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Abstract

Seeking unanimous consensus in collective decision-making situations creates the
tendency for individuals within a group to vote strategically against their private
information especially as the size of the group gets larger. In jury trials, this leads
to the paradox that the more demanding the hurdle for conviction is, the more
likely it is that a jury will convict an innocent defendant. We challenge these
established results, by exploring voting behaviour when collective decision-making
occurs based on information, the reliability of which is ambiguous. With ambiguity-
averse voters, who are MaxMin Expected Utility Maximizers, we demonstrate that
unanimity voting is compatible with instances of informative voting, outperforming
other voting rules, such as majority voting.
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1 Introduction

“...two factors [are] commonly used to determine a choice situation, the
relative desirability of the possible pay-offs and the relative likelihood of the
events affecting them, but in a third dimension of the problem of choice:
the nature of one’s information concerning the relative likelihood of events.
What is at issue might be called the ambiguity of this information, a quality
depending on the amount, type, reliability and ‘unanimity’ of information, and
giving rise to one’s degree of confidence in an estimate of relative likelihoods.”

Daniel Ellsberg, The Quarterly Journal of Economics, pp. 657-659.

Much real world negotiation and decision-making take place in small groups. Their
deliberations determine outcomes that matter to a multitude of agents, from single in-
dividuals, households, businesses and organisations, to communities and wider society.
They impact, for instance, the lives of organ recipients, the fates of defendants in jury
trials, and the allocation of research funding. Collective deliberation is thus an important
research area in the fields of social choice, political economy, as well as political science.
A fundamental question in this area is to identify which deliberation processes and rules
achieve the best collective decisions. Existing studies concur that majority voting should
be preferred in many collective decision settings. This consensus is rooted in two major
findings, the Condorcet Jury Theorem (CJT)1, and what we could refer to as the Jury
Paradox. The CJT establishes that collective decisions generated by majority voting
have a higher probability of selecting the correct alternative than the decision made by
a single expert, especially as the size of the group grows. When making decisions on
imperfect information, the “Wisdom of the Crowds” leads to better outcomes than in-
dividual decision-making. The Jury Paradox posits the superiority of the majority rule
over the unanimity rule when well-intentioned voters are strategic in their voting. Out
of all voting rules, unanimity gives individuals the strongest incentives to strategically
vote against their private information, leading to suboptimal decisions. The CJT does
not contemplate such strategic voting.

These results were famously established in the seminal papers of Austen-Smith and Banks
(1996) and Feddersen and Pesendorfer (1998), which investigate the CJT within Bayesian-
Nash Equilibrium (BNE) settings. They generalize the CJT by analysing it in game the-
oretical frameworks, in which voters share common preferences and receive imperfectly
informative private signals to base their votes upon. In these settings, the result of the
CJT that collective decisions generated by majority voting have a higher probability of
selecting the correct alternative than the decision made by a single expert, especially as
the size of the group grows, still holds true. This is trivially so, if each juror’s voting
strategy prescribes voters to vote in accordance with their signals. Put differently, if
informative voting constitutes a pure strategy equilibrium for their voting behaviour the
resulting collective decision is more reliable than the decision made by any single individ-
ual due to virtues of (truthful) information aggregation. Less trivially, when informative
voting is likely not to prevail as a Bayesian-Nash Equilibrium, i.e., when strategic vot-

1Marquis de Condorcet, Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues
à la Pluralité des Voix, L’Imprimerie Royale, Paris, 1785.
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ing equilibria with randomization become pervasive, with voters discarding their private
information, the CJT is somewhat reinforced: Majority voting still leads to information
aggregation of superior quality to that obtainable under unanimity voting as the size of
the group grows larger, although majority voting does not aggregate information all that
well anymore compared to when voters vote sincerely.

