(
∣∣θi − x̂k∣∣)− C(∣∣θj − x̂k∣∣))

Using Ṽ k
i (x̂k, θi, θj), when party i wins in district k, the expected payoff from

district k for party leader i is written as:

EṼ k
i (xk, θi, θj) =

∫ ȳ

−ȳ
max

{
Ṽ k
i (xk + y, θi, θj), 0

}
g(y)dy

Note that due to the additive separability of the payoff function, party leader

i’s expected payoff under partition π (district median profile
(
xk (π)

)K
k=1

) is
written as

EṼi (π, θi, θj) ≡
∫ ȳ

−ȳ

K∑
k=1

max
{
Ṽ k
i (xk(π) + y, θi, θj), 0

}
g(y)dy

=
K∑
k=1

∫ ȳ

−ȳ
max

{
Ṽ k
i (xk(π) + y, θi, θj), 0

}
g(y)dy

=
K∑
k=1

EṼ k
i (xk(π), θi, θj)

Recalling that we assume θL = −θR without loss of generality, we can prove
the following properties.20

Lemma 3. The following properties are satisfied for Ṽ k
i (x̂k, θi, θj):

1. The realized winning payoff for party L (R), Ṽ k
L ( Ṽ k

R) is decreasing
(increasing) in x̂k.

2. The realized winning payoff for party i, Ṽ k
i , is strictly convex in x̂k, if

C ′′′(·) > 0 and c′′′(·) > 0, and QL = QR.

The next lemma is in preparation of the Stage 2 analysis.

Lemma 4. The following properties are satisfied for EṼ k
i (xk, θi, θj):

20The readers may wonder that the third derivatives of the cost functions being positive
is a strong assumption. We use this assumption in some of our formal results, but we show
that this assumption can be relaxed in some situations.
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1. The expected winning payoff for party L (R), EṼ k
L (EṼ k

R) is decreasing
(increasing) in xk.

2. The expected winning payoff for party L (R) in location k, EṼ k
L (EṼ k

R)
is decreasing (increasing) and strictly convex in xk, if C ′′′(·) > 0 and
c′′′(·) > 0, and QL = QR.

3. The expected winning payoff for party L (R), EṼL (EṼR) is decreasing
(increasing) and strictly convex , if C ′′′(·) > 0 and c′′′(·) > 0, and QL =
QR.

We are now ready to discuss the setup of partisan and bipartisan gerry-
mandering problems.

3.2 The Partisan Gerrymandering Problem

Without loss of generality, we formalize the partisan gerrymandering party
leader’s optimization problem as the case where KL = K and L is in charge
of redistricting. Lemma 2 shows that xk = xk(π) is the sufficient statistic
to determine the outcome of the kth district. Notice that the indirect utility
of L, Ṽ k

L (x̂k, θL, θR), is relevant only when party L wins in district k. The
choice of π =

(
D1, ..., DK

)
affects the party leader L’s payoff EṼL through(

x1(D1), ..., xK(DK)
)

represented by its indirect utility Ṽ k
L (xk(π) + y, θL, θR)

conditional on L winning.
From now on, we suppress θL and θR in indirect utility Ṽ k

L , EṼ k
L , and EṼL.

We can rewrite the party leader L’s gerrymandering choice to be the result of
the following maximization problem

π∗ ∈ arg max
π∈Π

EṼL(π)

The SPNE of this game is (π∗, (βk
∗
L )Kk=1, (β

k∗
R )Kk=1, (t

k∗
L )Kk=1, (t

k∗
R )Kk=1).

3.3 The Bipartisan Gerrymandering Problem

Since bipartisan gerrymandering requires negotiation between the two parties,
there can be many possible formulations. As mentioned before, one way is to
assume that each party has preexisting “territory” as in Gul and Pesendorfer
(2010). In our context, we can assume that, before redistricting, party L
and R rearrange localities that belong to {1, ..., KL} and {KL + 1, ..., K} by
negotiating which localities belong to their own territory.
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Given the above formulation, it may be beneficial for both parties to swap
some of the localities in their territories, if the original allocation of localities
in each district is arbitrary. If localities are ordered one-dimensionally as we
assume in this paper, then there is always a chance to Pareto-improve the
welfare by swapping localities, unless territories are consecutive due to the
monotonicity in Lemma 4. In this case, leftmost nKL localities go to party L,
while rightmost n(K −KL) localities go to party R. This locality allocation
is the unique Pareto-efficient one in the negotiation before redistricting.

For the complete freedom case we discuss in the next section, we can par-
tition voters by some point θ̄, i.e., party L can take population to the left of θ̄,
while party R can take population to the right of θ̄. It might not be the case
that KF (θ̄) is an integer. However, it is reasonable to assume that party L and
R create KL = 〈K ×F (θ̄)〉 and KR = 〈K × (1−F (θ̄))〉 districts, respectively,
where 〈•〉 denotes the nearest integer of •. Some examples of θ̄ are (a) F (θ̄)
being the vote share for L from the previous election, or (b) θ̄ = θm from the
recent census data. In both cases, the party controls a majority of districts if
the whole population is biased toward it in the available data.

