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identify conditions under which �rst best is implemented. In a setting with three types
and three signals we also pin down the optimal distortions when those conditions are
violated. In particular, when the �rst-best allocation is locally but not globally incentive
compatible, output distortions are induced but all surplus is retained from the agent.

Keywords: Incentive compatibility; Limited liability; Correlated signals; Conditional
probability; Full-rank condition

J.E.L. Classi�cation Numbers: D82

�We thank participants in the 5th World Congress of the Game Theory Society (Maastricht) for their
comments. The usual disclaimer applies.

yUniversité de Caen Basse-Normandie, Centre de Recherche en Economie et Management, Esplanade de la
Paix, 14032 Caen, France. E-mail: daniel.danau@unicaen.fr

zUniversità degli Studi di Bari "Aldo Moro", Dipartimento di Scienze economiche e metodi matematici,
Largo Abbazia S. Scolastica 53, 70124 Bari, Italy. E-mail: annalisa.vinella@uniba.it

1



1 Introduction

There is now notable work on contractual design in agency problems with correlated in-

formation. The pioneering studies, which we owe to Myerson [10], Crémer and McLean [2]

(henceforth, CM), McAfee and Reny [9] and Riordan and Sappington [11] (henceforth, RS),

identify necessary and su¢ cient conditions for full surplus extraction in settings in which the

agent is not protected by limited liability. When such conditions are satis�ed, the principal

designs a payment scheme including a lottery related to the distribution of an external signal to

be realized and observed ex post and correlated with the private information of the agent. All

surplus is extracted from the agent by embedding in the lottery both rewards and punishments

associated with the various possible signal realizations. However, a serious drawback of these

mechanisms is that the punishments may be too high for the mechanisms to be viable when

the agent is protected by limited liability.

Demougin and Garvie [3] and Gary-Bobo and Spiegel [5] (henceforth, GBS) investigate

optimal screening under limited liability in the presence of correlated information. Demougin

and Garvie [3] only consider the case in which the signal is binary. GBS show that this is without

loss of generality when the principal is only concerned with local incentive-compatibility, in

addition to limited liability. In that case, indeed, the principal is better o¤ if she o¤ers a

lottery that admits only two levels of pro�t, a reward and a punishment. If more than two

signals are available, then the reward is associated with only one signal and equal punishments

are associated with all the other signals. However, it is not obvious that this is still the

best strategy in environments in which global incentive compatibility is not implied by local

incentive-compatibility. Hitherto the literature has not completely clari�ed which exact lottery

the principal should adopt when incentive compatibility may be di¢ cult to attain not only

locally but also globally and the agent is protected by limited liability. Here is the contribution

of our study.

A lottery yielding one reward and equal punishments to the agent was �rst proposed by

RS. In addition to providing necessary and su¢ cient conditions for �rst-best implementation

in the absence of limited liability, as already mentioned, they highlight that the principal can

use such a lottery if the agent�s cost function is less concave in type than the conditional

likelihood function of the reward signal. GBS focus on situations in which the cost function is

strictly convex in type and the conditional likelihood function of the reward signal is concave,

hence the su¢ cient conditions identi�ed by RS are satis�ed. For the purpose of our study, we

impose restrictions neither on the curvature of the cost function nor on that of the conditional

likelihood function of the signal to which the highest pro�t is associated. In so doing, we allow

for the total cost function to be concave in type, as may well be the case, for instance, if the

agent has an a¢ ne cost function such that the �xed cost is inversely related to the privately

known marginal cost. Moreover, we assume that there exist two signals (rather than only one,

as in GBS) which, taken together with any of the other available signals, satisfy the monotonic

likelihood property. Although we reinforce the assumption made by GBS in this respect, we
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nonetheless require the monotonic likelihood property, which is familiar in mechanism design, to

hold only in a "partial" sense. That is, we only require it to hold for any triplet of signals which

includes the extreme two, rather than for all signals in the feasible set. With this approach we

can search for the best lottery that the principal could employ to implement �rst best under

limited liability. Our results will depend on how the shape of the cost function compares with

that of the conditional likelihood function, as in RS, but the family of cost functions such that

full surplus extraction is at hand is likely to be richer than in the one-reward lottery scheme.

More speci�c results are summarized hereafter.1

Overview of the results

We �rst show that the main di¢ culty with global incentive compatibility is rooted in the way

in which the lotteries targeted to the intermediate types should be designed for those types to

represent attractive reports neither to lower types nor to higher types. This is better understood

if it is considered that the compensation to the agent blends together a cost reimbursement,

which is a �xed payment related to the cost of production, and a lottery, which assigns rewards

and punishments depending on the realization of the signal. On the one hand, by over-stating

information, lower types gain on the cost reimbursement but lose in terms of lottery; on the

other, by under-stating information, higher types gain in terms of lottery but lose on the cost

reimbursement. This double circumstance constrains the principal in the design of the lotteries

for the intermediate types.2

Second, when limited liability constraints are not too tight and local incentive compatibility

can be attained with a lottery other than the one of GBS, the lottery which is most likely to be

globally incentive compatible at the �rst-best allocation includes three distinct levels of pro�t

for each type. With this structure of the lottery, the principal can more easily discourage over-

statement by lower types, yet, without making under-statement signi�cantly more attractive

to higher types. This facilitates the principal�s task of impeding that intermediate types be

conveniently announced by any other type. Once the optimal lottery is characterized, a cut-o¤

level of liability is determined, which dictates whether or not �rst best is implementable. This

cut-o¤ value depends on how the shape of the cost function with respect to type compares with

the shape of the likelihood function of the reward signal. Put it di¤erently, the exact family

of cost functions for which �rst best is viable is determined, given the level of liability. For

instance, �rst best is at reach if the agent�s cost function is concave in type, rather than being

convex as in GBS, but the degree of concavity is not too pronounced relative to that of the

likelihood function of the reward signal.

1In GBS the exogenous signal is taken to a¤ect the cost of production, rather than being a purely informative
signal about that cost, as is usually assumed by the literature. We do not follow the approach of GBS to avoid
introducing complications which are unnecessary to the purpose of our study.

2From the proofs of Corollary 1.4 and 1.5 in RS it emerges that �rst best is implementable once su¢ cient
conditions are introduced, under which there is no con�ict between incentive constraints. However, in subse-
quent studies it has not been clari�ed why such a con�ict may arise and how it can be eliminated under limited
liability.
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Our third �nding concerns situations in which the agent�s liability is too low for the principal

to be able to induce truthtelling without distortions, and hence for the �rst-best allocation to

be e¤ected. We show that the structure of the optimal lottery in this second-best scenario does

not di¤er from that �gured out in the �rst-best setting. An important aspect is that the level of

liability which separates the regime under which local incentive compatibility is attained from

that under which it is not, is also the level of liability which separates situations in which the

optimal lottery includes three levels of pro�t from those in which, as in GBS, it includes only

two levels of pro�t. Remarkably, in the former situations it is optimal to induce distortions in

the volume of output to satisfy both upward and downward incentive constraints, whereas all

surplus is retained from the agent.

Related literature

Our paper is �rst related to Myerson [10], CM and McAfee and Reny [9], who consider an

environment in which a seller/principal auctions out an object to a number of potential buy-

ers/agents whose preferences (types) are privately known and correlated. In that environment,

the signals correlated with the type of each agent are generated endogenously by the reports

collected by the principal from the other agents. From those studies we know that the principal

retains all surplus in a Bayesian framework for any utility function of each agent, if and only

if the vector of conditional probabilities of the type of any agent is linearly independent of the

vector of conditional probabilities of the types of the other agents. Whereas this result is very

appealing in contractual design, it nonetheless exhibits the aforementioned limit that it may

induce very low compensations, in which case it would be di¢ cult to attain in practice.

A second line of research to which this paper is related is pioneered by RS. They consider

situations in which the principal deals with only one agent whose private information is corre-

lated with some signal which is realized and publicly observed ex post. These are situations in

which the signals are exogenous to the contractual relationship. However, provided that the

external signals play the same role as the private information held by other agents, RS obtain

a similar result to that derived by the �rst line of research. In addition, RS show that, for some

speci�c cost functions of the agent, full surplus extraction is at hand in spite of the signals

being less numerous than the possible types.3 More precisely, whether or not the outcome is

attainable depends on the relationship between the characteristics of the cost function of the

agent and the properties of the likelihood functions of the signals. The most "parsimonious"

lottery the principal can design in this context includes only two levels of pro�t. GBS show that

the incentive scheme proposed by RS is most likely to satisfy the limited liability constraints

because the punishments are spread equally among all signals but one. With our investigation

we evidence that this is not necessarily the best lottery the principal can use because there

3In CM the types of the agents (the potential buyers of the object sold by the principal) determine their
utilities. In RS, as in our study, the agent exerts an activity delegated by the principal and his type determines
his cost of production.
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are circumstances under which it fails to motivate some types to release information. We then

highlight how the lottery should be amended to circumvent these di¢ culty.

Our work is also related to the study of Demougin and Garvie [3], who �rst analyze con-

tractual design with correlated information in situations in which the agent is protected by

limited liability. In their model with a continuum of types and a binary signal, limited li-

ability is represented in two alternative ways. First, the transfer from the principal to the

agent cannot be negative, meaning that the principal has no power to tax the agent under any

conditions. A similar form of limited liability is also represented in the two-type two-signal

model of Kessler et al. [6], who allow the transfer to be negative but not unbounded. Second,

in Demougin and Garvie [3] the agent can incur no de�cits. This is tantamount to imposing

ex post participation constraints and entails that the agent recovers the entire cost borne to

perform the task for the principal, regardless of the signal realization. In line with GBS, we

generalize the latter kind of limited liability assuming that the agent can only be exposed to

bounded de�cits. Essentially, we refer to situations in which the principal is concerned with

preserving the agent�s �nancial viability, though not ensuring reimbursement of the entire cost.

This is common practice, for instance, in regulated industries, in which �rms��nancial distress

is generally prevented to avoid activity interruptions. Unlike in Demougin and Garvie [3] and

Kessler et al. [6], and similarly to GBS, we allow for more than two signals, which is a crucial

ingredient of our investigation.

As is well known, limited liability can alternatively be regarded as an extreme form of

risk aversion. With that interpretation, our study is also related to Eso [4], who explores full

surplus extraction in an agency problem with correlated information and risk aversion on the

agent�s side. Speci�cally, the author considers an auction in which the auctioneer/principal

faces two potential buyers/agents, both risk averse. Their privately known valuations of the

object o¤ered for sale are correlated and can take only two values. By contrast, we develop the

analysis considering a richer set of types. This extension enables us to capture the important

circumstance that incentive compatibility is problematic essentially because intermediate types

may potentially attract false reports by both lower types and higher types.

1.1 Outline

The reminder of the article is organized as follows. In section 2 we describe the model.

In section 3 we present the �rst-best analysis. We �rst consider a discrete number of types

and then allow for a continuum of types. In Section 4, we return to a discrete-type framework

to investigate the second-best setting in which the level of liability is too low, or the cost

function too concave in type to implement the �rst-best allocation. We conclude in section 5.

Mathematical proofs are relegated to an appendix.
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2 The model

A principal, P, delegates the production of a good (or service) to an agent. They are both

risk neutral.

Consumption of q units of the good yields a gross utility of S (q) : The function S (�) is twice
continuously di¤erentiable with derivatives S 0 (�) > 0 and S 00 (�) < 0: Moreover, S (0) = 0 and
the Inada�s conditions are satis�ed.

Production of q units of the good involves a cost of C (q; �) ; where the "type" � parametrizes

the agent�s productivity. A lower value of � involves a lower total cost, for any given q; and

will be referred to as a lower (more e¢ cient) type. The function C (�; �) is twice continuously
di¤erentiable in either argument with partial derivatives (dC (q; �) =dq) � Cq (q; �) > 0 and

(dC (q; �) =d�) � C� (q; �) > 0: Moreover, (d2C (q; �) =dqd�) = Cq� (q; �) > 0; i.e., less e¢ cient
types have higher marginal costs of production. As a compensation for the supply of q units

of the good the agent receives a payment of z from P.

