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Abstract

This paper develops a model of strategic preference formation: I assume

that players can choose in a first stage the weights they assign to the other

players’ material payoff, and then determine the optimal weights each

player should choose so as to maximise her material payoff. I highlight

a systematic relation between supermodularity (submodularity) and the

formation of cooperative (competitive) preferences. I then investigate the

implications of this framework for the design of public policies, and show

in the case of climate change negotiations that international agreements

relying on technology standards with trade sanctions rather than objectives

of pollution abatement are more likely to succeed, since they create a

coordination game and cut the strategic substituability of the initial game.
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1 How public policies shape our preferences

The Lucas critique argues that econometric models should integrate individual

optimisation behaviours when assessing the implications of economic policies, and

constitutes a core argument of the microfoundations program in macroeconomics:

‘This essay has been devoted to an exposition and elaboration of a

single syllogism: given that the structure of all econometric model

consists of optimal decision rules of economic agents, and that optimal

decision rules vary systematically with changes in the structure of series

relevant to the decision maker, it follows that any change in policy will

systematically alter the structure of econometric models.’ (Lucas, 1976,

p.41)

The critique stresses that public policies may impact individual behaviours,

since altering the strategic environment is likely to induce a new optimal be-

haviour regarding the satisfaction of one’s preferences. We can however notice

that this interpretation implicitly assumes that the underlying preferences remain

identical across policy regimes: individual behaviour may evolve only because the

new institutional setting implies a new optimal decision, and not because those

underlying preferences may also change.

Consider for instance crowding-out effects and the impact of the introduction

of pecuniary incentives on pro-social motives: numerous works highlighted that

those kinds of policies can backfire, since the intrinsic motivation for a social

objective disappears and is replaced by an extrinsic motivation. This suggests

that individual preferences are likely to change, and the satisfaction of those new

preferences can lead to a worse situation than before the implementation of the

policy (see for instance Titmuss (1970) on blood donation, Frey & Oberholzer-Gee

(1997) on the willingness to accept a NIMBY project, and also Ostman (1998)

and Cardenas et al. (2000) on the management of common-pool resources).
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So as to properly calibrate public policies, we should therefore not only an-

ticipate the new optimal choice of the individuals, but also anticipate the new

preferences induced by the policy. As an illustration of the approach developed in

this paper, consider the following illustration:

Symmetric Cournot game: we are playing a symmetric Cournot game.

Suppose that I decide to maximise my profit minus σ% of your profit (I want

therefore to maximise my profit as well as the difference between our profits):

if you know that I am an aggressive player, then you know that I am likely to

produce more than my Nash output. You then reduce your production and

we end up in a situation in which you play your best reply to my somewhat

‘irrational’ action (my production is indeed not a best reply to yours). I

am then producing more than my Nash output and you less: if I choose the

adequate level of σ, then the resulting equilibrium can actually correspond

to the Stackelberg equilibrium in which I would be the leader and you the

follower.

In this game, although I did not directly maximise my profit, we reached an

outcome in which I obtained a higher profit than if I had directly maximised my

profit. The idea that players can benefit from such strategic commitments — i.e.

voluntary deviations from payoff maximisation — has been studied since at least

von Stackelberg (1934), with the introduction of timing in oligopoly, and Schelling

(1960) in the context of coordination games. It is also central in the literature on

strategic delegation (e.g. Fershtman & Kalai (1997), Fershtman & Gneezy (2001),

Sengul et al. (2012)), and is the core mechanism in the indirect evolutionary

approach (e.g. Güth & Yaari (1992), Samuelson (2001), Heifetz et al. (2007a,b)).

Furthermore, some experimental findings suggest that players progressively learn

to make the optimal strategic commitment (Fischer et al., 2006, Poulsen & Roos,

2012).

A common feature of those approaches is the distinction between the function that

determines the gain of the individual (her material payoff or fitness for instance)

and the function that determines the choice of the individual (her preferences).

While players (or the individuals who take the decision on their behalf) are

utility maximisers, they are not necessarily payoff maximisers. In the case of

the symmetric Cournot game, the strategy chosen by firm 1 does not maximise

her payoff Π1 (given the strategy of player 2), but her utility U1 = Π1 − σΠ2.
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It is then assumed that there exists a ’preferences game’, in which individual

utility functions are chosen in a first stage (this game is not conscious in the

indirect evolutionary approach, and is the result of evolutionary pressures), so as

to maximise in fine the material payoff in the second stage.

The object of the paper is not to focus on a specific type of strategic commitment,

but rather to study the equilibrium of this preferences game, i.e. an optimal

strategic commitment. I will therefore assume that the players are able to directly

choose their preferences in the first stage game, without discussing how they keep

their commitment: the optimal strategic commitments characterised in this paper

will therefore be implemented if and only if the players have at their disposal

a mechanism allowing them to keep their strategic commitments (contracts,

evolutionary pressures for instance).

This paper is organised as follows. I firstly present a model of strategic prefer-

ence formation in which players choose the weights they attribute to other players

in their utility function so as to maximise their payoff (section 2). I then show

that the players generally choose non-null weights and highlight that supermod-

ular (respectively submodular) games tend to generate cooperative (aggressive)

preferences (section 3). I then argue that an objective of public policies should

be to alter the strategic environment of the game so as to facilitate the emer-

gence of cooperative behaviours. I illustrate this point by studying climate change

negotiations (section 4).

2 Model

In this section, I start by clarifying the notion of strategic preferences. I then

introduce technical notations and define a notion of equilibrium characterising a

strategy profile immune to individual strategic commitments. I illustrate those

different notions by studying a public good game.

2.1 Bluff and commitment

Recall the Cournot competition discussed above: since being aggressive with firm

2 may be in fine beneficial to firm 1, it is in the interest of firm 1 to choose its level
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of production not only to maximise its profit, but also to maximise the difference

between its profit and the profit of its opponent. From the perspective of firm 1,

its relative success may therefore matter more than its absolute success, since by

trying to outperform firm 2 rather than merely maximising its payoff, firm 1 is

likely to obtain a higher profit than if it has adopted a profit-maximising strategy.

A question that may arise is then the status we should give to those different types

of preferences: if firm 1 decided to adopt strategic preferences different from its

material payoff, can we still say that the true objective of the firm is payoff max-

imisation? It would actually be more accurate to say that the true objective of

firm 1 is to beat the competition, and that a fortunate by-product of this objective

is the maximisation of firm 1’s profit: it is only because firm 1 is committed to

be aggressive that its profit is maximised (otherwise firm 2 would anticipate that

firm 1 is bluffing, and therefore that firm 1 will play in fine its best reply).

Bargaining situations offer a salient illustration of this difference between com-

mitment and bluff. Consider for instance the recent negotiations between Greece

and the European Union concerning Greek national debt. In a Op-Ed article in

the New York Times, former Greek finance minister (and game theorist) Yanis

Varoufakis (2015a) claims that ‘it would be pure folly to think of the current de-

liberations between Greece and our partners as a bargaining game to be won or lost

via bluffs and tactical subterfuge’, because, unlike within standard game theory in

which the motives of the players are taken for granted (maximising one’s material

payoff), ‘the whole point [of the current deliberations between Greece’s European

partners and the new government] is to forge new motives ’ (my emphasis). The

main motive of the Greek government is to implement its social policy agenda, to

‘do what is right not as a strategy but simply because it is ... right’. Varoufakis

emphasises this commitment not to cross this ‘red line’, by stating that ‘we are

determined to clash with mighty vested interests in order to reboot Greece and

gain our partners’ trust. We are also determined not to be treated as a debt colony

that should suffer what it must’ (my emphasis). He concludes by claiming that:

‘One may think that this retreat from game theory is motivated by

some radical-left agenda. Not so. The major influence here is Immanuel

Kant, the German philosopher who taught us that the rational and the

free escape the empire of expediency by doing what is right.’