Beyond its being robust to the lack of voting sincerely in many real world situations, the
result that the majority rule is a superior voting criterion hinges upon the highly unreal-
istic assumption that individuals cast their votes based on information whose reliability
is commonly known and can be precisely assessed. For instance, in models of jury trials,
jurors are assumed to know the exact probability that any piece of evidence is correct. In
such a setting, it is conventional for voters to update their beliefs about the likelihood of
a given state of the world, using the precisely measurable prior probabilities available to
them to form posterior probabilities that incorporate any new information using Bayes’
rule. Contrary to the assumptions made in the established literature, voters, in reality,
need to reach a decision based on information whose accuracy cannot be perfectly as-
sessed. Indeed, ambiguity exists not only in the inability to assign well-defined, numerical
probabilities to specific events, but is also embedded in the language, signals, and social
norms used by agents to communicate with one another in decision-making contexts. In
spite of this, there are virtually no models of voting under ambiguity, for us to predict
the likely consequences of facing such an ambiguous world.2

The goal of this study is to fill this gap, by investigating the validity of the CJT for
BNE settings characterized by ambiguous information in a similar fashion as in Ellsberg
(1961), i.e., when the distribution of the reliability of the information given to voters
is not precisely known. To explore how the ambiguity of information in such settings
affects voters’ behavior, we assume voters to be ambiguity-averse and MaxMin Expected
Utility (MMEU) maximizers, à la Gilboa and Schmeidler (1989). Therefore, in our model
ambiguity-averse voters assign their priors in an act-contingent manner: they assess each
of their actions by its associated minimum expected utility. Furthermore, to capture
voters’ belief formation and revision in the face of ambiguity, we allow for Full-Bayesian
Updating, as in Pires (2002). Also, this is in line with Eichberger, Grant, and Kelsey
(2007), which provides an axiomatic proof for updating non-additive capacities by using
the Full-Bayesian Updating rule.

Our results demonstrate that in spite of adhering to unanimous voting there exist in-
stances in which voters facing ambiguous information would revert to adopting informa-
tive voting equilibrium strategies, where they would have behaved strategically by voting
against their private information, otherwise. The intuition for this result lies in the ob-
servation that when information becomes ambiguous, voters are more reluctant to rely on
the collective information of others but their own, changing their ‘perceived’ pivotality,
hence their optimal strategies as to whether to vote informatively or against their private
information when their votes contribute to the final collective decision. This intuition is

2Ellis (2016) studies information aggregation exclusively under majority rule by assuming that there
is ambiguity regarding the payoff-relevant state. The findings of this study indicate that the CJT fails to
hold as voters who exhibit Ellsberg’s type preferences strictly prefer randomizing as compared to adopting
informative voting strategies, especially if the precision of their information is too low to overcome the
uncertainty of the prior.
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consistent with other settings analyzing the effect of ambiguity on the private provision
of public goods. In those settings, it has been shown that in large societies a unique equi-
librium exists characterized by less free-riding than in the absence of ambiguity3.

This is compatible, for example, with unanimous voting in a 12-person jury trial in which
ambiguous information is allowed for with respect to the reliability of the private signal
voters receive before casting their votes.

Let us recall the canonical 12-person jury example from Feddersen and Pesendorfer (1998).
This is a clear illustration of the failure for unanimity to deliver high quality collective
decisions: it demonstrates how unanimity voting is prone to strategic voting with ran-
domization to the detriment of information aggregation. It does so by considering a
scenario in which the reliability of the information voters possess is precisely measured
and exactly equal to p = 0.8. Figure 6 illustrates what the cut-off value of the level of
reasonable doubt, denoted by q, should be for informative voting to be an equilibrium if
the unanimity rule were to be chosen. The figure shows that only when such reasonable
doubt level is set to, or above, q = 99% there is a chance for informative voting to prevail
as an equilibrium of this voting scenario. Informative voting is represented by the equi-
librium strategy for each juror choosing the probabilities to vote to convict, respectively
contingent on having received an innocent signal i, σ(i), or a guilty signal g, σ(g), to be
equal to σ = (σ(i), σ(g)) = (0, 1): jurors vote to acquit if they receive an innocent signal,
and only vote to convict if they receive a guilty signal. This canonical 12-person jury
example implies that it is virtually impossible for unanimity voting to prevent jurors from
engaging in strategic behavior involving some degree of randomization, i.e., leading them
to choose to convict with some positive probability although they received an innocent
signal. In turn, Feddersen and Pesendorfer (1998) show that strategic voting leads to
higher type I errors (probability of convicting the innocent) under unanimity voting than
when adhering to majority voting.

