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1 Introduction18

Tournaments are environments in which participants compete for a valuable prize by19

spending effort or other resources. Examples include R&D races, rent-seeking, wars and20

conflicts, and tournaments in organizations where promotions or bonuses are based on21

the relative performance of workers. Starting with the seminal contributions of Tullock22

(1980) and Lazear and Rosen (1981) there is by now a substantial theoretical literature on23

tournaments using the respective models.1 An important feature of these models distin-24

guishing them from “perfectly discriminating” contests or all-pay auctions (e.g., Hillman25

and Riley, 1989; Baye, Kovenock and De Vries, 1996; Siegel, 2009) is the presence of un-26

certainty, or “noise,” in the winner determination process.2 Jia (2008) and Jia, Skaperdas27

and Vaidya (2013) provide a unified framework for the two prominent tournament models28

showing that the contest success function (CSF) of Tullock (1980) can be obtained as a29

special case of a Lazear-Rosen tournament.330

Yet, the existing analysis of general tournament models is quite scarce. For tractabil-31

ity reasons, most of the literature uses either the Tullock CSF (also known as the lottery32

contest) and its lottery-form generalizations satisfying the axioms of Skaperdas (1996), or33

the Lazear-Rosen tournament with two players.4 Little, if anything, is known in general34

about the basic comparative statics of the rank-order tournament model. Specifically, it35

is unknown how the individual and aggregate equilibrium effort is affected by the number36

of players and the shape of the distribution of noise. Common wisdom suggests that37

as the number of players increases the individual probability of winning goes down and38

hence so does the marginal gain from increasing one’s effort, leading to lower effort in39

equilibrium. This is indeed the case in the Tullock contest.5 However, in a Lazear-Rosen40

tournament with a uniformly distributed noise the symmetric equilibrium effort is inde-41

pendent of the number of players. Since the two models have different underlying noise42

1For a recent summary, see, e.g., Konrad (2009), Congleton, Hillman and Konrad (2008), Corchón
(2007), Connelly et al. (2014).

2Throughout this paper, we focus exclusively on models of “imperfectly discriminating” contests with
noise and use “tournament” as a unifying term for such models.

3While it has been known in the demand estimation literature for a long time that the logit model can
be derived from the random utility model (McFadden, 1974), in the tournament literature the Tullock
and the Lazear-Rosen tournament models have been treated as two completely unrelated models, with
the exception of Jia, Skaperdas and Vaidya (2013).

4Notable exceptions are the papers analyzing optimal prize structures in tournaments with risk-averse
players (Nalebuff and Stiglitz, 1983; Green and Stokey, 1983; Krishna and Morgan, 1998; Akerlof and
Holden, 2012) and heterogeneity (Balafoutas et al., 2017). See also a survey of the earlier literature by
McLaughlin (1988).

5See, for example, surveys by Nitzan (1994) and Corchón (2007).
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distributions, this suggests that the shape of the distribution of noise plays an important43

role in equilibrium comparative statics. At the same time, aggregate equilibrium effort is44

increasing in the number of players in both cases. How universal are these results? Can45

individual equilibrium effort increase in the number of players or can it be nonmonotone?46

Can aggregate effort decrease in the number of players?47

Similar unanswered questions exist about the effect of the distribution of noise. In-48

tuitively, as noise becomes more dispersed, the marginal gain from increasing one’s effort49

declines and hence equilibrium effort should go down. Indeed, when the distribution of50

noise is uniform with support [−a, a], the equilibrium effort is proportional to 1
2a

, confirm-51

ing the intuition. Consider, however, the distribution of noise with pdf f(t) = |t|
a2

on the52

same support. Even though its variance is higher than that of the uniform distribution53

and, more generally, it is dominated by the uniform distribution in the sense of second-54

order stochastic dominance (SOSD), this distribution leads to a higher equilibrium effort55

than the uniform distribution in a two-player tournament. The reason is, as we show, that56

this distribution has a lower entropy, and it is the Rényi entropy, and not the variance or57

SOSD ordering, that determines the effect of noise on the equilibrium effort.58

In this paper, we start by analyzing the comparative statics of a general Lazear-59

Rosen tournament model.6 We show that, in general, there is nothing robust about the60

comparative statics. Individual equilibrium effort can be increasing, aggregate effort can61

be decreasing, and both can be nonmonotone in the number of players. We show that62

the unimodality of the distribution of noise allows for at least some degree of universality,63

namely, the unimodality of equilibrium effort in the number of players, and provide a64

general characterization of the comparative statics for unimodal noise distributions. In65

the absence of unimodality any universality is lost.66

We then turn to the analysis of general tournaments with a stochastic number of play-67

ers. Indeed, in many situations the number of competitors is unknown to the tournament68

participants at the time they decide how much to invest in competition. This would be69

the case, for example, in coding contests where an unknown and potentially very large70

number of coders submit their solutions; in hiring tournaments where a job seeker does71

not know how many others she is up against; or in promotion tournaments where an72

employee may not know how many of her colleagues the management is considering for73

6We use the formulation with additive noise. Models with multiplicative noise, such as the Tullock
contest, are transformed into an appropriately defined tournament with additive noise and hence their
comparative statics follow as a special case of a more general theory, see Section 2.2 (cf. also Jia, Skaperdas
and Vaidya, 2013).
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a senior position. Following the tradition of the literature on auctions with a stochastic74

number of bidders (e.g., McAfee and McMillan, 1987; Harstad, Kagel and Levin, 1990;75

Levin and Ozdenoren, 2004), we assume an arbitrary distribution of the number of players76

and explore the effects on equilibrium effort of changes in the parameters of the distribu-77

tion leading to first-order stochastic dominance (FOSD); that is, we explore the effects of78

a stochastic increase in the number of players.79

Similar to the deterministic participation case, we show that the unimodality of the80

distribution of noise plays a key role in robust comparative statics. We show that the81

preservation of unimodality under uncertainty requires an additional log-supermodularity82

condition imposed on the distribution of the number of players. This condition follows83

from similar arguments to those identified by Athey (2002) for the preservation of single-84

crossing under uncertainty. We also explore the effects of noise dispersion and show85

that they are governed by an appropriate entropy defined through a combination of the86

distribution of noise and the tournament size distribution.87

Contests with a stochastic number of players and endogenous entry have been stud-88

ied previously using the lottery contest model of Tullock (1980) and its generalizations89

(Münster, 2006; Myerson and Wärneryd, 2006; Lim and Matros, 2009; Fu and Lu, 2010;90

Fu, Jiao and Lu, 2011). Münster (2006) explores the effect of risk-aversion. He shows that91

when participation probability is sufficiently low equilibrium effort increases in the number92

of potential players, both under risk-neutrality and risk-aversion. Overall, effort is lower93

under risk-aversion (as compared to risk-neutrality) when participation probability is low,94

but higher when it is high. For an arbitrary distribution of group size with expectation µ,95

Myerson and Wärneryd (2006) compare aggregate equilibrium contest expenditure when96

the number of players is uncertain to the case when the number of players is equal to µ97

with certainty. They show that aggregate expenditure is strictly lower in the former case if98

it is guaranteed that the contest has at least one participant. Lim and Matros (2009) show99

that, for the binomial distribution of contest size, the equilibrium effort is nonmonotone100

and single-peaked in the participation probability when the number of potential players101

n > 2. They also show that, as long as the participation probability is not too high,102

effort is nonmonotone in the number of potential contestants. Fu, Jiao and Lu (2011)103

study the effect of disclosure of the number of participating players on aggregate effort.104

They show that disclosure or nondisclosure may be optimal depending on the properties105

of the “impact function” in the generalized lottery-form CSF; in the special case of lottery106

CSF of Tullock (1980), the principal is indifferent between disclosure and nondisclosure.107

Finally, Fu and Lu (2010) study endogenous entry and the optimal allocation of winner’s108

4



prize and participation subsidy/fee. There is no contest size uncertainty in their model,109

however, because entry occurs sequentially and each player observes the number of prior110

entrants. Fu and Lu (2010) find that the optimal contract extracts all surplus from the111

contestants and restricts participation to two active players. More generally, our paper is112

related to the literature on games with population uncertainty, including auctions7 and113

Poisson games.8114

The rest of the paper is organized as follows. In Section 2, we set up the tournament115

model with additive noise and show how the case of multiplicative noise is reduced to it116

as well. In Section 3 we provide general results on the preservation of unimodality under117

uncertainty that we use in the following sections. In Section 4, we focus on tournaments118

with deterministic participation and present the comparative statics with respect to the119

number of players. In Section 5, we move on to the analysis of the model with stochastic120

participation, and Section 6 concludes. Proofs that are missing in the main text are121

contained in Appendix A.122

2 Model setup123

2.1 Additive noise124

There are k ≥ 2 identical, risk-neutral players indexed by i ∈ K = {1, . . . , k}. All players125

i ∈ K simultaneously and independently choose efforts ei ≥ 0. The cost of effort ei to126

player i is c(ei), where c(·) is strictly increasing, strictly convex, and twice differentiable127

on (0, c−1(1)], with c(0) = 0. Efforts ei are perturbed by random additive shocks ui to128

generate the players’ output levels yi = ei + ui. Shocks ui are i.i.d. with cumulative129

distribution function (cdf) F and probability density function (pdf) f defined on interval130

support U . When necessary, we will use ul and uh to denote, respectively, the lower131

and upper bounds of U , which may be finite or infinite.9 We assume that f is atomless,132

continuous and piece-wise differentiable in the interior of U , and has an inverse quantile133

density m(z) (defined below) that is continuous and piece-wise differentiable on (0, 1)134

7For a theoretical analysis of auctions with a stochastic number of bidders see, e.g., McAfee and
McMillan (1987), Harstad, Kagel and Levin (1990) and Levin and Ozdenoren (2004). For a theoretical
analysis of endogenous entry in auctions see, e.g., Levin and Smith (1994) and Pevnitskaya (2004).

8See, e.g., Myerson (1998, 2000); Makris (2008, 2009); De Sinopoli and Pimienta (2009); Mohlin,
Östling and Wang (2015); Kahana and Klunover (2015, 2016).

9In this type of models, it is typically assumed that the shocks are zero-mean. While this assumption
can be made without loss of generality, it is not necessary because the probability of winning is determined
by differences in shocks.
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and integrable on [0, 1]. The winner of the tournament is the player whose output is the135

highest.10 The winner receives a prize normalized to one, whereas all other players receive136

zero.11
137

For a given vector of efforts (e1, . . . , ek), the probability of player i ∈ K winning the

tournament is given by

Pr(yi > yj ∀j ∈ K \ {i}) = Pr(ei + ui > ej + uj ∀j ∈ K \ {i})

=

∫
U

 ∏
j∈K\{i}

F (ei − ej + t)

 dF (t). (1)

Consider a symmetric pure strategy Nash equilibrium in which all players choose effort138

e∗ > 0. Using (1), the expected payoff of player i ∈ K from some deviation effort ei is139

πi(ei, e
∗) =

∫
U

F (ei − e∗ + t)k−1dF (t)− c(ei). (2)140

The first-order condition for payoff maximization evaluated at ei = e∗, ∂πi(ei,e
∗)

∂ei

∣∣∣
ei=e∗

= 0,141

gives142

bk = c′(e∗), bk = (k − 1)

∫
U

F (t)k−2f(t)dF (t). (3)143

Let F−1(z) = inf{t ∈ U : F (t) ≥ z} denote the quantile function of the distribution of144

noise. It is convenient to introduce an unnormalized density function m(z) = f(F−1(z)),145

known as the inverse quantile density function (Parzen, 1979). Using the probability146

integral transformation z = F (t), rewrite bk in Eq. (3) as147

bk = (k − 1)

∫ 1

0

zk−2m(z)dz. (4)148

Note that c′(e∗) is a strictly increasing function; therefore, if Eq. (3) has a solution, it is149

positive and unique for k ≥ 2. In what follows we assume that such a solution, e∗k, exists,150

and that it is a symmetric pure strategy equilibrium, i.e., ei = e∗k is the global maximum151

of function πi(ei, e
∗
k) given by (2).12

152

10Ties are broken randomly but, under the assumption of atomless f , occur with probability zero.
11A more general setting could involve up to n distinct prizes; however, in this paper we are not

concerned with optimal contract design, and use the simplest “winner-take-all” prize structure.
12Equilibrium existence and comparative statics are two separate issues, and here we focus on the

latter, leaving the discussion of equilibrium existence (and uniqueness) outside the scope of this paper.
In the Lazear-Rosen tournament model, these are still open questions. It is generally understood that
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2.2 Multiplicative noise153

