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Abstract

Whereas the literature on mechanism design typically takes the view that a well-
designed social choice mechanism should ideally implement the outcome that is se-
lected when individuals report their preferences truthfully, this paper considers an
alternative metric to use in comparing alternative voting mechanisms, namely, the
proportion of the population which benefits from manipulation of the mechanism.
An important feature of the voting populations that we study is that some propor-
tion of the voters may be highly partisan, and will always vote for their preferred
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candidate, whereas the remaining voters may find that it is payoff-maximizing to
vote strategically. We study two notions of manipulation: Gibbard manipulations,
in which any voter who does not vote sincerely must prefer the outcome of the ma-
nipulated vote to the sincere voting outcome, and a new concept of manipulation,
Nash manipulations, which requires all voters to be choosing best responses to the
votes of the other candidate, and any candidate who does not vote for their pre-
ferred candidate must weakly prefer the manipulated outcome to the outcome which
would prevail if they voted sincerely. We observe that both notions of manipulation
lead to outcomes that are Pareto non-comparable with respect to the sincere voting
outcome, and we calculate exact minimum and maximum bounds on the number of
voters who benefit from strategic voting as a function of the number of voters, the
number of candidates, and the number of highly partisan voters. Subsequently, we
disaggregate the overall effect and calculate exact bounds for both the sincere and on
the strategic voting populations, which provides us with additional insight into how
these gains are shared. In some sense, our analysis can be viewed as a cautionary tale
against being overly focused on designing collective choice procedures which always
select the outcome which prevails when electors vote sincerely, because this may not
be an outcome that is particularly worth protecting. In effect, the plurality rule
becomes vulnerable to manipulation when it selects an outcome that is the preferred
outcome of only a minority of voters, but it is precisely in such circumstances that
manipulation leads to an outcome which is Pareto non-comparable to that selected
under sincere voting. A voting procedure with respect to which manipulations typi-
cally benefit a large proportion of the voting population might therefore be seen as
more desirable than those for which manipulations are typically only advantage a
narrow minority of citizens.

1 Introduction

Should you vote with your head or your heart? In tightly contested elections, this
is a question over which many voters agonize. Voting one’s conscience, even if this
is for a candidate with no realistic chance of winning, is commonly viewed as a
principled approach to the exercise of one of the most fundamental rights of citizens
in a democratic society: the right to participate in the election of members of the
country’s government. But voting one’s heart is not without risk: in jurisdictions
using the plurality rule, sincere voting often paves the way to the election of an
unpopular leader; if more voters were to cast their ballots strategically, this might
result in better outcomes. So should strategic voting be encouraged or deplored? This
question is the central focus of this paper. We are the first to show that it is possible
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to calculate exact upper and lower bounds on the proportion of the population which
benefits from manipulation of the voting procedure under the plurality rule; in many
settings it is a clear majority of voters who will we made better off. Our results also
highlight the impact of those voters who always vote sincerely on the distribution
of gains from strategic voting. Our analysis can consequently be interpreted as a
thought-randomized experiment: if in any particular population Nature randomly
assigns voters to either the set of strategic voters, or to the set of invariably sincere
voters, then the impact of strategic voting for any of the realized preference profiles
will fall between our minimum and maximum bounds.

Why is it important to take account of invariably sincere voters when studying the
impact of manipulations of the plurality voting procedure? Empirical investigations
of the prevalence of strategic voting suggest that in any given election the vast
majority of voters will vote for their preferred candidate (?, ?, ?). What is not
clear is whether it is strategic voters who are rare, or whether it is only in rare
circumstances that voters who prefer candidates who are certain to lose believe that
they can influence the outcome of the election by voting strategically (?, ?, ?). A
multitude of factors may in fact explain why some voters always vote for their most-
preferred candidate (or party). Voting strategically is often portrayed as equivalent
to telling a lie — indeed, social choice theorists refer to this as ‘misreporting your
preferences’ — and there is considerable experimental evidence (see, for example, ?,
?, ?) which suggests that a significant proportion of the population is lie-averse, and
will therefore almost certainly always vote sincerely.1 Moreover, many voters feel
tremendous party loyalty: the psychic costs of voting for any party (or candidate)
other than the party they love outweigh the gains that would accrue from blocking
the election of a party they intensely dislike (?, ? ?). Regardless of the underlying
explanation for the existence of invariably sincere voters, it is critical to take account

1At some level, this is somewhat surprising. Although there is a moral prohibition on lying,
philosophers agree that one cannot lie without asserting (verbally or otherwise) a false proposition
and no proposition can be asserted by casting a ballot. In general, on a Kantian view, an act
is obligatory if and only if it is always desirable that every person perform that action; if voting
strategically averts a worse outcome than would prevail if voters report their true preferences then
the categorical imperative is not violated by either sincere or strategic voting. In contrast, virtue
theorists would take the view that voters, regardless of their personal preferences, should always
cast their ballots for the candidate who would be preferred by a virtuous (that is, moral) voter.
What is less clear, however, is whether or not a virtuous voter would determine their preferred
candidate by taking account of the likelihood that a ballot cast for that candidate makes it more
or less likely that the candidate wins the election. In contrast, consequentialists (such as ?) argue
that citizens have a moral duty to vote strategically, when to fail to do so leads to an outcome that
is less preferred - either from the viewpoint of themselves as individuals, or for society as a whole.
In effect, it is sincere voting, and not strategic voting, that is the morally reprehensible choice.
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of the fact that such voters exist, as this is likely to shape the circumstances in which
strategic voters can manipulate outcomes. Below, we separately calculate exact
bounds on the gains and losses from manipulation for invariably sincere and strategic
voters, and show how the tightness of these bounds is affected by the proportion of
the voting population which always votes for its preferred candidate. ARE WE
GOING TO DO THIS??? In addition, we investigate how the existence of
sincere voters can resolve the problem of existence of a Nash equilibrium
of the voting game.