In the contracting stage, the agent knows his type whereas P is uninformed. It is commonly

known that � is drawn from the support � �
�
�; �
�
; where � > � > 0; with continuously

di¤erentiable density function f (�) and cumulative distribution function F (�) : Alternatively,

� is known to take values in the discrete set �T � f�1; :::; �Tg ; where T is the number of types,
which have the natural ordering �1 < ::: < �T : This alternative scenario will be considered in

some parts of the analysis for expositional purposes. It will also be useful to present previous

�ndings of the literature and develop comparisons. Notation will be adapted accordingly

whenever necessary.

The agent�s type is correlated with a random signal s; which is realized and publicly observed

ex post, i.e., after the contract is drawn up and the level of output is determined (or the output

is produced). The realized signal (the "state of nature") is hard information, involving that

a legally enforceable contract can be signed upon.4 We take the signal to be drawn from

the discrete support N � f1; ::; ng ; where n � 2: The probability that signal s is realized

conditional on the type being � is ps (�) : We assume that ps (�) > 0; 8s 2 N; and that the
function ps (�) is twice continuously di¤erentiable for all values of �; with �rst and second
derivative respectively denoted as (dps (�) =d�) � p0s (�) and

�
d2ps (�) =d�

2
�
� p00s (�) : We also

make the following assumption.

Assumption 1 The conditional probabilities of the signals satisfy the following property:

p1(�)
p1(�

0) >
p2(�)
p2(�

0) ; 8� > �0 if n = 2

p1(�)
p1(�

0) >
ps(�)
ps(�

0) >
pn(�)
pn(�

0) ; 8� > �
0; 8s 6= 1; n if n � 3

:

4For instance, in regulatory settings, the agent is a regulated �rm and the signal can be the behaviour or
the market performance of another �rm, operating either in the same sector or in an analogous sector placed
in a neighboring economy, which conveys information about the cost of the regulated �rm. In other contexts,
the signal can be the outcome of an audit of the activity run by the agent.
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This is the usual monotonic likelihood property. However, in the general case of n � 3;

the property is only required to hold partially, i.e., for any triplet of signals including 1 and n.

One can interpret it as follows. There exists an "extreme" signal 1 such that, for any subset of

signal realizations which contains signal 1 and at least one more signal s 6= 1; the probability
of signal 1 being drawn is increasing in type. There also exists an "extreme" signal n such

that, for any subset of signal realizations which contains signal n and at least one more signal

s 6= n; the probability of signal n being drawn is decreasing in type.
Invoking the Revelation Principle, we can con�ne attention to contractual o¤ers fq (�) ; z (�)g ;

8�; in which q (�) is the quantity an agent of type � is required to produce and z (�) �
fz1 (�) ; :::; zn (�)g is the vector of the transfers he is assigned in the di¤erent states. The quan-
tity is not conditioned on the signal because it is chosen (or the output is produced) prior to

the signal realization. Accordingly, the net surplus of P in state s is S(q (�))� zs (�) : Denotee�s (�0 j� ) � zs (�
0) � C (q (�0) ; �) the pro�t an agent of type � obtains in state s when he an-

nounces �0 to P (or, alternatively, when he picks the contractual option fq (�0) ; z (�0)g within
the menu of allocations). This is also written as follows:

e�s (�0 j� ) = �s (�0) + C (q (�0) ; �0)� C (q (�0) ; �) : (1)

For convenience, we further let �s (�) = e�s (� j� ) and denote the lottery designed for an agent
of type � as � (�) � f�1 (�) ; :::; �n (�)g : We will say that in state s he receives a reward if
�s (�) > 0 and incurs a punishment if �s (�) < 0: It is useful to remark that (1) would be the

same if zs (�) were to include a �xed component related to the type and a stochastic component

conditional on the signal realization, as considered by Bose and Zhao [1]. Consistent with this,

the programme of P presented below only depends on the pro�ts rather than on the exact

structure of the transfers assigned to the various types in the di¤erent states.

The relationship between P and the agent unfolds as follows. Before contracting takes place,

nature draws � and the agent learns its realization. P addresses the contractual o¤er to the

agent. If the agent rejects the o¤er, then the parties obtain their reservation payo¤s and the

relationship ends. If the agent accepts the o¤er, then he makes a report about his type to P

(or, alternatively, he picks an option within the contractual menu) and produces accordingly.

Next, the signal is realized and the contractually speci�ed transfer is paid.
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2.1 The programme of the principal

Referring to the pro�t �s (�) rather than to the transfer zs (�) with a standard change of

variable, the programme of P is formulated as follows:

Max
fq(�);�(�);8�g

Z �

�

nX
s=1

(S(q (�))� C (q (�) ; �)� �s (�)) ps (�) dF (�)

subject to

Es [�s (�)] �
nX
s=1

�s (�
0) ps (�) + C (q (�

0) ; �0)� C (q (�0) ; �) ; 8�; �0 (IC)

Es [�s (�)] � 0; 8� (PC)

�s (�) � �L; 8�; 8s: (LL)

(IC) is the incentive compatibility constraint whereby an agent of type � is unwilling to report

�0 6= � (or to pick the contractual option targeted to type �0): (PC) is the participation constraint
which ensures that the expected value of the lottery designed for type �; namely Es [�s (�)] �Pn

s=1 �s (�) ps (�) ; is non-negative. Thus, the agent incurs no loss in expectation. (LL) is

the limited liability constraint which ensures that the maximum de�cit to which the agent

is exposed does not exceed L > 0 in each possible state. Essentially, this form of limited

liability represents situations in which the principal would like to avoid the agent becoming

so �nancially distressed that the activity must be interrupted, at least as long as the agent

does not attempt to conceal information. For instance, in regulated industries, in which this

is common practice, L could be interpreted as an indicator of �nancial viability, beyond which

the regulated �rm would go bankrupt.

The �rst part of our study will be devoted to investigating under what conditions and in

which way P implements the �rst-best allocation. This is de�ned by the optimality condition:

S 0(q (�)) = Cq (q (�) ; �) ; 8�; (2)

together with the surplus extraction constraint:

Es [�s (�)] = 0; 8�: (3)

Throughout this section, to save on notation, q (�) will indicate the �rst-best quantity for an

agent of type � and �s (�) the pro�t assigned for the production of that quantity in state s:

We further denote � (�) the set of lotteries � (�) the elements of which satisfy (3).

2.2 Previous �ndings

Before turning to the analysis, it is useful to recall the previous �ndings on �rst-best im-

plementation in settings with correlated information which are relevant for our study.
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RS Assume that �t takes values in the set �T ; C (q; �t) is convex in �t; and 9i 2 N such that

pi(�t) is increasing and concave in �t. If L!1; i.e. the agent can be exposed to unbounded
losses, then � (�t) is not empty for any �t: After presenting this result in Corollary 1.4, RS

show that the principal e¤ects the �rst-best allocation by adopting the binary lottery �i (�t)

8�t; de�ned as follows for any t > 1 :

�i (�t) = (C (q (�t) ; �t)� C (q (�t) ; �t�1))
1� pi(�t)

pi(�t)� pi(�t�1)
(4)

�s (�t) = � (C (q (�t) ; �t)� C (q (�t) ; �t�1))
pi(�t)

pi(�t)� pi(�t�1)
; 8s 6= i: (5)

In Corollary 1.5, RS further show that if n = 2; types are drawn from �3 and pi(�3) > pi(�2) >

pi(�1); then the lottery �i (�t) belongs to �(�t) if and only if:

C (q; �2)� C (q; �1)
C (q; �3)� C (q; �2)

� pi(�2)� pi (�1)
pi (�3)� pi(�2)

: (6)

This is ensured if the cost function is less concave in type than the conditional probability of

signal i: In general, (6) can be satis�ed when types �1 and �2 have similar costs of producing

output q; relative to types �2 and �3; and/or when types �2 and �3 have similar probabilities

of drawing signal i; relative to types �1 and �2:

GBS Take C (q; �) to be convex in � and pi(�) to be increasing and concave in � for some

i 2 N:Moreover, i = argmax
s2N

fp0s (�) =ps (�)g ; 8�: That is, among all possible signals and for all
possible types, signal i is the one the probability of which displays the highest rate of change

as type increases. Notice that under this assumption the condition that RS impose on signal i

in Corollary 1.5 is satis�ed as well. Then, among all lotteries belonging to � (�) ; the lottery

that is most likely to satisfy (LL) is de�ned as follows:

�i (�) = C� (q (�) ; �)
1� pi(�)
p0i (�)

(7)

�s (�) = C� (q (�) ; �)
pi(�)

�p0i (�)
; 8s 6= i: (8)

This is the counterpart of lottery �i (�t) ; as �gured out by RS, in the case of a continuum of

types.5 Being based on (8), one deduces that the �rst-best allocation is implemented if and

only if:

C� (q (�) ; �)
pi(�)

p0i (�)
� L; 8�: (9)

CM Take �t 2 �T and L!1:As long as the vectors p (�t) � fp1 (�t) ; :::; pn (�t)g are linearly
independent across types,� (�t) is non-empty for all �t: This follows from Farkas�lemma, which

5With a slight abuse, we will use the notation �i (�) to indicate this lottery regardless of whether types are
drawn from a discrete set or a continuum range.
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implies that for all �t there exists a n�dimensional vector h (�t) � fh1 (�t) ; :::; hn (�t)g such
that the following two conditions hold:

nX
s=1

hs (�t) ps (�t) = 0; 8�t 2 �T (10)

nX
s=1

hs (�t) ps (�t0) < 0; 8�t; �t0 2 �T : (11)

By setting �s (�t) = ths (�t) ; 8s; 8t; and choosing the "scaling" parameter t arbitrarily big,
all surplus is extracted from type �t and no incentive to mimic �t is triggered for any other

type. First best is beyond reach if there exists some type �t for which no vector h (�t) can be

found such that (10) and (11) are satis�ed.6

In substance, RS highlight that, as long as the agent can be imposed unlimited punishments,

�rst best is possibly at hand even when the set of informative signals includes only two elements.

As is evident from the de�nition of �i (�t) ; the agent�s gain only depends on whether signal

i is realized, rather than any other signal, regardless of how rich the subset of other signals

is. From GBS we further retain that any other lottery belonging to � (�) includes an element

the value of which is below that of (5), involving that it is less likely to satisfy (LL). Under

Assumption 1, i = 1 in our framework. The best known result in agency problems with

correlated information is perhaps that of CM, who show that the �rst-best outcome is attained

if the vectors of conditional probabilities of the signals are linearly independent. Importantly,

this result is obtained regardless of the properties of the cost function. By setting rewards

and punishments arbitrarily high, any untruthful report can be made unattractive. However,

high punishments are unfeasible when the agent is protected by limited liability. One then

needs to consider the properties of the cost and the probability functions to ascertain whether

there exists some lottery that implements �rst best under limited liability, consistent with the

analysis developed by GBS.

Our goal is to extend the analysis beyond that of GBS and investigate whether �rst best

is attainable when (6) and (9) are not jointly satis�ed, and what lottery should be adopted in

that case. Indeed, with Assumption 1 being veri�ed, (9) is most likely to hold for signal i = 1

but the associated lottery �1 (�) may fail to comply with (6) as required by RS. Whereas the

assumption that some signal displays the highest likelihood ratio for all types is similar to that

introduced by GBS, the assumption that some other signal displays the lowest likelihood ratio,

also embodied in our Assumption 1, is made for the purpose of our study. Overall, Assumption

1 entails that the full-rank condition of CM must be satis�ed for the extreme types but not

6The "only if" proof of CM shows that if the vector h(�T ) does not exist, then it is impossible to ensure that
�T is not an attractive report to any type �t < �T : Notice however that the full-rank condition is not necessary
for all types. In particular, it does not need to hold for type �1: This paves the way for the results drawn in
the study of RS, in which �rst-best implementation does not necessarily depend on the full-rank condition.
Bose and Zhao [1] show that Proposition 1 in RS implies that �rst best might be e¤ected when the full-rank
condition is violated.
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necessarily for the intermediate types.7 In this respect, our analysis diverges from that of CM

and comes closer to that of RS and GBS.

3 Three types and two or three signals

We begin by considering a simple setting with three possible types. We will highlight the

characteristics of the optimal lotteries when two and three signals are available. Mathematical

derivations are reported in Appendix B.