Via simple transformations of the distribution of noise and the cost of effort, the model154

above accommodates tournaments with multiplicative noise where player i’s output is155

given by yi = eiui and ui are i.i.d. with a nonnegative support. The probability of player156

i winning the tournament of k players can then be written as157

Pr(eiui > ejuj ∀j ∈ K \ {i}) = Pr(xi + vi > xj + vj ∀j ∈ K \ {i}),158

where xi = ln ei and vi = lnui. Defining F̂ (v) = F (exp(v)) as the cdf of the transformed159

shocks vi and ĉ(x) = c(exp(x)) as the cost function for the transformed effort x, this160

model is reduced to the tournament model with additive noise, and all the results above161

go through.162

Specifically, the first-order condition (3) for the transformed equilibrium effort, x∗k =163

ln e∗k, is b̂k = ĉ′(x∗k), where b̂k is based on distribution F̂ . Interestingly,164

ĉ′(x) = c′(exp(x)) exp(x) = c′(e)e;165

therefore, the first-order condition for the original equilibrium effort is b̂k = c′(e∗k)e
∗
k. This166

leads to the following proposition.167

Proposition 1 The symmetric equilibrium effort in a tournament with multiplicative168

noise is the same as in the tournament with additive noise distributed with cdf F̂ (v) =169

F (exp(v)) and the cost of effort cm(e) =
∫ e

0
c′(x)xdx.170

Tullock contests171

As an illustration, consider contests with the CSF of Tullock (1980). The probability172

of player i winning the contest of size k is given by
eri∑k
j=1 e

r
j

, where r > 0 is a parameter173

measuring the level of noise (the “discriminatory power” of the contest) such that a lower174

r corresponds to higher noise. The cost of effort is linear, c(e) = e. Following Jia (2008),175

this probability of winning can be written as Pr(eiui > ejuj ∀j ∈ K \ {i}) where uj > 0176

are i.i.d. with the Generalized Inverse Exponential (or inverse Weibull) distribution with177

cdf F (u) = exp(−u−r).178

the symmetric pure strategy equilibrium exists if the variance of shocks ui is sufficiently large and/or
the effort cost function c(·) is sufficiently convex, cf. Nalebuff and Stiglitz (1983). Note that the second-
order condition and the requirement that zero effort is not a best response are not sufficient for e∗k
to be a symmetric equilibrium because function πi(ei, e

∗
k) may have multiple local maxima in ei. For

completeness, we provide the second-order condition in Appendix A.
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That is, the Tullock contest can be represented as a tournament with multiplicative179

noise. We can now use Proposition 1 to transform it into a tournament with additive180

noise. The transformed shocks vi = lnui have the Generalized Type-I Extreme Value181

(or Gumbel) distribution with cdf F̂ (v) = F (exp(v)) = exp[− exp(−rv)] and pdf f̂(v) =182

r exp[−rv − exp(−rv)] (see Jia, Skaperdas and Vaidya, 2013). This pdf is unimodal,183

with a maximum at zero, and skewed to the right. The transformed cost of effort is184

cm(e) =
∫ e

0
xdx = e2

2
. The first-order condition then takes the form b̂k = e∗k, where b̂k is185

given by Eq. (4) with m(z) = f̂(F̂−1(z)) = −rz ln z,186

b̂k = −r(k − 1)

∫ 1

0

zk−2 ln zdz =
r(k − 1)

k2
, (5)187

which is the equilibrium effort in the Tullock contest.188

This approach can be further generalized to cover contests with a CSF of the form189

h(ei)∑k
j=1 h(ej)

, where h(·) is a strictly increasing “impact function,” and a possibly nonlinear190

cost of effort c(ei). By introducing effective efforts xi = h(ei) and costs C(xi) = c(h−1(xi)),191

such models are reduced to the Tullock contest with r = 1, and the results above apply.192

Specifically, Proposition 1 implies that the symmetric equilibrium level of effective effort,193

x∗, satisfies the equation k−1
k2

= C ′(x∗)x∗, where C ′(x) = c(h−1(x))
h′(h−1(x))

. Substituting back194

x∗ = h(e∗k), obtain for the equilibrium effort k−1
k2

=
c′(e∗k)h(e∗k)

h′(e∗k)
.195

3 Preservation of unimodality under uncertainty196

In what follows, we explore the comparative statics of individual and aggregate equilibrium197

effort in tournaments with respect to the number of players, k. First, in Section 4, we198

assume that k is deterministically given; then, in Section 5, we allow k to be a realization of199

a nonnegative integer random variable with some probability mass function (pmf). In the200

latter case, we explore the comparative statics with respect to changes in the parameters201

of the pmf leading to first-order stochastic dominance (FOSD).202

In both cases, we show that robust comparative statics can be obtained for unimodal203

distributions of noise f(t). These comparative statics amount to preservation of uni-204

modality under uncertainty. Indeed, note that coefficients bk, Eq. (4), which determine205

the comparative statics in the case of deterministic group size, can be written in the from206

bk =
∫ 1

0
m(z)dzk−1, i.e., as expectations of inverse quantile density m(z) with respect207

to an FOSD-ordered family of cdfs F(k−1)(z) = zk−1. Our first lemma in this section208
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provides a necessary and sufficient condition for such expectations, generally of the form209

γ(θ) =
∫ 1

0
a(z)dH(z, θ), where cdfs H(z, θ) are FOSD-ordered in θ, to be unimodal in θ for210

all unimodal functions a(z). When we turn to the case of stochastic group size, equilib-211

rium effort will be determined by discrete expectations of the form χ(θ) =
∑n

k=1 xkyk(θ),212

where x = {xk}nk=1 is some sequence and y(θ) = {yk(θ)}nk=1 is an FOSD-ordered family of213

pmfs. The second lemma in this section establishes a necessary and sufficient condition214

for such expectations to be unimodal in θ for all unimodal sequences x. We start with215

some definitions. All missing proofs are in Appendix A.216

Definition 1 A function (or sequence) φ : S → R, where S ⊆ R, is unimodal if there217

exists a t̂ ∈ S such that φ(t) is nondecreasing for t ≤ t̂ and nonincreasing for t ≥ t̂. A218

function (or sequence) is interior unimodal if it is unimodal and nonmonotone.219

Definition 2 A function ψ : S1 × S2 → R, where S1, S2 ⊆ R, is log-supermodular if for220

all t1, t
′
1 ∈ S1, t2, t

′
2 ∈ S2, such that t′1 > t1 and t′2 > t2,221

ψ(t1, t
′
2)ψ(t′1, t2) ≤ ψ(t1, t2)ψ(t′1, t

′
2).222

In other words, for all t′2 > t2 the ratio r(t1, t2, t
′
2) =

ψ(t1,t′2)

ψ(t1,t2)
is nondecreasing in t1.223

Consider integrals of the form γ(θ) =
∫ 1

0
a(z)dH(z, θ), where a(z) : [0, 1] → R is224

an integrable, continuous and piece-wise differentiable function and H(z, θ) is a cdf of a225

random variable Z|θ defined on [0, 1] and parameterized by θ ∈ Θ ⊆ R.13 We assume226

that an increase in θ leads to an upward probabilistic shift, in the FOSD sense, of Z|θ;227

that is, H(z, θ) is nonincreasing in θ for all z ∈ [0, 1] and θ ∈ Θ. Let Hθ(z, θ) ≤ 0 denote228

the derivative of H(z, θ) with respect to θ if θ is a continuous parameter (in which case229

we assume that H(z, θ) is differentiable) or the first difference, H(z, θ+ d)−H(z, θ), if θ230

is a discrete index with step size d > 0.231

Lemma 1 γ(θ) is unimodal for all unimodal functions a(z) if and only if |Hθ(z, θ)| is232

log-supermodular; that is, the ratio r(z, θ, θ′) = Hθ(z,θ′)
Hθ(z,θ)

is nondecreasing in z for any233

θ′ > θ.234

Consider now sums of the form χ(θ) =
∑n

k=1 xkyk(θ), where x is a nonnegative se-235

quence and y(θ) = (y1(θ), . . . , yn(θ)) is a pmf parameterized by θ ∈ Θ ⊆ R. We will use236

13Variables Z|θ do not have to have the same support; rather, we assume that [0, 1] includes all of their
supports, and H(0, θ) = 1−H(1, θ) = 0 for all θ ∈ Θ.
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Yk(θ) =
∑k

l=1 yl(θ) to denote the corresponding cumulative mass function (cmf), with237

Yn(θ) = 1. The upper bound of the sum, n ≥ 2, can be finite or infinite and applies238

uniformly for all values of θ.14 We assume that an increase in θ shifts the distribution239

y(θ) upward in the FOSD sense. Let Y ′k(θ) ≤ 0 denote the derivative or the first difference240

of the cmf with respect to θ.241

Lemma 2 χ(θ) is unimodal for all unimodal sequences x if and only if |Y ′k(θ)| is log-242

supermodular; that is, the ratio r(k, θ, θ′) =
Y ′k(θ′)

Y ′k(θ)
is nondecreasing in k for any θ′ > θ.243

In some cases, the log-supermodularity condition of Lemma 2 may be difficult to check244

directly because there is no closed-form expression for the cmf Yk(θ). The following lemma245

shows that a similar ratio condition can instead be checked for the probability-generating246

function (pgf) of distribution y(θ), defined as G(z, θ) =
∑n

k=1 yk(θ)z
k−1. Probabilities247

yk(θ) can be recovered from it as yk(θ) = 1
(k−1)!

G(k−1)(0, θ). Moreover, the pgf can be248

related to the cmf Y (θ) as249

n∑
k=1

Yk(θ)z
k−1 =

G(z, θ)− zn−1

1− z
. (6)250

It follows from Eq. (6) that G(z, θ) is nonincreasing in θ whenever Yk(θ) is nonincreasing251

in θ for all k; that is, G(z, θ) behaves as an FOSD-ordered family of cdfs (except that252

G(0, θ) = y1(θ), which is, generally, nonzero). Let Gθ(z, θ) ≤ 0 denote, similar to Hθ(z, θ)253

in Lemma 1, either the derivative or the first difference of G(z, θ) with respect to θ.254

Lemma 3 |Gθ(z, θ)| is log-supermodular if and only if |Y ′k(θ)| is log-supermodular; that255

is, the ratio R(z, θ, θ′) = Gθ(z,θ′)
Gθ(z,θ)

is nondecreasing in z for any θ′ > θ if and only if the256

ratio r(k, θ, θ′) in Lemma 2 is nondecreasing in k for any θ′ > θ.257

The nondecreasing ratio conditions in Lemmas 1, 2 and 3 are well-known in the lit-258

erature on comparative statics under uncertainty (Athey, 2002). They are also known259

as total positivity of order 2 (Karlin, 1968), and increasing likelihood ratio properties260

when applied to parameterized probability density functions (see, e.g., Shaked and Shan-261

thikumar, 2007). Our results are most closely related to those of Athey (2002) on the262

comparative statics of expectations of the form γ(θ) =
∫ 1

0
a(z)dH(z, θ) for single-crossing263

14This is not to say that y(θ) have the same support for all θ ∈ Θ; rather, n = supθ∈Θ n(θ), where n(θ)
is the upper bound of the support of y(θ). The definitions of y(θ) are extended to the uniform support
so that yk(θ) = 0 and Yk(θ) = 1 for k > n(θ).
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functions a(z). Lemma 1 is a straightforward corollary of these results applied to uni-264

modal functions, i.e., functions with a single-crossing derivative. Indeed, assuming a(1)265

is finite (which is the case for interior unimodal functions) and integrating by parts,266

γ(θ) = a(1)−
∫ 1

0
a′(z)H(z, θ)dz, where a′(z) is single-crossing and hence, following Athey267

(2002), γ′(θ) =
∫ 1

0
a′(z)|Hθ(z, θ)|dz is single-crossing, i.e., γ(θ) is unimodal, if |Hθ(z, θ)|268

is log-supermodular. Lemma 2 is a discrete version of Lemma 1 and follows similarly via269