My point here is not to discuss whether the policy defended by the Greek

government is the right one or not, but to offer an analysis of Varoufakis’s argument
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in terms of the model of preferences developed in this paper. The negotiation can

be roughly described as a game between Athens (A) and Brussels (B): A faces a

debt crisis and can be helped by B. B has the choice between two strategies: to

give a financial aid to A (strategy a) or not (strategy na). A can also implement

austerity measures (strategy m) or not (strategy nm). �i denotes the material

payoff relation of player i. We have:

• A: {nm; a} �A {m; a} �A {m;na} �A {nm;na}

• B: {m;na} �B {m; a} �B {nm; a} �B {nm;na}

A possible representation of those material payoffs in a matrix is the following:

a na

m (2;2) (1;3)

nm (3;1) (0;0)

The game in material payoff is therefore a chicken game: both players are ready

to make an effort to avoid A’s default, but prefer that the others make the effort1.

We have therefore two Nash equilibria in pure strategies, {nm, a} and {m,na}. An

additional difficulty of this game is that, although A really needs the aid from B

to solve its crisis, A has been elected on the promise that it would not accept any

additional austerity measures. A possible strategy for A would be to pretend that

the respect of its political promise matters more than the payment of the debt,

and therefore that — unlike its material payoff that only represents the financial

interest of A — A’s preferences are such that {nm;na} �A {m;na}, i.e. that A

will respect its promise even if it implies no aid from B, and therefore default.

This kind of threat is however not credible, since playing m is still A’s best reply

to na.

However, in his article, Varoufakis is trying to convince B that A is truthful when

claiming that what matters for A is not its ‘material payoff’ (i.e. the payment of

A’s debt), but another motive2 (the respect of its promise). Indeed, if B believes

that A is simply bluffing, in the sense that A pretends to want to implement its

1We make the simplifying assumption here that austerity measures or a financial aid alone

are sufficient to solve the crisis.
2Note that B was also probably trying to choose strategic preferences here: although B

wanted to avoid A’s default, several members of the Eurozone (e.g. Germany) made clear that
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social policy under any circumstances (although A would prefer to implement a

austerity policy so as to get B’s aid), then A’s threat of implementing the social

policy is not credible. On the other hand, if A truly wants to implement the

social policy (and even convince itself that this is the right thing to do), then A’s

threat becomes credible, and B is likely to offer its aid. Varoufakis indeed puts a

strong emphasis on A’s determination, and even invokes Kant and his categorical

imperative (i.e. that respecting this promise is an unconditional requirement).

Varoufakis therefore tries to convince B that the game should be represented as

follows:

a na

m (0;2) (0;3)

nm (3;1) (1;0)

nm (no austerity measure) is now a strictly dominant strategy for A, and B

best reply is to offer its aid. It seems here that Varoufakis is probably not bluffing:

he genuinely decided to follow another objective than the initial one in terms of

material payoff3. The fact that A may in fine benefit from B’s aid without having

to break its electoral promise is only a fortunate by-product of its new preferences.

A’s commitment to respect its policy agenda is therefore not a bluff, it is a ratio-

nal commitment. It is therefore possible that A, by showing its determination to

do ‘what is right’, chose to ‘forge new motives’ as a means to satisfy its primary

objective (A’s new preferences — described in the second matrix — are therefore

well strategic preferences), but it is also possible that, in line with a more Kantian

argument, A deliberately chose its new preferences as an end in itself.

Throughout the rest of this paper, I will assume that strategic preferences are

purely instrumental: ex ante, each individual has a well-identified objective (her

material payoff), and chooses her optimal commitment so as to satisfy this objec-

tive. One’s strategic preferences are therefore only valuable as a means to satisfy

any aid from B should be conditioned on the implementation of austerity measures by A. In other

words, B states that it would play a only if A plays m, and therefore that {nm;na} �B {nm; a}.
With this threat, B hopes that A will eventually choose m, and then reach B’s preferred Nash

equilibrium (although this argument is valid in our simplified model, the ’real’ outcome would

probably be {m; a}, since Brussels should still give a financial aid to save Athens from default).
3It should indeed be noticed that an austerity plan was eventually implemented, but only after

Varoufakis resignation: while he was probably committed not to implement an austerity plan,

his position became in minority within Tsipras government (see Varoufakis (2015b) interview in

New Statesman).
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one’s material payoff — in particular, I will not investigate whether one’s strategic

preferences may progressively become one’s material payoff. So as to illustrate

this point, think for instance of a philanthropist who helps the needy, because it is

her moral duty (and not merely by sympathy): she is then satisfying preferences

that are different from her material payoff. She may then progressively find ‘inner

satisfaction in spreading joy’ (Kant, 1785), implying that her strategic preferences

progressively become her material payoff. She is then acting in accordance with,

rather than from, her duty. Considering this kind of preference evolution would

offer a basis to develop a more general model of preference formation, but this is

however beyond the scope of the present work.

2.2 Preliminaries

Let N = {1, . . . , n} denote the set of players, with n ≥ 2. X =
∏

i∈N Xi denotes

the set of pure strategy profiles where each set Xi ⊂ R denote the strategy space of

player i. The material payoff of a player i ∈ N is given by a function Πi : X 7→ R,

∀i ∈ N . Assume that players may present interdependent preferences, i.e. that

their utility function Ui : X 7→ R — whose maximisation determines their choice

— is a weighted sum of the material payoff functions Πj(x):

Ui(x|S) =
∑
j∈N

σijΠj(x), (1)

with S = {σij}i,j∈N ∈ Rn×n a set of real parameters. σij therefore represents

the weight player i gives to player j in her utility function, and its sign indicates

whether player i tries to cooperate or not with player j. Πi therefore measures

the ultimate objective of player i (her material payoff), while Ui represents her

strategic preferences, i.e. the optimal interdependent preferences player i should

choose so as to maximise in fine her material payoff Πi.

For any game in normal form Γ = 〈N,X,Π〉, define a two-stage game Γ∗ as follows:

• in the second stage game Γ2(S) = 〈N,X,U(.|S)〉, player i ∈ N chooses a

strategy xi ∈ Xi so as to maximise her utility function Ui(x|S), ∀i ∈ N ;

• in the first stage game Γ1 = 〈N,Rn×n, V 〉, player i ∈ N chooses a vector

of real parameters Si = {σi1; . . . ;σin} so as to maximise her indirect payoff

function Vi(S) = Πi(x̄(S)), with x̄(S) a Nash equilibrium of Γ2(S), ∀i ∈ N .
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For convenience, suppose that Πi is a C3 function ∀i ∈ N . Furthermore:

Assumption : A0 . ∀S ∈ Rn×n, Γ(S) has a unique Nash equilibrium in pure

strategies x̄(S), i.e. ∃!x̄(S) ∈ X such that, ∀i ∈ N :

∂Ui
∂xi

(x̄(S)|S) = 0, (2)

∂2Ui
∂x2

i

(x̄(S)|S) < 0. (3)

A0 is a very strong assumption, but it considerably alleviates the presentation

of the main results, and appears to be not necessary. The two main results of

this paper would indeed remain unchanged: the demonstration of proposition 1,

according to which the players generally have an incentive in presenting strategic

preferences different from their material payoff, could indeed easily be extended

to a more general framework, while proposition 3, according to which the players

choose cooperative (resp. aggressive) preferences in symmetric supermodular

(submodular) games is proven under conditions that would ensure the existence

of a unique Nash equilibrium in the second stage game (I indeed assume a strong

form of diagonal dominance of the Jacobian matrix of marginal utilities).

I introduce the following notations:

• The partial derivatives of Πi : X 7→ R are denoted:

Πjk
i (x) =

∂2Πi

∂xj∂xk
(x1; . . . ;xn). (4)

• J(S) ∈ Rn×n denotes the Jacobian matrix of the marginal utilities evaluated

at the Nash equilibrium of Γ2(S):

J(S) = {U ij
i (x̄(S))}i,j∈N (5)

• For a n × n matrix S ∈ Rn×n, Sij denotes a (n − 1) × (n − 1) matrix that

results from deleting row i and column j of S.
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• For a n× n matrix S ∈ Rn×n, CS
ij = (−1)i+j |Sij| denotes the (i; j) cofactor

of S.

The notation for the derivatives also holds for the utility function Ui. The

game Γ(S) is supermodular (respectively submodular) if and only if, ∀i ∈ N :

U ij
i (x) ≥ (≤)0 ∀x ∈ X, ∀j 6= i. (6)

I make the additional assumption that J(S) and its minors Jii(S) are generi-

cally non singular ∀S ∈ Rn×n.