3.1 Two signals

Take n = 2: Consider any lottery � (�t) 2 �(�t) ; designed for the generic type �t 2 �3;
such that �2 (�t) < 0 < �1 (�t) : As surplus extraction requires

X
s2N

ps (�t)�s (�t) = 0; we can

express �1 (�t) in terms of �2 (�t) as �1 (�t) = ��2 (�t) p2 (�t) =p1 (�t) : This expression is useful
to formulate the expected value of the lottery which type �t0 is faced with, if it pretends �t;

in terms of �2 (�t) only. Speci�cally, that lottery grants a pro�t of ��2 (�t) p2 (�t) =p1 (�t) with
probability p1 (�t0) and a pro�t of �2 (�t) with probability p2 (�t0) so that its expected value

to type �t0 is �2 (�t) p2 (�t)
�
p2(�t0 )
p2(�t)

� p1(�t0 )
p1(�t)

�
: Because �2 (�t) < 0; under Assumption 1, this

expected value is negative if �t0 < �t and positive in the converse case. That is, the lottery

designed for type �t penalizes a lower type �t0 ; if it pretends �t; because, as compared to �t;

type �t0 is more likely to draw signal 2 and less likely to draw signal 1: Conversely, that lottery

favours a higher type �t0 ; if it pretends �t; because, as compared to �t; type �t0 is now less likely

to draw signal 2 and more likely to draw signal 1: In addition to the lottery, the payo¤ of type

�t0 ; if it reports �t; includes the di¤erence between the (false) cost reimbursed by P to the agent

and the (real) cost incurred by the agent to perform the task. Overall, the payo¤ of type �t0 ;

if it reports �t; is given by:

�2 (�t) p2 (�t)

�
p2(�t0)

p2 (�t)
� p1(�t

0)

p1 (�t)

�
+ C (q (�t) ; �t)� C (q (�t) ; �t0) :

This expression is suggestive of what may incentivize type �t0 to report �t: If �t > �t0 ; then type

�t0 loses in terms of lottery by reporting �t; but gains in terms of cost reimbursement (since

C (q (�t) ; �t) > C (q (�t) ; �t0)): On the opposite, if �t < �t0 ; then type �t0 loses in terms of cost

reimbursement (since C (q (�t) ; �t) < C (q (�t) ; �t0)) but gains in terms of lottery. Thus, for

both lower and higher types, there are two opposite e¤ects at work. Remark that such e¤ects

follow from type �t being rewarded in state 1 and punished in state 2: In the converse case,

under Assumption 1, lower types would obviously want to announce �t because, by doing so,

they would gain both in terms of lottery and cost reimbursement, which justi�es our choice to

7In Appendix A we show that, as long as Assumption 1 holds, p (�1) and p (�T ) do not lie in the convex hull
generated by the probability vectors of the other types. Moreover, there exist vectors p (�t) ; t 6= 1; T; which lie
in the convex hull generated by the probability vectors of the other types and do not violate Assumption 1.
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consider a lottery such that �2 (�t) < 0 < �1 (�t) in the �rst place. Taking this all into account,

one can identify what requirements the pro�ts should verify for not attracting false reports. In

particular, the pro�ts of the three types in state 2 must be such that

�2 (�1) �
C (q (�1) ; �t0)� C (q (�1) ; �1)
�p2(�1)

�
p1(�t0 )
p1(�1)

� p2(�t0 )
p2(�1)

� ; t0 = 2; 3; (12)

C (q (�2) ; �3)� C (q (�2) ; �2)
�p2(�2)

�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

� � �2 (�2) �
C (q (�2) ; �2)� C (q (�2) ; �1)
�p2(�2)

�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

� (13)

and

�2 (�3) �
C (q (�3) ; �3)� C (q (�3) ; �t0)
�p2(�3)

�
p2(�t0 )
p2(�3)

� p1(�t0 )
p1(�3)

� ; t0 = 1; 2; (14)

respectively. Considering also limited liability, the condition to the right of (13) must be

satis�ed jointly with the constraint �2 (�2) � �L: Moreover, (14) must hold jointly with the
constraint �2 (�3) � �L:With some manipulation and the use of p2 (�) = 1�p1(�); the following
conditions are found to be necessary:

(C (q (�3) ; �3)� C (q (�3) ; �t0))
p1(�3)

p1(�3)� p1 (�t0)
� L; t0 = 1; 2 (15)

(C (q (�2) ; �2)� C (q (�2) ; �1))
p1(�2)

p1(�2)� p1 (�1)
� L: (16)

These two conditions are the counterpart of (9) in a setting with three types and two signals.

They ensure that there exists a lottery such that types which exaggerate private information

obtain non-positive payo¤s under limited liability.

Being based on (12) to (16), we can deduce how the lottery should look like for each type

and what requirements it should satisfy for �rst-best implementation. Let us begin with the

extreme types. (12) and (14) evidence that it is easy to design lotteries such that none of those

types represents an attractive report to any other, as long as the necessary conditions hold.

First, it would su¢ ce to set �s (�1) = 0; 8s; because, in that case, higher types would lose
money by producing q (�1) but being reimbursed only C (q (�1) ; �1) rather than their true cost.

Second, lower types are least motivated to pretend �3 if type �3 is assigned the lowest possible

pro�t (�L) in state 2; which lower types are more likely to draw than type �3: Thus, P can set
�2 (�3) = �L and, accordingly, �1 (�3) = L (1� p1 (�3)) =p1 (�3) :
As far as the intermediate type is concerned, contractual design looks more problematic. It

is not plain that either extreme type can be prevented from announcing �2; even if (16) holds.

In particular, because �2 (�2) must be set to satisfy both of the conditions in (13), the following

12



requirement adds up to (15) and (16):

C (q (�2) ; �2)� C (q (�2) ; �1)
C (q (�2) ; �3)� C (q (�2) ; �2)

�
p1(�2)�p1(�1)

p1(�2)
� p2(�2)�p2(�1)

p2(�2)

p1(�3)�p1(�2)
p1(�2)

� p2(�3)�p2(�2)
p2(�2)

: (17)

Let us interpret (17). Given that type �1 gains on the cost reimbursement and loses on the

lottery if it claims �2; whereas the converse occurs for type �3; there exist values of �2 (�2) such

that types �1 and �3 are both discouraged from claiming �2 if and only if the ratio between the

gain to type �1 and the loss to type �3 in terms of cost reimbursement does not exceed the ratio

between the loss to type �1 and the gain to type �3 in terms of lottery, as (17) shows. With a

binary signal, (17) is rewritten as (6), which is just the condition in Corollary 1.5 of RS, where

now q = q (�2) and i = 1: In line with the interpretation of (6), the gain/loss ratio in terms of

cost reimbursement does not exceed the loss/gain ratio in terms of lottery if and only if the

cost is less concave (more convex) than the conditional probability of signal 1:8 Provided that

(17) holds and �2 (�2) is set to comply with (13), (3) can then be used to determine �1 (�2) :

For instance, taking �2 (�2) to be the higher between the lower bound to the range of feasible

values identi�ed in (13) and �L; namely

�2 (�2) = max

(
C (q (�2) ; �3)� C (q (�2) ; �2)

�p1(�3)�p1(�2)
p1(�2)

;�L
)
;

�1 (�2) is determined as follows:

�1 (�2) = min

(
C (q (�2) ; �3)� C (q (�2) ; �2)

p1(�3)�p1(�2)
p1(�2)

;L

)
1� p1 (�2)
p1 (�2)

:

Overall, �rst best is at reach only if (17) (or, equivalently, (6) for q = q (�2) and i = 1)

holds jointly with (15) and (16). As we demonstrate in Appendix B.1, (17) also implies that the

extreme types are more attracted by adjacent than non-adjacent types. Intuitively, because

the lotteries that types �1 and �3 are faced with, if they announce �2; are not too extreme

when (17) holds, those types will prefer the claim �2 to the claim �3 and �1; respectively.

The bene�t of this is that both upward and downward incentive constraints must only be

veri�ed locally. Therefore, taken together with (15) and (16), (17) is also su¢ cient for �rst-

best implementation.9

8We formulate the condition identi�ed by RS as (6), rather than as the equivalent condition (17), because
this is useful to prepare the reader to the subsequent analysis with more than two signals.

9Even if the lotteries are such that the agent does not lose more than L in equilibrium, he might still incur
a greater loss if he were to choose an out-of-equilibrium report. The reason why this might occur is that the
limited liability constraints are required to hold as long as the agent does not conceal information.
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3.2 Three signals

We now take n = 3: One natural possibility is that the optimal lottery to e¤ect �rst best for

each type is simply an extension of the lottery that type is faced with when the signal is binary.

That is, each type is assigned just the same pro�t in state 3 as in state 2; consistent with the

incentive scheme characterized by GBS. However, other options might well be preferable. We

thus need to identify the structure of the optimal lotteries in this framework. Proceeding as

above, we formulate the incentive constraints whereby �t is an attractive report neither to lower

types nor to higher types as follows:

�3 (�t) �
C (q (�t) ; �t)� C (q (�t) ; �t0) + �2 (�t) p2(�t)

�
p2(�t0 )
p2(�t)

� p1(�t0 )
p1(�t)

�
�p3(�t)

�
p3(�t0 )
p3(�t)

� p1(�t0 )
p1(�t)

� ; 8�t0 < �t (18)

�3 (�t) �
C (q (�t) ; �t0)� C (q (�t) ; �t) + �2 (�t) p2(�t)

�
p1(�t0 )
p1(�t)

� p2(�t0 )
p2(�t)

�
�p3(�t)

�
p1(�t0 )
p1(�t)

� p3(�t0 )
p3(�t)

� ; 8�t0 > �t: (19)

Because the signal can take three values, once the expected payo¤ is set equal to zero for each

type the incentive constraints are expressed in terms of two pro�ts, rather than only one as is

the case with a binary signal. This is relevant to the determination of the necessary conditions

under limited liability. Actually, searching for optimal lotteries along the lines of the analysis

developed above, it will emerge that the necessary conditions are still (15) and (16).

Again we consider the extreme types �rst. �1 is not an attractive report for higher types as

long as (19) holds for t = 1 and t0 = 2; 3: As with a binary signal, this is the case if �s (�1) = 0;

8s; and limited liability is clearly not an issue with this type. �3 is not an attractive report to
lower types as long as (18) is satis�ed for t = 3 and t0 = 1; 2: To see what lottery type �3 should

be faced with to that end, start from a situation in which �2 (�3) = �3 (�3) < 0; and hence

�1 (�3) > 0; and suppose that one of the two negative pro�ts, say �2 (�3) ; is increased. Then,

it might be necessary to reduce �3 (�3) to not violate (18). The reason why the adjustment is

optimally made through a change in �3 (�3) ; rather than through a change in �1 (�3) ; is that

signal 3 is less likely to be drawn by type �3 as compared to signal 1: Analogously, following an

increase in �3 (�3) the adjustment is optimally made through a decrease in �2 (�3) because signal

2 is less likely to be drawn as compared to signal 1:However, in either case (LL) will be tightened

since the decreased pro�t is already negative in the �rst place. Therefore, if there exists a

lottery with �1 (�3) > 0 which is incentive compatible under limited liability, then this feature

is preserved if, in that lottery, �2 (�3) = �3 (�3) and, in particular, if �2 (�3) = �3 (�3) = �L:
Setting �2 (�3) = �3 (�3) in (18), (14) is immediately retrieved jointly with the necessary

condition (15). What changes here, with respect to the situation with a binary signal, is that

there are now two signals, rather than only one, which are less likely to be drawn as compared

to signal 1. Provided that the necessary conditions are satis�ed when type �3 is exposed to

the maximum de�cit in the least likely state (s = 3) ; they must also be satis�ed when type �3
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is exposed to the maximum de�cit in the less likely between the two remaining states (s = 2) :

Hence, (15) can be satis�ed by in�icting the highest punishment (L) to the least e¢ cient type

in two states of nature, rather than only one. That is, P can focus on a lottery in which

�2 (�3) = �3 (�3) = �L and, accordingly, �1 (�3) = L (1� p1 (�3)) =p1 (�3) :
We next turn to the design of the lottery for the intermediate type �2. We �rst consider the

potential con�ict between the incentive constraints whereby the higher and the lower type are

unwilling to announce �2: The fact that the payment to the agent can be conditioned on three

signals, rather than only two, provides P with an additional instrument to lessen this con�ict.