4 Gerrymandering with Complete Freedom

As a limit case, let us consider the ideal situation for the gerrymanderer (Fried-
man and Holden, 2008): there is a large number of infinitesimal localities with
politically homogeneous population: for all position x ∈ (−∞,∞), there are
localities `s with F`(x − δ) = 0 and F`(x + δ) = 1 for a small δ > 0. That
is, the gerrymanderer can freely create any kind of population distributions
for K districts as long as they sum up to the total population distribution.
We ask what strategy the gerrymanderer should take. By Lemma 4, she is
better off by making the (ex ante) median voter’s allocation as far from the
other party’s leader’s position as possible. This strategy increases the winning
payoff and the probability of winning the district. Thus, the gerrymanderer
tries to create the furthest district structure from the opponent party leader’s
position.

4.1 Partisan Gerrymandering

In partisan gerrymandering cases, the party leader in charge of gerryman-
dering will try to make district medians as far away as possible from the
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other party leader’s position.21 Without loss of generality, we assume that
party L is in charge of gerrymandering. To create the most extreme district,
x1 should satisfy F (x1) = 1

2K
(x1 is the median voter of the district: the

most extreme district achievable with population 1
K

). Although the remain-
ing population to the right of x1 can be anything in district 1, wasting the
other party’s strong supporters by combining them is a good idea, since it
would make the remaining population lean more toward her position. Thus,
she will create district 1 by combining sets

{
θ ≤ θ1 : F (θ1) = 1

2K
+ ε

K

}
and{

θ ≥ θ̄1 : 1− F (θ̄1) = 1
2K
− ε

K

}
where ε > 0 is arbitrarily small. In district 1,

the (ex ante) median voter would be x∗1L defined by F (x∗1L ) = 1
2K

. Similarly, she

can create districts 2, ..., K sequentially. Let θk be such that F (θk) = k
2K

+ kε
K

for all k = 1, ..., K, and let θ̄k be such that 1 − F (θ̄k) = k
2K
− kε

K
. For small

enough ε > 0, we have

−∞ = θ0 < θ1 < ... < θK = θ̄K < ... < θ̄1 < θ̄0 =∞.

We call this redistricting plan a party-L-slice-and-mix policy, which is pro-
posed in Friedman and Holden (2008). Under the slice-and-mix policy, the
resulting district median voter allocation is x∗L ≡ (x∗1L , ..., x

∗K
L ) with x∗kL is such

that F (x∗kL ) = k
2K

for each k = 1, ..., K, with ε close to zero (limε→0(θ1, ..., θK) =
(x∗1L , ..., x

∗K
L ) = x∗L). We will show that this is the optimal policy for party

L leader. Symmetrically, we can define a party-R-slice-and-mix where
the resulting district median voter allocation is x∗R ≡ (x∗KR , ..., x∗1R ), with
x∗kR such that 1 − F (x∗kR ) = k

2K
for each k = 1, ..., K, with ε close to zero

(limε→0(θ̄K , ..., θ̄1) = (x∗KR , ..., x∗1R ) = x∗R). Figure 1 is an example of
party-L-slice-and-mix strategy when K = 4. District k = 1, ..., 4 is
composed of two slices numbered by k. District median voter allo-
cation is x∗L ≡ (x∗1L , ..., x

∗4
L ).

The following result is straightforward by noticing that in order for xk to
be the median voter in district k = 1, ..., K, xk must satisfy F (xk) ≥ k

2K
and

1− F (xk) ≥ k
2K

.

Lemma 5. There is no median voter allocation x = (x1, ..., xK) with x1 ≤
x2 ≤ ... ≤ xK such that xk < x∗kL for any k = 1, ..., K. Symmetrically, there is
no median voter allocation x = (x1, ..., xK) with x1 ≥ x2 ≥ ... ≥ xK such that
xk > x∗kR for any k = 1, ..., K.

21As long as there are positive winning probabilities in all districts (if ȳ is large enough),
this is true. If not, party L’s leader may need to create unwinnable districts, but she would
be indifferent as to how to draw lines for these districts. But the slice-and-mix below is one
of the optimal strategies even in that case.
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Figure 1: Party-L-slice-and-mix when K = 4.
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Clearly, these district median voter allocations x∗L and x∗R are the most
biased district median voter allocations toward left and right, respectively.
Under x∗L, redistricting the first and the second districts does not make two
districts with intermediate medians. With this lemma and Lemma 4-1, we
have the following result.

Proposition 1. Suppose that the gerrymanderer can create districts with
complete freedom and that party L (R) is in charge of gerrymandering. Then
the party-L (R)-slice-and-mix policy is an optimal gerrymandering policy. The
resulting district median voter allocation in district k is approximately x∗kL
(x∗kR ).

Another interesting observation from this proposition is that even when
QL = QR, if party L is the majority party in terms of the state population
(That is θm < 0 where F (θm) = 1

2
), then it can win all seats with a probability

of 50% or higher (x∗K < 0). Also, one can observe that the median of x∗k’s
is around θ 1

4
where F (θ 1

4
) = 1

4
. Therefore, complete freedom in gerrymander-

ing means the minority’s impact on the election will be completely diluted.
However, one party monopolize all districts is rare in US politics, partly be-
cause of the presence of majority-minority district requirement (see Shotts,
2001).22 The majority-minority requirement forces the gerrymanderer to seek

22In fact, even though either one of the two parties must be the majority in a state, the
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the second-best districting plan as a result even when she has complete free-
dom. It is worthwhile to note that the slice-and-mix strategy is identical to the
optimal policy analyzed in Friedman and Holden (2008). Both papers share
the features that (i) the party leader prefers a more extreme median voter’s
position than a moderate one, and (ii) complete freedom in gerrymandering
unlike the constrained problem in Owen and Grofman (1988) and in the basic
model of Gul and Pesendorfer (2010).23 However, there are big differences
between our paper and Friedman and Holden. Our model is based on com-
petitions with political positions as well as transfer promises, while Friedman
and Holden have neither element in their model. Nonetheless, we can say that
the above two common conditions are the keys for getting the same results.