0.2 0.99

σ(i) = 1 0 < σ(i) < 1 σ(i) = 0

Figure 1: 12-person jury: Threshold values of q for different voting equilibria when p = 0.8

However, this famous example which counters the virtues of adhering to unanimity vot-
ing, namely that of allowing for inclusion and consensus-building to matter in collective
decisions, reflects a scenario in which jurors know precisely the reliability of the informa-
tion provided to them, before casting their votes. What if that reliability was not possible
to be precisely measured? How would jurors, in the face of ambiguous information be-
have, when forming and revising their beliefs leading to their casting of votes? How
would ambiguous information thereby contribute to the quality of the collective decision?
Our analysis represents a first attempt in addressing these questions. It demonstrates
that, for instance, under unanimity voting, if voters were confronted with information
whose reliability is ambiguous, for example, taking values in the interval [0.55, 0.8], then

3See, for example, Bailey, Eichberger, and Kelsey (2005).
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informative voting would be observed in equilibrium for a much larger range of thresh-
olds of reasonable doubts. In particular, Figure 7 illustrates what the cut-off value for
informative voting being an equilibrium would be in this alternative ambiguous setting:
q = 89.4%. This is much smaller than the level of reasonable doubt required to be im-
posed for informative voting to occur in the absence of ambiguous information, which
was q = 99%, making it now more likely for unanimity to lead to informative voting for
a 12-person jury case.

0.36 0.894

σ(i) = 1 0 < σ(i) < 1 σ(i) = 0

Figure 2: 12-person jury: Threshold values of q for different voting equilibria when
p = [0.55, 0.8]

This surprising result is not just peculiar to the selected 12-person jury example and the
particular spread considered for the interval within which the reliability of the informa-
tion given to voters lies within. Our analysis provides a much wider support for when
informative voting equilibrium prevails over mixed strategy voting equilibria under the
unanimity rule. This, in turn, validates the claim that unanimity voting can preserve the
efficient aggregation of information in some collective decision-making scenarios, thereby
providing the basis as to when to restore it as a desirable voting rule. Therefore, our
results are relevant for many real-world decision-making situations, involving medium-
to-large size groups.

The remainder of this study is organised as follows. Section 2 contains a review of the
related literature on other forms of ambiguity. Section 3 presents the canonical jury trial
model and its main findings as studied in the seminal paper by Feddersen and Pesendorfer
(1998). Section 4 introduces a theoretical modelling for the cases of the unanimity vot-
ing rule and majority voting rule, under ambiguity. Section 6 provides some compara-
tive statics results. Finally, section 7 concludes. Appendix A contains some technical
proofs.

2 Related Literature on Other Forms of Ambigu-

ity

The Expected Utility (EU) theory of Neumann and Morgenstern (1947) assumes that
the outcomes of the events under examination have objectively known probabilities. They
define the preferences over acts by a real-valued utility function of the choices weighted
by the objective probabilities of the outcomes of the states.

However, cases when the probability measure of the events is known to all decision mak-
ers hardly exist in real life. Decision makers are not able to form purely objective beliefs
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regarding the states unless they are confronted with a fair coin, a perfect die, or a well-
made roulette wheel. Knight (1921) is the first person to distinguish ‘risk’ from ‘uncer-
tainty’ by referring to the existence/absence of objective probabilities. ‘Risk’ is defined
by (associated with) events the objective probability measure of which could either (i)
be theoretically deduced, which means that individuals are able to form priori probabili-
ties; or (ii) be determined by empirical frequencies, which means individuals can generate
statistical probabilities. Knight uses the notion of ‘uncertainty,’ when referring to events
that do not fall within these two categories, that is, if either of the previous methods are
not available for measuring the objective probabilities of such events. He also suggests
that even in the uncertain cases, individuals can form estimates, which represent the
concept of subjective probabilities, when making decisions based on them.

Savage (1954) suggested that probabilities are not necessarily something objectively
known. Instead, decision makers have their subjective beliefs regarding the probabil-
ity measure of the states. For example, unlike the roulette lottery, the horse lottery does
not associate a known chance with each observation of the lottery. In other words, the de-
cision maker cannot assign a specific probability to the outcomes of a horse lottery.

Thus, in Subjective Expected Utility (SEU) theory, preference relations over acts are
represented by some real-valued utility function on the set of the consequences weighted
by the subjective probabilities of the states; whereas the individual’s choice behaviour in
situations of risk is predictable under certain postulates, such as complete ordering and
the sure-thing principle.

Anscombe and Aumann (1963) established the theory of State-Dependent Expected Util-
ity by combining EU and SEU. They started by redefining the word ‘probability’. They
separated ‘probability’ into two very different concepts. When it is interpreted within
the ‘logical’ sense, it means the plausibility of some events or reasonableness of some
expectations, whereas if it is interpreted within the sense of ‘physics’, it is roughly iden-
tical to the word ‘chances’, which refers to the proportion of successes in some events in
the statistical way. This allows to transform a choice under uncertainty into a two-stage
lottery-act framework.