Whereas the literature on mechanism design typically takes the view that a well-
designed social choice mechanism should ideally implement the outcome that is se-
lected when individuals report their preferences truthfully, the approach taken in
this paper points to an alternative metric to use in comparing alternative voting
mechanisms, namely, the proportion of the population which benefits from manip-
ulation of the mechanism. There is good reason for wanting to design mechanisms
which encourage truthful reporting. As noted by ?, the manipulation of social deci-
sion procedures is a matter of concern if these procedures select an efficient outcome
when voters are truthful, but recommend an inefficient alternative when voters re-
port their preferences insincerely; much effort has consequently been directed to
designing strategy-proof mechanisms for collective choice. However, ever since the
seminal contributions of ? and ?, it has been well understood that the voting mecha-
nisms used in actual elections (and, in particular, the plurality or first-past-the-post
mechanism, which is by far the most widely used mechanism) are vulnerable to
manipulation SHOULD WE ALSO MENTION ARROW?. Given this fact,
our analysis suggests that it may be illuminating to compare alternative voting pro-
cedures with respect to the likelihood that a manipulation is to the benefit of a
majority of the voting population, or will lead to a different outcome on the Pareto
frontier rather than to a Pareto inefficient decision. In some sense, our analysis can
be viewed as a cautionary tale against being overly focussed on designing collective
choice procedures which always select the outcome which prevails when electors vote
sincerely, because this may not be an outcome that is particularly worth protecting.
In effect, the plurality rule becomes vulnerable to manipulation when it selects an
outcome that is the preferred outcome of only a minority of voters, but it is precisely
in such circumstances that manipulation leads to an outcome which is Pareto non-
comparable to that selected under sincere voting. A voting procedure with respect
to which manipulations typically benefit a large proportion of the voting population
might therefore be seen as more desirable than those for which manipulations are
typically only advantage a narrow minority of citizens.

The structure of this paper is as follows. In section 2, below, we first lay out
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our model, which extends the standard model of voting under the plurality rule to
include both strategic and invariably sincere voters. In section 3 we study the set of
outcomes which satisfy both the standard Gibbard-Satterthwaite definition of ma-
nipulation and are Nash equilibria of the voting game, and calculate exact minimum
and maximum bounds on the number of voters who benefit from strategic voting as
a function of the number of voters, the number of candidates, and the number of
invariably sincere voters. Subsequently, we disaggregate the overall effect and calcu-
late exact bounds for both the sincere and on the strategic voting populations, which
provides us with additional insight into how these gains are shared. In section 4 we
propose an alternative definition of manipulation, and study the bounds associated
with this approach. Section 5 concludes.

2 The Model

We consider a set-up that is, in most essentials, identical to classic political economy
models: a set of voters ranks a set of candidates, and the winning candidate is selected
using the plurality rule with alphabetical tie-break. We denote the set of candidates
by A = {a1, ..., am}, letting m denote the cardinality of this set; the set of voters is
denoted by N = {1, ..., n}, and has cardinality n. Unlike more traditional models,
however, we distinguish between two types of voters: those whose are willing to vote
strategically if they anticipate that this will lead to an outcome which they prefer
to that which would prevail if they were to vote for their preferred candidate, and
those who always vote sincerely. Denote, therefore, the set of (potentially) strategic
voters by S ⊆ N , and the cardinality of this set by s; the set of sincere voters is
consequently N\S, and has cardinality n − s. We assume that Nature determines
whether or not a voter is tactical or invariably sincere; note that whether or not
a tactical voter chooses, in equilibrium, to vote for a candidate who is not their
preferred leader depends upon the particular electoral environment.

The true preference profile of the voting population - that is, each voter’s ranking
of each of candidates in declining order of actual preference - is denoted by RN ; the
true preference ranking of the candidates by any individual voter i is denoted Ri.
The set of all possible preference profiles is RN . As strategic voters may choose to
report a ranking that does not correspond to their true preference profile, we denote
the preference profile which is constructed from the actual reports of each voter by
QN . As noted above, the winner of a given election is determined by application of
the plurality rule with alphabetical tie-break. That is, denoting by F

(
ai, Q

N
)

the set
of voters who rank ai ∈ A as their preferred candidate when the reported ranking is
QN , then for any ai, aj ∈ A, if F

(
ai, Q

N
)

= F
(
aj, Q

N
)

and F
(
ak, Q

N
)
< F

(
ai, Q

N
)
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for any k 6= i, j, then candidate i is selected as the victor if i < j. Let Pl(QN) denote
the outcome selected by the plurality voting process when the reported preference
profile is QN .

Below, we study Nash equilibrium outcomes of the voting game. As the set of
equilibrium outcomes typically depends on the set of strategic voters, we refer to
a Nash equilibrium outcome when the set of strategic voters is S as a S−strong
Nash equilibrium. In the tradition of Gibbard (1973) and Satterthewaite (1975), an
S−effective manipulation of RN is a profile QN such that (i) all players i ∈ S who
misreport their preferences prefer the outcome under QN to the outcome under RN ,
that is, Pl(QN) �i Pl(RN) for all i such that Qi 6= Ri, and (ii) all other players report
their preferences truthfully.2 We denote by N(S | RN) the set of S−Nash equilibrium
profiles that are S− effective manipulations of RN . Define N(RN) = ∪SN(S | RN),
that is, N(RN) is the set of outcomes which are S−Nash equilibrium outcomes
for at least some possible S. Note that althought the set of Nash equilibria of the
voting game is always non-empty - in particular, any combination of strategies which
involves more than the minimum plurality of voters voting for the same candidat is
a Nash equilibrium, as no individual voter is pivotal - but the intersection between
the set of Nash equilibria and manipulations of the sincere voting outcome which
satisfy the Gibbard-Satterthwaite manipulation criterion may be empty, i.e., if it is
not a best-response for strategic voters who do not benefit from the manipulation to
continue to report their true preferences given that other strategic voters have chosen
to misreport. In section ??, below, we study an example of a voting environment in
which this problem arises.

It will not typically be the case that all strategic voters will choose to manipulate
the sincere voting outcome, and so it also useful to identify preference profiles which
are vulnerable to manipulation. A preference profile RN ∈ LN is unstable if at
least one voter has an incentive to manipulate their report - that is, RN is unstable
if there is at least one player i for whom it is not beneficial to submit a truthful
report given that all other players are truthful. Notice that whether or not a given
preference profile is stable will typically depend on the set of strategic voters (and,
of course, on its complement - the set of invariably sincere voters). Define by P (S)
the set of S−unstable profiles of preferences, and let P = ∪SP (S), that is, the set

2Notice that the Gibbard-Satterthwaite definition of manipulation does not guarantee that all
strategic voters are reporting a preference ordering which is a best-response to the preference-
orderings reported by the other voters. In particular, strategic voters who are made worse off as a
result of a manipulation by other strategic voters are required to report their preferences honestly,
even if they would be able to obtain a better outcome by in turn manipulating (in the sense of
Gibbard-Satterthewaite) QN . The results presented in this paper are for S-Nash equilibria which
also satisfy the Gibbard-Satterthwaite definition of manipulation.
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of preference profiles that is S-unstable for at least some possible set S. Similarly,
let Z(S) ⊂ P (S) denote the subset of S−unstable profiles of preferences that admit
at least one S−effective manipulation that is a S− strong Nash equilibrium, and
let Z = ∪SZ(S), that is, Z is the set of S-unstable preference profiles admitting
an S-effective manipulation which is a S−strong Nash equilibrium for at least some
possible set S.