4.2 Bipartisan Gerrymandering

Suppose the preexisting territory is KL and KR = K − KL: i.e., party L
takes localities with population in (−∞, θ̄) and party R takes localities with
population in (θ̄,∞) where F (θ̄) = KL

K
.24 By applying the same method as in

the previous section, let θ̄0
L = θ̄ and θkL be such that F (θkL) = k

2K
+ kε

K
, and let

θ̄kL be such that F (θ̄)−F (θ̄kL) = k
2K
− kε

K
for k = 1, ..., KL. However, the support

for L’s territory is now (−∞, θ̄]. Similarly, let θ0
R = θ̄ and θKLR be such that

1−F (θkR) = k
2K
− kε

K
, and let θ̄kR be such that 1−F (θ̄kR) = k

2K
+ kε

K
for k = KL+

1, ..., K. Party R’s territory has support (θ̄,∞). We call this bipartisan policy
(KL, KR)-bipartisan-slice-and-mix policy, and the resulting median voter
profile is (x∗1L , ..., x

∗KL
L , x∗KL+1

R , ..., x∗KR ). By Lemma 5 again, (x∗KL+1
R , ..., x∗KR )

is the KR right-most median voter profile, and (x∗1L , ..., x
∗KL
L ) is the KL left-

most median voter profile, with small enough ε. Figure 2 is an example
of (KL, KR)-bipartisan-slice-and-mix policy when KL = KR = 2 and
θ̄ = θm. In this case, both parties use slice-and-mix to create (x∗1L , x

∗2
L )

and (x∗3R , x
4
R). Thus, this is one of the most polarized district median voter

allocation, and is very different from partisan gerrymandering median voter
allocation, which has some more competitive districts. If uncertainty ȳ is small,
then there may not be any uncertainty in district elections under bipartisan

majority party usually does not win all districts. This can be attributed to Section 2 of
the Voting Rights Act (accompanied by other United States Supreme Court cases), which
essentially prevents the minority votes from being diluted in the voting process similar to
our slice-and-mix strategy.

23Gul and Pesendorfer (2010) also include aggregate uncertainty, generalizing Owen and
Grofman (1988).

24To avoid roundup, we choose θ̄ such that KF (θ̄) is an integer. However, θ̄ can be a
general one.
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Figure 2: (KL, KR)-slice-and-mix when KL = KR = 2.
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gerrymandering.

Proposition 2. Suppose that the gerrymanderer can create districts with com-
plete freedom and that bipartisan gerrymandering takes place with party line
θ̄. Then the (KL, KR)-bipartisan-slice-and-mix policy is an optimal gerryman-
dering policy. The resulting district median voter allocation is approximately
(x∗kL )KLk=1 and (x∗kR )Kk=KL+1.

5 Gerrymandering with Limited Freedom

In this section, we will explore how the“slice-and-mix” result would be mod-
ified if we drop the “complete freedom” in gerrymandering. In the spirit of
Owen and Grofman (1988) and Gul and Pesendorfer (2010), we say a gerry-
mandering problem is subject to a constant-average-constraint if the resulting
(x1(π), ..., xK(π)) satisfying ∑K

k=1 x
k(π)

K
= µ̄ (8)

for all π ∈ Π and some fixed µ̄. Owen and Grofman (1988) analyzed the op-
timal partisan gerrymandering policy by imposing the same constraint. They
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obtained the famous pack-and-crack result when the office-motivated party
leader maximizes the number of seats under this constraint.

To apply the above constraint to our locality setup, we will focus on the
case where the political position is normally distributed in all localities. With
normality, any feasibility redistricting plan satisfies exactly this constraint (8)
(the proof is obvious by noting that the median is equivalent to the mean
under normality).

Lemma 6. Suppose that the voter distribution in each locality is normally
distributed, i.e., F` ∼ N(µ`, σ`) for each ` ∈ L. Then, the median of district
k is

xk(π) =
1

n

∑
`∈Dk(π)

µ`.

Moreover, for all π ∈ Π,
∑K
k=1 x

k(π)

K
= θm = µ̄.

Therefore, under the normal distribution assumption, we focus on two
redistricting plans, say, π and π′, where the difference between two plans
is due to swapping the sets of localities S and T between districts k̂ and k̃.
Formally,

∆ = xk̂(π′)− xk̂(π) =

∑
`∈T µ` −

∑
`∈S µ`

n
= xk̃(π)− xk̃(π′),

and xk(π) = xk(π′) for all k 6= k̃ and k̂. If |xk̃(π)− xk̂(π)| > |xk̃(π′)− xk̂(π′)|,
π′ is more centered relative to π. In this case, we say π′ is cracking supporters
relative to π. Otherwise, we say π′ is slicing supporters.