The necessary condition (17) is replaced by

C (q (�2) ; �2)� C (q (�2) ; �1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� C (q (�2) ; �3)� C (q (�2) ; �2)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

(20)

� �2 (�2) p2(�2)

 p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

!
:

Assuming that the di¤erence in brackets in the right-hand side is negative, (20) is weakest when

�2 (�2) is decreased to the minimum: �2 (�2) = �L: Supposing that the equality �3 (�2) =
�2 (�2) is imposed, the necessary condition is again (17), and it can then be impossible to

decrease �2 (�2) to �L. To see this, replace �2 (�2) = �L in (19) and rearrange to obtain

�3 (�2) �
C (q (�2) ; �3)� C (q (�2) ; �2)� Lp1(�3)�p1(�2)p1(�2)

�p3(�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � L: (21)

This shows that, if L is su¢ ciently high for (15) (or (16)) to hold strictly, then it must be

the case that �3 (�2) > �L: Therefore, the con�ict between incentives is weakest when the
pro�t in state 2 is di¤erent from the pro�t in state 3: Turning back to type �2; the condition

under which the term that multiplies �2 (�2) is negative in (20), and hence it is optimal to set

�2 (�2) = �L (rather than �3 (�2) = �L); is given by

p1(�2)�p1(�1)
p1(�2)

� p2(�2)�p2(�1)
p2(�2)

p1(�3)�p1(�2)
p1(�2)

� p2(�3)�p2(�2)
p2(�2)

>

p1(�2)�p1(�1)
p1(�2)

� p3(�2)�p3(�1)
p3(�2)

p1(�3)�p1(�2)
p1(�2)

� p3(�3)�p3(�2)
p3(�2)

: (22)

Notice that the left-hand side of (22) replicates the right-hand side of (17). Furthermore, the

right-hand side of (22) is just the same as the left-hand side, except that the likelihood of

signal 3 replaces the likelihood of signal 2: These observations are useful to interpret (22). If

�2 (�2) is decreased, then by announcing �2 instead of telling the truth, type �1 loses and type

�3 gains in terms of lottery. As long as the ratio between such loss and gain exceeds the ratio

that would result from a decrease in �3 (�2) rather than in �2 (�2) ; the best strategy is to set

�2 (�2) = �L: Obviously, in the converse case, the best strategy would be to set �3 (�2) = �L;
instead. In any case, the lottery that is most likely to implement �rst best departs from that
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pinned down by GBS, which is such that �2 (�2) = �3 (�2) : For simplicity, here below we refer

to the case in which (22) is satis�ed, and hence it is optimal to set �2 (�2) = �L.
Remark that, with �2 (�2) = �L; P can easily assign a pro�t to type �2 in state 3 such that

both (18) and (19) are satis�ed. To see this, replace �2 (�2) = �L in (18) taken for t = 2 (and
hence, t0 = 1) and rearrange to obtain the following:

�3 (�2) � �
C (q (�2) ; �2)� C (q (�2) ; �1)� Lp1(�2)�p1(�1)p1(�2)

p3(�2)
�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� � L: (23)

Also recall that (19) taken for t = 2 (and hence, t0 = 3) is rewritten as (21) when �2 (�2) = �L:
Joint inspection of (21) and (23) evidences that, under the necessary conditions (15) and (16),

if there exists a range of feasible values of �3 (�2) ; then either it includes �L; or it lies entirely
above �L: For instance, if P sets

�3 (�2) =
Lp1(�3)�p1(�2)

p1(�2)
� (C (q (�2) ; �3)� C (q (�2) ; �2))

p3(�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � L

and, accordingly,

�1 (�2) =
C (q (�2) ; �3)� C (q (�2) ; �2)� Lp3(�3)�p3(�2)p3(�2)

p1 (�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � L;

provided �2 (�2) = �L; then an incentive compatible lottery for the intermediate type is found,
indeed. The following result can be thus stated.

Proposition 1 Assume that �t 2 �3; n = 3 and (22) is satis�ed. First best is implemented if
and only if (15) and (16) hold jointly with

C (q (�2) ; �2)� C (q (�2) ; �1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� C (q (�2) ; �3)� C (q (�2) ; �2)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

(24)

� Lp2(�2)

 p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

!
:

According to the proposition, implementation of the �rst-best allocation rests critically on

(24). With this condition satis�ed, P can �nd a pro�le of pro�ts such that the incentives to

lie upwards are eliminated jointly with the incentives to lie downwards, and hence incentive

compatibility is attained in any reporting direction. Hence, to identify conditions for �rst-best

implementation, it is necessary to ascertain for what features of the cost and probability func-

tions and what magnitude of L (24) is satis�ed. This approach will be followed to investigate

the general case of a continuum of types here below.
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4 A continuum of types and a �nite number of signals

Take � 2 � and n � 3: Considering that the expected payo¤ of type �0; if it reports �; is
given by

Es [e�s (� j�0 )] = nX
s=1

�s (�) ps (�
0) + C (q (�) ; �0)� C (q (�0) ; �0)

and that (3) must hold, we can state the local and the global incentive constraints as follows

(mathematical derivations are found in Appendix B and C):

C� (q (�) ; �) =
nX
s=1

�s (�) p
0
s (�) ; 8� 2 � (LIC)

C(q(�); �)� C(q(�); �0) �
nX
s=1

�s(�)(ps(�)� ps (�0)); 8�0; � 2 �: (GIC)

These conditions ensure that � is not an attractive report to any type �0 6= � and that it will
be chosen by type � only. First suppose that �0 is in a neighborhood of �: According to (LIC),

any bene�t from pretending � to type �0 is eliminated if P designs pro�ts for type � such that

the marginal change in the expected value of the lottery to type �0 (
Pn

s=1 �s (�) p
0
s (�)) is just

as great as the marginal change in the cost reimbursement (C� (q (�) ; �)) : Any deviation away

from this rule would make the lie worth for some neighboring types: for higher types, if the

marginal change in the expected value of the lottery is greater than the marginal change in

the cost reimbursement; for lower types, if the converse occurs. Next suppose that �0 is not in

a neighborhood of �: According to (GIC), � is not an attractive report to type �0 if the gain in

cost reimbursement associated with that lie (C(q(�); �)� C(q(�); �0)) is lower than the loss on
the lottery (

Pn
s=1 �s(�)(ps((�) � ps (�

0))); when � > �0; and if the loss in cost reimbursement

(C(q(�); �0)� C(q(�); �)) exceeds the gain in the lottery (
Pn

s=1 �s(�)(ps (�
0) � ps(�))); when

� < �0 instead.

The �rst step is to identify pro�ts of type � such that (LIC) and (GIC) are satis�ed. To that

end, one can proceed similarly to the discrete-type analysis. First, being based on (3), express

�1 (�) in terms of the pro�ts assigned in all states other than 1: Next, use the expression so

obtained to reformulate (GIC) as a pair of conditions on �n (�) ; one written for any �
� < �

and the other for any �+ > �; namely:10

�n (�) pn(�) � �
C(q(�);�)�C(q(�);��)

����
p1(�)�p1(��)

����
p1(�)

�
pn(�)�pn(��)

����
pn(�)

�
X
s 6=1;n

�s (�) ps(�)

p1(�)�p1(�
�)

����
p1(�)

�
ps(�)�ps(��)

����
ps(�)

p1(�)�p1(��)
����
p1(�)

�
pn(�)�pn(��)

����
pn(�)

(25)

10We let �� and �+ denote types respectively below and above �, but not necessarily limit values around �.
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and

�n (�) pn(�) � �
C(q(�);�+)�C(q(�);�)

�+��
p1(�

+)�p1(�)
�+��
p1(�)

�
pn(�+)�pn(�)

�+��
pn(�)

�
X
s 6=1;n

�s (�) ps(�)

p1(�
+)�p1(�)
�+��
p1(�)

�
ps(�

+)�ps(�)
�+��
ps(�)

p1(�
+)�p1(�)
�+��
p1(�)

�
pn(�+)�pn(�)

�+��
pn(�)

: (26)

Taking the limits for �� ! � and �+ ! � yields the following new formulation of (LIC):

�n (�) =
C�(q(�); �)) +

P
s 6=1;n �s(�)ps(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

�
�pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� ; 8� 2 �: (27)

This tells that, once P chooses the pro�ts to be assigned to type � in states 2 to n � 1; she
must set the pro�t in state n according to (27) to be able to prevent all neighboring types from

reporting �:

Once it is assessed that �n (�) must be chosen according to (27) and �1 (�) such that (3)

holds, it must be �gured out how the pro�ts should be set in states 2 to n� 1 for (25) to (27)
to be satis�ed, taking into account that the limited liability constraint must hold in all states

of nature. Considering that (27) is an alternative formulation of the local incentive constraint

of type �; whereas (25) and (26) is the global incentive constraint, as stated for types below

and above �; we will analyze the potential con�ict between local incentive compatibility and

limited liability separately from the potential con�ict between global incentive compatibility

and limited liability. Overall, the analysis will lead us to characterize the lottery which is most

likely to satisfy the constraints altogether.

We �rst look at the potential con�ict between local incentive compatibility and limited lia-

bility. Inspection of (27) highlights that, if any change is induced in �s (�) ; for some s 6= 1; n;
then this change must be matched with an opposite variation in �n (�) ; and vice versa. Fur-

thermore, an adjustment in �1 (�) will be necessary to keep (3) satis�ed. Therefore, switching

from a lottery belonging to �(�) to a new lottery also belonging to �(�) requires at least three

pro�ts being varied. The following lemma is useful to understand how the pro�ts will change

in states 1 and n under Assumption 1 and, being based on that, to identify the lottery which

is most likely to satisfy (LL) among those belonging to �(�):

Lemma 1 Take n � 3; �(�) 2 �(�) 8� 2 �; and any triplet of signals fi; j; kg 2 N such that:

p0i(�)

pi(�)
>
p0j(�)

pj(�)
>
p0k(�)

pk(�)
; 8� 2 �: (28)

For any given value of �s(�) 2 �(�); 8s =2 fi; j; kg ; if a change is induced in �i(�); then the
new lottery belongs to �(�) only if changes are also induced in �j(�) and �k(�), in opposite

directions.

Under Assumption 1, if �1(�) is varied, then a change is also induced in �n (�) together
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with an opposite change in �s (�) ; for some s 6= 1; n: One can easily show that full surplus

extraction is not attained unless at least one between �n (�) and �s (�) is a punishment, whereas

�1(�) is a reward. Thus, being based on Lemma 1, one can conclude that the lottery which

is most likely to satisfy (LL) is obtained by �rst setting �s(�) = �n(�); 8s 6= 1; n; in (27) and
then checking that �n(�) � �L: Not surprisingly, this lottery is tantamount to �1(�); the one
derived by GBS.11 The intuition behind this result is understood by interpreting Lemma 1

with a similar reasoning to the discrete-type analysis. Begin by considering a lottery such that

�j (�) > �k (�) : First decrease �j (�) and then increase �i (�) in such a way that the expected

value of the lottery to type � remains unchanged. Following these variations, a type �� slightly

below � becomes less motivated to pretend � because it is less likely to draw signal i than

signal j: On the opposite, a type �+ slightly above �; which is more likely to draw signal i

than signal j; becomes more prone to claim �: To contain the attractiveness of report � to type

�+; the increase in �1(�) is limited by also inducing an increase in the pro�t in state k; which

type �+ is less likely to draw. Provided that type �+ is also less likely to draw signal k than

signal j; the decrease in �j (�) can be compensated by the increase in �i (�) and in �k (�) to

such an extent that type �+ will be deterred from reporting �: Overall, as long as the pro�t

in state j does not fall below the pro�t in state k; (LL) is relaxed as �j (�) is decreased and

�k (�) is increased, without tightening (27) and (3). A similar reasoning applies if we begin by

considering a lottery such that, conversely, �j (�) < �k (�) ; in which case the pro�t should be

increased in state j and decreased in state k:

We now focus on the potential con�ict between global incentive compatibility and limited

liability. Recall that this con�ict is ruled out in the problem analysed by GBS, due to the

assumptions that the cost function is convex and the likelihood function of the reward signal

is concave. Indeed, under those conditions, �rst best is attained by adopting the lottery �1 (�)

8�; in line with Corollary 1.5 of RS.
The main question to our study is whether using the lottery �1 (�) is still the optimal

strategy when the cost function is more concave than the probability function of the reward

signal and (LL) is not binding under that lottery. More speci�cally, our aim is to understand

whether and in which way P could take advantage of the liability slack to make the contract

globally incentive compatible. To that end, the �rst step is to use the expression of �n (�) in

(27) to reformulate (25) and (26) as presented here below.