2.3 Subgame perfect equilibrium of commitment

Suppose that the players can choose their own weights σij: they can therefore

make strategic commitments, since their choice is determined by the maximisation

of their utility function Ui(x|S), while their payoff is determined by their material

payoff Πi(x).

Definition 2.1. Let Γ = 〈N,X,Π〉 denote a game in normal form. A strategy

profile (x̄; S̄) ∈ X×Rn×n is a subgame perfect equilibrium of commitment (SPEC)

of Γ if and only if:

• x̄ ∈ X is a Nash equilibrium of Γ2(S̄),

• S̄ ∈ Rn×n is a Nash equilibrium of Γ1.

A SPEC is therefore a specific utility function (defined by the degree of inter-

dependence with the other players) and a strategy profile of the initial game such

that no player obtains a strictly higher material payoff by changing her strategic

commitment Si, i.e. there exists no game Γ2(Si; S̄−i) with Si 6= S̄i such that i is

better off at the Nash equilibrium of Γ2(Si; S̄−i) than at the Nash equilibrium of

Γ2(S̄). A SPEC therefore characterises a strategy profile (and underlying strate-

gic preferences) immune to individual deviations from the underlying strategic

preferences.
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2.4 Illustration

So as to illustrate this equilibrium notion, consider a game Γ = 〈{1, 2}, {R+}2,Π〉,
with:

Πi(x1, x2) = ay +
b

2
y2 − c

2
x2
i , a, c > 0, 4b < c, (7)

with y = (x1 + x2) if b ≥ 0 and y = min{(x1 + x2); |a/b|} if b < 0 (this last

condition ensures that the function ay + b
2
y2 is always increasing). Γ is a public

good game, in which each player chooses a level xi that generates a collective

benefit and an individual cost.

We associate to Γ a two-stage game Γ∗. In the second stage game Γ2(S), the

players maximise their utility functions Ui:

Ui(x1, x2|S) = σi1Π1(x1, x2) + σi2Π2(x1, x2), (8)

⇔Ui(x1, x2|S) = (σi1 + σi2)

[
ay +

b

2
y2

]
− c

2

[
σi1x

2
1 + σi2x

2
2

]
. (9)

We can easily check that σii = 0 cannot be a first stage equilibrium (if b > 0,

player i chooses xi → +∞ and gets her worst possible payoff; if b < 0, player

i chooses xi = |a/b| and supports all the costs). This means that each player

necessarily cares about her own payoff at the SPEC. We can now normalise σii to

1, ∀i ∈ N . The unique Nash equilibrium of Γ2(S) is then:

x̄i(S) =
a(1 + σij)

c− (2 + σ12 + σ21)b
, ∀i ∈ N. (10)

(10) gives the optimal effort of each player given the weights they attribute to

the other player within their utility function (we can verify that (x̄1 + x̄2) < |a/b|
when b < 0).

Suppose now that both players are able to directly choose those weights in a first

stage game Γ1 = 〈N,R2, V 〉, with Vi = Πi(x̄(S)) the indirect payoff function of

player i:

Vi(S) =
a2(2 + σ12 + σ21)((1− 2σ12 − σ2

12)c− (2 + σ12 + σ21)b)

2(c− (2 + σ12 + σ21)b)
. (11)
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We can then compute the Nash equilibrium of the first stage game:

σ̄ij =
c− 2b−

√
c(c− 4b)

2b
, ∀i ∈ N. (12)

We therefore obtain a unique4 SPEC (x̄; S̄) ∈ {R+}2 × R2:


x̄i =

2ab− c+
√
c(c− 4b)

2b
√
c(c− 4b)

, ∀i ∈ N,

σ̄ij
σ̄ii

=
c− 2b−

√
c(c− 4b)

2b
, ∀i ∈ N, j 6= i.

(13)

The interpretation of this equilibrium is the following: if the players can keep

their commitments (e.g. thanks to contracts, or if their utility function is the result

of an unconscious evolutionary process), then they should form interdependent

preferences and choose their strategy so as to maximise Ui(x) = Πi(x) +
σ̄ij
σ̄ii

Πj(x).

An interesting follow-up question would be to determine whether the players tend

to form cooperative (i.e. to choose σij > 0) or aggressive (σij < 0) preferences.

We can easily check that:

sign(σ̄ij) = sign(b). (14)

This means that the sign of b (whether the benefit function is concave

or convex, and therefore whether the game is submodular or supermodular)

determines the nature of the strategic preferences of both players. We can also

check that the equilibrium output x̄ will be higher than the Nash equilibrium if

and only if b > 0, i.e. when the game is supermodular, and that players form

cooperative preferences — the cooperation is however not full, since σ̄ij < 1.

With a convex benefit function (b > 0), the game is supermodular, both players

partially cooperate and reach a higher payoff than the Nash payoff. Conversely,

for a game with a concave benefit function (b < 0), the players will be more

competitive at the first stage equilibrium and will therefore get a lower outcome.

Indeed, in presence of strategic substitutes, each player has an incentive to

‘blackmail’ the other one — i.e. to unilaterally decrease her own output — in

order to force the other player to increase her output. Since both players have

4There is a continuum of first stage equilibria since σii has been normalised to 1, but the

SPEc is unique once the weight each player attributes to herself has been normalised.
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the same reasoning, they enter in a vicious circle and end up with a deteriorated

situation.

This illustration highlights the possible connection between supermodularity

and the endogenous formation of cooperative preferences. We can indeed find a

similar result within the literature on the indirect evolutionary approach: Bester

& Güth (1998) for instance argue on the one hand that altruism is evolutionary

stable in some games presenting strategic complementarities, while Bolle (2000)

and Possajennikov (2000) notice on the other hand that relaxing this assumption

will lead to the evolutionary stability of spite and anti-social motives.

3 Optimal preferences

I firstly introduce the notions of Stackelberg best reply and payoff functions, and

then determine the optimal weights σ̄ij.

3.1 Stackelberg best reply and payoff functions

Before presenting the main results, I need to introduce the notion of Stackelberg best

reply function and Stackelberg payoff function. The Stackelberg best reply function

of player j is her best reply to the strategy of player i, knowing that the players

k 6= i, j are maximising their utility: it is the reply function a Stackelberg leader

would use so as to predict the behaviour of her followers. The Stackelberg payoff

function is simply the material payoff of player i that integrates the Stackelberg

best reply functions of the other players, and whose maximisation determines the

strategy chosen by a Stackelberg leader with (n− 1) followers.

Definition 3.1. Let Γ2(S)\x̂i = 〈N \i,X−i, U−i(.|xi = x̂i)〉 denote the game Γ2(S)

when i’s strategy is fixed to x̂i. The function fj : Xi×S 7→ Xj is the Stackelberg best

reply function of player j for S ∈ Rn×n if and only if {f1(x̂i|S); . . . ; fn(x̂i|S)} ∈
X−i is a Nash equilibrium of Γ2(S) \ x̂i.
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The set of Stackelberg best reply functions for players j 6= i corresponds there-

fore to their optimal choice (i.e. a Nash equilibrium) for a given strategy of i.

Note that the existence of a Nash equilibrium in Γ2(S) implies that the best reply

functions fj(.|S) are defined on a non empty subset of Xi. Indeed, if it was not

the case, then a second stage equilibrium could not exist, since x̄ ∈ X is a Nash

equilibrium of Γ2(S) if and only if:

fj(x̄i|S) = x̄j, ∀i, j ∈ N. (15)

For the same reasons motivating the assumption that each second stage

game has a unique Nash equilibrium, I assume that there always exists a unique

function fj : Xi × S 7→ Xj, ∀i, j ∈ N . The reasoning supporting proposition 1

can indeed easily be extended to a more general framework with several functions

fj (their existence being ensured by the existence of a Nash equilibrium in mixed

strategies for each game Γ2(S)), and the conditions establishing the relation

between supermodularity and the formation of cooperative preferences would

typically imply the uniqueness of the Stackelberg best reply function.

I can now define the Stackelberg function:

Definition 3.2. Let fj(xi|S) denote the Stackelberg best reply function of player

j for S. The function Ψi : Xi × S 7→ R is the Stackelberg function of player i if

and only if:

Ψi(xi|S) = Πi(f1(xi|S); . . . ; fn(xi|S)). (16)

Ψi(xi|S) corresponds to the material payoff of player i when she anticipates

the best reply of the other players (given their utility functions U(x|S)). It is the

function that a player would maximise if she had a first mover advantage.