“summation by parts.” Lemma 3, however, is less straightforward; the equivalence of log-270

supermodality of a discrete cdf and the corresponding pgf is a new result with potentially271

broader applications.272

4 Tournaments with deterministic group size273

4.1 Individual equilibrium effort274

Because the marginal cost function c′(·) is strictly increasing, the dependence of symmetric275

equilibrium effort e∗k on k is determined entirely by coefficients bk, Eq. (4), which can be276

interpreted as the marginal benefit of effort in equilibrium. Note that bk is independent of277

k when the distribution of noise is uniform. The following lemma shows that the uniform278

distribution is, in fact, the only one for which it is the case.279

Lemma 4 Coefficients bk are independent of k for k ≥ 2 if and only if F is a uniform280

distribution.281

Generally, the properties of coefficients bk are determined by the shape of the distri-282

bution of noise. One interpretation of coefficients bk follows from writing them in the form283

bk =
∫ 1

0
m(z)dzk−1 = E(m(Z(k−1))), where Z(k−1) is the maximum of k − 1 i.i.d. uniform284

random variables in [0, 1]. From the ordering of variables Z(k−1) by first-order stochastic285

dominance, it follows immediately that if f(t) is nonincreasing (nondecreasing) then bk is286

nonincreasing (nondecreasing) in k for k ≥ 2. Indeed, m(z) has the same monotonicity287

as f(t), and for a higher k the weights in the expectation E(m(Z(k−1))) shift to the right.288

The nontrivial case emerges when f(t) is nonmonotone.289

Before turning to the main results describing the behavior of bk for all k when f(t)290

is unimodal, we present large-k asymptotic results for an arbitrary f(t). As discussed291

above, as k increases, bk is determined by increasingly higher order statistics Z(k−1) whose292

probability density is concentrated near z = 1; hence, the asymptotic behavior of bk293

is determined by the shape of m(z) near z = 1, which corresponds to the upper tail294

11



of pdf f(t). Specifically, a nonincreasing (nondecreasing) upper tail of f will lead to a295

nonincreasing (nondecreasing) bk for large k. The following proposition states the result296

formally.297

Proposition 2 Define ẑ = inf{z′ ∈ [0, 1] : m(z) is monotone on (z′, 1)}. If m(z) is298

nonincreasing (nondecreasing) and nonconstant on (ẑ, 1), then there exists a large enough299

k̂ such that bk is decreasing (increasing) for all k > k̂.300

Point ẑ defined in Proposition 2 determines the location of the “last” peak or dip301

of m(z). If pdf f is monotone (and nonconstant), ẑ = 0 and bk is either decreasing or302

increasing for all k ≥ 2. If f is nonmonotone, bk is asymptotically decreasing or increasing303

depending on whether the last turning point of f is a peak or a dip.304

Unimodal distributions are an important class, for which universal global properties305

of coefficients bk can be established. The most general result follows directly from Lemma306

1: bk is unimodal whenever f(t) (and hence m(z)) is unimodal. Indeed, defining H(z, k) =307

zk−1, it is easy to see that |Hk(z, k)| = zk−1(1− z) is log-supermodular.308

Recall that b1 = 0 and b2 > 0 in all cases; hence, for any n ≥ 2 a unimodal sequence309

{bk}nk=1 can either be nondecreasing or interior unimodal. The subsequence {bk}nk=2,310

however, can also be nonincreasing. In what follows, we will mostly focus on the properties311

of the latter subsequence. Interesting special cases emerge when f(t) is symmetric and/or312

n = 3.313

Proposition 3 (i) If f(t) is interior unimodal then {bk}nk=2 (and {e∗k}nk=2) is unimodal.314

(ii) If f(t) is nonincreasing (and nonconstant) then {bk}nk=2 (and {e∗k}nk=2) is decreasing.315

(iii) If f(t) is nondecreasing (and nonconstant) then {bk}nk=2 (and {e∗k}nk=2) is increasing.316

(iv) For n ≥ 4, if f(t) is interior unimodal and symmetric then b2 = b3 (and e∗2 = e∗3),317

and {bk}nk=3 (and {e∗k}nk=3) is decreasing.318

(v) If f(t) is symmetric (not necessarily unimodal) then b2 = b3 (and e∗2 = e∗3).319

Part (i) of Proposition 3 follows directly from Lemma 1, while parts (ii) and (iii)320

are straightforward special cases, as described above. Note that parts (ii) and (iii) only321

rely on the FOSD-ordering of cdfs H(z, k) = zk−1, part (i) relies additionally on the322

log-supermodularity of |Hk(z, k)|, but none of the parts (i)-(iii) relies on the specific323

order-statistic structure of H(z, k). In contrast, parts (iv) and (v) (proved in Appendix324

A) are more specialized and rely on that structure.325

The unimodality of f is not necessary for the unimodality of bk (and e∗k), but it is a326

tight condition. That is, a non-unimodal distribution of noise can produce a non-unimodal327
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Figure 1: Left : The pdf f(t) of a distribution with cdf F (t) = 0.2 tan(2t) + 0.7 defined on
[−0.646, 0.491]. Right : Individual equilibrium effort e∗k (blue diamonds, left scale) and aggregate
equilibrium effort E∗k (red squares, right scale) as a function of k for effort cost function c(e) =
1
2e

2.

sequence {bk}. This is illustrated in Figure 1 showing a bimodal pdf f(t) (left) and the328

resulting bimodal sequence {e∗k}nk=2 for n = 15 (right). At the same time, a non-unimodal329

f(t) does not necessarily lead to a non-unimodal sequence {bk}. For example, a bimodal330

distribution with pdf f(t) = 1
2
[fN(−12,4)(t) + fN(12,4)(t)], where fN(µ,σ2)(t) is the pdf of331

the Normal distribution with mean µ and variance σ2, generates a decreasing sequence332

{bk}nk=2 for any n ≥ 3. Thus, there is no “higher-order” universality of behavior of bk for333

non-unimodal distributions.334

Additionally, Proposition 3 allows us to characterize the behavior of bk for single-335

dipped distributions such that −f(t) is unimodal. Of interest is the case when f(t) is336

single-dipped and nonmonotone (when f is monotone parts (ii) and (iii) of Proposition 3337

apply).338

Corollary 1 (i) For n ≥ 3, if f(t) is single-dipped and nonmonotone then {bk}nk=2 (and339

{e∗k}nk=2) is single-dipped.340

(ii) For n ≥ 4, if f(t) is single-dipped, nonmonotone and symmetric then b2 = b3 (and341

e∗2 = e∗3), and {bk}nk=3 (and {e∗k}nk=3) is increasing.342

The example in Figure 1 illustrates part (i).343
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4.2 Aggregate equilibrium effort344

Given the various possibilities for the dependence of individual equilibrium effort e∗k on345

group size k, it is of interest to also explore how aggregate equilibrium effort E∗k = ke∗k346

changes with the number of players. Considering a change from k − 1 to k players, write347

the relative change in aggregate effort in the form348

δE∗k =
E∗k − E∗k−1

E∗k−1

=
k

k − 1

e∗k
e∗k−1

− 1. (7)349

We will explore conditions for δE∗k to be positive, i.e., for the aggregate effort to be in-350

creasing in k. As seen from (7), the number of players affects the aggregate equilibrium351

effort in two ways: The direct positive effect, represented by factor k
k−1

> 1, and the indi-352

rect equilibrium effect,
e∗k
e∗k−1

, which can be less or greater than one. Obviously, aggregate353

effort will increase in k when e∗k ≥ e∗k−1, i.e., whenever individual effort is nondecreasing354

in k. It is, however, also possible to have aggregate effort increasing in k when e∗k is355

decreasing or nonmonotone. For example, in Tullock contests with linear costs individual356

effort e∗k = r(k−1)
k2

is decreasing but aggregate effort E∗k = r(k−1)
k

is increasing in k.357

It is difficult to proceed with the analysis of aggregate effort for a general cost function358

c(e); therefore, we restrict attention to homogeneous cost functions of the form c(e) = c0e
ξ,359

ξ > 1. In this case Eq. (7) gives δE∗k = k
k−1

(
bk
bk−1

) 1
ξ−1 − 1, which leads to the following360

proposition.361

Proposition 4 Suppose c(e) = c0e
ξ, ξ > 1. Then E∗k ≥ E∗k−1 if and only if362

bk
bk−1

≥
(
k − 1

k

)ξ−1

. (8)363

One consequence of Proposition 4 is that for any k ≥ 3 it is always possible to find a364

sufficiently high ξ such that E∗k ≥ E∗k−1. The intuition is that a higher ξ makes the cost365

function more convex and hence, reduces the sensitivity of the equilibrium effort to its366

marginal benefit, i.e., bk. Then, for a sufficiently high ξ the direct positive effect of a367

higher number of players dominates the indirect equilibrium effect. On the other hand,368

ξ can be arbitrarily close to 1 in which case the equilibrium effort becomes infinitely369

sensitive to bk;
15 therefore, if bk < bk−1 for some k, it is always possible to find a ξ > 1370

15As ξ gets closer to 1, it becomes more difficult to satisfy the second-order condition for payoff
maximization at e∗k, but for any given ξ it can always be satisfied for a sufficiently high c0 and/or a
sufficiently dispersed distribution of noise.
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such that (8) does not hold and hence E∗k < E∗k−1.371

For illustration, compare tournaments with group sizes k = 2 and 3. It follows from372

Proposition 3 that b3 ≥ b2, and hence E∗3 > E∗2 , when f(t) is symmetric or nondecreasing.373

However, if f(t) is nonincreasing (and nonconstant), we have b3 < b2, in which case374

E∗3 < E∗2 for ξ < 1 +
ln
(
b2
b3

)
ln( 3

2)
. For example, consider the distribution of noise with cdf375

F (t) = tα and pdf f(t) = αtα−1 on [0, 1], with α > 1
2
.16 This gives m(z) = αz

α−1
α and376

bk = α2(k−1)
αk−1

; therefore, b3
b2

= 2(2α−1)
3α−1

< 1 if and only if α < 1, i.e., f(t) is decreasing. For377

α = 3
4
, we obtain E∗3 < E∗2 for ξ < 1 +

ln( 5
4)

ln( 3
2)
≈ 1.55.378

A natural question to ask is whether it can be established that E∗k is unimodal for a379

unimodal f(t). The answer is, in general, negative. Indeed, we can write E∗k = kc′−1(bk),380

where c′−1(·) is the inverse marginal cost of effort. For a strictly convex c(e), c′−1 is381

strictly increasing; therefore, c′−1(bk) is unimodal for a unimodal f(t). However, a product382

of a strictly increasing and unimodal functions is not necessarily unimodal. Additional383

restrictions on f(t) and/or c(e) are needed to ensure the unimodality of E∗k . The following384

proposition provides further insights.385

Proposition 5 Suppose c(e) = c0e
2, m(z) is twice differentiable, and m(1) and m′(1)386

are finite.387

(i) If f(t) is log-concave, then {E∗k}nk=2 is nondecreasing.388

(ii) If f(t) is log-convex and f(uh) = 0, then {E∗k}nk=2 is nonincreasing.389

(ii) If f(t) is first log-concave and then log-convex and f(uh) = 0, then {E∗k}nk=2 is uni-390

modal.391

The key property used in the proof of Proposition 5 is that the log-concavity (log-392

convexity) of f(t) is equivalent to the concavity (convexity) of m(z). Further, for a393

quadratic cost of effort E∗k ∝ kbk and, integrating (4) by parts twice, E∗k can be expressed394

through an integral of m′′(z) (see the proof for details). Part (i) generalizes the results395

for the Tullock contest with linear costs. Indeed, as shown in Section 2.2, such a contest396

is equivalent to a tournament with a quadratic cost and Gumbel distribution of noise,397

which has a log-concave pdf. To understand part (ii), note that the log-convexity of f(t)398

and condition f(uh) = 0 imply that f(t) is decreasing sufficiently fast. Then, not only399

does individual equilibrium efforts decrease (see Proposition 3(ii)) but the aggregate effort400

decreases too. For a simple example illustrating part (ii), consider the F2,2-distribution401

whose pdf and cdf are f(t) = 1
(1+t)2

and F (t) = t
1+t

defined for t ≥ 0. Then, bk = 2
k(k+1)

402

16The restriction α > 1
2 ensures that m(z) is integrable on [0, 1].
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and the aggregate effort E∗k = 2
k+1

is strictly decreasing with the number of players.17
403

Finally, for part (iii), the F -distribution and Beta distribution for some parameters, and404

the lognormal distribution are first log-concave and then log-convex (see Bagnoli and405