Which plan should the party leader choose between π and π′? The answer
depends on the curvature of EṼi. It is obvious that if EṼi is a convex function
in the ex ante median voter’s position xk, the party leader would prefer a
slicing strategy. As we have seen in Lemma 4-3, if the third derivatives of cost
functions are positive, we have convex expected payoff functions.

We are ready to characterize the optimal partisan gerrymandering policy
under the constant average constraint. Remember that we order localities by
their means. That is, ` < `′ means µ` ≤ µ′`. Let the median voter in the most
possible extreme right district be µT . Suppose that µT − ȳ > 0, that is, there
exists some unwinnable districts for L if R’s supporters are grouped together.
We consider a redistricting plan that “slices” ordered localities from the left to
the right. Formally, let x̄k = 1

n

∑nk
`=n(k−1)+1 µ` − ȳ < 0 for all k = 1, 2, ..., K ′,

where K ′ is such that for all districts k > K ′, there is absolutely no chance for
party L to win. When K ′ ≥ K, we call the allocation (x̄k)Kk=1 a slice-them-
all gerrymandering policy. If K ′ < K, then for those unwinnable districts
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{K ′ + 1, ..., K}, L’s party leader should pack those most opposing localities
with ` ≥ K ′n+ 1 into them. The reason is that, otherwise, the winning payoff
in winnable district increases by switching those strong opposing localities
into unwinnable districts. If K ′ < K, then how L packs those strong opposing
localities does not matter, but (x̄k)Kk=1 is one of the optimal policy for party L.
This policy is optimal since the gerrymanderer always prefers a slicing swap
and all other redistricting plans can be transformed into the slice-them-all
policy by a series of slicing swaps.

Proposition 3. Suppose that the voter distribution is normal in each locality
and QL = QR. In addition, suppose that C ′′′(·) ≥ 0 and c′′′(·) ≥ 0 hold.
Then, the optimal partisan gerrymandering policy is slice-them-all (x̄k)K

′

k=1 with
packing in the unwinnable districts. In particular, (x̄k)Kk=1 is one of the optimal
partisan gerrymandering policy. If K ′ = K, the unique optimal policy is slice-
them-all (x̄k)Kk=1.

Thus, cracking is not necessarily a good strategy unlike in Owen and Grof-
man (1988). The difference between the current paper and theirs is that
our party leaders are also policy-motivated.25 What about the case where
C ′′′(·) ≥ 0 and c′′′(·) ≥ 0 do not hold? Actually, we can show that Ṽ k

i is
concave if C ′′′(·) ≤ 0 and c′′′(·) ≤ 0, so it appears that pack-and-crack is the
way to go. Indeed, it is true for the deterministic case (ȳ = 0) or the cases
where ȳ is small enough. However, if ȳ is large, even if the third derivatives are
negative, EṼ k

L can be convex as is seen in the following example (see Appendix
B).

Example 1. We introduce a convenient special ideology cost function such
that both voters’ and party leaders’ cost functions have common constant
elasticity. Let C(d) = aCdγ and c(d) = acdγ, where γ > 1, aC > 0, and ac > 0
are parameters. In this case, both party leaders and voters have the same
elasticity that is constant γ. Thus, we have the following convenient formula.

Denote A = A(aC , ac) = aC
(

α
1+α

)γ
+ ac

(
1

1+α

)γ
> 0 where α =

(
aC

ac

) 1
γ−1

. We

can choose aC and ac to set A = 1 for each γ: then we have C(d) = Adγ = dγ.
In this case, Ṽ k

L is concave (convex) in x̂k if γ ≤ 2 (γ ≥ 2). Suppose that
θL = −1, θR = 1 (thus L wins if and only if x̂k < 0), and g(y) = 1

2ȳ
if and

only if y ∈ [−ȳ, ȳ] (uniform distribution). Also, suppose that all possible xk

25Without the policy motivation, the payoff function is only related to winning probabil-
ity, pack-and-crack is optimal under a mild assumption on g. See also Gul and Pesendorfer
(2010).
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are in [−1, 1] and
(
Q
A

) 1
γ ≥ 2 + ȳ holds to assure Assumption 2. If ȳ > 1, there

is always a chance to win the election: we have xk − ȳ < θL and xk + ȳ > 0.
In this case,

EṼ k′′
L =

γ

2ȳ

[
(1− xk + ȳ)γ−1 − ((1− xk + ȳ)− 2)γ−1 + 2

]
> 0

since γ < 2, (1−xk+ȳ)γ−1−((1−xk+ȳ)−2)γ−1 > −2 holds. Thus, the expected
utility is convex in xk, despite the fact that C ′′′(d) < 0 holds. This example
shows that even without positive third derivatives, the slice-and-mix strategy
and the slice-them-all strategy are optimal in the complete freedom case and
in the constrained case with the constant average constraint, respectively.�

How about bipartisan gerrymandering? The result is the same, since both
parties want slice-them-all anyway. If both party leaders adopt slice-them-
all, it does not matter whether the slicing is from one end (partisan gerry-
mandering) or both ends (bipartisan). This observation shows that if the
gerrymandering problem has the constant average constraint, then biparti-
san gerrymandering does not create a more polarized allocation than partisan
gerrymandering, and incumbents’ reelection rates would be the same.