Although SEU gives a rather accurate prediction of a decision maker’s gambling choice
and his/her reflective choice behaviour, Ellsberg (1961) points out that Savage’s norma-
tive rules are not applicable whenever there is an unmeasurable uncertainty in the relative
likelihood of the events. In his paper, ambiguity exists whenever there is inadequate in-
formation regarding the relative likelihood of the events. For example, ambiguity could
be caused purely by lack of information. It could also be due to the fact that the decision
maker receives contradicting information or/and the source of information is not credi-
ble. He provided a famous thought experiment and proved that there is a non-negligible
minority of decision makers who violate Savage’s axioms, who are not able to reduce the
unmeasurable uncertainty to risk, or to apply the von Neumann–Morgenstern Expected
Utility Theory.

In the Ellsberg two-colour urn experiment, decision makers are faced with two urns
containing 100 balls each of either red or black colour, from which one ball will be
randomly drawn. Let us suppose that in Urn A, the composition of red and black balls
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is not known to the decision maker. However, in Urn B, there are 50 red balls and 50
black ones. Decision makers are asked which one they prefer, (1) to bet on RedA or to
bet on BlackA? (2) to bet on RedB or BlackB? (3) to bet on RedA or RedB? (4) to
bet on BlackA or BlackB? To ‘bet on RedA’ means that the decision maker chooses to
draw a ball from Urn A; and that he/she will receive a prize a if the drawn ball is red,
which means RedA occurs. If the drawn ball is black, then the decision maker receives
the prize b, which means not–RedA occurs; and the amount of prize a is bigger than b.
Also, RedA, BlackA, RedB and BlackB are mutually exclusive.

Figure 3: Ellsberg Two-colour Urn Experiment

According to Savage’s theorem, the individuals should be indifferent to either of the
options for these four questions. This means that individuals should be indifferent with
respect to the colour they bet on. Moreover, they should also be indifferent with respect
to the urn they choose to bet on. A number of people, including Savage himself, although
being indifferent between the options of questions (1) and (2), and those of questions (3)
and (4), nevertheless prefer betting on RedB to RedA, and BlackB to BlackA. This
preference obviously violates the Savage Axioms. Thus, the preferences elicited from
the Ellsberg Urn game cannot be explained by the Savage Axioms. This contradiction
between ambiguity and SEU theory becomes a major challenge to game theory and
rational choice theory.

As stated in Table 1 below, let a and b be the payoffs, a > b, such that, for example, in
gamble I, if ‘RA’ occurs, the payoff of betting on ‘RA’ is a. According to Savage’s theorem,
individual should be indifferent between gamble I and gamble II. Also, they should be
indifferent between gamble III and gamble IV. Following Savage’s postulates, complete
ordering and the sure-thing principle, individuals are indifferent between gamble V and
gamble VI, which means that decision makers are not only indifferent to bet on either of
the colour from each urn, but also are indifferent to bet on either of the urns.

Then, starting with the assumption that the individual prefers gamble III to gamble I,
we could make certain transformations toward gamble I and gamble III on the basis of
complete ordering and the sure-thing principle and keep the preference unchanged, that
is individuals always prefer the second gamble in the five pairs listed in Table 2. If the
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Table 1: Ellsberg Two-Colour Urn Game

RA BA RB BB

I a b b b
II b a b b

III b b a b
IV b b b a

V a a b b
VI b b a a

payoff of betting on BlackB changes from b to a, we have the payoffs as gamble I’ and
III’ in Table 2. According to the sure-thing principle, preference regarding a pair of
gambles will not change by the payoff values of events, for which both gambles have the
same payoffs. Thus, gamble III’ is preferred to gamble I’. As gamble III’ is equivalent to
gamble VI in Table 1 and gamble VI is indifferent to gamble V, we can transform III’
to III”. Gamble III”’ is preferred to gamble I”’ after we apply the sure-thing principle
by changing the value of the payoffs of the event RedA from a to b under both gambles.
Then, we get that gamble III”” is preferred to gamble I”” as gamble III”’ is equivalent to
gamble II in Table 1 and individuals are indifferent between II and I. However, gamble
III”” (equivalent to I) is preferred to gamble I”” (equivalent to III), which contradicts
the assumption that gamble III is preferred to I. Thus, the Savage Axioms cannot explain
these preference relations, opening up the door for alternative explanations.