Finally, in the event that (some) strategic voters choose to misrepresent their
preferences at the strong Nash equilibrium, we need to be able to distinguish the
winners and losers as a result of this manipulation. Given RN ∈ N(S) and QN ∈
N(RN), E(RN , QN) is the set of voters - including those who vote sincerely - who
benefit from the manipulation from RN to QN .

3 Bounding The Proportion of Winners and Losers

In the Population

Our principal objective in this paper is to derive maximum and minimum bounds for
the proportion of citizens who benefit - or are adversely affected by - manipulation of
the reported preference profile. In this section we derive bounds for the population
as a whole; in the next sections, we derive bounds for the populations of strategic
and non-strategic voters. Our first step is to relate the set of voters who rank the
successful candidate, aj, first when the reported preference profile is QN and the
set of voters - including those who always vote sincerely - who benefit from the
manipulation QN , that is, the set E(RN , QN). This relationship, together with the
fact that under the plurality rule the floor on the number of voters who support the
winning candidate can be determined as the number of voters divided by the number
of candidates, helps us to start to calculate the number of winners and losers as a
result of a manipulation.

Lemma 1 Let RN ∈ P and QN be an effective manipulation of RN and suppose
that Pl(RN) = al and Pl(QN) = aj. Then F (aj, Q

N) ⊆ E(RN , QN), and therefore∣∣E(RN , QN)
∣∣ > n

m
.

Proof The first inclusion is an immediate consequence of the fact that QN is an
effective manipulation of RN ; the inequality follows as a result of the plurality rule.

Before stating our first substantive result we need to introduce some additional
notation. We denote by m∗(m,n, s) the minimum proportion of the population popu-
lation - that is, including both strategic and invariably-sincere voters - which benefits
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from strategic voting; M∗(m,n, s) denotes the maximum proportion of the popula-
tion which benefits from this behaviour. It is also useful to decompose the beneficial
(or adverse) impact of strategic voting on the populations of strategic and invariably
sincere voters. Thus we denote by m∗

1(m,n, s) and M∗
1 (m,n, s) the minimum and

maximum proportions of the strategic voting population which benefits from ma-
nipulation of the sincere voting outcome. Similarly, we denote by m∗

2(m,n, s) and
M∗

2 (m,n, s) the minimum and maximum proportions of the sincere voting population
which is made better off when strategic voters cast their ballots tactically.

Proposition ??, below, establishes an exact upper bound on the proportion of
the overall voting population which can benefit from an effective manipulation. Not
surprisingly, an effective manipulation cannot make everyone better off. However, in
large populations, with large numbers of candidates, the proportion which benefits
can be very high.

Proposition 2 In equilibrium, the maximum proportion of voters who benefit from
an effective manipulation, M∗(m,n, s), is equal to 1− 1

n

⌈
n
m

⌉
.

Before providing a proof of this proposition, it is useful to establish some inter-
mediate lemmata. The overall strategy of the proof is to first construct a (unstable)
preference profile for which there exists an effective manipulation which is also a
strong Nash equilibrium. By calculating the proportion of voters who benefit from
this manipulation, it follows that the upper bound on the number of voters bene-
fitting from an effective manipulation can be no less than this number. Then, in
the proof of the proposition, we calculate the minimum number of voters that are
adversely affected by any effective manipulation. Since the sum of these numbers
is equal to one, it follows that the upper bound which is calculated in proving the
lemma must be exact.

Lemma 3 For any number of voters, n, and any number of candidates, m, it is
possible to construct a preference profile RN ∈ Z and an manipulation QN which
belongs to the set of Nash equilibria N(RN) and such that

∣∣E(RN , QN)
∣∣ = n −

⌈
n
m

⌉
and Q−2 = R−2, that is, where the effective manipulation coincides with the true
preference profile except for the report of player 2.

Proof For any m,n, let q be the largest non-negative integer such that qm ≤ n
and then choose r ∈ {0, 1, ...,m− 1} so that n = qm + r. We now construct a RN

and QN which satisfy the statement of the lemma; note that the RN , QN which are
constructed for this purpose depend upon the particular values of q and r.
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Case 1 : r = 0. Consider a partition {N1, N2, ..., Nm} of N in m subsets such
that voter 2 belongs to N2. Notice that, by construction, each of these subsets is
comprised of the same number of voters, that is, for all k ∈ {1, 2, ...,m}, |Nk| = q.
Let RN be a profile such that

∀i ∈ N3, R
i = a3 and ∀i ∈ Nk, R

i = aka3 for k 6= 3

that is, the true preference profile is such that for all voters belonging to N3, candidate
a3 is ranked first (and all other candidates can be ranked in any order) whereas for
all other players in partition Nk, candidate ak is ranked first, candidate a3 is ranked
second (and all other candidates can be ranked in any order). We next construct
a manipulation, which is also a Nash equilibrium. Thus, consider the (mis)report
for player 2, Q2 = a3a2... so that QN = (Q2, R−2). Observe that Pl(RN) = a1,
whereas Pl(QN) = a3. Since there are now q + 1 voters who rank a3 as their
preferred candidate, Pl(QN) = a3. Moreover, since voter 2 (and, indeed, all voters
except those in partition N1) prefers a3 to a1, this misreport satisfies the requirement
of a manipulation - that is, any players mis-representing their preferences prefer
the outcome under QN to the outcome under RN . Moreover, QN is also a Nash
equilibrium voting profile - no voter who does not belong to N3 can change the
outcome of the voting process by mis-reporting their true preferences profile given
the reports of the other voters, no voter in N3 wishes to misreport, and there is no
alternative strategy which improves the payoff of voter 2.