As a preparation for the propositions, I show the following lemmas (the proofs

are provided in appendix):
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Lemma 1. Let fj(xi|S) be the Stackelberg best reply function of player j for S.

We have:

∂fj
∂xi

(xi|S) =
C
J(S)
ij

C
J(S)
ii

, (17)

with C
J(S)
ij the (i; j) cofactor of J(S), the Jacobian matrix of the marginal utility

functions U i
i (x|S), evaluated at the Nash equilibrium of Γ2(S).

Lemma 2. If ∀j, k 6= i:

(i) |U ii
i (x̄(S)|S)| > (n− 1)

∣∣U ij
i (x̄(S)|S)

∣∣,
(ii)

∣∣U ik
i (x̄(S)|S)

∣∣ < (n− 1)
∣∣U ij

i (x̄(S)|S)
∣∣,

then:

sign

(
∂fj
∂xi

(xi|S)

)
= sign

(
U ji
j (x̄(S)|S)

)
, ∀j 6= i. (18)

Lemma 3. If ∀j, k 6= i:

(i) |U ii
i (x̄(S)|S)| > (n− 1)

∣∣U ij
i (x̄(S)|S)

∣∣,
(ii)

∣∣U ik
i (x̄(S)|S)

∣∣ < (n− 1)
∣∣U ij

i (x̄(S)|S)
∣∣,

then:

∑
j 6=i

∣∣∣CJ(S)
ij

∣∣∣ < ∣∣∣CJ(S)
ii

∣∣∣ , (19)

⇐⇒
∑
j 6=i

∣∣∣∣∂fj∂xi

∣∣∣∣ < 1. (20)
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Lemma 1 gives the expression of the first order derivative of the Stackelberg

best reply function fj(xi) as a function of the second order derivatives U ij
i . We

can then show that the sign of
∂fj
∂xi

is the same than U ji
j (x̄(S)|S), when conditions

(i) and (ii) are verified (lemma 2). Condition (i) means that j’s impact on i’s

marginal utility is relatively low compared to i’s impact on her own marginal

utility (this is a strong form of row diagonal dominance — instead of asking ),

and (ii) the cross derivatives U ij
i and U ik

i are relatively ‘close’ in absolute value

∀j, k 6= i, i.e. there is no player j with a significantly higher importance from

i’s perspective. Those conditions are typically verified for public good games

and two-player games with |U ii
i | >

∣∣U ij
i

∣∣. Lemma 3 states that, under the same

conditions, the sum of the (i; j) cofactors, ∀j 6= i, is lower than the principal

minor of J(S).

We now determine the expression of the weights σ̄ij at the Nash equilibrium

of Γ1, and determine their sign: we will then be able to define a class of games

in which players endogenously adopt cooperative preferences, or conversely try to

maximise the difference between their payoff and the payoff of their opponents.

3.2 Optimal weights

Let Γ = 〈N,X,Π〉 be a game in normal form, and Γ∗ its associated two-stage

game. We firstly determine the conditions under which it is rational for all the

players to choose null weights σ̄ij, i 6= j, i.e. all the players prefer to maximise

their material payoff rather than adopting interdependent preferences:

Proposition 1. Let x̄ ∈ X be the Nash equilibrium of Γ, and In a matrix in Rn×n

such that σij 6= 0 iff i = j. (x̄; In) is a SPEC of Γ if and only if:

(i) either Ψi
i = 0, ∀i ∈ N ,

(ii) or Πj
i (x̄) = 0, ∀j ∈ N , and ∀i such that Ψi

i 6= 0

Proposition 1 states that, unless the interests of the players are perfectly aligned

or opposed (in the sense that maximising one’s payoff implies also maximising or
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minimising the payoffs of all the other players — as implied by condition (i)), or

that no-one can benefit from a first mover advantage (condition (ii)), there is at

least one player who will be better off by choosing a non null weight σij. The

intuition behind this result is the following: in a strategic interaction with payoff

maximisers, the highest payoff I can achieve is my Stackelberg payoff, i.e. the

payoff I would get if I was able to play before the others (suppose here for the

sake of argument that a player with a first mover advantage can always obtain

the Nash payoff — this means for instance that, in a zero-sum game, a Stackel-

berg leader could play in mixed strategies). If I have the opportunity to choose

strategic preferences different from my material payoff, then I can manipulate the

Nash equilibrium of the game such that the strategy that satisfies my strategic

preferences actually satisfies my Stackelberg payoff, i.e. such that the Nash equi-

librium with strategic preferences corresponds to the Stackelberg equilibrium with

my initial material payoff.

We can now provide the expression of the optimal weights:

Proposition 2. (x̄; S̄) is a SPEC of Γ if, ∀i, j ∈ N :

σ̄ij =
Πj
i

Πi
j

(x̄)
∂fj
∂xi

(x̄i|S̄). (21)

Proposition 2 gives the expression of the optimal weights a player i should

give to the other players so as to maximise her material payoff (we can check

that i necessarily maximises her own payoff, since σ̄ii = 1). This condition is not

necessary, since — as shown in the proof — the vector S̄i is determined by a single

equation. Although other specifications were possible, I chose here to define σ̄ij
as a function of the Stackelberg best reply of player j when i is the leader, since

it captures the idea that the attitude of i towards j fundamentally depends on

the way j reacts when i changes her strategy.

The weights σ̄ij are therefore chosen such that satisfying my strategic prefer-

ences is formally equivalent to maximising my Stackelberg function. It can then

be interesting to determine under which conditions the choice of one’s preferences

implies a more cooperative or competitive behaviour with the other players, i.e.
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to determine the sign of the optimal weights σ̄ij. Thanks to lemmas 1 and 2, we

can see that the sign of σ̄ij is determined by the sign of U ji
j (they have the same

sign if and only if sign(Πj
i (x̄(S̄))) = sign(Πi

j(x̄(S̄))), which is for instance the case

in public good games or Cournot oligopoly). It means that player i will cooperate

with player j if and only if there is a strategic complementarity between i and j in

the game Γ2(S̄). This implies in particular that, in supermodular games, players

have an interest in presenting cooperative preferences, since this will generate a

positive best reply from the other players: cooperating is therefore beneficial be-

cause it gives an incentive to other players to reciprocate. On the contrary, games

with strategic substitutes will generate more competitive behaviours, the players

having an incentive in maximising the difference between the payoffs rather than

their sum.

Note however that proposition 2, lemma 1 and lemma 2 are not sufficient to ensure

that players will necessarily cooperate if the initial game Γ is supermodular: the

condition holds only for the resulting game Γ2(S̄). It is in fact not impossible that

there exists a SPEC in a supermodular game such that all players present negative

σij (it can be consistent if the resulting game is submodular): there can therefore

exist Nash equilibria in the first stage game that create an artificial competition

between the players, although the initial game was supermodular. We can how-

ever notice that the only reason for i to compete with j is that j competes at

equilibrium with i: it seems quite unlikely that players will effectively converge to

such an equilibrium.

A corollary of those results is that, if only one player i is able to make strategic

commitments (as in a game with a Stackelberg leader), then the strategy cho-

sen by this Stackelberg leader would correspond to the satisfaction of cooperative

(resp. competitive) preferences in supermodular (submodular) games: Stackelberg

leadership therefore leads to a greater cooperation in supermodular games, and a

greater competition in submodular games.

I now show that the connection between the supermodularity of the initial game

Γ and positive σ̄ij holds for symmetric games.