Bergstrom (2005) for details).406

4.3 The effect of noise dispersion407

Intuitively, when noise becomes more dispersed, the marginal gain from effort goes down408

and equilibrium effort should decrease. For example, when the distribution of noise is409

uniform on the interval [−a, a], we have bk = 1
2a

for all k ≥ 2; hence, as the variance410

of noise increases the equilibrium effort goes down. Similarly, in Tullock contests the411

dispersion of noise is determined by parameter r (see Section 2.2). As r goes down, noise412

becomes more dispersed and the equilibrium effort decreases.413

Consider, however, a family of zero-mean, symmetrically distributed random variables414

T |α, parameterized by α ≥ 0, with pdfs f(t|α) = α+1
2
|t|α defined on support [−1, 1]. An415

increase in α leads to a higher variance, Var(T |α) = α+1
α+3

, and, more generally, shifts the416

distribution in terms of second-order stochastic dominance (SOSD). At the same time,417

b2 = (α+1)2

2(2α+1)
increases with α. In other words, an increase in noise leads to a higher418

equilibrium effort in a two-player tournament.419

These examples show, perhaps surprisingly, that, in general, neither the variance nor420

SOSD ordering of noise distributions have a monotone effect on the equilibrium effort.421

To understand why this is the case, let u1 and u2 denote i.i.d. random variables with422

pdf f and recall that, from Eq. (3), b2 =
∫
U
f(t)2dt = fu1−u2(0), where fu1−u2(·) is the423

pdf of u1 − u2. In the example with variables T |α above, as α increases, the mass of424

the distribution is shifted away from the middle towards the edges of the support and,425

therefore, the density of u1−u2 acquires a sharp peak at zero (and two additional, smaller426

peaks around −2 and +2) leading to an increase in b2 even as the variance of T |α goes427

up.428

For the rest of this section, we will use bk[f ] and e∗k[f ] to denote, respectively, the429

coefficient bk and equilibrium effort e∗k obtained from a noise distribution with pdf f(t).430

Note that, from Eq. (3), b2 can be written in the form b2[f ] =
∫
U
f(t)2dt = exp(−H[f ]),431

where H[f ] is the Rényi entropy of order 2, also known as “collision entropy” (Rényi,432

17To illustrate the importance of the requirement f(uh) = 0, consider again the example in Figure 1,
where the pdf is log-convex but f(uh) > 0. As the right panel shows, E∗3 < E∗4 < E∗2 < E∗5 and E∗k is
monotonically increasing for k ≥ 5.
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1961).18 Thus, in two-player tournaments equilibrium effort decreases in the entropy of433

the noise distribution. More generally, from Eq. (3),434

bk[f ] =
4(k − 1)

k2

∫
U

[
k

2
F (t)

k
2
−1f(t)

]2

dt =
4(k − 1)

k2
b2[f(k/2)] =

4(k − 1)

k2
exp(−H[f(k/2)]),

(9)435

where f(k/2)(t) = d
dt
F (t)

k
2 is the pdf corresponding to cdf F(k/2)(t) = F (t)

k
2 . Thus, coeffi-436

cient bk in a tournament of k ≥ 2 players can be represented as an appropriately rescaled437

coefficient b2 in a tournament of two symmetric “composite” players, each with the cdf438

of noise F(k/2)(t). The latter coefficient can then be expressed through the entropy of pdf439

f(k/2).440

Proposition 6 In a tournament of k players, equilibrium effort decreases in the Rényi441

entropy of order 2 of a distribution with pdf f(k/2).442

The representation (9) and Proposition 6 have a straightforward interpretation when443

k is even: Split the k players arbitrarily into two equal subgroups with k
2

players each.444

Then F(k/2)(t) is the cdf of noise of the two players whose shocks are the largest in each445

subgroup, and the player with a larger shock between the two subgroup “winners” will446

win the tournament. For an odd k, the two “composite players” can still be introduced,447

but they no longer have the same “human” analogues.448

When support [ul, uh] is finite, the entropy reaches its maximum for the uniform449

distribution. This leads to the following corollary.450

Corollary 2 Of all noise distributions with a finite support [ul, uh], the distribution that451

minimizes the symmetric equilibrium effort in the tournament of k ≥ 2 players has cdf452

Fmin(t) =
(

t−ul
uh−ul

) 2
k
. The resulting minimized value of bk is bk[fmin] = 4(k−1)

k2(uh−ul)
.453

As seen from the corollary, the effort-minimizing noise distribution in a k-player tourna-454

ment is uniform for k = 2, but for k > 2 it has a concave cdf and monotonically decreasing455

pdf, more so the larger the number of players k, such that Fmin(t)
k
2 is uniform.456

An important sufficient condition that allows to rank entropy of different distributions457

and hence, equilibrium efforts is given by the dispersive order.19
458

18The general expression for the Rényi entropy of order α is Hα[f ] = 1
1−α ln

(∫
U
f(t)αdt

)
.

19For recent applications of the dispersive order in the auction theory literature see, e.g., Ganuza and
Penalva (2010) and Kirkegaard (2012).

17



Definition 3 X is more dispersed than Y if for all z, z′ ∈ [0, 1] such that z′ > z459

F−1
X (z′)− F−1

X (z) ≥ F−1
Y (z′)− F−1

Y (z).460

and the inequality is strict in some open interval of z.461

The definition is rather intuitive: X is more dispersed than Y if the distance between any462

two quantiles of X is at least as large as the distance between the same quantiles of Y .463

As discussed by Shaked and Shanthikumar (2007), whenever X is more dispersed than Y ,464

Var(X) ≥ Var(Y ); the converse, however, is not true. Similarly, the dispersive order for465

variables with equal means implies SOSD, but the converse is not true. Finally, whenever466

X is more dispersed than Y , it has a higher entropy. Moreover, the dispersive order467

is preserved for order statistics (Theorem 3.B.26 in Shaked and Shanthikumar, 2007),468

leading to the following result.469

Lemma 5 If X is more dispersed than Y then H[fX(k/2)] > H[fY (k/2)], and hence e∗k[fX ] <470

e∗k[fY ] for any k ≥ 2.471

The proof of Lemma 5 is straightforward and based on Proposition 6 and the fact that472

X being more dispersed than Y is equivalent to mX(z) ≤ mY (z) (see Appendix A).473

An important special case which satisfies the dispersive order, allows for an explicit

characterization of the equilibrium effort, and incorporates several important examples is

when additional dispersion is generated by scaling: X = sY , where s > 1. A parameter-

ized cdf F (t, s) is said to have a scale parameter s if it satisfies F (t, s) = F ( t
s
, 1). The

corresponding scaled pdf is f(t, s) = 1
s
f( t

s
, 1). For example, the standard deviation of a

zero-mean normal distribution, the length of the support of a uniform distribution, the

expected value of an exponential distribution and the scale of the Gumbel distribution

(and hence, the “discriminatory power” of the Tullock contest, see Section 2.2) are scale

parameters. It is easy to see that an increase in s leads to a more dispersed distribution

(Theorem 3.B.4 in Shaked and Shanthikumar, 2007) and hence to a lower equilibrium

effort (Lemma 5). For an explicit characterization, note that if [ul, uh] is the support of

f(t, 1), then the support of f(t, s) is [sul, suh] and

bk[f(t, s)] = (k − 1)

∫ suh

sul

F (t, s)k−2f(t, s)2dt =
k − 1

s2

∫ suh

sul

F

(
t

s
, 1

)k−2

f

(
t

s
, 1

)2

dt

=
k − 1

s

∫ uh

ul

F (u, 1)k−2f(u, 1)2du =
1

s
bk[f(t, 1)].
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Thus, individual and aggregate equilibrium efforts are decreasing in s.474

In many cases of interest the dispersive order does not rank distributions. For example,475

a mean-preserving spread generated by adding an independent zero-mean random variable476

satisfies the dispersive order only under a special condition. In particular, suppose X =477

Y + W , where E(W ) = 0 and W is independent of Y . In this case X is more dispersed478

than Y for any W (and hence Lemma 5 applies) if and only if the pdf of Y is log-concave479

(Theorem 3.B.7 in Shaked and Shanthikumar, 2007).480

Two (different) distributions cannot be ranked in the sense of dispersive order if they481

have the same finite support (Theorem 3.B.14. in Shaked and Shanthikumar, 2007). The482

following lemma may then help as it allows for ranking of some distributions directly in483

terms of the entropy.484

Lemma 6 Consider random variables X and Y defined on the same support [ul, uh] (finite485

or infinite). If any of the following conditions holds then H[fX ] ≥ H[fY ].486

(a) fX and fY are nondecreasing and Y FOSD X;487

(b) fX and fY are nonincreasing and X FOSD Y ;488

(c) fX and fY are interior unimodal and symmetric, and (Y |Y ≤ µ) FOSD (X|X ≤ µ),489

where µ = E(X) = E(Y ).490

Condition (a) in Lemma 6 is satisfied, for example, when fX and fY are both non-491

decreasing and fX crosses fY from above; that is, there exists a t̂ ∈ [ul, uh] such that492

fX(t) ≥ (≤)fY (t) for t ≤ (≥)t̂. Similarly, condition (b) is satisfied when fX and fY493

are both nonincreasing and fX crosses fY from below; and condition (c) is satisfied for494

symmetric unimodal fX and fY when fX crosses fY first from above and then from be-495

low. Of course, multiple crossings are also admissible as long as the FOSD relationships496

hold. Additionally, since a horizontal shift of the distribution of noise does not affect the497

equilibrium effort, what really matters in Lemma 6 is that the supports of X and Y are498

of the same size. The invariance to a horizontal shift also implies for part (c) that the499

means of X and Y can be different provided the support is infinite.500

Note that first-order stochastic dominance is preserved by order statistics; therefore,501

if condition (a) in Lemma 6 is satisfied for fX and fY , the same condition is satisfied for502

fX(k/2) and fY (k/2) for any k ≥ 2. This leads to the following result.503

Corollary 3 If fX and fY satisfy condition (a) in Lemma 6 then H[fX(k/2)] ≥ H[fY (k/2)]504

and hence e∗k[fX ] ≤ e∗k[fY ] for any k ≥ 2.505
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5 Tournaments with stochastic group size506

5.1 Model setup507

Consider now a setting in which the number of players in the tournament, K, is a random508

variable taking nonnegative integer values. The maximal possible number of players n ≥ 2509

can be finite or infinite. Let p = (p0, p1, . . . , pn) denote the probability mass function (pmf)510

of K, where pk = Pr(K = k) is the probability of having k players in the tournament,511

with
∑n

k=0 pk = 1. The expected number of players k̄ =
∑n

k=0 kpk is finite. Operationally,512

it is convenient to think about a set of potential participants N = {1, . . . , n} from which513

a subset K ∈ 2N is randomly drawn such that Pr(|K| = k) = pk, and subsets of the same514

cardinality |K| have the same probability of being drawn. Each player is informed if she515

is selected, but is not informed about the value of K.516

Let Si denote a random variable equal to 1 if player i ∈ N is selected for participation517

and zero otherwise, and let K̃ = (K|Si = 1) denote the random number of players in518

the tournament from the perspective of a participating player. The distribution of K̃ is519

updated as (see, e.g., Harstad, Kagel and Levin, 1990)520

p̃k = Pr(K̃ = k) =
pkk

k̄
, k = 1, . . . , n. (10)521

Equation (10) can be understood as follows (cf. Myerson and Wärneryd, 2006). Suppose522

n is finite (for an infinite n, a similar argument applies in the limit n→∞). For a given523

K, the probability for player i to be selected for participation is Pr(Si = 1|K = k) = k
n
;524

thus,525

p̃k = Pr(K = k|Si = 1) =
Pr(Si = 1|K = k)pk∑n
l=0 Pr(Si = 1|K = l)pl

=
k
n
pk∑n

l=0
l
n
pl
,526

which gives (10).527

Consider a symmetric pure strategy equilibrium in which all participating players528

choose effort e∗ > 0. From Eq. (2), the expected payoff of a participating player i from529

some deviation effort ei is530

πi(ei, e
∗) =

n∑
k=1

p̃k

∫
U

F (ei − e∗ + t)k−1dF (t)− c(ei). (11)531

The first-order condition for payoff maximization evaluated at ei = e∗, ∂πi(ei,e
∗)

∂ei

∣∣∣
ei=e∗

= 0,532
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gives533

Bp = c′(e∗), Bp =
n∑
k=1

p̃k(k − 1)

∫
U

F (t)k−2f(t)dF (t). (12)534

Changing the variable of integration to z = F (t), obtain, similar to (4),535

Bp =
n∑
k=1

p̃k(k − 1)