Case 2 : q = 0. Note that this implies that n < m. Define the profile RN as
follows:

R1 = a2a1a3a4...aN (1)

and Ri = ai+1a1a2...aiai+2...aN for all i 6= 1. (2)

Observe that with this preference profile there are n candidates who receive one vote
when all voters report their preference profile sincerely, m−n candidates who receive
no votes, and Pl(RN) = a2. Now let Q2 = a1 and consider QN = (Q2, R−2). As
when all voters cast their ballots sincerely, no candidate receives more than one vote.
However, Pl(QN) = a1. Notice that, with the exception of voter 1, candidate a1
is preferred by all voters to candidate a2. As voter 2 prefers a1 to a2, and voter
2 is the only agent who is not voting sincerely, QN meets the requirements of a
manipulation. Moreover, QN is a Nash equilibrium: given that a1 is the second-
most-preferred outcome for all voters - including voter 1 - none of these other voters
can obtain an outcome they prefer to the outcome a1 by misreporting their true
preference profile, and therefore Ri is a best-response for player i to (Q2, R−i) for all
i 6= 2 and Q2 is a best response for player 2 to R−2.
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Case 3 : r ≥ 1 and q ≥ 1. We now allocate voters into blocks of either q
or q + 1 voters. Consider a partition {N1, N2, ..., Nm} of N into m subsets such
that voter 2 belongs to N3, |Nk| = q + 1 if k ∈ {2, 3, ..., r + 1} and |Nk| = q if
k ∈ {1, r + 2, r + 3, ...m}. Let RN be the profile defined by

∀i ∈ N1, R
i = a1a2...am (3)

∀i ∈ Nk, R
i = aka1a2...ak−1ak+1am for all k 6= 1. (4)

that is, the true preference profile is such that all voters in N1 rank a1 first (and all
other candidates in alphabetical order), whereas all other voters in Nk rank candidate
ak first, and candidate a1 second (and all other candidates in alphabetical order).
Observe that there are r partitions with q+1 voters, and that one of these partitions
is N2, so that Pl(RN) = a2. Now let Q2 = a1 and QN = (Q2, R−2). Notice that
Pl(QN) = a1, and that a1 is preferred by all voters, except for those in N2, to the
outcome under RN . QN therefore meets the requirements of a manipulation, as only
voter 2 misreports, and voter 2 prefers the outcome under QN to the outcome under
RN . Moreover, QN is a Nash equilibrium: for all voters in partitions Nk, k 6= 2, a1
is preferred to any outcome other than ak but by misreporting their preference they
cannot obtain ak and so voting ak is a best response to QN ; voters in N2 cannot
misreport and obtain a2, and a1 is voter 2’s best response to R−2. This completes
Case 3.

To complete the proof of the lemma, it suffices to observe that, in each case, the
only voters who do not benefit from the effective manipulation are those q voters
(or, in case 2, voter 1) whose preferred candidate is selected under sincere voting.
Consequently

∣∣E(RN , QN)
∣∣ = n−

⌈
n
m

⌉
.

It is now straightforward to extend this result to a setting in which some propor-
tion of voters are invariably sincere.

Lemma 4 For any number of voters, n, of candidates, m, and for any S ⊆ N , it is
possible to construct a preference profile RN ∈ Z(S) and an S−effective manipulation
QN such that QN ∈ N(S | RN) and such that

∣∣E(RN , QN)
∣∣ = n −

⌈
n
m

⌉
and Q−2 =

R−2, that is, where the S−effective manipulation coincides with the true preference
profile except for the report of player 2.

Proof Take RN and QN from Lemma ?? and rename the voters so that voter 2
belongs to S.

We can now prove our first Proposition, which follows straightforwardly from our
preceding lemmata.
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Proof of Proposition ??.
Renaming the voters such that 2 ∈ S, it follows from Lemma ?? that M∗(m,n, s) ≥

1− 1
n

⌈
n
m

⌉
. In addition, if Pl(RN) = aj, then

∣∣E(aj, R
N)

∣∣ ≥ ⌈
n
m

⌉
. This implies that at

least
⌈

n
m

⌉
voters suffer from manipulation if it happens. So n∗M∗(m,n, s) ≤ n−

⌈
n
m

⌉
.

Proposition ?? provides an exact upper bound on the number of individuals who
may, in equilibrium, benefit from an S-effective manipulation; in particular, when
the number of candidates is larger than the number of voters, this may be almost
the entirety of the population. Such a scenario might arise, for example, if a small
group of voters is tasked with selecting a successful applicant from a large pool of job
seekers. Strikingly, even when there are only two candidates, this upper bound never
falls below one half of the voting population. This result may nonetheless appear to
be of limited interest, because in any specific setting there is no reason to expect that
the actual preference profile will be similar to the particular preference profile used
to construct the proof. Rather, what may seem more pertinent is clearer insight into
the minimum proportion of the population which benefits from the manipulation of
the sincere voting outcome. This is the focus of our next Proposition.

Proposition 5 The minimum proportion of the population which benefits from an

effective manipulation, m∗(m,n, s), is equal to

{
1
n

+ 1
n

⌊
n
m

⌋
if s ≤ 2

⌊
n
m

⌋
+ 1

1
n

⌈
s
2

⌉
if s > 2

⌊
n
m

⌋
+ 1

As a first step towards establishing this result, we first establish a minor lemma.

Lemma 6 If the number of strategic voters s is greater than 2
⌊

n
m

⌋
+1, then s

2
> n−s

m−2
.

Proof Assuming that s ≥ 2
⌊

n
m

⌋
+ 2 we have that s

2
> n

m
. Cross-multiplying and

subtracting 2s from both sides, we observe that this is equivalent to n
m

> n−s
m−2

.

It is now possible to proceed to calculate the lower bound on the number of voters
who benefit from an S-effective manipulation.

Proof of Proposition ??. Assume that voter 2 belongs to the set of strategic
voters, S. We proceed in 2 cases:

Case 1: s ≤ 2
⌊

n
m

⌋
+ 1

Let RN ∈ N(S), and let QN be an S−effective manipulation of RN . Suppose that
Pl(RN) = al and Pl(QN) = aj. From Proposition ??, we have that

∣∣E(aj, Q
N)

∣∣ > n
m

.
From Lemma ??, we have that

∣∣E(RN , QN)
∣∣ ≥ 1+

⌊
n
m

⌋
. Consequently, m∗(m,n, s) ≥

1
n

+ 1
n

⌊
n
m

⌋
. We now show that there exist possible preference profiles for which
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m∗(m,n, s) ≤ 1
n

+ 1
n

⌊
n
m

⌋
. As above, let n = qm + r where q is the largest non-

negative integer such that qm ≤ n and then choose r so that n = qm + r.