Lemma 2 Given (PC) and (LIC); (GIC) is satis�ed if and only if the following two condi-

11In their proof, GBS take any triplet of pro�ts which includes the pro�t associated with signal 1 (i.e., with
the signal the conditional probability of which displays the property in our Assumption 1), and show that the
other two pro�ts should be equal to give the greatest chance of the limited liability constraints being satis�ed.
Lemma 1 emphasizes that this is due to property (28), which will be useful in our subsequent analysis.
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tions are satis�ed for any given � 2
�
�; �
�
:

C� (q (�) ; �) �
�
p01 (�)

p1(�)
� p

0
n (�)

pn(�)

�24C (q (�) ; �)� C �q (�) ; ���
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

(29)

+
X
s 6=1;n

�s (�) ps(�)

0@ p1(�
�)

p1(�)
� ps(�

�)
ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

�
p01(�)
p1(�)

� p0S(�)
pS(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A35 ; 8�� < �;
and

C� (q (�) ; �) �
�
p01 (�)

p1(�)
� p

0
n (�)

pn(�)

�24C �q (�) ; �+�� C (q (�) ; �)
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

(30)

+
X
s 6=1;n

�s (�) ps(�)

0@ p1(�
+)

p1(�)
� ps(�

+)
ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A35 ; 8�+ > �:
Similarly to the discrete-type case, and for the reasons there explained, there is a potential

con�ict between (29) and (30). To avoid rise of the con�ict, it is necessary to have the following

condition satis�ed for each possible triplet
�
��; �; �+

	
2 � :

C (q (�) ; �)� C
�
q (�) ; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

(31)

�
X
s 6=1;n

�s (�) ps(�)

0@ p1(�
+)

p1(�)
� ps(�

+)
ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
p1(�

�)
p1(�)

� ps(�
�)

ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

1A :
Therefore, one needs �rst to check whether, for each possible report �; there exists a lottery

such that (31) holds without violating (LL). Once this is ascertained, one further needs to verify

that such a lottery satis�es (29) and (30). As this is required for all possible pairs
�
��; �+

	
; the

analysis may look complex overall. The problem is tractable, in fact, thanks to the following

result.

Lemma 3 (31) is necessary and su¢ cient for (29) and (30) to hold.

Once it is established that it su¢ ces to check (31) to verify (29) and (30), it is possible to pin

down the optimal incentive scheme according to the properties of the cost and the likelihood

functions. To that end, it is useful to de�ne:

�s (�
0; �) � ps (�

0) + (� � �0) p0s (�0)
ps(�)

; 8�0 6= � 2 �; 8s 2 N;

The magnitude of �s (�; �) is a measure of the curvature of the probability function of signal s:
Indeed, �s (�

0; �) = 1 if ps (�) is linear, �s (�0; �) < 1 if ps (�) is strictly convex, and �s (�0; �) > 1
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if ps (�) is strictly concave. Therefore, �s (�0; �) can be used to assess how much the likelihood of
signal s diverges for type �0 as compared to the likelihood of signal s for type �: The more that

�s (�
0; �) diverges from 1; the higher that the degree of convexity/concavity of ps (�) is 8�0 6= �;

and the more that the likelihood of type �0 to draw signal s diverges from the likelihood of type

�: It can be shown that if

�s (�
0; �)� �1 (�0; �)���p1(�0)p1(�)

� ps(�
0)

ps(�)

��� <
�n (�

0; �)� �1 (�0; �)���p1(�0)p1(�)
� pn(�

0)
pn(�)

��� ; (32)

then the term in brackets in the right-hand side of (31) is negative 8� such that �� � � � �+;
with at least one of these inequalities holding strictly (the proof is found in Appendix G).

Assuming that this is true, the lottery which is most likely to implement �rst best, denoted

�� (�) ; includes the following list of pro�ts 8� 2
�
�; �
�
:

��1 (�) =
C� (q (�) ; �)� Lp

0
n(�)
pn(�)

p1(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L (33)

��n (�) =
L
p01(�)
p1(�)

� C� (q (�) ; �)

pn(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L (34)

��s (�) = �L; 8s 6= 1; n: (35)

Proposition 2 Assume that � 2 �; n � 3 and (32) holds. First best is implemented if and

only if either:

C (q (�) ; �)� C
�
q (�) ; ��

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

� p1(�)� p1(��)
p1(�

+)� p1(�)
; 8�; ��; �+ 2 �; �� < � < �+ (36)

and

L �
�
C (q (�) ; �)� C

�
q (�) ; ��

�� p1(�)

p1(�)� p1(��)
; 8��; � 2 �; �� < � (37)

or (36) is violated and:

L �

C(q(�);�)�C(q(�);��)
pn(��)
pn(�)

� p1(�
�)

p1(�)

� C(q(�);�+)�C(q(�);�)
p1(�

+)
p1(�)

� pn(�+)
pn(�)

�
P

s 6=1;n ps(�)

�
p1(�

+)
p1(�)

� ps(�+)
ps(�)

p1(�
+)

p1(�)
� pn(�+)

pn(�)

�
p1(�

�)
p1(�)

� ps(��)
ps(�)

p1(�
�)

p1(�)
� pn(��)

pn(�)

� ; 8�; ��; �+ 2 �; �� < � < �+: (38)

This proposition extends Proposition 2 of GBS, according to which (37) is required under

the assumption that the cost is convex in type, to the case in which the cost is possibly concave

in type, as captured by (36) in line with Corollary 1.5 of RS, and, more importantly, to the

case in which (36) does not hold jointly with (37) but �rst-best is still implemented.12 This

12Notice that as �� approaches � (37) reduces to (9) for i = 1; which is the exact formulation in GBS. We
present the condition as in (37) because this alternative formulation helps us stress that the necessity of the
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result is useful in that it draws a single condition to be satis�ed for �rst-best implementation

when (36) does not hold, a condition which depends on how liable the agent is and on the

properties of the cost and the likelihood functions. To interpret the result, it is �rst necessary

to recall that it was obtained by identifying the lottery �� (�) as being most likely to yield the

�rst-best outcome. It is then useful to go through the following corollaries.

Corollary 1 ��1 (�) > �
1
1 (�) ; �

�
n (�) > �

1
n (�) and �

�
s (�) < �

1
s (�) ; 8s 6= 1; n; 8� 2

�
�; �
�
:

This corollary evidences in which way �� (�) departs from the lottery pinned down by GBS.

When the cost and the probability functions display the properties stated in Proposition 2,

P should rely on Lemma 1 and proceed as follows. Starting from �1 (�) ; P should raise the

pro�ts in state 1 and n and decrease them in all other states. According to Lemma 1, P gains

�exibility when switching from �1 (�) to a new lottery in which the pro�t in state 1 is raised

and opposite changes are induced in the other pro�ts. As explained in the discrete-type case,

it is convenient to increase the pro�t of type � in state 1 and decrease it in some state s 6= 1
because type �� is then led to bear a greater loss when reporting �: This is because p

0
1(�)

p1(�)
> p0s(�)

ps(�)
;

8s 6= 1; involving that type �� will obtain less with a signal it is more likely to draw and more
with a signal it is less likely to draw. This process can be replicated for signal 1 and other n�2
signals with which pro�ts higher than �L are initially associated. On the other hand, for one
signal realization the pro�t must be increased in order to weaken the incentive of type �� to

exaggerate information. The remaining question is thus for which signal realization, beside 1;

the pro�t should be increased and for which ones it should be decreased instead. Corollary 1

identi�es those signals.

Corollary 2 (29) is relaxed and (30) is tightened when �� (�) replaces �1 (�) :

This result formalizes the impossibility of lessening the global incentives both to overstate

and to understate information by switching from one lottery to another in �(�) : However,

provided that (32) holds, when replacing �1 (�) with �� (�) the positive e¤ect of type ��

becoming less eager to claim � prevails on the negative e¤ect of type �+ becoming more eager

to do so. Indeed, under (32), one has:

p1(�
+)

p1(�)
� ps(�

+)
ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

<

p1(�
�)

p1(�)
� ps(�

�)
ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

; 8��; �; �+ 2 � : � 2
�
��; �+

�
; (39)

which is the counterpart of (22) in a setting with more than three types. Under (39), it is

easier to lessen the con�ict between the incentive constraints "from below" and "from above"

if the pro�ts of type � are decreased to �L in all states but 1 and n; rather than in all states
but n only. Remarkably, when (GIC) is not a concern as in the setting considered by GBS,

it su¢ ces to refer to the rate of change of the conditional probability to determine the lottery

condition only results from the incentives of lower types to exaggerate information.
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that is most likely to eliminate the tension between local incentive compatibility and limited

liability. However, this is no longer the only requirement to be met in terms of probabilities

as it comes to the incentive scheme that makes the tension between (GIC) and (LL) weakest.

The curvature of the function p (�) becomes important as well because the potential gains and
losses from the di¤erent lies depend on how the probabilities of the signals vary with type. The

next corollary lists the necessary and su¢ cient conditions for (32) to hold, and hence for (31)

to be weakest.

Corollary 3 For (32) to hold 8s 6= 1; n :
it is necessary that �s (�

0; �) < max f�1 (�0; �) ; �n (�0; �)g and su¢ cient that either

�s (�
0; �) < �1 (�

0; �) < �n (�
0; �)

or

�n (�
0; �) < �s (�

0; �) < �1 (�
0; �) ;

it is necessary and su¢ cient that �n (�
0; �)� �s (�0; �) is "su¢ ciently large" when

�1 (�
0; �) < �s (�

0; �) < �n (�
0; �) ;

and that �n (�
0; �)� �s (�0; �) is "su¢ ciently small" when

�s (�
0; �) < �n (�

0; �) < �1 (�
0; �) :

Intuitively, because any decrease in �s (�) ; where s 6= 1; n; is compensated with an increase
in both �1 (�) and �n (�) (recall Lemma 1), the lottery �� (�) cannot be employed unless at

least one between p1 (�) and pn (�) is less convex/more concave than the conditional probability
of any other signal. If this is not the case, then incentives to understate information are too

strong for (31) to be weakened through the adoption of �� (�) : Speci�cally, (30) is tightened

more than (29) is relaxed (recall Corollary 2). The remaining conditions listed in Corollary

3 are su¢ cient conditions on the degree of concavity/convexity of the likelihood functions for

(32) to hold.

In substance, as long as (LL) does not bind in �1 (�) at least for some �; the gain that

P obtains by moving away from that lottery in such a way as to take advantage of the slack

of (LL), resides in that global incentive compatibility is reconciled with limited liability for a

wider family of cost functions. That is, �rst best is at hand in a richer variety of contractual
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relationships. To see this, rewrite (38) as follows:

C (q (�) ; �)� C
�
q (�) ; ��

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

(40)

�
p1(�)� p1

�
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0@ p1(�
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+)
ps(�)
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p1(�)
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pn(�)
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p1(�

�)
p1(�)

� ps(�
�)

ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

1A ;
and observe that the last two terms in the right-hand side of (40), which are both positive, do

not appear in the right-hand side of (17).

Corollary 4 (38) is weaker than (17):

This involves that the restrictions on the cost function are weaker than the su¢ cient con-

dition identi�ed by RS. Hence, in situations in which the conditional probabilities satisfy the

assumptions previously made, P attains incentive compatibility under milder conditions by

switching from �1 (�) to �� (�) ; 8� 2
�
�; �
�
: In fact, �� (�) is the lottery such that the re-

strictions on the cost function are weakest. Furthermore, this outcome is achieved only if the

extent of the liability is higher than required by GBS.

Corollary 5 (38) implies (37) if and only if (36) is violated.

There is a simple conclusion to be drawn from this result. P can shift from �1 (�) to �� (�)

as long as (37) is slack, and she can take advantage of that slackness to relax the incentive

compatibility constraints.

5 A second-best analysis with discrete types

There are multiple possible departures from �rst best. One departure occurs when (36)

is satis�ed but (37) is not. That is the case GBS consider in their second-best analysis. In

that case, local incentive compatibility cannot be attained without violating (LL) unless P

deviates from the �rst-best allocation. When it is (36) to be violated instead, one possibility

is (32) not holding in Proposition 2 for at least one of the signals 1 and n; selected according

to Assumption 1. However, intuition suggests that the lottery which is most likely to attain

�rst best will then have similar characteristics to �� (�) ; except that a pair of signals other

than f1; ng will be selected to satisfy (PC) and (LIC), involving that (38) will be tighter. A
more interesting possibility to consider is that (38) does not hold, thus ruling out the second

option in Proposition 2, which otherwise applies when (36) is violated. This is the case we now

turn to explore. Notice that because (38) implies (37) (Corollary 5), our investigation will also

include the case considered by GBS.
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Resting on our �rst-best analysis, two questions arise naturally with regards to the case in

which (36) is violated and L is not high enough for (38) to hold. First, one would like to know

whether also in this setting the optimal lottery departs from that of GBS. Second, one wonders

whether there is any type to be conceded an information rent at the second-best optimum.