∫ 1

0

zk−2m(z)dz =

∫ 1

0

m(z)dG̃(z). (13)536

Here, G̃(z) =
∑n

k=1 p̃kz
k−1 denotes the probability-generating function (pgf) of distribu-537

tion p̃.538

Let e∗p denote the unique positive solution of (12), assuming that it exists and it is539

a symmetric pure strategy equilibrium.20 When p is degenerate at some k, Eq. (12)540

reduces to the deterministic group size case, Eq. (3). As before, since c′(e∗) is strictly541

increasing in e∗, the comparative statics of equilibrium effort e∗p with respect to parameters542

of distribution p are determined entirely by coefficients Bp.543

Using Eqs. (13) and (10), and the definition of bk, Eq. (3), coefficients Bp can also544

be written as545

Bp =
n∑
k=1

p̃kbk = Ep̃(bK) =
1

k̄

n∑
k=2

pkkbk =
1

k̄
Ep(KbK |K ≥ 2)Prp(K ≥ 2). (14)546

Here, Ep(·) and Prp(·) denote expectation and probability with respect to distribution p.547

Note that the summation in (14) can start with k = 2 instead of k = 1 because b1 = 0.548

Representation (14) shows, as expected, that only group sizes k ≥ 2 contribute to the549

equilibrium effort.550

5.2 Comparative statics for unimodal noise distributions551

We are interested in the effects of changes in distribution p on coefficientsBp. In particular,552

we explore how Bp responds to a stochastic increase (in an appropriate sense) in the553

number of players in the tournament. To this end, consider a parameterized family of554

(updated) group size distributions {p̃(θ)}θ∈Θ, where Θ ⊆ R is an interval of the real line555

or a set of consecutive discrete values. Let P̃ (θ), G̃(z, θ) and Bp(θ) denote, respectively,556

the corresponding cmf, pgf and Bp.557

20As in Section 2, we leave the issues of equilibrium existence and uniqueness outside the scope of this
paper.
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Suppose an increase in θ leads to a stochastic increase in the number of players558

in the sense of first-order stochastic dominance (FOSD); that is, assume that P̃k(θ) is559

nonincreasing in θ for all k = 1, 2, . . . , n. The simplest case that does not require any560

additional restrictions is when the sequence {bk}nk=2 is nondecreasing (which implies that561

{bk}nk=1 is nondecreasing because b1 = 0). The following lemma and corollary follow562

immediately from (14) and Proposition 3.563

Lemma 7 Suppose an increase in θ leads to a stochastic increase in K̃ and {bk}nk=2 is564

nondecreasing. Then Bp(θ) (and e∗p) is nondecreasing in θ.565

Corollary 4 Suppose an increase in θ leads to a stochastic increase in K̃ and f(t) is566

nondecreasing. Then Bp(θ) (and e∗p) is nondecreasing in θ.567

Note that a similar result cannot be established when {bk}nk=2 is nonincreasing, because568

b1 = 0 and hence {bk}nk=1 would be nonmonotone, unless p1 = 0 (for a more detailed569

discussions of results in the case when tournaments are restricted to have at least two570

participants, see Section 5.6); and when {bk}nk=2 is interior unimodal, further restrictions571

are needed.572

Let G̃θ(z, θ) ≤ 0 denote the derivative or the first difference of the pgf with respect573

to θ. Combined with Proposition 3, Lemmas 2 and 3 produce the following result.574

Proposition 7 Suppose an increase in θ leads to a stochastic increase in K̃ and575

(a) f(t) is unimodal;576

(b) |G̃θ(z, θ)| is log-supermodular; that is, the ratio R(z, θ, θ′) = G̃θ(z,θ′)

G̃θ(z,θ)
is nondecreasing577

in z for all θ′ > θ.578

Then Bp(θ) (and e∗p) is unimodal in θ.579

In the remainder of this section, we consider several examples of tournament size580

distributions that satisfy the log-supermodularity condition (b) of Proposition 7. The581

distributions we consider – the binomial, negative binomial, logarithmic and Poisson dis-582

tributions – belong to a family known as power series distributions (PSD) characterized by583

pmfs of the form pk(θ) = akθ
k

A(θ)
, where ak are nonnegative numbers, θ ≥ 0 is a parameter,584

and A(θ) =
∑∞

k=0 akθ
k (where it is assumed that the sum exists) is the normalization func-585

tion (Johnson, Kemp and Kotz, 2005). The pgf of PSD distributions is G(z, θ) = A(θz)
A(θ)

.586

An important property of this family is that if pmf p belongs to it, so does the updated587

pmf p̃. Indeed, from (10),588

p̃k =
kpk
k̄

=
kakθ

k∑∞
k=1 kakθ

k
=
ãkθ

k

Ã(θ)
,589
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where ãk = kak and Ã(θ) =
∑∞

k=1 ãkθ
k; that is, p̃k also has the PSD form.590

It can be shown that Gθ(z, θ) ≤ 0 for any PSD distribution. Indeed,

Gθ(z, θ) =
A′(θz)z

A(θ)
− A′(θ)

A(θ)

A(θz)

A(θ)

=

∑∞
k=0 kakθ

k−1zk

A(θ)
−
∑∞

k=0 kakθ
k−1

A(θ)

∑∞
k=0 akθ

kzk

A(θ)

=
1

θ

(
E(KzK)− E(K)E(zK)

)
=

1

θ
Cov(K, zK) ≤ 0.

Most importantly, PSD distributions satisfy the log-supermodularity condition of Propo-591

sition 7.592

Proposition 8 |Gθ(z, θ)| is log-supermodular for PSD distributions.593

Proof of Proposition 8 Let Ak(θ) = 1
A(θ)

∑k
l=0 alθ

l denote the cmf of a PSD distribution.594

We will prove that |A′k(θ)| is log-supermodular; the result then follows by Lemma 3. Note595

that596

A′k(θ) =
1

A(θ)2

k∑
l=0

∑
m≥0

alamθ
l+m−1(l −m) = − 1

A(θ)2

k∑
l=0

∑
m≥k+1

alamθ
l+m−1(m− l).597

Consider some θ′ > θ and let β = θ′

θ
> 1. For convenience, introduce the notation598

αlm = alamθ
l+m−1(m− l). The ratio r(k, θ, θ′) from Lemma 2 is

A′k(θ′)

A′k(θ)
= A(θ)2

A(θ′)2
Nk
Dk

, where599

Nk =
k∑
l=0

∑
m≥k+1

βl+m−1αlm, Dk =
k∑
l=0

∑
m≥k+1

αlm.600

We need to show that Nk
Dk

is nondecreasing in k, or, equivalently, that Nk+1Dk−NkDk+1 ≥601

0. Notice that Nk+1 can be expressed through Nk as follows:602

Nk+1 = Nk −
k∑
l=0

βl+kαl,k+1 +
∑

m≥k+2

βm+kαk+1,m.603

Similarly,604

Dk+1 = Dk −
k∑
l=0

αl,k+1 +
∑

m≥k+2

αk+1,m;605
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therefore,

Nk+1Dk −NkDk+1 =

(
Nk −

k∑
l=0

βl+kαl,k+1 +
∑

m≥k+2

βm+kαk+1,m

)
Dk

−Nk

(
Dk −

k∑
l=0

αl,k+1 +
∑

m≥k+2

αk+1,m

)

=
k∑
l=0

αl,k+1(Nk − βl+kDk) +
∑

m≥k+2

αk+1,m(βm+kDk −Nk).

It can be shown that each of the two terms in the last line is nonnegative. We demonstrate

it explicitly for the first term; for the second term, the derivation is similar.

k∑
l=0

αl,k+1(Nk − βl+kDk) =
k∑
l=0

∑
m≥k+1

k∑
l′=0

(
βl
′+m−1αl′mαl,k+1 − βl+kαl′mαl,k+1

)
=

k∑
l=0

∑
m≥k+1

k∑
l′=0

(
βl+m−1αlmαl′,k+1 − βl+kαl′mαl,k+1

)
≥

k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+k (αlmαl′,k+1 − αl′mαl,k+1)

=
k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+kalamal′ak+1θ
l+m−1+l′+k [(m− l)(k + 1− l′)− (m− l′)(k + 1− l)]

=
k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+kalamal′ak+1θ
l+m−1+l′+k(m− k − 1)(l − l′)

=
∑

m≥k+1

βkamak+1θ
m−1+k(m− k − 1)

k∑
l=0

k∑
l′=0

βlalal′θ
l+l′(l − l′).

The sum over l and l′ can be rewritten as

k∑
l=0

k∑
l′=0

βlalal′θ
l+l′(l − l′) = Ak(θ)

2A(θ)2[E(βLL)− E(βL)E(L)]

= Ak(θ)
2A(θ)2Cov(βL, L) ≥ 0.

Here, L is understood as a random variable with support 0, 1, . . . , k and pmf alθ
l

Ak(θ)A(θ)
.606

The covariance is nonnegative because β > 1.607
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5.2.1 Example: The binomial distribution of group size608

Consider the binomial distribution of tournament size, with K ∼ Binomial(n, q), where609

n ≥ 2 and q ∈ [0, 1]. The updated probability of group size k is610

p̃k =
1

nq

(
n

k

)
qk(1− q)n−kk =

(
n− 1

k − 1

)
qk−1(1− q)n−k;611

that is, from the perspective of a participating player, the distribution of the number of612

other players, K̃ − 1, is Binomial(n − 1, q). An increase in q leads to an FOSD shift in613

the number of participants. We will now use Proposition 7 to show that, assuming f(t)614

is unimodal, Bp(q) is unimodal as a function of q.615

The pgf for the updated binomial distribution is616

G̃(z, q) =
n∑
k=1

(
n− 1

k − 1

)
qk−1(1− q)n−kzk−1 = (1− q + qz)n−1. (15)617

It follows immediately that G̃q = −(n − 1)(1 − z)(1 − q + qz)n−2 ≤ 0. In order to show618

that |G̃q| is log-supermodular, write for q′ = q + δ,619

R(z, q, q′) =
−(n− 1)(1− z)(1− q − δ + qz + δz)n−2

−(n− 1)(1− z)(1− q + qz)n−2
=

(
1− (q + δ)(1− z)

1− q(1− z)

)n−2

.620

It is easy to see that R(z, q, q′) is nondecreasing in z for any δ > 0. Thus, all the621

assumptions of Proposition 7 are satisfied and Bp(q) is unimodal.622

Consider now the effect of an increase in the maximal number of players, n, for a fixed623

q, which also leads to an FOSD shift in the number of players. It follows from (15) that624

G̃n(z, n) = G̃(z, n+ 1)− G̃(z, n) = −q(1− z)(1− q + qz)n−1.625

Let n′ = n+ d, where d > 0 is an integer. This gives626

R(z, n, n′) =
−q(1− z)(1− q + qz)n+d−1

−q(1− z)(1− q + qz)n−1
= (1− q + qz)d,627

which is nondecreasing in z; hence, by Proposition 7, assuming f(t) is unimodal, Bp(n)628

is unimodal as a function of n.629

For illustration, consider the Laplace(0, 1) distribution of noise, whose pdf is f(t) =630

1
2

exp(−|t|) and cdf is F (t) = 1
2

exp(t) for t ≤ 0 and F (t) = 1 − 1
2

exp(−t) for t ≥ 0. For631
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K ∼ Binomial(n, q), this distribution allows for a closed-form Bp. From Eqs. (13) and632

(15),633

Bp = (n− 1)q

∫ 1

0

(1− q + qz)n−2m(z)dz, (16)634

which gives, for the Laplace(0, 1) distribution of noise,635

Bp =
(1− q)n − 2

(
1− q

2

)n
+ 1

nq
. (17)636

Coefficients bk = 1
k

(
1− 1

2k−1

)
are decreasing for k ≥ 3, with b2 = b3. Indeed, since the637

Laplace distribution is symmetric and unimodal, Proposition 3(iv) applies. Proposition638

(7) also applies, and Bp (and hence e∗p) is unimodal in q and n. Note that, as seen from639

Eq. (16), Bp is a polynomial in q; therefore, the unimodality implies that it is either640

monotonically increasing or has a unique interior maximum in q, as illustrated in the left641

panel of Figure 2.642

Figure 2: Individual effort as a function of q for different values of n for the binomial distribution
of the number of players with parameters (n, q) and cost function c(e) = 1

2e
2. Left : Noise is

distributed according to the Laplace(0, 1) distribution. Right : Noise is distributed according to
a distribution with cdf F (t) = 0.2 tan(2t) + 0.7 on [−0.646, 0.491] (see Figure 1).