Table 2: Transformed Ellsberg Two-Colour Urn Game

RA BA RB BB

I a b b b
III b b a b

I’ a b b a
III’ b b a a

I” a b b a
III” a a b b

I”’ b b b a
III”’ b a b b

I”” b b a b
III”” a b b b

In Ellsberg’s three-colour urn game, the participants exhibit the same pattern as they
do in the previous two-colour experiment. The participants are given an urn containing
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90 balls, of which 30 are red and the remaining 60 are either black or yellow. In this
alternative experiment, participants prefer betting on events for which they know more
about the probability measure over the states—the event that a red (black or yellow)
ball will be picked out of this urn to betting on black (red) one. As shown in Table 3,
betting on red has a winning probability of 1/3 and betting on either black or yellow
has a winning probability of 2/3; thus, the decision maker prefers X to Y and Y ′ to X ′.
Since these two pairs of acts are identical without taking yellow into consideration, if
X � Y , then X ′ � Y ′. However, such a pattern also violates the sure-thing principle.
To be consistent with the sure-thing principle, X is preferred to Y and X ′ is preferred to
Y ′, since the sure-thing principle requires decision makers to ignore the states in which
the act leads to the same payoff. This means that the state yellow will not influence the
individuals’ choice when comparing acts of X and Y ; and the same applies to X ′ and
Y ′.

Table 3: Ellsberg Three-Colour Urn Game

Number of balls

30 60

Act Red Black Yellow

X W 0 0

Y 0 W 0

X’ W 0 W

Y’ 0 W W

In addition, the first order stochastic dominance axiom is violated by Ellsberg-type pref-
erences. In the two-colour urn game, the probability of winning by betting on RedA
is higher than from betting on RedB if the composition of red and black in Urn A is
(60, 40), for instance. However, RedB � RedA to the Ellsberg type. The explanation of
the three-colour urn game is fairly similar to that of the two-colour case.

Moreover, not only Savage’s theorem but also other subjective utility theories with ad-
ditive probabilities are proved to be implausible, as they fail to infer the probabilities
from the decision maker’s choice for Ellsberg’s ambiguous urn game. In the two-colour
case, the individual prefers to bet on RedB rather than RedA. This means the same
as that the decision maker believes that P (RedB) > P (RedA), which indicates that
1 − P (RedB) < 1 − P (RedA). However, this contradicts the preference of the individ-
ual, P (BlackB) > P (BlackA). Analogously, in the three-colour urn game, denote the
subjective probabilities of drawing a red, black and yellow by P (Red), P (Black) and
P (Y ellow), respectively. Y ′ � X ′ indicates P (Black ∪ Y ellow) > P (Red ∪ Y ellow).
Thus, when probabilities are additive, P (Black ∪ Y ellow) = P (Black) + P (Y ellow)
and P (Red ∪ Y ellow) = P (Red) + P (Y ellow). However, given the preference Y ′ � X ′,
P (Red) < P (Black). Thus, this contradicts the preference X � Y .

A series of empirical studies have been conducted following Ellsberg’s thought experi-
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ment so as to test the existence of ambiguity and ambiguity aversion. The aversion to
ambiguous choices have been well demonstrated in the replications of the Ellsberg urn ex-
periments in Becker and Brownson (1964), Larson (1980), Hogarth and Einhorn (1990),
Bernasconi and Loomes (1992), Seidenfeld and Wasserman (1993), Keren and Gerritsen
(1999), Ivanov (2011), among others. In these experiments, as in Ellsberg’s Urn exper-
iment, objective probabilities exist; nevertheless, individuals can only partially access
such measurements. If individuals were allowed to access the whole objective probabil-
ities measurement, for example, by looking into Ellsberg’s Urn A, and by seeing every
ball in it, then, they would know the exact measurement of the objective probabilities of
each ball to be drawn from that urn. Thus, Urn A would be no longer ambiguous, rather
a risky urn and each individual would be able to settle on the same explicit probability
measure of the event of a particular ball being drawn from it and, hence, form an iden-
tical prior/belief from such well-defined probability measure. However, there is another
type of ambiguity, where the underlying objective probabilities measure is intrinsically
unknown/unmeasurable. Unlike Ellsberg’s design of the game, some experiments have
taken natural events, such as betting on future stock prices, or GNP, that is, events for
which there exists conflicting advice regarding their probability distributions. Those are
instances of events with ambiguous probabilities, as objective probability measures can
neither be deduced theoretically nor generated by obtaining sufficiently empirical fre-
quencies for them, to test decision makers’ attitudes towards them, as in MacCrimmon
(1968), Goldsmith and Sahlin (1983), and Einhorn and Hogarth (1985).