Proposition 4. Suppose that the voter distribution is normal in each locality
and QL = QR. In addition, suppose that C ′′′(·) ≥ 0 and c′′′(·) ≥ 0 hold. Then,
the optimal bipartisan gerrymandering policy is slice-them-all (x̄k)Kk=1 which is
identical to the partisan policy.

The constant average constraint forbids a gerrymanderer from diluting sup-
porters of the other party by mixing in his own supporters. Notice that while
L gerrymanderer can pull the median of district medians to θ 1

4
in the com-

plete freedom case, the median of medians has to remain as θm, the population
median, when the constant average constraint applies. Friedman and Holden
(2009) interpret their results as a possible consequence of the Voting Rights
Act of 1982, which significantly limits the gerrymanderer’s ability to dilute
votes.

6 Conclusion

In this paper, we propose a gerrymandering model with endogenous candi-
dates’ political positions, in which two parties compete in their positions and
pork-barrel politics. The model’s tractability allows us to analyze partisan
and bipartisan gerrymandering under different constraints.
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We find that, under the complete freedom case (Friedman and Holden,
2008), the partisan and bipartisan gerrymandering plans are very different.
Under partisan gerrymandering, the gerrymanderer creates the most biased
district structure and completely dilutes the opponent’s supporters. On the
other hand, in the bipartisan case, gerrymanderers create the most polarized
districts.

The difference between partisan and bipartisan gerrymandering disappears
when we add the extra constraint that requires that the mean of median voters
in all districts remain constant (Owen and Grofman, 1988). The optimal plan
under positive third derivatives in cost functions becomes what we call slice-
them-all in both situations. That is, the gerrymanderers simply group their
own supporters to form districts according to the avidity of supportiveness.
This result is based on the fact that the constant average constraint forces
the party leader to choose between having one extreme supporting and one
relatively neutral districts or having two moderate supporting ones. However,
since the party leader is policy-motivated and has to consider uncertainties,
she prefers the former, which saves her more pork-barrel and ideological costs.
Our Example 1 suggests that the positive third derivative condition may be
weakened significantly for the same result when the shock is large enough to
provide a winning chance for both parties in every district.

Another explanation for nonsignificant difference in competitiveness be-
tween partisan and bipartisan gerrymandering is the fact that redistricting
takes place every ten years based on census data, and district population pro-
files can change significantly. If there is a risk for some demographic change in
districts, then it is too risky to use extremely elaborate slice-and-mix strategy
even if the gerrymanderers have complete freedom in redistricting. This is be-
cause a district median voter profile can change dramatically by demographic
changes. Thus, the gerrymanderer may try to mix a smaller and less extreme
opponent group with a larger strong supporter group, which may make the
difference between partisan and bipartisan gerrymandering less significant.

There are some potentially interesting yet difficult extensions. First, one
may want to introduce uncertainty in election results (e.g., uncertainty in
median voter’s position after policy proposal) into our model. If uncertainty
is infinitesimal, e.g., the gerrymander can only observe that the median voter’s
position belongs to the interval [x̂k − ε, x̂k + ε] for ε being a (small) preference
perturbation, and if the gerrymanderer has complete freedom in redistricting,
the slice-and-mix strategy may still be optimal à la Friedman and Holden
(2008). However, with significant uncertainty in median voters’ positions, as
Gul and Pesendorfer (2010), we do not know what can happen.

Second, in this paper we concentrated on one type of pork-barrel politics:
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candidates’ “promise” transfer contingent on their winning of the districts
(the first price auction). These kinds of promises are different from campaign
expenditures. In the latter case, even if a candidate loses in a district, the
spent campaign expenditure will not come back (an all-pay auction). In some
circumstances, such a model may be more realistic if there is uncertainty in
election results. However, introducing uncertainty in election results is not
trivial, as we mentioned before. These issues are left for future research.

Appendix A: Proofs

Proof of Lemma 1. First, by Assumption 2, the non-negativity constraint
of tkR is not needed. There are three cases: if R loses with QR − tk

∗
R −

C(
∣∣θR − βk∗R ∣∣) > 0 and its offer gives the median voter utility equal to Ū in equi-

librium, it must be that L wins with positive indirect utility and also provides
the median voter with the utility level Ū . However, this means that R can win
the election by providing, say, ε more pork-barrel promise. This contradicts
the equilibrium condition. The second case is that Q− tk∗R −C(

∣∣θR − βk∗R ∣∣) = 0
but Uxk(R) is not maximized. In this case, there must exist some points (t′, β′)
that satisfy Q− t′ − C(|θR − β′|) = 0 but the pair provides the median voter
strictly higher utility. Then any point on the segment connecting (t′, β′) and
(tk
∗
R , β

k∗
R ) is strictly better off for both R and the median voter xk by the strict

convexity of the preferences. Again, this contradicts the equilibrium condition.
The third case, Q− tk∗R −C(

∣∣θR − βk∗R ∣∣) < 0, cannot happen, since the strategy
that generates a negative payoff is a weakly dominated strategy for R’s leader.
�

Proof of Lemma 2. We only need to prove Lemma 2-3. We consider two

cases: (Case-1) x̂k > θi, and (Case-2) x̂k < θi.
(Case-1): In this case, β̂i = β̂(x̂k, θi) is determined implicitly by the first-

order condition
C ′(β̂i − θi) = c′(x̂k − β̂i)

Totally differentiating with respect to x̂k and β̂i, we obtain

(C ′′ + c′′)dβ̂i = c′′dx̂k

(Case-2): In this case, β̂i = β̂(x̂k, θi) is determined implicitly by the first-
order condition

C ′(θi − β̂i) = c′(β̂i − x̂k)

26



Totally differentiating with respect to x̂k and β̂i, we obtain

(C ′′ + c′′)dβ̂i = c′′dx̂k

Thus, either way, we get the same condition. We have completed the proof.�

Proof of Lemma 3. We will focus on the case of i = L. When i = R, we
can apply the same procedure. We will first show the following claim.