Case 1.1 Let r = 0, and consider a partition {N1, N2, ..., Nm} of N into m subsets
with equal numbers of voters, i.e., such that |Nj| = q for all j = 1, ...,m. Without
loss of generality, assume that voter 2 ∈ N3 and, moreover, that the set of strategic
voters, less voter 2, are all members of N2 if there are no more than q + 1 strategic
voters, that is, S\{2} ⊂ N2 if |S| ≤ q+1, or alternatively they are all members of the
first two subsets, that is, N2 ⊂ S\{2} and S\{2} ⊂ N2 ∪N1 if q + 1 < |S| ≤ 2q + 1.
Now consider a possible true preference profile RN such that voters in N1 rank a1 first
and all other candidates in any order; voter 2 ranks a3 first, a2 second, and all other
candidates in any order; and voters in Nk\ {2} , k 6= 1, rank ak first, a1 second, and all
other candidates in any order. Notice that each alternative is top ranked by exactly
q voters, so Pl

(
RN

)
= a1. Now suppose that voter 2 were to manipulate the vote

by reporting Q2 = a2 first, a3 second, and all other candidates in any order. There
are now q+1 voters ranking a2 as the preferred candidate, and so Pl (Q2, R−2) = a2.
Since a2 is preferred by voter 2 to a1, and voter 2 is the only agent who does not vote
sincerely, this satisfies the requirement of a manipulation, and we have RN ∈ P (S)
and QN = (Q2, R−2) is, by construction, an S−effective manipulation of RN . Voters
of N2 ∪ {2} benefit from the manipulation. In contrast, voters of S\(N2 ∪ {2})
rank a1 first and a2 second in the profile QN . However, none of these voters can
make themselves strictly better off by changing their reported preference profile.
Consequently, QN is a Nash equilibrium. We have

∣∣E(RN , QN)
∣∣ = q + 1 voters

who benefit, and so the minimum proportion of the population which benefits is
m∗ (n,m, s) ≤ 1

n
+ 1

n

⌊
n
m

⌋
.

Case 1.2 Now consider the case where q = 0. By construction, the set of strategic
voters is therefore a singleton, that is, S = {2} and n < m. Now consider a possible
true preference profile RN such that voter 1 ranks a2 first and all other candidates in
any order, voter 2 ranks an+1 first, a1 second, and all other candidates in any order,
and all voters i /∈ {1, 2} rank ai first, a2 second, and all other candidates in any
order. If all voters report their true preferences, then Pl(RN) = a2. Now suppose
that the unique strategic voter, voter 2, manipulates the outcome by reporting a1
as the most-preferred candidate, and an+1 as the second-most preferred candidate.
Then Pl(QN) = a1. Observe that since voter 2 is the unique strategic voter, then
it is trivially true that QN is an S−effective manipulation of RN and a S−Nash
equilibrium. Consequently,

∣∣E(RN , QN)
∣∣ = 1 and therefore the proportion of the

population when benefits from the manipulation is m∗(m,n, s) ≤ 1
n

= 1
n

+ 1
n

⌊
n
m

⌋
since n < m.
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Case 1.3 Finally, suppose that r ≥ 1 and q ≥ 1. Consider a partition {N1, N2, ..., Nm}
of N in m subsets such that voter 2 belongs to N3, and such that there are q + 1
voters in sets N2 to Nr+1, and q voters in all of the other sets in this partition.
Additionally, assume that all of the strategic voters, with the exception of voter 2,
are assigned to N1 if there are no more than q + 1 members of S, or are assigned to
N1 and N2 if q + 1 < |S| ≤ 2q + 1. Now consider a possible true preference profile
RN such that voters in N1 rank a1 first and all other candidates in any order; voters
in N2 rank a2 first and all other candidates in any order; voter 2 ranks a3 first and
a1 second and all other candidates in any order, while voters in Nk\ {2} , k /∈ {1, 2}
rank ak first, a2 second, and all other candidates in any order. Then a1 and a2 are
top ranked by exactly q voters and q + 1 voters respectively. Since |Nk| ≤ q + 1
for all k ∈ {1, 2, ...,m}, Pl

(
RN

)
= a2. Next, notice that the only voters who benefit

from a switch to a1 rather than a2 when the true preference profile is RN are the
members of N1 ∪ {2} . Now suppose that voter 2 chooses to strategically misreport,
and announces Q2 = a1a3... so that we have QN = (Q2, R−2). The candidate cho-
sen by the plurality rule is now Pl(QN) = a1, and QN satisfies the definition of an
S−effective manipulation of RN . Moreover, QN is also a S−Nash equilibrium since
no strategic voter can improve their payoff by changing their reported preference.
We have

∣∣E(RN , QN)
∣∣ = q+1 voters who benefit, and so the minimum proportion of

the population which benefits is m∗ (n,m, s) ≤ 1
n

+ q
n

= 1
n

+ 1
n

⌊
n
m

⌋
. This establishes

our claim for the case where s ≤ 2
⌊

n
m

⌋
+ 1, that is, when there are relatively few

strategic voters.

Case 2: s > 2
⌊

n
m

⌋
+ 1

THIS PARAGRAPH MAKES NO SENSE As above, we first establish
that the proportion of the population which benefits from the manipulation of the
voting outcome is at least equal to 1

n

⌈
s
2

⌉
. Without loss of generality, consider an

unstable profile RN ∈ Z and let QN be an S−effective manipulation of RN that
is a S−Nash equilibrium. The proof is by contradiction. Without loss of gen-
erality, let Pl(RN) = a1, P l(QN) = a2 and suppose that the number of voters
who prefer outcome a2 to outcome a1 under the true preference profile RN is less
than

⌈
s
2

⌉
. Denote by L(a2, a1, R

N) the set of participants who prefer a1 to a2 when
the true preference profile is RN . Then it must be true that

∣∣L(a2, a1, R
N) ∩ S

∣∣ ≥⌈
s
2

⌉
and

∣∣L(a1, a2, R
N)

∣∣ =
∣∣L(a1, a2, Q

N)
∣∣ ≤ ∣∣L(a2, a1, Q

N)
∣∣ ≤ ∣∣L(a1, a2, R

N)
∣∣. So

(L(a2, a1, R
N) ∩ S)\L(a1, a2, R

N) 6= ∅. That is there exist at least one voter i of S
who prefers candidate a1 to a2 and who did not vote for a1 in RN and thus in QN . Let
T i be a strategic preference of voter i in which he ranks a1 first and TN = (T i, T−i).
From RN to TN , both candidates a1 and a2 receive one additional vote while others
do not receive any. Since candidate a1 is elected at RN , he will still be elected at
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TN . A contradiction arises since QN is an S−Nash equilibrium. We conclude that∣∣L(a1, b1, R
N)

∣∣ ≥ ⌈
s
2

⌉
. That is m∗ (n,m, s) ≥ 1

n

⌈
s
2

⌉
.

We now construct a true preference profile RN ∈ Z(S) and an effective manipula-
tion QN ∈ N(RN) such that QN is a S−Nash equilibrium and

∣∣E(RN , QN)
∣∣ =

⌈
s
2

⌉
.