Other experiments have found that individuals exhibit an ambiguity seeking attitude
when the probability for gain is low and when the probability for loss is high (see
Kahn and Sarin (1988), Curley, Young, and Yates (1989)).

Besides decision analysis, the concepts of ambiguity and ambiguity aversion also prevail in
other realistic applications. Kellner (2010) argues that a tournament contract is preferred
to an independent contract in an ambiguous situation, where the relationship between
effort and output is opaque. Tournament contracts will not be favourable when agents are
risk averse but ambiguity neutral. However, as long as ambiguity aversion occurs, rank-
dependent tournaments will most often be attractive for agents over effort-dependent
contracts, although they may not be optimal. When the relation between effort and
output is opaque, agents prefer a tournament contract, where the wage is based on
the ranks of the agents’ contributions, to an independent contract, where the wage is
solely based on the agent’s own performance, because a tournament contract removes
this ambiguity from the unknown distribution of output in the principal–agent problem
(Kellner and Riener (2011)).

Dickhaut, Lunawat, Pronin, and Stecher (2011) study investment behaviour both under
uncertainty and ambiguous probabilities. They find that only one-third of investors act
consistently with SEU in a first-price sealed bid auction when deciding on their investment
in a financial asset. This shows that bidders tend to bid higher than the expected return of
the assets, given the range of the expected return when not informed of the specific proba-
bilities of each asset. The experimental work of Bossaerts, Ghirardato, Guarnaschelli, and Zame
(2010) also displays substantial heterogeneity in attitudes towards ambiguity when choos-
ing a portfolio with ambiguous Arrow securities. This generates different financial market
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equilibria than with the traditional approach, which assumes that agents are ambiguity
neutral.

Also, in the auction market, the effect of ambiguity is amplified by its mechanism
(Malmendier and Szeidl, 2008). It is claimed that bidders with the most market ex-
perience overbid more frequently than inexperienced ones. Bidders face ambiguous infor-
mation as to all alternative auction goods and their winning bid. Bidders may over-value
the good, because of the anchoring effect. In addition, unlike commodity-type goods,
bidders are constrained by differentiated private values for goods like antiques, paintings,
and collectibles, as the private values of the other competing bidders are unknown.

Similarly, when compared to individuals, firms in the market face an even more perplexing
strategic environment. Armstrong and Huck (2010) found that entrepreneurs are over-
optimistic, caring more about satisfactory results than optimisation, and resorting to
rules of thumb when making strategic decisions for firms. In comparing the present or
future outcomes with the historical figures of the firm itself or with the previous outcomes
of their peers, entrepreneurs feel happy as long as the outcome remains as high as previous
outcomes, when the probability of reaching the target set by the optimal strategy is rather
ambiguous. Thus, entrepreneurs do not spend time on calculating the optimal equilibrium
strategies even when there is no search cost. They adopt rules of thumb, resorting to
imitating the successful strategies of their rivals or peers, against other strategies which
would have been optimal instead.

Given the abundant evidence for ambiguity averse attitudes in well controlled laboratory
experiments and in real life, other theories than SEU have been explored in order to
solve/overcome the Ellsberg paradox, which incorporate ambiguity aversion. Inspired by
this idea, Gilboa and Schmeidler (1989) assume that the decision makers formulate a set
of possible additive probabilities when faced with ambiguity. They redefine the indepen-
dence axiom for a non-unique prior. Moreover, they define uncertainty aversion. Thus,
in the ambiguous urn game, the uncertainty averse decision maker takes the minimal ex-
pected utility over the prior set as his/her utility, for all priors in this set. In other words,
preferences are represented by the minimum expected utilities over the set of possible
probability measures. In Ellsberg’s two-colour urn game, if the decision maker forms a
prior set with all possible probability distributions of red and black balls in Urn A, the
minimal expected utility of betting on Urn A will be zero for a utility maximising decision
maker. With the probability of a red (black) ball picked from the risky Urn B as 1/2, the
decision maker will prefer betting on the risky urn as long as the payoff of betting on Urn
B is bigger than zero. Similarly, in the three-colour problem, the probability measure of
P (Black) could be [0, 2/3]. We assume the reward of winning the bet is W . Then, the
expected utility is (1/3)W and the minimum expected utility is 0 if the individual bets
on the ambiguous urn. However, both the expected utility and the minimum expected
utility is (1/3)W if the individual bets on the unambiguous urn with an equal number of
red, black and yellow balls in it. This explains why individuals prefer the unambiguous
urn to the ambiguous one.