Claim. C ′i = c′i when θi < x̂k, C ′i = −c′i when θi > x̂k and C ′′i =
c′′i C

′′
i

c′′i +C′′i
, where

Ci = C(
∣∣x̂k − θi∣∣), ci = c

(∣∣x̂k − β (x̂k, θi)∣∣), and Ci = C
(∣∣β (x̂k, θi)− θi∣∣).

Proof of Claim. So, there are two cases: (Case-a) θi < x̂k, and (Case-b)
θi > x̂k.
(Case-a): Taking the first derivative, we have

C ′(x̂k − θi) = C ′(β̂i − θi)
∂β̂i
∂x̂k

+ c′(x̂k − β̂i)(1−
∂β̂i
∂x̂k

) = c′(x̂k − β̂i),

Here, we used the first-order condition C ′ = c′, which must hold at the opti-
mum. Taking the second-order derivative, we have

C ′′(x̂k − θi) = c′′(x̂k − β̂i)(1−
∂β̂i
∂x̂k

)

= c′′(x̂k − β̂i)

(
1− c′′(x̂k − β̂i)

c′′(x̂k − β̂i) + C ′′(β̂i − θi)

)

=
c′′(x̂k − β̂i)C ′′(β̂i − θi)
c′′(x̂k − β̂i) + C ′′(β̂i − θi)

(Case-b): Taking the first-order derivative, we have

C ′(θi − x̂k) = −C ′(θi − β̂i)
∂β̂i
∂x̂k

+ c′(β̂i − x̂k)(
∂β̂i
∂x̂k
− 1) = −c′(β̂i − x̂k),

Taking the second-order derivative, we have

C ′′(θi − x̂k) = −c′′(β̂i − x̂k)(
∂β̂i
∂x̂k
− 1)

= c′′(β̂i − x̂k)

(
1− c′′(x̂k − β̂i)

c′′(x̂k − β̂i) + C ′′(θi − β̂i)

)

=
c′′(β̂i − x̂k)C ′′(θi − β̂i)
c′′(β̂i − x̂k) + C ′′(θi − β̂i)
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We have completed the proof of the Claim.�

We start with Lemma 3-1. First, we consider (Case-1): x̂k ∈ (θL, θR),
then Ṽ k

L = (QL −QR)−
(
C(xk + y − θL)− C(θR − xk − y)

)
. Thus, we have

dṼ k
L

dxk
= −

(
C ′(x̂k − θL) + C ′(θR − x̂k)

)
< 0.

This implies that Ṽ k
L is decreasing in x̂k. In the case of Ṽ k

R ,
dṼ kR
dxk

> 0 and Ṽ k
R is

increasing in x̂k.
There are two more cases: (Case-2) x̂k < θL, and (Case-3) x̂k > θR.

(Case-2):
dṼ kL
dxk

= C ′(θL − x̂k)− C ′(θR − x̂k) < 0, since C ′′(d) > 0. Thus, Ṽ k
L is

decreasing in x̂k.

(Case-3):
dṼ kL
dxk

= −C ′(x̂k − θL) + C ′(x̂k − θR) < 0, since C ′′(d) > 0. Thus, Ṽ k
L

is decreasing in x̂k.
For the convexity, again we have three cases: (Case-1) x̂k ∈ (θL, θR),

(Case-2) x̂k < θL, and (Case-3) x̂k > θR. In each case, we have the same
second derivatives:
(Case-1):

d2Ṽ kL
d(xk)2

= −C ′′(x̂k − θL) + C ′′(θR − x̂k).

(Case-2):
dṼ kL
dxk

= C ′(θL− x̂k)−C ′(θR− x̂k) and
d2Ṽ kL
d(xk)2

= −C ′′(θL− x̂k)+C ′′(θR−
x̂k).

(Case-3):
dṼ kL
dxk

= −C ′(x̂k − θL) + C ′(x̂k − θR) and
d2Ṽ kL
d(xk)2

= −C ′′(x̂k − θL) +

C ′′(x̂k − θR).