We conclude this section by an example showing that, similar to the conditions of643

Proposition 3, the unimodality of f(t) in Proposition 7 is a tight condition. Consider again644

the bimodal distribution shown in Figure 1, which produces a non-unimodal sequence645

{bk}. This distribution generates a non-unimodal dependence of Bp (and e∗p) on q shown646

26



in the right panel of Figure 2.21
647

5.2.2 Example: The negative binomial distribution of group size648

Consider the negative binomial distribution of tournament size, with K ∼ NB(m, q),649

where m ≥ 1 and q ∈ [0, 1]. The geometric distribution is its special case, NB(1, q). The650

expected number of players is k̄ = m(1−q)
q

and hence, the updated probability of group651

size k is652

p̃k =
q

m(1− q)

(
m+ k − 1

k

)
qm(1− q)kk =

(
m+ k − 1

k − 1

)
qm+1(1− q)k−1;653

that is, from the perspective of a participating player, the distribution of the number of654

other players is NB(m + 1, q). A decrease in q leads to an FOSD shift in the number of655

participants.656

The pgf of the updated distribution is then657

G̃(z, q) =
n∑
k=1

(
m+ k − 1

k − 1

)
qm+1(1− q)k−1zk−1 =

(
q

1− q + qz

)m+1

.658

Note that it is inversely related to its analogue for the binomial distribution (15). Since659

a lower q leads to a stochastic increase in the number of players, all the assumptions of660

Proposition 7 are satisfied and Bp(q) is unimodal.661

5.2.3 Example: The logarithmic distribution of group size662

The logarithmic distribution of tournament size, K ∼ Logarithmic(θ), where θ ∈ (0, 1),663

has pmf pk = − θk

k ln(1−θ) and expectation k̄ = − θ
(1−θ) ln(1−θ) . The updated probability of664

group size k is665

p̃k = (1− θ)θk−1;666

that is, K̃ has the geometric distribution with parameter 1 − θ. Hence, it is covered by667

the negative binomial example above.668

21Similar to Section 4.1, a bimodal distribution is not sufficient to generate a non-unimodal dependence
of Bp on q. For example, the bimodal distribution with pdf f(t) = 1

2 [fN(−12,4)(t) + fN(12,4)(t)] generates
Bp which is strictly increasing in q for any n.
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5.2.4 Example: The Poisson distribution of group size669

Consider now the Poisson distribution of tournament size, with k ∼ Poisson(λ), where670

λ > 0. The updated probability of group size k is671

p̃k =
1

λ

exp(−λ)λk

k!
k =

exp(−λ)λk−1

(k − 1)!
;672

that is, similar to the binomial distribution, from the perspective of a participating player,673

the distribution of the number of other players, K − 1, is Poisson(λ). An increase in λ674

leads to an FOSD shift in the number of participants. The pgf for the updated Poisson675

distribution is676

G̃(z, q) =
∞∑
k=1

exp(−λ)λk−1

(k − 1)!
zk−1 = exp(−λ+ λz).677

Thus, G̃λ = −(1 − z) exp(−λ + λz) ≤ 0. To check the log-supermodularity property, let678

λ′ = λ+ δ and write679

R(z, λ, λ′) =
−(1− z) exp(−λ− δ + λz + δz)

−(1− z) exp(−λ+ λz)
= exp(−δ + δz),680

which is increasing in z. Thus, all the assumptions of Proposition 7 are satisfied and681

Bp(λ) is unimodal.682

5.2.5 Example: The uniform distribution of noise683

When the distribution of noise is uniform, bk = b2 for any k ≥ 2. Equation (13) then684

gives685

Bp = b2

(
G̃(1)− G̃(0)

)
= b2

(
1− p1

k̄

)
, (18)686

leading to the following result.687

Lemma 8 Suppose F is a uniform distribution. Then e∗p ≤ e∗k for any k ≥ 2, with688

equality if and only if p1 = 0.689

Lemma 8 states that for a uniform distribution of noise the individual equilibrium effort690

of participating players in a tournament with stochastic group size cannot be higher than691

with deterministic group size, and is strictly lower if the probability for a player to be692

alone in the tournament is not zero. Indeed, if p1 = 0, there are at least two players in693

the tournament (from the perspective of a player who has been selected), and the result694
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follows because equilibrium effort is independent of tournament size for k ≥ 2 when F is695

uniform (see Lemma 4).696

5.3 The effect of noise dispersion697

Similar to Section 4.3, suppose the distribution of group sizes, p, is fixed and consider698

the effect of changes in the dispersion of noise on the equilibrium effort. Throughout699

this section, we will use Bp[f ] and e∗p[f ] to denote, respectively, coefficient Bp and the700

equilibrium effort e∗p corresponding to the distribution of noise with pdf f(t). Let g̃(z) =701

G̃z(z) denote the derivative of the pgf G̃ with respect to z. Changing the variable of702

integration to z = F (t), rewrite (13) in the form703

Bp[f ] =

∫ 1

0

m(z)g̃(z)dz =

∫
U

g̃(F (t))f(t)2dt. (19)704

Consider a pdf fp(t) (with support U) defined as follows:705

fp(t) =
1

cp
f(t)

√
g̃(F (t)), cp =

∫
U

f(t)
√
g̃(F (t))dt =

∫ 1

0

√
g̃(z)dz, (20)706

where the normalization constant cp is independent of f . Then Eq. (19) can be written707

in the form708

Bp[f ] = c2
p

∫
U

fp(t)
2dt = c2

p exp(−H[fp]), (21)709

where H[·] is the Rényi entropy. We arrive at the following results.710

Proposition 9 (i) In tournaments with stochastic participation, the equilibrium effort711

decreases in the Rényi entropy of a distribution with pdf fp.712

(ii) Of all noise distributions with a finite support [ul, uh], the equilibrium effort is713

minimized by the distribution such that fp(t) = 1
uh−ul

; that is, cdf Fmin satisfies the differ-714

ential equation715

F ′(t) =
cp

(uh − ul)
√
g̃(F (t))

. (22)716

The minimized value of Bp is Bp[fmin] =
c2p

uh−ul
.717

It is easy to see that the results for deterministic participation can be recovered as718

a special case for a degenerate p. The right-hand side of Eq. (22) decreases in t; hence,719

similar to the deterministic participation case, the effort-minimizing cdf is concave, with720

a monotonically decreasing pdf.721
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For illustration, consider K ∼ Binomial(n, q). From (15), g̃(z) = (n − 1)q(1 − q +722

qz)n−2, cp =
√

4(n−1)
qn2 [1− (1− q)n2 ], and723

fp(t) =
nqf(t)[1− q + qF (t)]

n
2
−1

2[1− (1− q)n2 ]
.724

The equilibrium effort is minimized when fp(t) is uniform on [ul, uh], and the minimized725

value of Bp is Bp[fmin] = 4(n−1)[1−(1−q)
n
2 ]2

qn2(uh−ul)
.726

Note that g̃(z) is independent of the shape of the distribution of noise. Representation727

(19) then immediately implies that if X is more dispersed than Y then Bp[fX ] ≤ Bp[fY ];728

thus, the dispersive order of noise distributions has the same effect on the equilibrium729

effort as in the deterministic participation case (cf. Lemma 5).730

Lemma 9 If X is more dispersed than Y then e∗p[fX ] ≤ e∗p[fY ].731

5.4 A comparison between stochastic and deterministic partic-732

ipation733

It may be of interest to compare expected aggregate effort in a tournament with stochastic734

participation, E∗p = k̄e∗p, to aggregate effort in the tournament with deterministic partici-735

pation of size k̄, E∗
k̄

= k̄e∗
k̄
. The results are summarized in the following proposition.736

Proposition 10 (a) Suppose k̄ =
∑n

k=0 kpk is integer. Suppose also that p0 = 0 and for737

all k ≥ 1 in the support of p kbk is concave. Then E∗p ≤ E∗
k̄
; moreover, the inequality is738

strict if kbk is strictly concave.739

(b) Suppose k̄ ≥ 2 is integer. Suppose also that for all k ≥ 2 in the support of p (i)740

kbk is concave and (ii) bk is nonincreasing. Then E∗p ≤ E∗
k̄
; moreover, the inequality is741

strict if kbk is strictly concave or p1 > 0.742

The comparison between aggregate efforts E∗p and E∗
k̄

for a given k̄ is equivalent to743

the comparison of individual efforts e∗p and e∗
k̄
. The general intuition behind Proposition744

10 is that Bp, which determines e∗p, is proportional to the expectation of KbK , cf. Eq.745

(14), and the concavity of kbk gives the result by Jensen’s inequality. However, since this746

expectation is conditional and also divided by the expected number of players k̄, additional747

qualifiers are needed. For part (a), note that k̄ = Ep(K) is the unconditional expectation748

of K while Bp is proportional to the expectation of KbK conditional on K ≥ 1. By setting749

p0 = 0, this conditional expectation becomes unconditional and Jensen’s inequality gives750
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the result. For part (b), as seen from (14), Bp can also be written as proportional to751

the expectation of KbK conditional on K ≥ 2; while the expectation of K conditional752

on K ≥ 2 is always (weakly) greater than the unconditional expectation of K. Then,753

the result is obtained using Jensen’s inequality for conditional expectations (for concave754

kbk) and the assumption that bk is nonincreasing for k ≥ 2. Part (a) of Proposition 10755

generalizes the result of Myerson and Wärneryd (2006) who studied generalized Tullock756

contests with an arbitrary distribution of group size (subject to the restriction p0 = 0).757

Part (b) generalizes the result of Lim and Matros (2009) who analyzed Tullock contests758

with K ∼ Binomial(n, q).759

For examples of violations of the conditions of Proposition 10, when stochastic partic-760

ipation can lead to a higher expected aggregate effort, consider the binomial distribution761

of tournament size, K ∼ Binomial(n, q). Let qopt denote the optimal participation proba-762

bility, that is, the probability q that maximizes expected aggregate effort E∗p = k̄e∗p subject763

to the constraint k̄ = nq. The deterministic contest generates a higher aggregate effort764

if qopt = 1. The binomial distribution violates the conditions of part (a) of Proposition765

10 since p0 = (1 − q)n > 0. Also, for the bimodal distribution of noise in Figure 1 both766

assumptions (i) and (ii) of part (b) do not hold. Then, qopt ≈ 0.9 for k̄ = 3 and qopt → 0767

(that is, a tournament with n → ∞ potential players, each with zero probability of par-768

ticipation, is optimal) for k̄ ≥ 4. For the F2,2-distribution of noise (see the end of Section769

4.2) assumption (i) of part (b) is violated, and qopt ∈ (0, 1) for 3 ≤ k̄ ≤ 5 while qopt → 0770

for k̄ ≥ 6.771

5.5 Optimal disclosure of the number of players772

Several authors investigated optimal disclosure policies under uncertainty, asking whether773

it makes sense for a principal whose goal is the maximization of aggregate effort, to disclose774

to players how many participants there are in the tournament. Lim and Matros (2009)775

show that in a standard Tullock contest with the binomial distribution of the number of776

players aggregate effort is independent of disclosure. Fu, Jiao and Lu (2011) generalize777

this result to lottery-form contests with CSFs of the form h(ei)∑k
j=1 h(ej)

. They show that778

full disclosure (no disclosure) is optimal if h(e)
h′(e)

is strictly convex (concave), while the779

indifference is recovered when h(e)
h′(e)

is linear.22 In this section, we generalize these results780

22In asymmetric settings, the consequences of disclosure/nondisclosure become richer. For recent de-
velopments see, e.g., Denter, Morgan and Sisak (2014), Fu, Lu and Zhang (2016) and Zhang and Zhou
(2016).
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to arbitrary tournaments and arbitrary distributions of the number of players.781

Without disclosure, the expected aggregate effort in the tournament is E∗p = k̄e∗p =782

k̄c′−1(Bp), where, from (14), Bp = Ep̃(bK). With disclosure, the expected aggregate effort783

is Ep(Kc
′−1(bK)), which can be rewritten as784

Ep(Kc
′−1(bK)) =

n∑
k=1

pkkc
′−1(bk) = k̄

n∑
k=1

p̃kc
′−1(bk) = k̄Ep̃(c

′−1(bK)).785

Thus, comparing E∗p and Ep(Kc
′−1(bK)) is equivalent to comparing c′−1(Ep̃(bK)) and786