Without loss of generality, choose k, r so that s = 2k + r with r ∈ {0,−1} and
n − s = (m − 2)q + p with p ∈ {0, ...,m − 3}. By construction, from Lemma ??,
we have k ≥ q + 1. Now construct a partition {N1, N2, ..., Nm} of N such that
|N1| = k − 1, |N2| = k, and |Nj| = q + 1 for j = 3, ...p + 3 + r. Moreover, suppose
that voter 2 ∈ N3 and let S ⊂ N1 ∪ N2 ∪ {2}.3 Now consider the possible true
preference profile RN such that

Ri = a1a2a3... for all i ∈ N1 (5)

Ri = a2a1... for all i ∈ N2; and (6)

Ri = ala2a1...for all i ∈ Nj\{2}, j ≥ 3. (7)

By construction, we have Pl(RN) = a2. However, the voters belonging to N1 ∪ {2}
would prefer that candidate a1 prevail. Consider, now, a possible misreport by voter
2, such that Q2 = a1a3a2...and let QN = (Q2, R−2). Observe that Pl(QN) = a1,
and since the only voters who misrepresent their preferences under QN benefit from
the change in the voting outcome, QN is an S−effective manipulation of RN . In
addition, QN is an S−Nash equilibrium: with the exception of voter 2, all of the
strategic voters are voting for their preferred outcome, and cannot improve their
payoff by changing their vote. It follows that

∣∣E(RN , QN)
∣∣ = k =

⌈
s
2

⌉
. That is

m∗ (n,m, s) ≤ 1
n

⌈
s
2

⌉
. We have therefore shown that 1

n

⌈
s
2

⌉
≤ m∗ (n,m, s) ≤ 1

n

⌈
s
2

⌉
which completes our claim. .

Notice that the bounds derived here are sensitive to three key parameters of the
voting problem, namely, the number of candidates, the number of strategic voters,
and the total number of voters. In particular, the minimum bound is increasing in
the proportion of strategic voters ; if all voters are strategic voters, then the minimum
proportion of the voting population that benefits from an effective manipulation is
equal to 50%. In contrast, when strategic voters are scarce, and the pool of candidates
is large in size relative to the number of voters, then the proportion which actually
benefits from a manipulation is approximately equal to the minimal winning coalition
size, n/m. In some sense, then, what this result makes clear is that the likelihood
that strategic voting is of broad benefit is intrinsically linked to the willingness of

3Note that N1 or N2 may contain one voter not in S. This is for the case s = 2k − 1.
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the general voting population to vote tactically. When the vast majority of electors
invariably vote sincerely, then it is much more likely that manipulation of the outcome
by strategic voters may benefit only a small minority of the population - and may
adversely affect all other agents. In contrast, when most voters cast their ballot with
a view to potentially influencing the outcome of the election, then the floor on the
proportion of the population that benefits from manipulation rises rapidly. I AM
NOT HAPPY WITH THIS PARAGRAPH.

Whereas the results derived above provide bounds on overall gains, they do not
draw a clear picture of how those gains are shared between strategic and non-strategic
voters. This is the focus of the next section.

3.1 Maximal and Minimal Gains For Sincere Voters

The benefits of manipulation of the sincere voting outcome will typically be shared
between both sincere and strategic voters, and although there must be at least some
proportion of the strategic voting population which benefits - for otherwise a strategic
voter has no incentive to manipulate the sincere voting outcome - there is no reason a
priori to expect that these gains will accrue primarily to either the invariably sincere
or to the strategic voters. For this reason, it is useful to derive exact bounds for the
maximum and minimum proportion of sincere voters who benefit from a manipulation
of the voting outcome. Not surprisingly, in view of Proposition ??, the maximum
proportion of sincere voters who benefit from manipulation may attain 100%; what is
somewhat less obvious, however, is that the possibility of manipulation being to the
benefit of all invariably sincere voters arises when the strategic voting population is
in fact a relatively small proportion of the overall voting population - approximately
equal to n/m - as is shown in Proposition ??. As before, the proof is by construction.

Proposition 7 Suppose that the proportion of strategic voters is strictly less than
1. Then the maximum proportion of sincere voters who benefit from a manipulation
is equal to

M∗
1 (m,n, s) =

{
1

n−s
(n− s) if s− 1 >

⌈
n
m

⌉
1

n−s
(n−

⌈
n
m

⌉
− 1) if s− 1 ≤

⌈
n
m

⌉
Proof We first consider the case when the number of strategic voters is one more
than the minimum winning coalition size, i.e., s − 1 >

⌈
n
m

⌉
. Consider the true

preference profile RN and the manipulation QN used earlier in the proof of Lemma
??. Now rename the voters so that N\E(RN , QN) ⊂ S\{2}. We then have that
QN ∈ N(RN) ⊂ N(S | RN) and N\S ⊂ E(RN , QN). This means that M∗

1 (m,n, s) ≥
1

n−s
(n−s). That is M∗

1 (m,n, s) = 1: all sincere voters benefit from the manipulation.
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The second case arises when the number of strategic voters is less than or equal to
the minimum winning coalition size, i.e.,s−1 ≤

⌈
n
m

⌉
. From Proposition ??, we know

that at most n−
⌈

n
m

⌉
voters benefit from a manipulation. Since only a voter belonging

to S may choose to vote insincerely, at most n−
⌈

n
m

⌉
− 1 voters of N\S can benefit

from a manipulation. That is M∗
1 (m,n, s) ≤ 1

n−s
(n −

⌈
n
m

⌉
− 1). To complete the

proof, consider once again the true preference profile RN and the manipulation QN

used to establish Lemma ??. Rename the voters so that S\{2} ⊂ N\E(RN , QN).
We have QN ∈ N(RN) ⊂ N(S | RN) and E(RN , QN) ⊂ (N\S) ∪ {2}. Since∣∣E(RN , QN)

∣∣ = n−
⌈

n
m

⌉
, we have M∗

1 (m,n, s) ≥ 1
n−s

(n−
⌈

n
m

⌉
− 1).

Of course, whilst it is interesting to know that - at least in some circumstances -
it is the entire population of sincere voters who benefit from a manipulation, there is
no reason to believe, a priori, that such circumstances arise with any particular fre-
quency. What is of greater importance is to get some sense of the difference between
the maximum and minimum proportion of sincere voters who benefit from a manipu-
lation. Proposition ??, below, provides an exact bound on the minimum proportion
of strategic voters who benefit from a manipulation. Whereas Proposition ?? takes
an optimistic view of the impact of a manipulation on sincere voters, Proposition
?? is pessimistic; it is derived under the assumption that the composition of the
group of voters adversely affected by the manipulation is comprised primarily (and
possibly exclusively) of sincere voters. What this means in practice is that when
strategic voters comprise a large share of the overall voting population, then none of
the sincere voters may end up benefiting from the manipulation; as the proportion
of strategic voters in the overall population falls, then this makes it more likely that
sincere voters end up in the group of voters which are positively impacted by the
manipulation.