Therefore, in all cases,
d2Ṽ kL
d(xk)2

= −C ′′L + C ′′R, so we have:

d2Ṽ k
L

d(xk)2
= −C ′′L + C ′′R

= − c′′LC
′′
L

c′′L + C ′′L
+

c′′RC
′′
R

c′′R + C ′′R

=
−c′′LC ′′L (c′′R + C ′′R) + c′′RC

′′
R (c′′L + C ′′L)

(c′′L + C ′′L) (c′′R + C ′′R)

=
C ′′LC

′′
R (c′′R − c′′L) + c′′Lc

′′
R (C ′′R − C ′′L)

(c′′L + C ′′L) (c′′R + C ′′R)

Thus, if c′′R ≥ c′′L and C ′′R ≥ C ′′L then
d2Ṽ kL
d(xk)2

≥ 0. Since QL = QR, if L wins,

then x̂k − θL < θR − x̂k. Thus, if c′′′ > 0 and C ′′′ > 0 then we have c′′R ≥ c′′L
and C ′′R ≥ C ′′L.�
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Proof of Lemma 4. We will focus on the case of i = L. When i = R, we
can apply the same procedure. Let’s start with Lemma 4-1. Consider the case
where xk ± ȳ ∈ (θL, θR). There are two subcases: (Case 1) is the case where
L wins with certainty (Ṽ k

L (xk + ȳ, θL, θR) ≥ 0), and (Case 2) is the one where
L may lose depending on the realization of y (Ṽ k

L (xk + ȳ, θL, θR) < 0).
(Case 1): In this case, EṼ k

L =
∫ ȳ
−ȳ Ṽ

k
L (xk + y, θL, θR)g(y)dy. Thus,

dEṼ k
L

dxk
=

∫ ȳ

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy < 0

(Case 2): In this case, EṼ k
L =

∫ x̄−xk
−ȳ Ṽ k

L (xk+y, θL, θR)g(y)dy, where Ṽ k
L (x̄, θL, θR) =

0. That is, if xk + y > x̄, then party L loses. (Note that x̄ is solely determined
by the value of QL −QR: dx̄

d(QL−QR)
> 0. If QL = QR, then x̄ = 0 holds, since

θL = −θR.) Differentiating this with respect to xk, we have

dEṼ k
L

dxk
= Ṽ k

L (x̄, θL, θR) +

∫ x̄−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy

=

∫ x̄−xk

−ȳ
Ṽ k
L (xk + y, θL, θR)g(y)dy < 0

Thus, we have completed the proof of Lemma 4-1.
For Lemma 4-2, we classify four cases:

(Case a: xk − ȳ ≥ θL and xk + ȳ ≤ x̄): In this case, EṼ k
L =

∫ ȳ
−ȳ Ṽ

k
L (xk +

y, θL, θR)g(y)dy. Thus,

d2EṼ k
L

d(xk)2
=

∫ ȳ

−ȳ
Ṽ k′′
L (xk + y, θL, θR)g(y)dy

Case b: xk − ȳ ≥ θL and xk + ȳ > x̄): In this case, EṼ k
L =

∫ x̄−xk
−ȳ Ṽ k

L (xk +

y, θL, θR)g(y)dy. That is, if xk +y > x̄ = 0, then party L loses. Differentiating
this with respect to xk, we have

dEṼ k
L

dxk
= −Ṽ k

L (0, θL, θR) +

∫ x̄−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy

=

∫ x̄−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy
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Thus, the second-order derivative is

d2EṼ k
L

d(xk)2
= −Ṽ k′

L (0, θL, θR) +

∫ −xk
−ȳ

Ṽ k′′
L (xk + y, θL, θR)g(y)dy

From Lemma 3-2, we know Ṽ k′
L (0, θL, θR) < 0 and Ṽ k′′

L (xk + y, θL, θR) > 0.
Thus, EṼ k

L is convex.

(Case c: xk − ȳ < θL and xk + ȳ ≤ x̄): In this case, EṼ k
L =

∫ θL−xk
−ȳ Ṽ k

L (xk +

y, θL, θR)g(y)dy +
∫ ȳ
θL−xk

Ṽ k
L (xk + y, θL, θR)g(y)dy. Differentiating this with

respect to xk, we obtain

dEṼ k
L

dxk
=

∫ θL−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy +

∫ ȳ

θL−xk
Ṽ k′
L (xk + y, θL, θR)g(y)dy

The second-order derivative is

d2EṼ k
L

d(xk)2
=

∫ θL−xk

−ȳ
Ṽ k′′
L (xk + y, θL, θR)g(y)dy+

∫ ȳ

θL−xk
Ṽ k′′
L (xk + y, θL, θR)g(y)dy

From Lemma 3-2, we know Ṽ k′
L (0, θL, θR) < 0 and Ṽ k′′

L (xk + y, θL, θR) > 0.
Thus, EṼ k

L is convex.

(Case d: xk − ȳ < θL and xk + ȳ > x̄): In this case, EṼ k
L =

∫ θL−xk
−ȳ Ṽ k

L (xk +

y, θL, θR)g(y)dy +
∫ x̄−xk
θL−xk

Ṽ k
L (xk + y, θL, θR)g(y)dy. Differentiating this with

respect to xk, we obtain

dEṼ k
L

dxk
=

∫ θL−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy +

∫ x̄−xk

θL−xk
Ṽ k′
L (xk + y, θL, θR)g(y)dy

− Ṽ k
L (0, θL, θR)g(−xk)

=

∫ θL−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy +

∫ x̄−xk

θL−xk
Ṽ k′
L (xk + y, θL, θR)g(y)dy

The second-order derivative is

d2EṼ k
L

d(xk)2
=

∫ θL−xk

−ȳ
Ṽ k′′
L (xk + y, θL, θR)g(y)dy +

∫ x̄−xk

θL−xk
Ṽ k′′
L (xk + y, θL, θR)g(y)dy

−Ṽ k′
L (0, θL, θR)g(−xk)