3.3 Symmetric games

I focus here on symmetric games to establish a direct connection between super-

modularity and the choice of cooperative preferences at the equilibrium of Γ1.
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Definition 3.3. A game in normal form Γ = 〈N,X,Π〉 is symmetric if and only

if:

• Xi = Xj, ∀i, j ∈ N ,

• for any permutation s : N 7→ N :

Πi(x1; . . . ;xi; . . . ;xn) = Πs(i)(xs(1); . . . ;xs(i); . . . ;xs(n)). (22)

We have the following proposition (proof in appendix):

Proposition 3. Let Γ be a symmetric game. If ∀j, k 6= i:

(i) |U ii
i | > (n− 1)

∣∣U ij
i

∣∣,
(ii)

∣∣U ik
i

∣∣ < (n− 1)
∣∣U ij

i

∣∣,
(iii)

∣∣Πji
j

∣∣ ≥ ∣∣Πji
k

∣∣,
then a symmetric SPEC (x̄; S̄) verifies:

sign (σ̄ij) = sign
(
Πji
j (x̄(S))

)
, ∀j 6= i. (23)

Proposition 3 states that the connection between supermodularity of the initial

game and cooperation in second stage game is true for symmetric n-player games,

under the assumptions (i) and (ii) introduced in the previous section, and under

the additional assumption that the second order derivative Πji
k (for different i, j

and k) is relatively low in absolute value. This result means that, in a symmetric

game, player i will choose to put a positive weight on the material payoff of player

j if and only if Πji
j is positive in the initial game: supermodular games will then

endogenously generate cooperative preferences. The cooperation is not full, since

lemma 3 implies that:

∑
j 6=i

|σ̄ij| < 1, ∀i ∈ N. (24)
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This means that player i will never assign a higher weight to the set of the

other players compared to her own material payoff in her preferences. On the

contrary, games with strategic substitutes will exacerbate the competition between

the players and lead to more aggressive behaviours.

4 Application to climate change negotiations

Within the present framework, we can state — paraphrasing Lucas — that given

that individual preferences consist of optimal decision rules in the first stage game,

and that optimal decision rules vary systematically with changes in the structure

of the strategic environment, then any change in policy will systematically alter

individual preferences. The design of public policies should therefore integrate

the possibility that the players will adapt their preferences. Propositions 2 and 3

imply that, in games characterised by strategic substituability, such as public good

games with a concave benefit function, the players have an incentive to become

more aggressive: it is therefore possible that the total contribution progressively

decreases with the emergence of more competitive preferences, leading in fine to

a deteriorated situation (worse than the initial Nash equilibrium). An interesting

policy recommendation in this kind of situation would be to change the incentives

of the initial game such that the players are not tempted any more to adopt

such preferences. A solution to promote cooperation would then be to transform

the game into one presenting strategic complementarities: this should indeed

endogenously lead to more cooperative behaviours.

The aim of this section is to illustrate this point by studying climate change

negotiations: we can see that the different solutions suggested up to now consist

in designing economic incentives to reduce greenhouse gas emissions (with for in-

stance the Kyoto Protocol or the European Union Emissions Trading Scheme).

Those approaches however keep the strategic substituability of the initial game of

pollution abatement, since there is a perfect substituability between the emissions

of two countries i and j. This may in turn give an incentive to the countries

to adopt more aggressive positions in international negotiations: they can indeed

threaten the other countries to lower their contribution, so as to force them to

provide a greater effort. We can indeed reasonably assume that the countries are

able to make strategic commitments, since international negotiations are not only
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a matter of economic interest, but also of political influence. Efficient international

agreements should therefore build a system of incentives that give a coordination

structure to the game of pollution abatement, by relying for instance on the adop-

tion of technological standards and trade sanctions to punish the countries not

respecting the agreement (this argument is in line with the recommendations of

Barrett (2003, 2007) concerning the design of international agreements).

4.1 Model

Consider two identical countries i ∈ N , in which a firm produces and sells a con-

sumption good in quantity qi. There is no international trade, and the national

firm takes the national price pi as given. The production of the final good gener-

ates a pollution D(q1 + q2) that negatively affects both countries. Each country

can tax the production of its firm (tax rate of τi per unit of production), and is

therefore able to indirectly set its level of production. The countries are facing a

public good game: they indeed choose their level of production (via their national

regulation) so as to maximise their national payoff Πi, knowing that this generates

a national gain (in terms of surplus) but a global loss (pollution). This leads in

turn to an over-production and a Pareto-dominated Nash equilibrium.

Suppose now that the countries want to implement an international agreement

in order to maximise the global payoff Π = Π1 + Π2, knowing that — once the

agreement is signed — both countries will choose their level of production so as

to maximise Πi. In this model, firms are in perfect competition, the two coun-

tries play a game, and they try to reach an agreement from the social planner’s

perspective. The objective of this illustration is to compare several alternatives

of international systems and to argue in favour of systems creating a game of co-

ordination between the countries rather than keeping the strategic substituability

of the initial game. For convenience, I assume that the countries can implement

an international tax system such that no fraud is possible, and the funds are col-

lected by an international fund (we can assume for instance that those funds are

then used to indemnify the victims of the pollution). This model offers a very

simple picture of the current negotiations on climate change: the national pro-

ductions generate the emission of greenhouse gases, and the different countries try

to establish an international system so as to reduce the environmental damage of

their production. The international fund in the model can be assimilated to the

Green Climate Fund, which is funded by the developed countries emitting a higher
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quantity of greenhouse gases. I suggest now comparing two main scenarios:

• International carbon tax (ICT): each country must pay a constant tax tICT
per unit of pollution emitted

• Trade sanction (TS): the country with the less demanding regulation must

pay a tax tTS(τ1; τ2) to the other country per unit of pollution emitted; this

tax depends on the difference between national taxes

ICT seems to correspond to the ideal solution from an economic perspective:

the tax internalises the negative externality of the production, and can be defined

so as to reach a Pareto optimal outcome. In the second scenario, although there

is no international trade, the situation can be related to a mechanism of trade

sanction: if a country is in a situation of environmental dumping, then its partners

may impose additional taxes on the goods exported by this country (such that no

firm can be eventually advantaged by a less restricting regulation). The situation

here is relatively similar, since the country directly pays to the other an additional

tax in case of environmental dumping. Formally, the material payoff of country i

is the following:

Πi(q|ICT ) = CSi(qi) + πi(qi) + τiqi −D(q1 + q2)− tICT qi, (25)

Πi(q|TS) = CSi(qi) + πi(qi) + τiqi −D(q1 + q2)− tTS(τj − τi)qi, (26)

with CSi the consumer surplus and πi the profit of the firm from country i.

Assume a linear demand, convex costs for the firms, and a convex damage function:

pi = a− bqi, (27)

πi = (pi − τi)qi −
c

2
q2
i , (28)

D(q) =
δ

2
(q1 + q2)2. (29)

Since the firms are in perfect competition on each national market, we can easily

compute the consumer surplus CSi, as well as the production qi as a function of

τi:
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CSi(qi) =
b

2
q2
i , (30)

CSi(qi) + πi(qi) + τiqi = aqi −
b+ c

2
q2
i , (31)

with qi =
a− τi
b+ c

. (32)

Without international agreement, the material payoff of each country is there-

fore:

Πi(q) = aqi −
b+ c

2
q2
i −

δ

2
(q1 + q2)2, (33)

and the Nash equilibrium, ∀i ∈ N :


q̄i =

a

b+ c+ 2δ
,

τ̄i =
2aδ

b+ c+ 2δ
.

(34)

Both countries are therefore producing too much, since the social optimum

(maximising the sum of material payoff) is, ∀i ∈ N :


q̃i =

a

b+ c+ 4δ
,

τ̃i =
4aδ

b+ c+ 4δ
.

(35)

We now compare the two alternatives in a ’naive’ scenario, i.e. if the countries

do not anticipate (or simply cannot make) strategic commitments. We will then

study the case of a ’sophisticated’ scenario in which countries are able to make

strategic commitments (the appropriate equilibrium solution concept would then

be a SPEC and not the Nash equilibrium characterised above)

4.2 Naive scenario

Consider firstly that both countries implement ICT: they therefore pay to a third

party a tax tICT per unit of pollution. Their material payoff is now:
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Πi(q) = aqi −
b+ c

2
q2
i −

δ

2
(q1 + q2)2 − tICT qi. (36)

Suppose that the countries agree on a naive tax, i.e. a tax that does not take

into account the possibility that players may make strategic commitments, once

the agreement is signed. In the absence of strategic commitment, the level of the

tax that allows the countries to reach the social optimum (35) is:

tICT,n =
2aδ

b+ c+ 4δ
. (37)

If the countries agree to implement this international tax, then they have the

adequate incentives to reach the optimal production q̃, given their initial prefer-

ences.