Schmeidler (1989) restates Ellsberg’s point that the probability assigned to an uncertain
event is not only based on the information the decision maker receives when forming
such a probability; the missing information reflects a heuristic part, which the decision
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maker takes into consideration to assess the uncertainty probability component. He
axiomatises SEU in an Anscombe and Aumann framework. Schmeidler replaces the
classical independence axiom with a weaker condition: co-monotonic independence; this
allows SEU to be generalised to allow non-additive probability measures. A non-additive
probability describes the probabilities of two equally likely events as being equal but not
necessarily 1/2, unless the information set for assigning the probabilities is rich enough. In
the Ellsberg experiment, the probability measure on the set of states need not be additive,
due to the fact that the decision maker receives little information. For example, in the
two-colour urn, P (BlackA) = P (RedA). However, the sum of P (BlackA) and P (RedA)
need not be 1. 1 − P (BlackA) − P (RedA) measures the decision maker’s confidence in
the probability. Thus, the capacity of a red (black) ball to be picked from Urn B is 0.5
and the capacity of getting a red (black) ball picked from Urn A is smaller than 1/2. We
might assign 0 capacities to the events of RedA and BlackA, so that betting on either
of the colours from urn A gives the decision maker a zero utility. Thus, SEU with non-
additive probability also gives a conceivable explanation of the observed preferences from
the ambiguous urn game.

Although ambiguity aversion has been observed through well controlled laboratory exper-
iments and in real life, studies only focus on comparing decision-makings under different
scenarios, without and with ambiguity. This means individuals are given both the risky
environment and the ambiguous one, and they are asked to make decisions as if they were
confronted with the Ellsberg Urn game. In reality, decision makers do not always have
both risky and ambiguous scenarios to choose from. The risky world and the ambiguous
world are mutually exclusive, which means individuals could start with being in the am-
biguous world, with the risky world never becoming available. In the remainder of this
study, we examine voters confronted with ambiguity: voters cannot choose to switch to
a non-ambiguous world.

2.1 The Collective Voting Game Under Ambiguity: The MMEU
Approach

As in Feddersen and Pesendorfer (1998) a group of n jurors, j = 1, · · · , n, have to
reach a verdict on a defendant, who could be either ”guilty”-G, or ”innocent”-I with
ex-ante equal probability, i.e., Pr(G) = Pr(I) = 1/2. Each juror is expected to cast a
vote {C,A} either to ‘C=convict’ or to ‘A=acquit’ the defendant based on the evidence
received, with precision p, where p = Pr(g|G) = Pr(i|I). The individual votes then
contribute towards the collective verdict. As before, we assume that all jurors have the
same preferences with respect to the outcome of the verdict, that is, they all want to
reach the correct judgment. Their preferences are defined as follows:

u(A, I) = u(C,G) = 0,

u(C, I) = −q,
u(A,G) = −(1− q),

with q ∈ (0, 1) representing once again the threshold of reasonable doubt for conviction.
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However, before jurors cast their votes, each voter j receives an independent randomly
drawn private and imperfect signal sj ∈ {g, i} as the evidence, with random and ambigu-
ous precision p with p ∈ P = [p, p̄] and 1/2 < p < p̄ < 1. No further probabilistic infor-
mation about the signal precision is provided. This implies that, differing once more from
the existing jury voting literature, the quality of the private signals is imprecisely mea-
sured. In particular, we allow such precision to fall within two levels, in the sense that the
domain of the information quality is a closed interval, rather than a set including only two
points as in Pan, Fabrizi, and Lippert (2016), or a singleton (Feddersen and Pesendorfer,
1998). The interval ambiguity with respect to the signal precision could be understood
as the case in which a piece of evidence, say, hinting toward the defendant being guilty,
tells us that the probability that the defendant is guilty is at least 60%, but at most 90%.
However, except for this, there is no extra information provided regarding the probability
measure of the underling true accuracy of the information (evidence) each voter receives.