To reply these questions, we hereafter develop the second-best analysis considering again

a setting with three types and three signals. Our motivation for this focus is that, whereas

standard solution methods are unlikely to be applicable in more complex settings with a con-

tinuum of types, in the �rst-best analysis we saw that the economic forces at work are neatly

highlighted in the simple three-type framework.13 Hence, we see no reason why the results we

will derive with three types should not carry over with a continuum of types, once the technical

complications are taken into account.

Formally, take �t 2 �3 and n = 3: In this setting, one should refer to (15) and (16) rather
than to (37). Moreover, (38) speci�es as follows:

L �

C(q(�2);�2)�C(q(�2);�1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� C(q(�2);�3)�C(q(�2);�2)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

�p2(�2)
�

p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

�
p1(�1)
p1(�2)

� p2(�1)
p2(�2)

p1(�1)
p1(�2)

� p3(�1)
p3(�2)

� (41)

To keep notation parsimonious, we continue to denote q (�t) the quantity recommended from

a generic type �t in the second-best setting, with the understanding that it no longer refers

to the �rst-best production level. Accordingly, �s (�t) will denote the pro�t assigned for the

production of that quantity in state s:

Assume that, as long as P insists on the �rst-best allocation, the incentive compatibility

constraints whereby the extreme types �1 and �3 are unwilling to claim �2 cannot be satis�ed

at once. Then, the issue is whether any of these types should be conceded an information rent

to be motivated to tell the truth, and whether and how it is possible to extract all surplus from

type �2: For simplicity, we let the expected value of the lottery be R (�t) =
P

s2N �s (�t) ps (�t) ;

8�t: This can be used to derive the following expression of the pro�t accruing to type �t in
state 1 :

�1 (�t) =
R (�t)

p1 (�t)
� �2 (�t)

p2 (�t)

p1 (�t)
� �3 (�2)

p3 (�t)

p1 (�t)
: (42)

Considered for t = 2; (42) further leads to the following formulation of the incentive constraints

whereby �2 is not an attractive report to types �1 and �3 :

�3 (�2) p3(�2) �
R (�1)�R (�2) p1(�1)p1(�2)

� (C (q (�2) ; �2)� C (q (�2) ; �1))
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

(43)

��2 (�2) p2(�2)
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

13Technically speaking, the �rst-order approach may not be applicable because the contractual allocation is
not necessarily di¤erentiable.
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and

�3 (�2) p3(�2) �
R (�2)

p1(�3)
p1(�2)

�R (�3)� (C (q (�2) ; �3)� C (q (�2) ; �2))
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

(44)

��2 (�2) p2(�2)
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

:

The other two adjacent incentive constraints to be considered are those whereby type �2 is

unwilling to announce �1 and �3: Using (42) for t = 1 and t = 3 respectively, they are written

as

R (�2) � R (�1)
p1 (�2)

p1(�1)
+ C (q (�1) ; �1)� C (q (�1) ; �2) (45)

�
X
s 6=1

�s (�1) ps(�1)

�
p1 (�2)

p1 (�1)
� ps (�2)
ps(�1)

�

and

R (�2) � R (�3)
p1(�2)

p1 (�3)
+ C (q (�3) ; �3)� C (q (�3) ; �2) (46)

�
X
s 6=1

�s (�3) ps (�3)

�
p1(�2)

p1 (�3)
� ps(�2)

ps (�3)

�
:

Taking all these constraints into account, we state the programme of P as follows:

Max
fq(�t);�(�t);8�tg

X
�t2�3

 
S(q (�t))� C (q (�t) ; �t)�

X
s2N

�s (�t) ps (�t)

!
f (�t)

subject to

(43)� (46) ; (PC), (LL),

and we derive our �rst result in the second-best setting (see Appendix M for the proof).

Lemma 4 At optimum, (43) and (44) are both binding and �2 (�2) = �L.

The reason why (43) and (44) are both binding is that, given the rents designed for the

three types, an increase in �3 (�2) (as associated with a decrease in �1 (�2)) strengthens the

incentive of type �1 to claim �2 to the same extent that it lessens the incentive of type �3 to

claim �2. In other words, the marginal cost of tightening (43) is equal to the marginal bene�t of

relaxing (44). Moreover, the reason why the pro�t designed for type �2 is optimally decreased

to �L in state 2 is that, as in the �rst-best setting, this makes it least likely that (43) con�icts
with (44).

It follows that the second-best lottery is structured either as �1 (�) or as �� (�) ; depending

on whether or not (LL) is binding for the intermediate type in state 3 (this does not entail
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that quantities will be set at their �rst-best levels though). Interestingly, the value of L that

separates the regime in which �3 (�2) = �L (and hence, the lottery is structured as �1 (�))
from that in which �3 (�2) > �L (and hence, the lottery is structured as �� (�)) is also the
value that separates the regime in which types �1 and �2 are assigned an information rent from

that in which they are not.

Conditions (15) and (16) are violated We already mentioned that when the limited

liability constraints bind in the programme of P the optimal lottery is structured as �1 (�) :

Then, P concedes the information rents reported here below.

Proposition 3 Assume that �t 2 �3 and n = 3: Suppose that (15) and (16) are violated at

the �rst-best quantities. The following information rents are conceded:

R (�1) =

�
C (q (�3) ; �3)� C (q (�3) ; �2)� L

p1 (�3)� p1 (�2)
p1 (�3)

�
p1(�1)

p1 (�2)
(47)

+

�
C (q (�1) ; �2)� C (q (�1) ; �1)� L

p1 (�2)� p1 (�1)
p1(�1)

�
p1(�1)

p1 (�2)
;

R (�2) = C (q (�3) ; �3)� C (q (�3) ; �2)� L
p1 (�3)� p1 (�2)

p1 (�3)
(48)

and R (�3) = 0:

The expressions in (47) and (48) evidence that rents are given up exactly because, otherwise,

it would be impossible to satisfy (LIC) without violating (LL) ((15) and (16) are violated at

the �rst-best allocation). Not surprisingly, such expressions are tantamount to those obtained

by GBS in their second-best analysis. Given that the contractual solution in this case is known

from their study, we do not insist on it and turn to consider situations in which (15) and (16)

are satis�ed, instead, at the �rst-best allocation.

Conditions (15) and (16) hold The novel aspect to our second-best analysis is that when

(15) and (16) hold, and hence it is not an issue to have the local incentive constraints satis�ed

under limited liability, P does not need to decrease �3 (�2) to the minimum of �L to retain
all surplus. A simple way to see this is to verify that both (47) and (48) are negative when

these conditions are satis�ed. Thus, by setting �3 (�2) strictly above �L; P can lessen the
con�ict between (43) and (44) without tightening (45) and (46), which eliminates the necessity

to concede information rents. However, P needs the availability of an instrument to ensure

that (43) and (44) hold at once. This instrument will be the quantity of type �2; which (43)

and (44) depend upon. Speci�cally, P will adjust q (�2) until (41) is satis�ed as an equality.

This requires lowering the di¤erence:

C (q (�2) ; �2)� C (q (�2) ; �1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� C (q (�2) ; �3)� C (q (�2) ; �2)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)
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below its �rst-best value. Hence, with Cq� (q; �) > 0; q (�2) will be distorted upwards at the

second-best optimum.

Proposition 4 Assume that �t 2 �3 and n = 3: Suppose that, at the �rst-best quantities, (15)
and (16) are satis�ed but there is no lottery such that (43) and (44) hold. At optimum, q (�2)

is distorted above the �rst-best level and all surplus is extracted from the agent.

6 Conclusion

In a principal-agent model with correlated information and limited liability on the agent�s

side, we showed that focusing on the full-rank condition, the most common approach in the

literature, is not necessarily the best approach. Provided that there exist at least three in-

formative signals, the conditional probabilities of which satisfy the monotonic likelihood ratio

property, it is enough to verify that the agent�s liability is su¢ ciently high to ascertain whether

�rst best is implementable, which is very useful in applications. Whereas Bose and Zhao [1]

investigate �rst-best implementation when the full-rank condition does not hold, we proved

that the possibility of attaining the �rst-best outcome under limited liability is not necessarily

determined by the way in which the conditional probabilities of the signals depart from the

full-rank condition. Moreover, the existence of an exact relationship between the extent of the

liability and the admissible degree of concavity of the cost function (when this is not convex in

type) involves that the set of technologies for which �rst best is at reach under limited liability

is richer than that considered by GBS.

As a general view, our study contributes to shedding light on how to attain incentive

compatibility in situations in which the principal faces more than two possible types of agent

and there are more than two informative signals to be used in contractual design. Our �ndings

point to the conclusion that it might be with loss of generality to restrict attention to the two-

type case, or to a binary signal, when exploring principal-agent relationships with correlated

information and limited liability.
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A Full-rank condition and Assumption 1
Suppose that the vector p (�1) lies in the convex hull generated by the other probability vec-

tors. Then, there exists a vector (�2; :::; �T ); where �t 2 [0; 1] ; 8t 2 f2; :::; Tg ; and
PT

t=2 �t = 1;
such that:

ps (�1) = �2ps (�2) + :::+ �Tps (�T ) ; 8s 2 N:

Let us use this for s = 1 and s 6= 1 jointly with Assumption 1. We get:

p1 (�1) = �2p1 (�2) + :::+ �Tp1 (�T )

, p1 (�1)

p1 (�2)
= �2

p1 (�2)

p1 (�2)
+ :::+ �T

p1 (�T )

p1 (�2)
> �2

ps (�2)

ps (�2)
+ :::+ �T

ps (�T )

ps (�2)
=
ps (�1)

ps (�2)
:

The inequality p1(�1)
p1(�2)

> ps(�1)
ps(�2)

contradicts Assumption 1. Similarly, suppose that there exists a

vector (�1; :::; �T�1); where �t 2 [0; 1] ; 8t 2 f1; :::; T � 1g ; and
PT�1

t=1 �t = 1; such that:

ps (�T ) = �1ps (�1) + :::+ �T�1ps (�T�1) ; 8s 2 N:

Let us use this for s = 1 and s 6= 1 jointly with Assumption 1. We get:

p1 (�T ) = �1p1 (�1) + :::+ �T�1p1 (�T�1)

,
p1 (�T )

p1 (�T�1)
= �1

p1 (�1)

p1 (�T�1)
+ :::+ �T�1

p1 (�T�1)

p1 (�T�1)
< �1

ps (�1)

ps (�T�1)
+ :::+ �T�1

ps (�T�1)

ps (�T�1)
=

ps (�T )

ps (�T�1)
:

The inequality p1(�T )
p1(�T�1)

< ps(�T )
ps(�T�1)

contradicts Assumption 1.
Next take the vector p (�t) ; where t =2 f1; Tg ; to lie in the convex hull generated by the

probability vectors of the other types. This is equivalent to telling that there exists a vector
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(�1; :::; �t�1; �t+1; :::; �T ); where �t 2 [0; 1] 8t 2 f1; :::; t� 1; t+ 1; :::; Tg and
P

t0 6=t �t0 = 1; such
that:

ps (�t) = �1ps (�1) + :::+ �t�1ps (�t�1) + �t+1ps (�t+1) + :::+ �Tps (�T )

,
ps (�t)

ps (�t+1)
= �1

ps (�1)

ps (�t+1)
+ :::+ �t�1

ps (�t�1)

ps (�t+1)
+ �t+1

ps (�t+1)

ps (�t+1)
+ :::+ �T

ps (�T )

ps (�t+1)
: (49)

By taking p (�t) such that

ps0 (�t)

ps0 (�t+1)

>
p1 (�t)

p1 (�t+1)

>
ps0 (�t)

ps0 (�t+1)
+ �1

�
p1 (�1)

p1 (�t+1)
� ps0 (�1)

ps0 (�t+1)

�
+ :::+ �t�1

�
p1 (�t�1)

p1 (�t+1)
� ps

0 (�t�1)

ps0 (�t+1)

�
; 8s0 6= 1;

both Assumption 1 and (49) are satis�ed. To see this, �rst use (49) for s = 1 to rewrite the
second inequality here above as:

�t+1
p1 (�t+1)

p1 (�t+1)
+ :::+ �T

p1 (�T )

p1 (�t+1)
>

ps0 (�t)

ps0 (�t+1)
+ �1

�
� ps0 (�1)

ps0 (�t+1)

�
+ :::+ �t�1

�
�ps

0 (�t�1)

ps0 (�t+1)

�
= �t+1

ps0 (�t+1)

ps0 (�t+1)
+ :::+ �T

ps0 (�T )

ps0 (�t+1)

Then use (49) for s0 to rewrite:

�t+1
p1 (�t+1)

p1 (�t+1)
+ :::+ �T

p1 (�T )

p1 (�t+1)
> �t+1

ps0 (�t+1)

ps0 (�t+1)
+ :::+ �T

ps0 (�T )

ps0 (�t+1)
;

which is true by Assumption 1.