Ep̃(c
′−1(bK)).787

It follows that the optimality of disclosure depends entirely on the concavity/convexity788

of c′−1, and not on the nature of coefficients bk. One special case is when bk is constant789

in the support of p̃ (for example, noise is uniformly distributed and p1 = 0); in this case790

the two expressions are equal. When bk is not constant in the support of p̃, and c′−1
791

is concave (convex) and nonlinear for at least some distinct values of bk, disclosure is792

not optimal (optimal). Note that the concavity (convexity) of c′−1 is equivalent to the793

convexity (concavity) of c′, i.e., to the condition c′′′ ≥ (≤)0.794

Proposition 11 Suppose bk is non-constant for k in the support of p̃, and c′(·) is non-795

linear for at least some distinct values of bk in the support of p̃. Then it is optimal to796

disclose (not disclose) the number of participants in the tournament if c′′′ ≤ (≥)0.797

5.6 Tournaments with size k ≥ 2798

Proposition 7 on the unimodality of Bp(θ) in Section 5.2 is quite general, but it imposes a799

restriction on how θ may affect the distribution of tournament size, in the form of the log-800

supermodularity of |G̃θ(z, θ)|. As we show in this section, the unimodality of Bp(θ) can801

also be obtained under an alternative set of restrictions on pmf p; namely, a requirement802

that p1 = 0. In other words, in this section we consider tournaments in which, from the803

perspective of a participating player, the number of players is known to be at least two.804

Such tournaments are rather common in applications; indeed, it is common for organizers805

to have a provision that competition will be canceled if only one participant signs up.806

We consider the effects of an upward probabilistic shift in the updated distribution of807

group size from p̃ to p̃′. When {bk}nk=2 is nondecreasing, the result is straightforward and808

given by Lemma 7 and Corollary 4. Generally, when {bk}nk=1 is nonmonotone, the effect809

of such a shift is ambiguous without additional restrictions on p and p′. Note that p1 = 0810
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and p̃′ FOSD p̃ jointly imply that p′1 = 0. The following results then follow immediately811

from (14) and Proposition 3.812

Lemma 10 Suppose p̃′ FOSD p̃ and p1 = 0. If {bk}nk=2 is nonincreasing then Bp′ ≤ Bp813

(and e∗p′ ≤ e∗p).814

Corollary 5 Suppose p̃′ FOSD p̃ and p1 = 0. Then,815

(i) if f(t) is nonincreasing then e∗p′ ≤ e∗p;816

(ii) for n ≥ 4, if f(t) is interior unimodal and symmetric then e∗p′ ≤ e∗p;817

(iii) for n = 3, if f(t) is symmetric then e∗p′ = e∗p.818

Parts (i) and (ii) follow from parts (ii) and (iv) of Proposition 3. Part (iii) follows from819

part (v) of Proposition 3.820

Lemma 10 has one other interesting implication. When {bk}nk=2 is nonincreasing,821

the only way e∗p can be nonmonotone with respect to an upward probabilistic shift in822

p̃ is if p1 > 0. Put differently, the possibility for a player to find herself alone in the823

tournament is the only mechanism through which the individual equilibrium effort can be824

nonmonotone in a parameter θ. One example is the Tullock contest, for which bk = r(k−1)
k2

825

decreases monotonically for k ≥ 2, and Lim and Matros (2009) found that the individual826

equilibrium effort is nonmonotone in q for K ∼ Binomial(n, q). Lemma 10 shows that827

this nonmonotonicity is a consequence entirely of the fact that p1 = nq(1− q)n−1 > 0. If828

the distribution of group size is replaced with a truncated binomial distribution such that829

p1 = 0, the nonmonotonicity will go away. Of course, the nonmonotonicity can still arise830

even when p1 = 0 if {bk}nk=2 is nonmonotone; for example, if it is interior unimodal.831

6 Conclusion832

In this paper we derive robust comparative statics results for rank-order tournaments in833

which a player’s effort is distorted by additive or multiplicative noise and the number834

of players is either deterministic or stochastic. The unimodality of the distribution of835

noise is critical for robust comparative statics, due to results on the preservation of uni-836

modality under uncertainty. In the deterministic case, we show that the equilibrium effort837

is unimodal in the number of players when the distribution of noise is unimodal. In the838

stochastic case, the equilibrium effort is similarly unimodal in parameters shifting the dis-839

tribution of the number of players in the sense of first-order stochastic dominance, albeit840

under an additional log-supermodularity restriction. The unimodality of the distribution841
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of noise is a tight condition; we provide examples of non-unimodal noise distributions for842

which the comparative statics are no longer unimodal. We also show that, generally, there843

is no universality in the behavior of aggregate equilibrium effort.844

The second dimension of our analysis is the effect of noise dispersion. We show that845

the equilibrium effort decreases in the appropriately defined Rényi entropy, as opposed846

to the often-cited variance or second-order stochastic dominance order. For the case847

of deterministic participation, it is the entropy of order statistics of the distribution of848

noise, while in the case of stochastic participation it is the entropy of a distribution that849

combines the distribution of noise with the distribution of tournament size. An important850

special case of entropy ordering that applies to both cases is the dispersive order of noise851

distributions.852
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A Proofs961

Second-order condition Differentiating the payoff function (2) twice with respect to ei962

and setting ei = e∗, obtain ∂2πi(ei,e
∗)

∂e2i

∣∣∣
ei=e∗

= ηk − c′′(e∗), where963

ηk = (k − 1)

[
(k − 2)

∫
U

F (t)k−3f(t)2dF (t) +

∫
U

F (t)k−2f ′(t)dF (t)

]
.964

Integrating the second term by parts, obtain965

ηk =
k − 1

2

[
(k − 2)

∫
U

F (t)k−3f(t)2dF (t) + f(uh)
2 − f(ul)

2Ik=2

]
,966

where Ik=2 is an indicator equal to one if k = 2 and zero otherwise. Thus, when k = 2967

and the distribution of noise is symmetric the second-order condition is always satisfied.968

Otherwise, the restriction ηk − c′′(e∗) < 0 has to be imposed.969

Proof of Lemma 1 (i) Sufficiency: When a(z) is monotone, it follows immediately that970

γ(θ) is monotone. Suppose that a(z) is interior unimodal; in this case, a(1) is finite.971

Integrating by parts, obtain972

γ(θ) = a(1)−
∫ 1

0

a′(z)H(z, θ)dz. (23)973

Let ẑ ∈ (0, 1) denote a mode of a(z). Differentiating, or taking the first difference, with

38



respect to θ, and splitting the integral in (23), obtain

γ′(θ) = −
∫ ẑ

0

a′(z)Hθ(z, θ)dz −
∫ 1

ẑ

a′(z)Hθ(z, θ)dz

=

∫ ẑ

0

a′(z)|Hθ(z, θ)|dz −
∫ 1

ẑ

|a′(z)||Hθ(z, θ)|dz. (24)

Suppose γ′(θ) ≤ 0 for some θ and consider a θ′ > θ. Then (24) gives

γ′(θ′) =

∫ ẑ

0

a′(z)|Hθ(z, θ
′)|dz −

∫ 1

ẑ

|a′(z)||Hθ(z, θ
′)|dz

=

∫ ẑ

0

a′(z)r(z, θ, θ′)|Hθ(z, θ)|dz −
∫ 1

ẑ

|a′(z)|r(z, θ, θ′)|Hθ(z, θ
′)|dz

≤ r(ẑ, θ, θ′)

∫ ẑ

0

a′(z)|Hθ(z, θ)|dz − r(ẑ, θ, θ′)
∫ 1

ẑ

|a′(z)||Hθ(z, θ
′)|dz = r(ẑ, θ, θ′)γ′(θ) ≤ 0.

Here, the first inequality follows from the assumption that r(z, θ, θ′) is nondecreasing in974

z. Thus, we showed that γ(θ) is unimodal.975

(ii) Necessity: Suppose that there exist θ′ > θ and a z ∈ [0, 1] such that r(z, θ, θ′) is

decreasing in z. The proof consists in showing that a unimodal function a(z) can then

be constructed such that γ(θ) is not unimodal. By continuity, there exists an interval

of positive length [z1, z2] where r(z, θ, θ′) is strictly decreasing. First, define a unimodal

function a(z) such that it is nonzero only withing this interval. Furthermore, a(z) can

be defined in a way that γ′(θ) = 0. For example, it can be defined as a piece-wise linear

function such that a′(z) =
∫ z2
ẑ
|Hθ(z, θ)|dz for z ∈ (z1, ẑ) and |a′(z)| =

∫ ẑ
z1
|Hθ(z, θ)|dz

for z ∈ (ẑ, z2). In this case, it follows from (24) that γ′(θ) = 0. Finally, we modify

this a(z) “slightly” to make γ′(θ) negative. For example, choose some ε > 0 and set
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a′(z) =
∫ z2
ẑ
|Hθ(z, θ)|dz − ε for z ∈ (z1, ẑ). Then

γ′(θ′) =

∫ ẑ

z1

a′(z)r(z, θ, θ′)|Hθ(z, θ)|dz −
∫ z2

ẑ

|a′(z)|r(z, θ, θ′)|Hθ(z, θ
′)|dz

= r(z∗1 , θ, θ
′)

∫ ẑ

z1

a′(z)|Hθ(z, θ)|dz − r(z∗2 , θ, θ′)
∫ z2

ẑ

|a′(z)||Hθ(z, θ
′)|dz

= r(z∗1 , θ, θ
′)

[∫ z2

ẑ

|Hθ(z, θ)|dz − ε
] ∫ ẑ

z1

|Hθ(z, θ)|dz

− r(z∗2 , θ, θ′)
∫ z2

ẑ

|Hθ(z, θ
′)|dz

∫ ẑ

z1

|Hθ(z, θ)|dz

= (r(z∗1 , θ, θ
′)− r(z∗2 , θ, θ′))

∫ ẑ

z1

|Hθ(z, θ)|dz
∫ z2

ẑ

|Hθ(z, θ
′)|dz

− εr(z∗1 , θ, θ′)
∫ z2

ẑ

|Hθ(z, θ)|dz.

Here, z∗1 ∈ (z1, ẑ) and z∗2 ∈ (ẑ, z2) exist due to the mean-value theorem for definite976

integrals. Note that z∗2 > z∗1 and hence the first term in the last expression is positive,977

while the second term can be made arbitrarily small via the choice of ε; therefore, an978

ε > 0 can be chosen such that γ′(θ′) > 0. Thus, γ(θ) is not unimodal.979

Proof of Lemma 2 (i) Sufficiency: Rewrite χ(θ) as follows:

χ(θ) = y1(θ)x1 + y2(θ)x2 + . . .+ yn−1(θ)xn−1 + yn(θ)xn

= Y1(θ)x1 + (Y2(θ)− Y1(θ))x2 + . . .+ (Yn−1(θ)− Yn−2(θ))xn−1 + (Yn(θ)− Yn−1(θ))xn

= xn + Y1(θ)(x1 − x2) + Y2(θ)(x2 − x3) + . . .+ Yn−1(θ)(xn−1 − xn)

= xn −
n−1∑
k=1

Yk(θ)∆xk+1,

where ∆xk+1 = xk+1 − xk. This “summation by parts” representation is similar to inte-980

gration by parts and expresses the expectation χ(θ) through the cmf Y (θ) and the first981

difference of xk. Taking the derivative, or the difference, with respect to θ, obtain982

χ′(θ) = −
n−1∑
k=1

Y ′k(θ)∆xk+1 =
n−1∑
k=1

|Y ′k(θ)|∆xk+1.983
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Let k̂ denote a mode of x such that ∆xk+1 ≥ (≤)0 for k < (≥)k̂. This gives984

χ′(θ) =
∑
k<k̂

|Y ′k(θ)|∆xk+1 −
∑
k≥k̂

|Y ′k(θ)||∆xk+1|.985

Suppose that χ′(θ) ≤ 0 for some θ and consider a θ′ > θ. Then

χ′(θ′) =
∑
k<k̂

|Y ′k(θ′)|∆xk+1 −
∑
k≥k̂

|Y ′k(θ′)||∆xk+1|

=
∑
k<k̂

|Y ′k(θ)|r(k, θ, θ′)∆xk+1 −
∑
k≥k̂

|Y ′k(θ)|r(k, θ, θ′)|∆xk+1|

≤ r(k̂, θ, θ′)
∑
k<k̂

|Y ′k(θ)|∆xk+1 − r(k̂, θ, θ′)
∑
k≥k̂

|Y ′k(θ||∆xk+1| = r(k̂, θ, θ′)χ′(θ) ≤ 0.