Consider now the scenario TS. Assume that τi < τj: the country i (with the low-

est national tax) must pay a tax tTS(τj − τi) per unit of pollution, and country j

collects this tax within the limits of its own production. The residual is collected

by the international organisation5. Within this scenario, the material payoff of

country i is, ∀i ∈ N :

Πi(q) = aqi −
b+ c

2
q2
i −

δ

2
(q1 + q2)2 − tTS(τj − τi)qi, (38)

⇐⇒ Πi(q) = aqi −
b+ c

2
q2
i −

δ

2
(q1 + q2)2 − tTS(b+ c)(qi − qj)qi. (39)

As previously, consider that the countries agree on a naive tax rate, that does

not take into account the possibility for the countries to make strategic commit-

ments ex post. The expected Nash equilibrium if scenario TS is chosen is then:

qi =
a

(b+ c)(1 + tTS) + 2δ
, ∀i ∈ N, (40)

τi =
a(2δ + (b+ c)tTS)

2δ + (b+ c)(1 + tTS)
, ∀i ∈ N. (41)

5I adopt this specific framework to be consistent with a scenario of trade sanctions, in partic-

ular if one country is bigger than the other: the funds collected by j must indeed be in a scale

consistent with its own production.
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So as to reach the social optimum (35), we should therefore implement the

following tax rate:

tTS =
2δ

b+ c
. (42)

In a naive scenario, both taxation systems are strictly equivalent, since the

adequate definition of the taxation levels allow the countries to reach the social

optimum.

4.3 Sophisticated scenario

Suppose now that both countries can make strategic commitments (similarly to

the Greek case discussed previously, a possible way to implement this kind of

commitment would be to form electoral promises, knowing that not respecting

them may induce a sanction from the voters during the forthcoming elections).

The game faced by the countries is a submodular game (public good game with a

concave benefit function). This means that the players are likely to form aggressive

preferences and choose negative weights σij. The unique SPEC of the game is


σ̄ij =

√
(b+ c)(b+ c+ 4δ)− b− c− 2δ

2δ
,

q̄i =
a√

(b+ c)(b+ c+ 4δ)
.

(43)

Both countries try to get the upper hand on the other, and end up in fine with a

deteriorated situation, in which they both produce more than at Nash equilibrium.

Consider now that both countries agree on ICT. We can now notice that this

policy keeps the submodularity of the initial game: a player can therefore benefit

from a strategic commitment such that she eventually produces q̂ > q̃, since the

best reply of the other country will be to increase her effort (by reducing her pro-

duction). In particular, since the implementation of a tax per unit of production

does not affect the cross derivatives Πij
i , the players will choose the exact same

weights as previously, and the tax (37) will not give the adequate incentives to

reach the social optimum.
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Suppose therefore that the countries anticipate that they will make strategic com-

mitments once the agreement is signed. The unique SPEC is then:


σ̄ij =

√
(b+ c)(b+ c+ 4δ)− b− c− 2δ

2δ
,

q̄i =
(a− tICT )(b+ c+ δ)

(b+ c)2 + 2δ(b+ c)
.

(44)

The optimal tax rate is therefore:

t∗ICT =
2aδ(1− σ̄)

b+ c+ 4δ
, (45)

⇔ t∗ICT = a

[
1−

√
b+ c

b+ c+ 4δ

]
, (46)

which is strictly higher than the naive tax tICT,n. An international agreement

must therefore take into account the possibility ex post for the countries to benefit

from strategic commitments. The question that arises then is to know whether

the countries are likely to make the optimal strategic commitment: a crucial

condition for choosing an optimal commitment is indeed that we anticipate that

the others know that we will respect our commitment. If we do not believe that

the other is sufficiently rational to play the first stage game, or alternatively that

preferences are not directly chosen, but are the result of evolutionary pressures,

then it is not certain that t∗ICT will be well-suited. In addition of preventing

the players from adopting competitive strategic commitments, we should also

implement a tax system such that the optimal policy does not depend on the level

of σij, on which the social planner has no direct control.

Although an international tax may lead in fine to the social optimum, we can

notice that the players necessarily adopt aggressive preferences at equilibrium

— which may be an undesirable property (in a non-welfarist perspective) of

international relations. Furthermore, such a system is highly sensitive to the

propensity of the players to respect their optimal commitment: if one player does

not keep her optimal commitment, either because she is not rational enough,

or because she does not think the other will keep her commitment, or because

preferences evolve over time via an evolutionary dynamics, then the tax will

probably not be well adapted.
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Consider finally the adoption of TS when players are able able to keep their

commitments. We can notice that the game with the payoff functions described in

(39) is supermodular if and only if tTS >
δ
b+c

. This is for instance the case for the

naive tax rate (42): the game with trade sanctions in the naive scenario is therefore

supermodular, and should lead to the formation of cooperative preferences. The

weights at the SPEC are indeed, ∀i ∈ N :

σ̄ij =

√
(b+ c)2(tTS + 1)2 + 4δ(b+ c)(t+ 1)− (b+ c)(tTS + 1)− 2δ

2δ
, (47)

which are well positive if and only if tTS >
δ
b+c

. We saw that the naive tax in

the case of scenario ICT was not adapted when players were making a strategic

commitment (the optimal level of tax indeed directly depended on the level of

σij). A crucial difference between scenarios ICT and TS is that the naive tax

implemented with TS still remains optimal at the SPEC. We can indeed show

that the level of tax tTS that maximises social welfare does not depend on σij
when σ12 = σ21 = σ (this condition is verified in the present game, since the

game is symmetric and has a unique SPEC). We have indeed in this situation the

optimal production for i:

qi =
a

(b+ c)(1 + tTS(1− σ)) + 2δ(1 + σ)
, (48)

which is equal to the social optimum q̃ if and only if:

tTS =
2δ

b+ c
. (49)

The symmetry of the game can help the countries to tackle the two issues

faced in scenario ICT, (i) that countries were likely to adopt aggressive pref-

erences, and (ii) that, from a more practical perspective, the level of the tax

depended on the likelihood for both countries to keep their optimal commitment.

Firstly, adopting a mechanism of trade sanctions is likely to generate cooperative

preferences between countries, since their interests are now aligned: if a country

increases its level of effort (by increasing τi, and therefore diminishing qi) then

the cost is shared between the countries. The country with the lower effort

must indeed now pay a compensation to the other country, and has now a new
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incentive to increase its own effort: in addition to diminishing the environmental

damage, the country will also stop paying the other country. Secondly, as

long as the preferences of the country evolve in a similar way (and therefore

σ12 = σ12), the tax rate tTS given by (42) remains optimal over time. It is

therefore possible to implement a naive tax rate, since this level of taxation

will still be optimal ex post, once the countries have made symmetric commitments.

International agreements based on a mechanism of trade sanctions rather than

an international tax are more likely to succeed, since they align the interests of the

different countries: since the game is supermodular (both countries indeed know

that increasing one’s effort will increase the incentives for the other to increase

its own effort), cooperative behaviours are likely to emerge, unlike with scenario

ICT, in which the initial submodularity of the game is preserved, leading to the

emergence of aggressive behaviours. We can indeed notice that the weights σ̄ij
chosen at the SPEC are increasing with tTS, and that limtTS→+∞ σ̄ij = 1: this

means that by increasing the level of sanction, the players will naturally converge

to cooperative preferences and directly maximise the global welfare.

A last interesting property of scenario TS is that, at a symmetric equilibrium,

there is no transfer between the countries or with the international fund (both

countries have indeed the same level of production). While the collect of the tax

with scenario ICT is likely to generate additional costs, it is possible to achieve the

same results in terms of individual incentives without having to make any transfer

between countries.