B Derivation of (GIC) with � 2 � and n � 3
Using e�s (� j�0 ) = zs (�)� C (q (�) ; �0) and �s (�) = e�s (� j� ) ; we have:

Es [e�s (� j�0 )] = nX
s=1

�s (�) ps (�
0) + C (q (�) ; �)� C (q (�) ; �0) :

Because full surplus extraction requires
Pn

s=1 �s (�) ps (�) = 0; this is rewritten as (GIC).
Further using

Pn
s=1 �s (�) ps (�) = 0, �1 (�) = �

Pn
s=2 �s (�)

ps(�)
p1(�)

; (GIC) is further rewritten
as:

C (q (�) ; �)�C (q (�) ; �0) �
X
s 6=1;n

�s (�) ps (�)

�
p1 (�

0)

p1(�)
� ps (�

0)

ps(�)

�
+�n (�) pn(�)

�
p1 (�

0)

p1(�)
� pn (�

0)

pn(�)

�
;
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hence:

�n (�) pn(�)

�
p1 (�

0)

p1(�)
� pn (�

0)

pn(�)

�
� C (q (�) ; �)�C (q (�) ; �0)�

X
s 6=1;n

�s (�) ps (�)

�
p1 (�

0)

p1(�)
� ps (�

0)

ps(�)

�
:

(50)
Recall that, by assumption, p1(�

0)
p1(�)

> pn(�
0)

pn(�)
if and only if �0 > �: Using this equivalence for �� < �

and �+ > �; (50) is respectively rewritten as (25) and (26).
Here below we specify (GIC) with �t 2 �3 in the two cases of n = 2 and n = 3:

B.1 The case of �t 2 �3 and n = 2
In this case, (25) and (26) specify as (12), (14) and (13). To check that the global incentive

constraints are satis�ed, we need to verify that (12) and (14) are respectively satis�ed for
�t = �3 and �t = �1; if they are for �2: This is the case when:

C (q (�3) ; �3)� C (q (�3) ; �1)
C (q (�3) ; �3)� C (q (�3) ; �2)

�
p2(�1)
p2(�3)

� p1(�1)
p1(�3)

p2(�2)
p2(�3)

� p1(�2)
p1(�3)

(51)

C (q (�1) ; �2)� C (q (�1) ; �1)
C (q (�1) ; �3)� C (q (�1) ; �1)

�
p1(�2)
p1(�1)

� p2(�2)
p2(�1)

p1(�3)
p1(�1)

� p2(�3)
p2(�1)

: (52)

Using p2 (�) = 1� p1 (�) ; these conditions are rewritten as:

p1(�3)� p1 (�1)
p1(�3)� p1 (�2)

� C (q (�3) ; �3)� C (q (�3) ; �1)
C (q (�3) ; �3)� C (q (�3) ; �2)

p1 (�2)� p1(�1)
p1(�3)� p1 (�1)

� C (q (�1) ; �2)� C (q (�1) ; �1)
C (q (�1) ; �3)� C (q (�1) ; �1)

:

Replacing p1(�3)�p1 (�1) with p1(�3)�p1 (�2)+p1 (�2)�p1 (�1) and C (q (�3) ; �3)�C (q (�3) ; �1)
with C (q (�3) ; �3)� C (q (�c3) ; �2) + C (q (�3) ; �2)� C (q (�3) ; �1) ; the two conditions further
become:

C (q (�3) ; �2)� C (q (�3) ; �1)
C (q (�3) ; �3)� C (q (�3) ; �2)

� p1 (�2)� p1 (�1)
p1(�3)� p1 (�2)

(53)

C (q (�1) ; �2)� C (q (�1) ; �1)
C (q (�1) ; �3)� C (q (�1) ; �2)

� p1 (�2)� p1(�1)
p1(�3)� p1 (�2)

; (54)

which are equivalent to (6) for speci�ed quantities q (�).

B.2 The case of �t 2 �3 and n = 3
Write (25) and (26) for n = 3; � = �2 and, respectively, �

� = �1 and �
+ = �3: 9�3 (�2)

which satis�es both (25) and (26) if and only if (20) is satis�ed. Being based on the equality

ps (�
0) p1(�)� p1 (�0) ps(�)
p1(�)ps(�)

=
p1(�)� p1 (�0)

p1(�)
� ps(�)� ps (�

0)

ps(�)
;
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the term multiplied by �2 (�2) in (20) is negative if and only if (22) holds.

B.3 Proof of Proposition 1
In the text.

C Derivation of (LIC) and (27)
Recall e�s (� j�0 ) = zs (�)� C (q (�) ; �0) and

Es [e�s (� j�0 )] � nX
s=1

(zs (�)� C (q (�) ; �0)) ps (�0) : (55)

The �rst-order condition of the agent�s problem, evaluated at �0 = �; is given by:

nX
s=1

(z0s (�)� Cq (q (�) ; �) q� (�)) ps (�) = 0: (56)

From ts (�) = �s (�)+C (q (�) ; �) ; we compute z0s (�) = �
0
s (�)+Cq (q (�) ; �) q� (�)+C� (q (�) ; �) ;

which we then replace into (56) to get:

C� (q (�) ; �) = �
nX
s=1

�0s (�) ps (�) : (57)

Because
Pn

s=1 �s (�) ps (�) = 0; 8�; implies �
Pn

s=1 �
0
s (�) ps (�) =

Pn
s=1 �s (�) p

0
s (�) ; 8�; (57) is

further rewritten as (LIC).
(GIC) is in the proof of Two and three signals.

D Proof of Lemma 1
Suppose that some pro�t �i (�) is changed by ": Accordingly, �j (�) is changed by � and

�k (�) by � such that (PC) is still saturated and the right-hand side of (LIC) does not vary.
Dropping the argument � everywhere for the sake of shortness, this requires:

�pj = �"pi � �pk , � = �"pi
pj
� �pk

pj

�p0k = ��p0j � "p0i , � = ��
p0j
p0k
� " p

0
i

p0k
:

Replacing the expression of � in that of �; we obtain:

� = �"pi
pj

p0i
pi
� p0k

pk
p0j
pj
� p0k

pk

: (58)
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Replacing (58) in the expression of �; we further obtain:

� = "
pi
pk

p0i
pi
� p0j

pj

p0j
pj
� p0k

pk

: (59)

Using (28) in (58) and (59), we deduce that Si gn (�) 6= Si gn (�) :

E Proof of Lemma 2
Taking the expression of �n (�) pn(�) from (27), pugging into (25) and making use of the

inequalities p01(�)
p1(�)

> p0n(�)
pn(�)

and
pn(��)
pn(�)

>
p1(��)
p1(�)

to rearrange, (25) is rewritten as (29). Similarly,
(26) is rewritten as (30).

F Proof of Lemma 3
The necessity of (31) is obvious. To show su¢ ciency, we �rst let �+ tend to �: Applying de

L�Hopital�s rule yields:
p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

:

Using this in (31), we obtain (29). Similarly, as �� tends to � :

p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

:

Using this in (31), we obtain (30). Hence, (31) is su¢ cient as well.

G Proof of Proposition 2

G.1 Derivation of (38)
We see that

d

d�+

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A < 0

if and only if
p01(�+)
p1(�)

� p0s(�+)
ps(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<

p01(�+)
p1(�)

� p0n(�+)
pn(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

: (60)
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Multiplying the numerator by �+ � � in both sides, subtracting 1 from each side and manipu-
lating further, (60) becomes:

ps(�+)�p0s(�+)(�+��)
ps(�)

� p1(�+)�p01(�+)(�+��)
p1(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<

pn(�+)�p0n(�+)(�+��)
pn(�)

� p1(�+)�p01(�+)(�+��)
p1(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

:

Using the de�nition of �s (�
0; �) ; this is rewritten as:

�s
�
�+; �

�
� �1

�
�+; �

�
p1(�+)
p1(�)

� ps(�+)
ps(�)

<
�n
�
�+; �

�
� �1

�
�+; �

�
p1(�+)
p1(�)

� pn(�+)
pn(�)

; (61)

which is satis�ed by assumption.
We also see that:

d

d��

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A < 0

if and only if
p01(��)
p1(�)

� p0s(��)
ps(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>

p01(��)
p1(�)

� p0n(��)
pn(�)

pn(��)
pn(�)

� p1(��)
p1(�)

: (62)

Multiply both sides by
�
� � ��

�
; subtract from either side and rearrange to obtain:

p1(��)+p01(��)(����)
p1(�)

� ps(��)+p0s(��)(����)
ps(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>

p1(��)+p01(��)(����)
p1(�)

� pn(��)+p0n(��)(����)
pn(�)

pn(��)
pn(�)

� p1(��)
p1(�)

:

Resting on the de�nition of �; this is rewritten as:

�s
�
��; �

�
� �1

�
��; �

�
ps(��)
ps(�)

� p1(��)
p1(�)

<
�n
�
��; �

�
� �1

�
��; �

�
pn(��)
pn(�)

� p1(��)
p1(�)

; (63)

which is satis�ed by assumption.
Therefore, we have:

d

d�+

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A < 0 together with
d

d��

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A < 0;

involving that the di¤erence

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)
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is greatest as �� tends to � and �+ tends to �: For such values of �� and �+; the di¤erence here
above is found to be zero (by applying de L�Hopital�s rule). Hence, for all pairs of types, the
di¤erence is non-positive. In de�nitive, for any given pair

�
��; �+

	
such that �� < � < �+;

(31) is weakest if �s (�) = �L; 8s 6= 1; n: Substituting this value in (31) and rearranging yields
(38).

G.2 Proof of (36) and (37)
Setting �s (�) = �n (�) in (25), we see that �n (�) � �L if and only if (37) is satis�ed. The

fact that no other lottery satis�es (LL), if (LL) is not satis�ed by �1 (�) (the lottery such that
�s (�) is equal 8s 6= 1); follows from Lemma 1.
Setting �s (�) = �n (�) in (27) and then plugging the resulting expression of �n (�) ; we see

that (25) and (26) are jointly satis�ed if and only if (36) is satis�ed.

H Proof of Corollary 1
Using �s (�) = �L in (27), �n (�) is rewritten as:

�n (�) =
L
P

s 6=1;n ps(�)
�
p01(�)
p1(�)

� p0s(�)
ps(�)

�
� C� (q (�) ; �)

pn(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� :

Replacing
P

s 6=1;n ps(�) = 1 � (p1(�) + pn(�)) and
P

s 6=1;n p
0
s(�) = � (p01(�) + p0n(�)) ; �n (�) is

further rewritten as (34).
Recalling that �1 (�) = �

Pn
s=2 �s (�)

ps(�)
p1(�)

because
Pn

s=1 �s (�) ps (�) = 0; and using �s (�) =
�L and (34) in the expression of �1 (�) we �nd:

�1 (�) = �
nX

s 6=1;n

�s (�)
ps(�)

p1(�)
� �n (�)

pn(�)

p1(�)

=
L

p1(�)

nX
s 6=1;n

ps(�)�

0@Lp01(�)p1(�)
� C� (q (�) ; �)

pn(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L
1A pn(�)

p1(�)

Replacing again
P

s 6=1;n ps(�) = 1� (p1(�) + pn(�)) ; �1 (�) is further rewritten as (33).
We are left with checking that �1 (�) � �L and �n (�) � �L: The former is true because

p0n (�) < 0: The latter is implied by
p01(�)
p1(�)

> p0n(�)
pn(�)

together with C� (q (�) ; �)
p1(�)
p01(�)

� L; which is
implied by (37).