Proposition 8 m∗
1(m,n, s) =

{
0 if s− 1 ≥

⌊
n
m

⌋
1

n−s
(1 +

⌊
n
m

⌋
− s) if s− 1 <

⌊
n
m

⌋
Proof This result follows directly from Proposition ??.

This completes our derivation of the maximal and minimal impact of manipula-
tion on sincere voters. What is the take-away message? On the one hand, it is clear
that when the proportion of strategic voters in the population is high enough, then
the proportion of the sincere voting population which benefits from a manipulation
can vary between 0 and 100%, which is not a particularly tight bound; on the other
hand, when the proportion of strategic voters falls, then this gap narrows rapidly.
Moreover, as the number of candidates falls, then the difference between the maxi-
mum and minimum bounds on the proportion of sincere voters who benefit from a
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manipulation also narrows. Overall, this suggests than if there is reason to believe
that a high proportion of the voting population habitually votes sincerely, and there
are relatively few candidates relative to the number of voters, then any manipulation
of the voting outcome can be expected to positively impact a significant proportion
of the population of invariably sincere voters.

3.2 Maximal and Minimal Gains For Strategic Voters

To complete our analysis, we derive exact bounds for the maximum and minimum
proportion of strategic voters who benefit from manipulation of the sincere voting
outcome. These results largely echo those established above: we show that in some
settings, manipulation may in fact benefit all strategic voters, and that the minimum
proportion of the strategic voting population which profits from a manipulation is
bounded strictly away from zero.

Proposition 9 M∗
2 (m,n, s) =

{
1 if s ≤ n−

⌈
n
m

⌉
1
s
(n−

⌈
n
m

⌉
) if s > n−

⌈
n
m

⌉
Proof Follows obviously from Proposition ??.

The derivation of the minimum bound, below, is somewhat more interesting.
When the proportion of strategic voters in the general population is less than one
half of the total population, then it may be the case that only one strategic voter
benefits from manipulation, i.e., this is precisely the setting where almost all of
the benefits of manipulation accrue to the sincere voters. In contrast, when strategic
voters constitute a majority of the voting population, then the floor on the proportion
of the strategic voting population which benefits from manipulation grows.

Proposition 10 m∗
2(m,n, s) =

{
1
s

if s− 1 ≤
⌊
n
2

⌋
1
s
(s−

⌊
n
2

⌋
) if s− 1 >

⌊
n
2

⌋
Proof As above, the proof is by construction. Assume that voter 2 ∈ S and con-
sider a partition {N1, N2, {2}} of N, and a true preference profile RN ∈ LN and a
preference T 2 ∈ L such that:

If n = 2k. We have |N1| + 1 = |N2| = k, Ri = a1a2... for all i ∈ N1, R
i = a2a1...

for all i ∈ N2, R
2 = a3a1a2... and T 2 = a1a3a2....

If n = 2k + 1. We have |N1| = |N2| = k, Ri = a2a1... for all i ∈ N1, R
i = a1a2...

for all i ∈ N2, R
2 = a3a2a1... and T 2 = a2a3a1....

Pose TN = (T 2, R−2). It is easy to check that TN is an effective manipulation of
RN , a Nash equilibrium given RN and that E(RN , TN) = N1∪{2}. From lemma ??,
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we have TN ∈ N(S | RN). Now rename voters of N\{2} such that S\{2} ⊆ N2 if
s−1 ≤ k and N2 ⊆ S\{2} otherwise. It follows that

∣∣E(RN , TN) ∩ S
∣∣ = |N1 ∩ S|+1.

Since |N1 ∩ S| =
{

0 if s− 1 ≤ k
s−

⌊
n
2

⌋
− 1 otherwise

, we have
∣∣E(RN , TN) ∩ S

∣∣ =

{
1 if s− 1 ≤ k
s−

⌊
n
2

⌋
otherwise

.

We deduce that m∗
2(m,n, s) ≤

{
1
s

if s− 1 ≤
⌊
n
2

⌋
1
s
(s−

⌊
n
2

⌋
) if s− 1 >

⌊
n
2

⌋ .

It is left to show that m∗
2(m,n, s) ≥

{
1
s

if s− 1 ≤
⌊
n
2

⌋
1
s
(s−

⌊
n
2

⌋
) if s− 1 >

⌊
n
2

⌋ .

Obviously, since only members of S can manipulate, we have m∗
2(m,n, s) ≥ 1

s
.

Now assume that s− 1 >
⌊
n
2

⌋
and that there exist RN ∈ Z(S) and QN ∈ N(S |

RN) such that
∣∣E(RN , QN) ∩ S

∣∣ < s −
⌊
n
2

⌋
. Let S1 = S\E(RN , QN), Pl(RN) = a

and Pl(QN) = b. We have S1 = S ∩ E(b, a, RN) and |S1| >
⌊
n
2

⌋
. On the other

hand,
∣∣E(a,RN)

∣∣ =
∣∣E(a,QN)

∣∣ ≤ ∣∣E(b,QN)
∣∣ ≤ ∣∣E(a, b, RN)

∣∣ < s −
⌊
n
2

⌋
≤

⌈
n
2

⌉
.

Consequently, S1\E(a,RN) 6= ∅. Let i ∈ S1\E(a,RN), T i = ab... be a strategic
preference of voter i and TN = (T i, Q−i). From RN to TN , both candidates a and b
receive one additional vote while others do not receive any. Since candidate a wins
election at RN , he will still be elected at TN . A contradiction arises since QN is
an S−equilibrium. We then conclude that

∣∣E(RN , QN) ∩ S
∣∣ ≥ s −

⌊
n
2

⌋
. That is

m∗
2 (n,m, s) ≥ 1

s
(s−

⌊
n
2

⌋
).