5 Conclusion

It is generally implicitly assumed that, so as to get the highest level of payoff,

players should choose the strategy that maximises their payoff: however, payoff-

maximising behaviours are generally indirectly self-defeating, suggesting that ra-

tional players should be able to form strategic preferences, such that the satisfaction

of those preferences leads in fine to an equilibrium with a higher material payoff

(see (Parfit, 1984, 17-19) for a detailed argument supporting the idea of rational

irrationality). The analysis developed in this paper provides a formal framework to

study the choice of such strategic preferences. I identified the optimal weights each

player should assign to the others in her utility function, and then the conditions
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under which this process could lead to the formation of cooperative or competi-

tive preferences. I highlighted a strong connection between supermodularity and

the emergence of cooperative preferences, and then discussed the implications in

terms of policy design. I argued that the efficient design of public policies should

take into account the possible change in individual preferences induced by the

policy, and suggested that public policies should privilege incentives that create

a coordination game between the players and cut the possible submodularity of

the initial game (as in climate change negotiations): this type of approach may

indeed facilitate the formation of cooperative preferences, and hence facilitate the

achievement of the policy objective.
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Bester, H. & Güth, W. (1998). “Is Altruism Evolutionary Stable?”. Journal of

Economic Behavior and Organisation, 34, 211–221.

Bolle, F. (2000). “Is Altruism Evolutionary Stable? And Envy and Malevolence? -
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A Lemma 1

We show that:

∂fj
∂xi

(xi|S) =
C
J(S)
ij

C
J(S)
ii

, (50)

with fj(xi|S) the Stackelberg best reply function of player j for S, C
J(S)
ij

the (i; j) cofactor of J(S), the Jacobian matrix of the marginal utility functions

U i
i (x|S), evaluated at the Nash equilibrium of Γ2(S).

Consider that all players but i are maximizing their utility functions, i.e. that they

play their best reply strategy according to xi; if player i changes her strategy such

that dxi 6= 0, then, we must verify, ∀j 6= i (the different functions are evaluated in

(f1(xi); . . . ; fn(xi)), i.e. when all players but i maximize their utility functions):

dU j
j (x) = 0, (51)

U ji
j dxi +

∑
k 6=i

U jk
j dxk = 0. (52)
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We can rewrite this system of linear equations with dx−i = t{dxk}k 6=i, and

Bi = t{ukik dxi}k 6=i:

Jii dx−i +Bi = 0. (53)

Since we assumed that Jii is non singular, the system (53) has a unique solution,

with J jii a (n − 1) × (n − 1) matrix identical to J except for the column made of

Ukj
k , ∀k 6= i which is replaced by −Bi, and without row i and column i:

dxj =

∣∣J jii∣∣
|Jii|

. (54)

We can develop the determinant of J jii (we suppose that i < j without loss of

generality) and add a row and a column at the ith place as follows:

∣∣∣J jii∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U11
1 . . . U1,i−1

1 0 U1,i+1
1 . . . U1,j−1

1 −U1,i
1 dxi Uk,j+1

k . . . U1n
1

. . . . . . . . . 0 . . . . . . . . . . . . . . . . . . . . .

U i−1,1
i−1 . . . U i−1,i−1

i−1 0 U i−1,i+1
i−1 . . . U i−1,j−1

i−1 −U i−1,i
i−1 dxi U i−1,j+1

i−1 . . . U i−1,n
i−1

0 . . . 0 1 0 . . . 0 0 0 . . . 0

U i+1,1
1 . . . U i+1,i−1

i+1 0 U i+1,i+1
i+1 . . . U i+1,j−1

i+1 −U i+1,i
i+1 dxi U i+1,j+1

i+1 . . . U i+1,n
i+1

. . . . . . . . . 0 . . . . . . . . . . . . . . . . . . . . .

Un1
n . . . Un,i−1

n 0 Un,i+1
n . . . Un,j−1

n −Unin dxi Un,j+1
n . . . Unnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(55)

We can then invert the ith with the jth column, and we obtain:

∣∣J jii∣∣ = (−1)i+j |Jij| dxi. (56)

We can now rewrite the relation (54):

dxj =
CJ
ij

CJ
ii

(f 1(xi); . . . ; fn(xi)) dxi. (57)

This last relation gives us the best reply of player j to a given variation of strat-

egy of player i in order to maximize her utility function when all the other players

but i are maximizing their utility functions. We can notice that the primitive of
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the best reply in terms of variation dxj is the Stackelberg best reply function of

player j, i.e. the strategy xj which maximizes the utility function Uj for a given

strategy of player i, knowing the best reply of the other players k 6= i, j. We have

therefore:

∂fj
∂xi

(xi|S) =
CJ
ij

CJ
ii

(f1(xi); . . . ; fn(xi)). (58)

B Lemma 2

We now prove that
∂fj
∂xi

has the same sign than U ji
j when the two following condi-

tions are verified:

(n− 1)
∣∣U ij

i

∣∣ < ∣∣U ii
i

∣∣ , ∀j 6= i, (59)

(n− 1)
∣∣U ij

i

∣∣ > ∣∣U ik
i

∣∣ , ∀j, k 6= i. (60)

Condition (59) implies a strong form of diagonal dominance for J , since it

means that the diagonal terms are all significantly greater than all the off-diagonal

terms (this condition is identical to diagonal dominance if the off-diagonal terms

are identical). Condition (60) implies a similar condition, i.e. that the off-diagonal

terms are relatively close. In both situations, those conditions mean that there

is no player j who has a significantly higher importance for i compared to the

other players k. We can notice that the condition (60) has no sense when n = 2,

since there does not exist a k different from i and j. The condition (59) is then

sufficient.

We now determine the signs of CJ
ii and CJ

ij. Since J is diagonal dominant, we know

that Jii is also diagonal dominant. We also know that, at the Nash equilibrium of

Γ2(S), we have U ii
i (x̄(S)) < 0 ∀i ∈ N . We have therefore:

sign(CJ
ii) = (−1)n−1. (61)

We need now to determine the sign of CJ
ij. For clarity, we will illustrate our

demonstration by focusing on the case n = 4. We have the following matrix J :
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J =

U11
1 . . . U14

1

. . . . . .

U41
4 . . . U44

4

 (62)

Without loss of generality, suppose that i < j. We have:

CJ
ij = (−1)(i+j) |Jij| (63)

We now invert lines and columns in |Jij| such that the term U ji
j stand in the

first row and first column. This required (i + j − 3) operations: we indeed need

(j−1) operations to reach the first column and (i−2) operations to reach the first

line (we indeed deleted the ith row to obtain Jij, and we assumed that i < j). J ′ij
denote the matrix that results from those operations. We obtain:

CJ
ij = (−1)(i+j)(−1)(i+j−3)

∣∣J ′ij∣∣ , (64)

CJ
ij = −

∣∣J ′ij∣∣ . (65)

An interesting property of J ′ij is that its first principal minor is necessarily

composed by the second order derivatives Ukk
k , k 6= i, j. In the case of n = 4, we

have for instance:

J24 =

U11
1 U12

1 U13
1

U31
3 U32

3 U33
3

U41
4 U42

4 U43
4

 (66)

J ′24 =

U42
4 U41

4 U43
4

U12
1 U11

1 U13
1

U32
3 U31

3 U33
3

 (67)

It implies that the first principal minor is row-diagonal dominant. We now

operate on the columns of J ′ij in order to have (U ji
j ; 0; . . . ; 0) as a first row. We

obtain:
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|J ′24| =

∣∣∣∣∣∣∣∣
U42

4 0 0

U12
1 U11

1 −
U41
4

U42
4
U12

1 U13
1 −

U43
4

U42
4
U12

1

U32
3 U31

3 −
U41
4

U42
4
U32

3 U33
3 −

U43
4

U42
4
U32

3

∣∣∣∣∣∣∣∣ (68)

We can now check that, under the assumptions (59) and (60), the first principal

minor is still diagonal dominant, and the diagonal terms are still negative. We have

then:

sign(
∣∣J ′ij∣∣) = sign

(
U ji
j (−1)n−2

)
. (69)

We obtain:

sign(CJ
ij) = −sign(

∣∣J ′ij∣∣), (70)

sign(CJ
ij) = (−1)n−1sign(U ji

j ). (71)

We can now complete our proof and determine the sign of
∂fj
∂xi

=
CJ

ij

CJ
ii

:

sign

(
∂fj
∂xi

)
=
sign

(
CJ
ij

)
sign (CJ

ii)
, (72)

sign

(
∂fj
∂xi

)
= sign(U ji

j ). (73)

C Lemma 3

We now show that, under the same assumptions than lemma 2, we have

∑
j 6=i

∣∣∣CJ(S)
ij

∣∣∣ < ∣∣∣CJ(S)
ii

∣∣∣ , (74)