Here, the first inequality follows from the assumption that r(k̂, θ, θ′) is nondecreasing in986

k.987

(ii) Necessity: Suppose that there exist θ′ > θ and k such that r(k − 1, θ, θ′) >988

r(k, θ, θ′). As in the proof of Lemma 1, we will show that it is possible to construct a989

unimodal sequence x such that χ(θ) is not unimodal. Set xl = a for all l ≤ k − 1 and990

xl = b for all l ≥ k + 1; furthermore, set xk > max{a, b}. The resulting sequence x is991

interior unimodal with mode k and satisfies ∆xk > 0, ∆xk+1 < 0, and ∆xl = 0 for all992

l 6= k, k + 1. Then993

χ′(θ) = |Y ′k−1(θ)|∆xk − |Y ′k(θ)||∆xk+1|.994

Choosing a, xk and b so that ∆xk = |Y ′k(θ)| − ε for some ε > 0 and |∆xk+1| = |Y ′k−1(θ)|,
obtain χ′(θ) = −ε|Y ′k−1(θ)| < 0. However,

χ′(θ′) = |Y ′k−1(θ′)|∆xk − |Y ′k(θ′)||∆xk+1|

= r(k − 1, θ, θ′)|Y ′k−1(θ)|(|Y ′k(θ)| − ε)− r(k, θ, θ′)|Y ′k(θ)||Y ′k−1(θ)|

= (r(k − 1, θ, θ′)− r(k, θ, θ′))|Y ′k(θ)||Y ′k−1(θ)| − εr(k − 1, θ, θ′)|Y ′k−1(θ)|.

The first term on the last line is strictly positive, while the second term can be made995

arbitrarily small through the choice of ε; thus, an ε > 0 can be chosen such that χ′(θ′) > 0,996

i.e., χ(θ) os not unimodal.997

Proof of Lemma 3 (i) Sufficiency: By differentiating, or taking the first difference of,998
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Eq. (6) with respect to θ, obtain999

n∑
k=1

Y ′k(θ)z
k−1 =

Gθ(z, θ)

1− z
,1000

which gives, for some θ′ > θ,1001

R(z, θ, θ′) =
|Gθ(z, θ

′)|
|Gθ(z, θ)|

=

∑n
k=1 |Y ′k(θ′)|zk−1∑n
k=1 |Y ′k(θ)|zk−1

=

∑n
k=1 |Y ′k(θ)|r(k, θ, θ′)zk−1∑n

k=1 |Y ′k(θ)|zk−1
. (25)1002

Define a pmf αk(z) =
|Y ′k(θ)|zk−1∑n
l=1 |Y ′l (θ)|zl−1 and the corresponding cmf Ak(z) =

∑k
l=1 αk(z). Then

(25) can be written as an expectation R(z, θ, θ′) =
∑n

k=1 αk(z)r(k, θ, θ′) of a nondecreasing

random variable r(K, θ, θ′). This expectation is nondecreasing in z provided an increase

in z leads to an FOSD increase in distribution α(z), i.e., if Ak(z) is nonincreasing in z.

The derivative of Ak(z) is

A′k(z) =
d

dz

(∑k
l=1 |Y ′l (θ)|zl−1∑n
l=1 |Y ′l (θ)|zl−1

)
=

1

(
∑n

l=1 |Y ′l (θ)|zl−1)2

k∑
l=1

n∑
l′=1

|Y ′l (θ)||Y ′l′(θ)|zl+l
′−3(l − l′)

=
1

(
∑n

l=1 |Y ′l (θ)|zl−1)2

k∑
l=1

n∑
l′=k+1

|Y ′l (θ)||Y ′l′(θ)|zl+l
′−3(l − l′) ≤ 0. (26)

(ii) Necessity: Define ∆rl+1 = r(l + 1, θ, θ′) − r(l, θ, θ′), and suppose that ∆rk+1 < 01003

for some k and θ′ > θ. Using the same “summation by parts” transformation as at the1004

start of the proof of Lemma 2, write1005

R(z, θ, θ′) = r(n, θ, θ′)−
n−1∑
l=1

Al(z)∆rl+1,1006

which gives, differentiating with respect to z,1007

Rz(z, θ, θ
′) =

n−1∑
l=1

|A′l(z)|∆rl+1.1008

Choose Yl(θ) so that Y ′l (θ) = 0 for all l 6= k, k + 1 and Y ′k(θ), Y
′
k+1(θ) < 0. Equation (26)1009

then gives1010

A′k(z) =
−|Y ′k(θ)||Y ′k+1(θ)|z2k−2

(|Y ′k(θ)|zk−1 + |Y ′k+1(θ)|zk)2
< 01011
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and A′l(z) = 0 for all l 6= k; therefore, we obtain Rz(z, θ, θ
′) = |A′k(z)|∆rk+1 < 0, which is1012

a contradiction.1013

Proof of Lemma 4 Sufficiency is obvious: If F is a uniform distribution, m(z) is a1014

constant and bk = m(0) (for k ≥ 2). Conversely, suppose bk = b2 for all k ≥ 2. This1015

implies (k + 1)mk = b2 and hence mk = b2
k+1

for all k = 0, 1, . . .. The moment-generating1016

function of m(z), defined as φ(t) = E(exp(tZ)), can be written in the form of expansion1017

over moments, φ(t) =
∑∞

k=0
mk
k!
tk, which gives1018

φ(t) =
∞∑
k=0

b2

(k + 1)!
tk =

b2

t
(exp(t)− 1).1019

This is the moment-generating function of an (unnormalized) uniform distribution on1020

[0, 1], implying m(z) is a constant and F is uniform.1021

Proof of Proposition 2 Recall that bk =
∫ 1

0
m(z)dzk−1; therefore, integrating by parts,1022

bk − bk+1 =

∫ 1

0

m(z)d(zk−1 − zk) = −
∫ 1

0

zk−1(1− z)m′(z)dz.1023

Suppose m(z) is nonincreasing and nonconstant on (ẑ, 1) (the case of a nondecreasing and

nonconstant m(z) is proved similarly). Then

bk − bk+1 = −
∫ ẑ

0

zk−1(1− z)m′(z)dz +

∫ 1

ẑ

zk−1(1− z)|m′(z)|dz

≥
∫ 1

ẑ

zk−1(1− z)|m′(z)|dz −
∫ ẑ

0

zk−1(1− z)|m′(z)|dz

= M1

∫ 1

ẑ

zk−1dz −M2

∫ ẑ

0

zk−1dz,

where M1 and M2 are positive constants (independent of k), the existence of which follows

from the mean-value theorem for definite integrals. Evaluating the integrals, further

obtain

bk − bk+1 ≥
1

k
[M1(1− ẑk)−M2ẑ

k] =
1

k
[M1 − ẑk(M1 +M2)].

Since ẑ < 1, it is clear that the last expression becomes positive for a sufficiently large k.1024

1025
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Proof of Proposition 3 Define1026

∆bk+3 = bk+3 − bk+2 =

∫ 1

0

[
(k + 2)zk+1 − (k + 1)zk

]
m(z)dz, k = 0, 1, . . . , n− 3. (27)1027

Integrating by parts, obtain1028

∆bk+3 =

∫ 1

0

m(z)d(zk+2 − zk+1) =

∫ 1

0

zk+1(1− z)m′(z)dz. (28)1029

For part (iv), the symmetry of f(t) around its mean µ implies f(t) = f(2µ−t) and F (t) =1030

1− F (2µ− t) for all t ∈ U . Letting z = F (t) = 1− F (2µ− t), obtain 1− z = F (2µ− t),1031

F−1(1 − z) = 2µ − t and m(1 − z) = f(F−1(1 − z)) = f(2µ − t) = f(t) = f(F−1(z)) =1032

m(z). Thus, the symmetry of the distribution of noise implies m(z) = m(1 − z) and1033

m′(z) = −m′(1− z) for all z ∈ [0, 1].1034

This gives, via a change of variable z → 1− z,1035

∆bk+3 = −
∫ 1

2

0

z(1− z)[(1− z)k − zk]m′(z)dz,1036

which immediately implies that ∆b3 = 0 and ∆bk+3 < 0 for k > 0.1037

For part (v), note that b2 =
∫ 1

0
m(z)dz and, if m(z) = m(1− z) (which only requires1038

symmetry but not unimodality of f),1039

b3 = 2

∫ 1

0

zm(z)dz = 2

∫ 1

0

(1− z)m(1− z)dz = 2

∫ 1

0

(1− z)m(z)dz = 2b2 − b3,1040

which implies b2 = b3.1041

Proof of Proposition 5 Given the cost function, E∗k = 1
2c0
kbk. Integrating by parts

twice, obtain

E∗k ∝ k(k − 1)

∫ 1

0

zk−2m(z)dz = k

[
m(1)−

∫ 1

0

m′(z)zk−1dz

]
= km(1)−m′(1) +

∫ 1

0

m′′(z)zkdz, k ≥ 2,

which gives

∆E∗k+1 = E∗k+1 − E∗k ∝ m(1)−
∫ 1

0

m′′(z)(zk − zk+1)dz.
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Since m(1) = 0, noting that log-concavity (log-convexity) of f(t) is equivalent to concavity1042

(convexity) of m(z), proves parts (i) and (ii).1043

For part (iii), note that if f(t) is first log-concave and then log-convex, then −m′′(z)1044

is single crossing and hence, −m′(z) is unimodal. Since zk − zk+1 is log-supermodular,1045

Lemma 1 implies the result.1046

Proof of Lemma 5 Definition 3 is equivalent to the requirement that F−1
X (z)−F−1

Y (z) is1047

nondecreasing in z. Differentiating with respect to z, obtain 1
fX(F−1

X (z))
− 1

fY (F−1
Y (z))

≥ 0, or,1048

using the definition of inverse quantile density, mX(z) ≤ mY (z) (with a strict inequality1049

in some open interval). Equation (4) then gives the result.1050

Proof of Lemma 6 For part (a), note that since fX and fY are nondecreasing and Y1051

FOSD X, for any nondecreasing function u(t) we have
∫
fY (t)u(t)dt ≥

∫
fX(t)u(t)dt.1052

Using u(t) = fY (t), obtain
∫
fY (t)2dt ≥

∫
fX(t)fY (t)dt; using u(t) = fX(t), obtain1053 ∫

fY (t)fX(t)dt ≥
∫
fX(t)2dt. Combining the two inequalities, obtain the result.1054

For part (b), similarly, note that X FOSD Y and hence for any nonincreasing func-1055

tion u(t) we have
∫
fX(t)u(t)dt ≤

∫
fY (t)u(t)dt. Using u(t) = fY (t) and u(t) = fX(t)1056

consecutively, obtain the result.1057

For part (c), note that due to symmetry b2[fX ] = 2
∫ µ
ul
fX(t)2, and similarly for fY ,1058

where µ = E(X) = E(Y ) is the middle of the interval [ul, uh]. Functions fX and fY satisfy1059

the conditions of part (a) on [ul, µ], and the result follows.1060

Proof of Proposition 10 In order to compare E∗p = k̄e∗p to E∗
k̄

= k̄e∗
k̄
, we need to1061

compare e∗p and e∗
k̄
, i.e., it is sufficient to compare Bp given by (14) and bk̄.1062

(a) Suppose p0 = 0 and kbk is concave for k ≥ 1. Then1063

Bp =
1

k̄

n∑
k=1

pkkbk =
1

k̄
Ep(KbK) ≤ 1

k̄
k̄bk̄ = bk̄,1064

where the inequality follows from Jensen’s inequality, which will be strict if kbk is strictly1065

concave.1066

(b) From Jensen’s inequality for conditional expectations, and assumptions (i) and1067

(ii),1068

Ep(KbK |K ≥ 2) ≤ Ep(K|K ≥ 2)bEp(K|K≥2) ≤ Ep(K|K ≥ 2)bk̄.1069

The first inequality will be strict if kbk is strictly concave. Multiplying both sides by1070
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Prp(K ≥ 2),1071

Ep(KbK |K ≥ 2)Prp(K ≥ 2) ≤ Ep(K|K ≥ 2)Prp(K ≥ 2)bk̄,1072

or1073

k̄Bp ≤
n∑
k=2

kpkbk̄ ≤
n∑
k=0

kpkbk̄ = k̄bk̄.1074

The last inequality will be strict if p1 > 0. Thus, we showed that Bp ≤ bk̄, with strict1075

inequality if kbk is strictly concave or p1 > 0.1076
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