From Lemma 3-2, we know Ṽ k′
L (0, θL, θR) < 0 and Ṽ k′′

L (xk+y, θL, θR) > 0 when
c′′(d) > 0 and C ′′(d) > 0. Thus, EṼ k

L is convex. We have completed the proof
of Lemma 4-2.
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For Lemma 4-3, first observe that,

EṼi (π) ≡
∫ ȳ

−ȳ

K∑
k=1

max
{
Ṽ k
i (xk(π) + y, θi, θj), 0

}
g(y)dy

For any k 6= k′, ∂2EṼi
∂xk∂xk′

= 0. The Hessian matrix of EṼL has 0s on non-diagonal
parts and negative terms on the diagonal due to Lemma 4-2. Therefore, the
Hessian matrix is negative semidefinite and EṼ are convex function in (xk)Kk=1.

Also notice that the proof of Lemma 4-3 holds even when we consider the
general case x̂k = xk + yk, where yk is the district specific shock and yks have
joint distribution g(y1, ..., yk). The proof above works for the special case when
yks are perfect correlated. �

Proof of Lemma 5. Note that F (x∗kL ) = k
2K

. Thus, to achieve x∗kL as the
median voter of the kth district, we need to use all voters to the left of x∗kL . This
is true for all k = 1, ..., K. Thus, x∗L is the leftmost median voter allocation
in lexicographic order. We can prove the statement for x∗R by a symmetric
argument.�

Appendix B: Constant Elasticity Example

In this appendix, we elaborate on the calculation involved in Example 1. Let
C(d) = aCdγ and c(d) = acdγ, where γ > 1, aC > 0, and ac > 0 are parameters.
In this case both party leaders and voters have the same elasticity that is
constant γ. In this case, we have the following convenient formula. Denote

A = A(aC , ac) = aC
(

α
1+α

)γ
+ ac

(
1

1+α

)γ
> 0 where α =

(
aC

ac

) 1
γ−1

. Suppose

that
(
Q
A

) 1
γ ≥ 2 + ȳ holds to assure Assumption 2. Normalizing A = 1, we have

C(d) = Adγ = dγ. In this case, Ṽ k
L is concave (convex) in x̂k if γ ≤ 2 (γ ≥ 2).

EṼ k
L =

∫ −xk
θL−xk

(
C(θR − xk − y)− C(xk + y − θL)

)
g(y)dy

+

∫ θL−xk

−ȳ

(
C(θR − xk − y)− C(θL − xk − y)

)
g(y)dy

31



EṼ k′
L =

∫ −xk
θL−xk

(
−C ′(θR − xk − y)− C ′(xk + y − θL)

)
g(y)dy

+

∫ θL−xk

−ȳ

(
−C ′(θR − xk − y) + C ′(θL − xk − y)

)
g(y)dy

EṼ k′′
L =

∫ −xk
θL−xk

(
C ′′(θR − xk − y)− C ′′(xk + y − θL)

)
g(y)dy

+

∫ θL−xk

−ȳ

(
C ′′(θR − xk − y)− C ′′(θL − xk − y)

)
g(y)dy

+ (C ′(θR) + C ′(θL))g(−xk)

Suppose that C(d) = dγ (γ > 1), θL = −1, θR = 1 (thus x̄ = 0), and g(y) = 1
2ȳ

if and only if y ∈ [−ȳ, ȳ]. If ȳ ≥ 2 and xk ∈ [−1, 1] for all possible xk, Case-d
in the proof of Lemma 4 applies. In this case, we have

EṼ k′′
L = γ (γ − 1)

∫ −xk
θL−xk

(
(θR − xk − y)γ−2 − (xk + y − θL)γ−2

) 1

2ȳ
dy

+ γ (γ − 1)

∫ θL−xk

−ȳ

(
(θR − xk − y)γ−2 − (θL − xk − y)γ−2

) 1

2ȳ
dy

+
1

2ȳ
× 2γθγ−1

R

=
γ

2ȳ

[
−(θR − xk − y)γ−1 − (xk + y − θL)γ−1

]−xk
θL−xk

+
γ

2ȳ

[
−(θR − xk − y)γ−1 + (θL − xk − y)γ−1

]θL−xk
−ȳ +

γ

ȳ
θγ−1
R

=
γ

2ȳ
[−(θR)γ−1 + (θR − xk + ȳ)γ−1 − (−θL)γ−1 + 0 + 0

− (θL − xk + ȳ)γ−1 + 2θγ−1
R ]

=
γ

2ȳ

[
(1− xk + ȳ)γ−1 − (−1− xk + ȳ)γ−1 + 2

]
=

γ

2ȳ

[
(1− xk + ȳ)γ−1 − ((1− xk + ȳ)− 2)γ−1 + 2

]
When γ < 2, (1 − xk + ȳ)γ−1 − ((1 − xk + ȳ) − 2)γ−1 > −2 holds. Thus,
EṼ k′′

L > 0 holds as long as Case 4 holds (ȳ ≥ 1: there is a chance to win
district k for any xk). That is, the expected utility is convex in xk, although
C ′′′(d) < 0 holds. So, even without positive third derivatives, the slice-and-mix
strategy and the slice-them-all strategy are optimal gerrymandering policies
in the constant average constraint case, respectively.�
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