⇐⇒
∑
j 6=i

∣∣∣∣∂fj∂xi

∣∣∣∣ < 1. (75)

We know that:
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CJ
ii =

∑
k 6=i

Ukj
k C

Jii
kj , ∀j 6= i, (76)

CJ
ii =

∑
j 6=i

[
1

n− 1

∑
k 6=i

Ukj
k C

Jii
kj

]
, (77)

CJ
ij = −

∑
k 6=i

Uki
k C

Jii
kj (78)

Without loss of generality, suppose that CJ
ii is positive (which is true if n is

odd). We therefore have:

∣∣CJ
ii

∣∣ = CJ
ii, (79)∣∣CJ

ij

∣∣ =
∑
k 6=i

Uki
k C

Jii
kj . (80)

We therefore obtain:

∣∣CJ
ii

∣∣−∑
j 6=i

∣∣CJ
ij

∣∣ =
∑
j 6=i

∑
k 6=i

(
Ukj
k

n− 1
− Uki

k )CJii
kj . (81)

(74) is true if and only if:

∑
j 6=i

∑
k 6=i

(
Ukj
k

n− 1
− Uki

k )CJii
kj > 0. (82)

If we multiply by (n − 1) and divide on both sides by CJii
jj (negative by con-

struction, since we assumed CJ
jj > 0), we obtain:

∑
j 6=i

[
U jj
j − (n− 1)U ji

j +
∑
k 6=i,j

(Ukj
k − (n− 1)Uki

k )
CJii
kj

CJii
jj

]
< 0. (83)

We can now check that under conditions (i) and (ii), this condition is verified

(the second term is well negative, since
C

Jii
kj

C
Jii
jj

has the same sign than U jk
j by lemma

2). (74) is therefore true.
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D Proposition 1

We show that (x̄; In) is a SPEC of Γ if and only if:

(i) either ∀i, j ∈ N , Πj
i (x̄)Πi

j(x̄) = 0,

(ii) or ∀i, j ∈ N , i 6= j, Ψi
i(x̄) = 0,

with x̄ ∈ X the Nash equilibrium of Γ, and In a matrix in Rn×n such that

σij 6= 0 if and only if i = j.

∀S ∈ Rn×n, there exists a unique Nash equilibrium for Γ2(S) x̄ ∈ X that verifies,

∀i ∈ N :

U i
i (x̄|S) = 0, (84)∑

j∈N

σijΠ
i
j(x̄) = 0. (85)

By definition of the Stackelberg best reply function, the indirect payoff function

Vi : S 7→ R can be rewritten as follows:

Vi(S) = Πi(x̄(S)), (86)

Vi(S) = Πi(f1(x̄i(S)); . . . ; x̄i(S); . . . ; fn(x̄i(S))), (87)

Vi(S) = Ψi(x̄i|S). (88)

The relation (88) implies that, at the Nash equilibrium of Γ1, player i maximises

her Stackelberg payoff function when she maximises her indirect payoff Vi. We

must therefore verify, at the Nash equilibrium of Γ1:

∂Vi
∂σij

(S̄) = Ψi
i(x̄i|S̄)

∂x̄i
∂σij

= 0, ∀j ∈ N, (89)

i.e. either
∂x̄i
∂σij

(S̄) = 0, ∀j ∈ N, (90)

or Ψi
i(x̄i|S̄) = 0.. (91)
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If (90) is not true, then In is a first stage game equilibrium if and only if (91)

holds for x̄, the Nash equilibrium of Γ. We have therefore proven the condition

(ii) of proposition 1.

We now determine the conditions under which the conditions (90) holds. We

must therefore characterise x̄(S), the Nash equilibrium of Γ2(S). We identify the

best reply of player i, ∀i 6= j, when a player j unilaterally changes her strategy Sj.

We consider here the differential of U i
i , and look for the reactions dxi that verify

dU i
i (x̄) = 0, ∀i ∈ N . We have the following relations:

dU i
i (x̄) = 0, ∀i ∈ N, (92)∑

j∈N

[
U ij
i (x̄) dxj + Πi

j(x̄) dσij
]

= 0, ∀i ∈ N. (93)

We solve this system of linear equations in dxi:

U11
1 (x̄) . . . U1n

1 (x̄)

. . . . . .

Un1
n (x̄) . . . Unnn (x̄)


dx1

. . .

dxn

+


∑

j∈N Π1
j (x̄) dσ1j

. . .∑
j∈N Πn

j (x̄) dσnj

 = 0, (94)

J(S) dx+ dA = 0, (95)

with dx = t{dxi}i∈N the column vector of strategies’ variations; dA =
t{dAi}i∈N . We make the additional assumption that J(S) and its minors Jii(S)

are generically non singular ∀S ∈ Rn×n. The system (95) has therefore a unique

solution (for notational convenience, we do not mention on which set of parameters

S J is defined, unless a confusion is possible):

dxi =
|J i|
|J |

∀i ∈ N, (96)

with J i a n×n matrix identical to J , except for the ith column which is replaced

by − dA. We deduce the following relations:
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dxi = −
∑

k∈N C
J
ki dA

k

|J |
, (97)

=⇒ ∂x̄i
∂σik

(S) = − Πi
k

CJ
ii

|J |
(x̄(S)) ∀S ∈ Rn×n. (98)

We can therefore see the condition (90) implies:

Πi
k(x̄) = 0 ∀k ∈ N. (99)

This last condition means that the strategy profile that maximizes the utility

function Ui of player i also maximizes her own payoff Πi as well as the payoff of

all the other players j 6= i (or minimizes it). It means therefore that, if ∀i, k ∈ N ,

Πi
k(x̄) = 0 at Nash equilibrium, then (x̄; In) is a SPEC.

E Proposition 2

We prove here that S̄ is a Nash equilibrium of the first stage game Γ when:

σ̄ij =
Πj
i

Πi
j

(x̄)
∂fj
∂xi

(x̄i|S̄). (100)

We look for conditions under which (91) is verified at the first stage game

equilibrium. We can therefore rewrite the first order condition of the first stage

game equilibrium (89):

∑
j∈N

Πj
i

∂fj
∂xi

(x̄i(S)) = 0. (101)

Combining equations (85) and (101), we can obtain an expression of the pa-

rameters σij at equilibrium:

∑
j∈N

Πj
i

∂fj
∂xi

=
∑
j∈N

σijΠ
i
j. (102)
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We can then suggest the following specification for the first stage game equi-

librium:

σij =
Πj
i

Πi
j

∂fj
∂xi

. (103)

Note that, since we are maximising the Stackelberg function in the first stage

game Γ1, we only have n equations to determine the n2 parameters σij. Although

other specifications were possible, we chose here to define σij as a function of the

Stackelberg best reply of player j when i is the leader, since it captures the idea

that the behaviour of i towards j fundamentally depends on the way j reacts when

i changes her strategy.

F Proposition 3

We prove that, under the following assumptions:

(i) |U ii
i | > (n− 1)

∣∣U ij
i

∣∣,
(ii)

∣∣U ik
i

∣∣ < (n− 1)
∣∣U ij

i

∣∣,
(iii)

∣∣Πji
j

∣∣ ≥ ∣∣Πji
k

∣∣,
a symmetric SPEC (x̄; S̄) verifies:

sign (σ̄ij) = sign
(
Πji
j (x̄(S))

)
, ∀j 6= i. (104)

A symmetric SPEC implies that Πj
i (x̄(S̄)) = Πi

j(x̄(S̄)). The optimal weights

σ̄ij are therefore:

σ̄ij =
∂fj
∂xi

(x̄(S̄)). (105)

Lemma 3 ensures that, under conditions (i) and (ii), we have:

∑
j 6=i

|σ̄ij| < 1. (106)
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We can then easily deduce the following relation, when condition (iii) is verified:

∣∣Πij
i

∣∣ > ∣∣∣∣∣∑
k 6=i

σijΠ
ij
k

∣∣∣∣∣ , (107)

sign(U ij
i ) = sign(Πij

i ). (108)

By lemma 2, we know that σ̄ij has the same sign than U ji
j . We have therefore,

at a symmetric SPEC:

sign (σ̄ij) = sign
(
Πji
j (x̄(S))

)
, ∀j 6= i. (109)
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