I Proof of Corollary 2
Recall that by applying de L�Hopital�s rule one has:

lim
�+!�

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)
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and that:

d

d�+

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A < 0; 8�+ > �

Hence, the term:

X
s 6=1;n

�s (�) ps(�)

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A
on the right-hand side of (30) is raised as �s (�) is decreased, so that (30) is relaxed. Also recall
that:

lim
��!�

p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

;

and that:

d

d��

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A < 0; 8�� < �:

Hence, also the term:

X
s 6=1;n

�s (�) ps(�)

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A
in the right-hand side of (29) is raised as �s (�) is decreased, so that (29) is tightened.

J Proof of Corollary 3
Condition (32) is satis�ed if �s (�

0; �) < �1 (�
0; �) < �n (�

0; �) : We shall now consider cases
in which one of these inequalities is violated.
First suppose that �s (�

0; �) > �1 (�
0; �) and �n (�

0; �) > �1 (�
0; �) for �0 6= �: Using these

inequalities �rst for �0 = �+ and then for �0 = ��; we rewrite (32) as:

p1(�+)
p1(�)

� pn(�+)
pn(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<
�n
�
�+; �

�
� �1

�
�+; �

�
�s
�
�+; �

�
� �1

�
�+; �

�
and as:

pn(��)
pn(�)

� p1(��)
p1(�)

ps(��)
ps(�)

� p1(��)
p1(�)

<
�n
�
��; �

�
� �1

�
��; �

�
�s
�
��; �

�
� �1

�
��; �

� :
In either inequality, the left-hand side is greater than 1: It is thus necessary that �n (�

0; �) >
�s (�

0; �) and that the di¤erence �n (�
0; �)� �s (�0; �) be su¢ ciently large.

Next suppose that �1 (�
0; �) > �n (�

0; �) whereas �s (�
0; �) < �1 (�

0; �) : Using these inequali-
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ties �rst for �0 = �+ and then for �0 = ��; we rewrite (32) as:

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

<
�1
�
�+; �

�
� �s

�
�+; �

�
�1
�
�+; �

�
� �n

�
�+; �

�
and as:

pn(��)
pn(�)

� p1(��)
p1(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>
�1
�
��; �

�
� �n

�
��; �

�
�1
�
��; �

�
� �s

�
��; �

� :
The left-hand side in the former condition is lower than 1; the left-hand side in the latter
condition is above 1: For these two conditions to hold, it is su¢ cient that �s (�

0; �) > �n (�
0; �) :

It is necessary that the di¤erence �n (�
0; �)� �s (�0; �) be not too large.

We are left with the case in which �n (�
0; �) < �1 (�

0; �) < �s (�
0; �) : We see that (32) is

violated.

K Proof of Corollary 4
Replacing �s (�) = �L in (31) and rearranging, (31) is rewritten as (40).

L Proof of Corollary 5
Comparing (37) with (38), we see that (38) is tighter than (37) if and only if:

C(q(�);�)�C(q(�);��)
pn(��)
pn(�)

� p1(�
�)

p1(�)

� C(q(�);�+)�C(q(�);�)
p1(�

+)
p1(�)

� pn(�+)
pn(�)

�
P

s 6=1;n ps(�)

�
p1(�

+)
p1(�)

� ps(�+)
ps(�)

p1(�
+)

p1(�)
� pn(�+)

pn(�)

�
p1(�

�)
p1(�)

� ps(��)
ps(�)

p1(�
�)

p1(�)
� pn(��)

pn(�)

� > �C (q (�) ; �)� C �q (�) ; ���� p1(�)

p1(�)� p1(��)
:

Let us group the terms including
�
C (q (�) ; �)� C

�
q (�) ; ��

��
to rewrite:

�
C (q (�) ; �)� C

�
q (�) ; ��

��24 1
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

+
p1(�)

p1(�)� p1(��)

0@0@ p1(�
+)

p1(�)

P
s 6=1;n ps(�)�

P
s 6=1;n ps(�

+)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

1A
�
p1(�

�)
p1(�)

P
s 6=1;n ps(�)�

P
s 6=1;n ps(�

�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

1A35
>

C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)
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Using
P

s 6=1;n ps(�) = 1� p1 (�)� pn (�) and rearranging further yields:

�
C (q (�) ; �)� C

�
q (�) ; ��

�� p1(�)

p1(�)� p1(��)

0@pn(�) + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
p1(�)

p1(�
+)

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

�
1A

>
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

: (64)

We now take the expression in brackets in the left-hand side of (64) and factorize pn(�) to
develop as follows:

pn (�)

0@1 + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
p1(�)

p1(�
+)

�
pn (�)

p1(�
+)

p1(�)
� pn(�+)

�
1A

= pn(�)
pn(�)� p1(�)pn(�

+)

p1(�
+)
+ 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
pn(�)� p1(�)pn(�

+)

p1(�
+)

=
p1(�

+)� p1(�)
p1(�

+)� p1(�)pn(�
+)

pn(�)

:

Using this, we can now rewrite (64) as:

�
C (q (�) ; �)� C

�
q (�) ; ��

�� p1(�
+)�p1(�)

p1(�)�p1(��)
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

>
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

or, equivalently, as:
C (q (�) ; �)� C

�
q (�) ; ��

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

>
p1(�)� p1(��)
p1(�

+)� p1(�)
;

which means that (17) is violated. Therefore, (38) implies (37) if and only if (17) is violated.

M Proof of Lemma 4, Proposition 3 and 4
Denote s (�t) the multiplier associated with (LL) when signal is s and type is �t; � (�t) that

associated with (PC) when type is �t; � that associated with (43), � that associated with (44),
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� that associated with (46), � that associated with (45. The Lagrangian of the programme is:X
�t2�3

(S (q (�t))� C (q (�t) ; �t)�R (�t)) f (�t) +
X
�t2�3

X
s2N

s (�t) (�s (�t) + L) +
X
�t2�3

� (�t)R (�t)

+�

8<:R (�1)�R (�2)
p1(�1)
p1(�2)

� (C (q (�2) ; �2)� C (q (�2) ; �1))� �2 (�2) p2(�2)
�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

�
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

��3 (�2) p3(�2)g
+� f�3 (�2) p3(�2)

�
R (�2)

p1(�3)
p1(�2)

�R (�3)� (C (q (�2) ; �3)� C (q (�2) ; �2))� �2 (�2) p2(�2)
�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

9=;
+�

�
R (�2)

p1(�3)

p1 (�2)
�R (�3)� (C (q (�3) ; �3)� C (q (�3) ; �2))

p1(�3)

p1 (�2)

� p1(�3)
p1 (�2)

X
s 6=1

�s (�3) ps(�3)

�
ps (�2)

ps(�3)
� p1 (�2)
p1 (�3)

�)
p1 (�2)

p1(�3)

+�

�
R (�2)

p1(�1)

p1 (�2)
�R (�1) + (C (q (�1) ; �2)� C (q (�1) ; �1))

p1(�1)

p1 (�2)

+
p1(�1)

p1 (�2)

X
s 6=1

�s (�1) ps(�1)

�
p1 (�2)

p1 (�1)
� ps (�2)
ps(�1)

�)
p1 (�2)

p1(�1)
:

We now characterize the solution.
First suppose that � (�1) = � (�2) = 0. The Lagrangian is linear in both R (�2)

p1(�3)
p1(�2)

�R (�3)
and R (�1)�R (�2) p1(�1)p1(�2)

; with coe¢ cients:

�
p1 (�2)

p1(�3)
� �

p1(�3)
p1(�2)

� pn(�3)
pn(�2)

�
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

� �p1 (�2)
p1(�1)

:

Suppose that � = 0: Then, the former coe¢ cient is negative, and hence R (�2)
p1(�3)
p1(�2)

� R (�3)
should be decreased until the point where the constraint with � is binding. Then, � > 0; in
contradiction with the hypothesis that � = 0: Suppose that � = 0: Then, the latter coe¢ cient
is positive, and hence R (�1) � R (�2) p1(�1)p1(�2)

should be increased until the point where � > 0;

which contradicts the hypothesis that � = 0:We thus conclude that if � (�1) = � (�2) = 0; then
both � > 0 and � > 0. Next suppose that � (�1) > 0 and � (�2) > 0. It is immediate to see
that � = 0 and � = 0:
We now turn to show that 3 (�2) = 0 is equivalent to � > 0 and � > 0; and hence it is

equivalent to � (�1) > 0 and � (�2) > 0:
Suppose that 3 (�2) = 0. The Lagrangian is linear in �3(�2) with coe¢ cient (�� �) p3(�2):

If � > � = 0; then the Lagrangian increases with �3 (�2) : Hence, �3 (�2) should be raised
until the point where � > 0; in contradiction with the hypothesis that � = 0: Analogous
contradiction emerges if we suppose that � > � = 0: Provided that at second best it cannot
be � = � = 0 (as (43) and (44) do not hold jointly at the �rst-best allocation), it must be the
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case that � > 0 and � > 0: Suppose that � 6= �. As the two constraints with these multipliers
are binding, it must be the case that (�� �)�3 (�2) p3(�2) = 0: However, if � 6= �; then the
Lagrangian either increases or decreases with �3 (�2) ; involving that it should be �n (�2) 6= 0;
in contradiction with the requirement that (�� �)�3 (�2) p3(�2) = 0:We conclude that � = �:
The Lagrangian is linear in �2 (�2) with the following coe¢ cient:

p2(�2)

 
�

p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� �
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

!
= �p2(�2)

 p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

!
:

Relying on (39), this is found to be negative, involving that 2 (�2) > 0 and �2 (�2) = �L,
which completes the proof of Lemma 4.
We now verify the hypothesis that 3 (�2) = 0: Being based on the binding constraints with

� and �; we see that �3 (�2) > �L if and only if the two conditions

�Lp3(�2)

�
R (�2)

p1(�3)
p1(�2)

�R (�3)� (C (q (�2) ; �3)� C (q (�2) ; �2))� �2 (�2) p2(�2)
�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

and

�Lp3(�2)

�
R (�1)�R (�2) p1(�1)p1(�2)

� (C (q (�2) ; �2)� C (q (�2) ; �1))� �2 (�2) p2(�2)
�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

are both satis�ed. With �2 (�2) = �L these conditions are the same as the constraints with �
and �. Hence, if 3 (�2) = 0 and so �3 (�2) > �L; then the constraints with � and � are slack,
in which case � = 0 and � = 0; further involving that � (�1) > 0 and � (�2) > 0: If 3 (�2) > 0
and so �3 (�2) = �L; then � > 0 and � > 0; in which case � (�1) = � (�2) = 0: There are thus
two solutions.
The �rst solution applies when 3 (�2) > 0; � > 0; � > 0 and � (�1) = � (�2) = 0: From the

constraints associated with � and �; we �nd

R (�2) = R (�3)
p1 (�2)

p1(�3)
+ C (q (�3) ; �3)� C (q (�3) ; �2) (65)

+
X
s 6=1

�s (�3) ps(�3)

�
ps (�2)

ps(�3)
� p1 (�2)
p1 (�3)

�
R (�1) = R (�2)

p1(�1)

p1 (�2)
+ (C (q (�1) ; �2)� C (q (�1) ; �1))

p1(�1)

p1 (�2)
(66)

+
p1(�1)

p1 (�2)

X
s 6=1

�s (�1) ps(�1)

�
p1 (�2)

p1 (�1)
� ps (�2)
ps(�1)

�
:

Replacing in the Lagrangian, we see that P should set R (�3) = 0 together with �s (�1) =
�s (�3) = �L; 8s 6= 1: Replacing R (�3) = 0 and �2 (�3) = �L in (65) yields (48). Replacing
the obtained value of R (�2) and �2 (�1) = �L in (66) yields (47). This completes the proof of
Proposition 3.
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The second solution applies when 3 (�2) = 0; � (�1) > 0; � (�2) > 0 and � = � = 0: Then,
R (�1) = R (�2) = 0. Replacing these values in (43) and (44), together with R (�3) = 0 and
�2 (�2) = �L; we obtain the necessary condition (41). This condition is binding because � > 0
and � > 0, which completes the proof of Proposition 4.
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