4 When Honesty Is Not The Best Policy: Nash

Manipulation

The Gibbard-Satterthwaite definition of manipulation requires that all voters re-
port their preferences truthfully unless they are made better off as a result of mis-
reporting their true preferences than at the sincere voting outcome. A weakness
in this definition, however, is that it may be a best-response for strategic voters
to misreport their preferences in equilibrium, even if this does not lead to a higher
payoff than at the sincere voting outcome, as long as such a mis-report prevents
an outcome which they dislike even more intensely. This possibility is illustrated
by the following example. Consider a population of seven voters, and suppose that
R1 = R2 = abcd,R3 = R4 = badc, R5 = R6 = cdab and R7 = dcba. Observe that
Pl(RN) = a and that there is a unique manipulation which satisfies the Gibbard-
Satterthwaite manipulation criterion, and in which player 7 chooses the strategy
Q7 = c and that Pl(Q7, R−7) = c; this would make three players better off, and four
players worse off than at a. However, the reports (Q7, R−7) are not Nash equilibrium
strategies, which means that the intersection of the set of Nash equilibria of the
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voting game and the set of manipulations which satisfy the Gibbard-Satterthwaite
criterion union RN is in fact empty. In particular, (Q7, R−7) is not a Nash equilibrium
because it is a best response of either player 3 or player 4 to change their reported
preference ordering to abdc — in which case, the selected outcome would be a — or
for player 1 or 2 to change their reported preference ordering to bacd — in which
case the selected outcome would be b. Note that if outcome b is selected then there
is (at least) one voter who is mis-reporting their preference ordering who is worse
off than at the sincere voting equilibrium. However, the player who is mis-reporting
is better off than would be the case if c were selected. In contrast, if outcome a
is selected, then there is (at least) one voter who is mis-reporting their preference
ordering who is no better off than at the sincere voting equilibrium, but this player
is strictly better off than at the outcome selected by the manipulation which satisfies
the Gibbard-Satterthwaite criterion. If outcome b is selected, then strategic voting
makes three players better off, and four players worse off as compared to the outcome
selected under sincere voting; if outcome a is selected, then strategic voting neither
harms nor benefits any voter.

It is then straightforward to consider all possible partitions of the set of voters
into blocs of strategic and invariably sincere voters. For any partition of N , if player
7 belongs to S but players 1, 2, 3 and 4 belong to N\S, then the unique S-Nash
equilibrium of the voting game is c - the outcome which is a Gibbard-Satterthewaite
manipulation, but which is not a Nash equilibrium when N = S. If player 7 belongs
to N\S then the sincere voting outcome is always a S−Nash equilibrium of the voting
game. If player 1 (and/or player 2) belongs to S, as well as player 7, but players 3
and 4 belong to N\S, then b is the unique S-Nash equilibrium of the voting game,
whereas if player 3 (and/or player 4) belongs to S as well as player 7, but players 1
and 2 belong to N\S then a is the unique S-Nash equilibrium of the voting game. If
S consists of player 7, along with one of voters 1 or 2 and one of voters 3 or 4 then
there are two S-Nash equilibria of the voting game: one in which a is selected, and
the other in which b is selected.

This suggests that the standard Gibbard-Satterthwaite definition of manipula-
tion could be usefully modified to require all (strategic) voters to choose voting
strategies which are best responses to the voting strategies of the other players.
Consider, therefore a true preference profile RN , and let the reported preference
profile Q̃N be a Nash manipulation if ∀i ∈ S such that Q̃i 6= Ri, (i) Pl(Q̃N) �i

Pl(Ri, Q̃−i) and (ii) if Pl(Q̃N) 6= Pl(RN) then there exists at least some i ∈ S, Q̃i 6=
Ri such that Pl(Q̃N) �i Pl(RN), or if Pl(Q̃N) = Pl(RN) then there exists at
least some i ∈ S, Q̃i 6= Ri such that Pl(Q̃N) �i Pl(Ri, Q̃−i). As with a Gibbard-
Satterthwaite manipulation, our definition of a Nash manipulation requires all strate-
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gic voters to report their preferences sincerely, unless there is some benefit to doing
otherwise. Here, however, the benefit may be to block an outcome which would
be even worse (for them) than the outcome which prevails when other voters mis-
report their preferences, and it is possible that they nonetheless end up worse off
than would be the case at the sincere voting outcome. Additionally, as with the
Gibbard-Satterthwaite definition of manipulation, someone must benefit from any
departure from the sincere voting outcome, ensuring that strategic voting leads to a
movement along the Pareto frontier, rather than a loss in efficiency.

STILL TO BE ADDED: PROOF THAT INTERSECTION OF NASH MANIP-
ULATION + NASH EQUILIBRIA IS NON-EMPTY (COMPLETE.); CALCULA-
TION OF UPPER BOUND (COMPLETE); CALCULATE OF LOWER BOUND
(IN PROGRESS).

5 Conclusions

Whereas the social choice literature traditionally grades collective choice mechanisms
with respect to their capacity to deliver the outcome that would be selected if all
participants report their preferences truthfully, the analysis conducted in this paper
explores an alternative metric for judging voting mechanisms, namely, the maximum
and minimum bounds on the proportion of the population which benefits from ma-
nipulation when voting proceeds under the plurality rule. This is the first paper to
calculate such bounds. The salience of this alternative metric is undeniable given
that the mechanisms the most widely used in actual elections are all known to be
vulnerable to manipulation by strategic voters. Voting procedures which are likely to
select outcomes that are preferred by a broad swathe of the population when manip-
ulated to the outcome that is selected when all voters report their true preferences
are arguably better mechanisms than ones which are more likely to generate a large
proportion of losers. One of the lessons to be drawn from this analysis is that - at
least under the plurality rule - strategic voting may often be a virtue, rather than a
vice, and citizens should indeed be encouraged to vote with their heads, rather than
their hearts.

The importance of this alternative metric is well illustrated by the most recent US
election cycle. Arguably, the key factor underlying Donald Trump’s success in the
Republican primaries was that the anti-Trump vote was split for too long amongst too
many candidates, and that many of the voters who supported Rubio, Cruz and Kasich
persisted in voting sincerely for their preferred candidate, rather than coalescing
around a single opponent, thereby clearing a path for Trump to victory. Moreover,
once Trump was confirmed as the Republican Presidential candidate, it was arguably
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crystal clear to those anti-Trump voters who preferred a third-party candidate to
Hillary Clinton that it was risky to vote sincerely. Whether or not these warnings
were heeded is of course a matter of speculation, but it is worth noting that in many
of the so-called swing states which ended up favouring Trump (including Michigan,
Wisconsin, and Pennsylvania), the number of votes separating Trump and Clinton
was smaller than the vote totals which accrued to Jill Stein (of the Green Party).
In this particular election, the plurality voting mechanism arguably delivered the
outcome that would have been selected had all voters cast their ballots sincerely.
However, had more voters been persuaded that it was acceptable to vote strategically
(either at the initial primary stage, or later in the Presidential election) it is certainly
possible that a President who was ultimately selected who would have commanded
broader support.
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