Define the set of all possible priors as Π, Π = [p, p̄]. The ambiguity averse voter j will
choose πj ∈ Π that provides the best among the worst expected utility for each possible
actions, {C,A}.

With this in mind, we maintain the assumption that after observing the private signals,
each juror casts her vote simultaneously, according to the strategy σj(sj, πj), which is the
probability that voter j votes for conviction conditional on her private signal sj and her
subjectively formed prior πj. As before, the collective decision is determined by the vot-

ing rule k̂, k̂ ≤ n. The given voting rule is the simple majority rule when k̂ = (n+ 1)/2;
and it is the unanimity rule when k̂ = n. And, as always, the verdict is either acquittal
or conviction, depending on whether the threshold of necessary votes to convict is either
not reached, or reached.

2.2 Informative Voting

A voter j’s expected utility of voting for acquittal, conditional on being pivotal and
receiving an innocent signal is

E[uj(A, ·) | piv, sj = i] = uj(A|I)Pr(I|piv, sj = i) + uj(A|G)Pr(G|piv, sj = i).

Because uj(A|I) = 0 and uj(A|G) = −(1− q), we then have

E[uj(A, ·) | piv, sj = i] = −(1− q)Pr(G|piv, sj = i).

Denote the posterior belief that the defendant is guilty conditional on the voter being piv-
otal and having received signal i, when all other voters vote informatively, as βiG(πj, σ(·)).
Hence,

Pr(G|piv, sj = i) = βiG(πj, σ(·)) =
1

1 + (
πj

1−πj )(
1−πj
πj

)n−1
.

13



For an ambiguity averse voter j, we can determine what is the selected belief or prior
πj, that corresponds to the action leading to the highest among the minimum expected
utilities from choosing, say, to acquit a defendant.

To do so, we first determine the prior, among those one can hold, which leads to the
lowest utility of acquitting a guilty when receiving the innocent signal:

minπj∈ΠE[uj(A, ·) | piv, sj = i] = −(1− q)maxπj∈Πβ
i
G(πj, σ(·)).

Denote maxπj∈Πβ
i
G(πj, σ(·)) as β̄iG(π, σ(·)), so that

minπj∈ΠE[uj(A, ·) | piv, sj = i] = −(1− q)β̄iG(πj, σ(·)).

We can repeat the exercise for a voter j’s expected utility of voting for conviction, con-
ditional on being pivotal and receiving an innocent signal. This leads to:

E[uj(C, ·) | piv, sj = i] = uj(C|I)Pr(I|piv, sj = i) + uj(C|G)Pr(G|piv, sj = i),

which is equivalent to

E[uj(C, ·) | piv, sj = i] = −qPr(I|piv, sj = i).

An ambiguity averse voter assesses her action to vote to convict by the minimum expected
utility of this action, conditional on being pivotal and receiving an innocent signal. That
is,

minπj∈ΠE[uj(C, ·) | piv, sj = i] = −qmaxπj∈Πβ
i
I(πj, σ(·)).

We know that βiI(πj) = 1−βiG(πj). Hence, maxπj∈Πβ
i
I(πj, σ(·)) = 1−minπj∈Πβ

i
G(πj, σ(·)).

Define minπj∈Πβ
i
G(πj, σ(·)) as βi

G
(πj, σ(·)), we then have

minπj∈ΠE[uj(C, ·) | piv, sj = i] = −q(1− βi
G

(πj, σ(·))).

Thus, the ambiguity averse voter will vote for acquittal informatively if and only if her
minimum expected utility of voting for acquittal is bigger than the minimum utility of
voting for conviction, given her private signal is i, conditional on being pivotal and all
other voters voting informatively, i.e.,

minπj∈ΠE[uj(A, ·) | sj = i] > minπj∈ΠE[uj(C, ·) | sj = i].

As the utility of convicting the guilty and acquitting the innocent is zero, we have

minπj∈ΠE[uj(A,G) | sj = i] > minπj∈ΠE[uj(C, I) | sj = i], (1)

which is equivalent to:

−(1− q)maxπj∈ΠPr(G|sj = i) > −qmaxπj∈ΠPr(I|sj = i).

Therefore, requiring condition (1) to be satisfied is equivalent to verifying that the fol-
lowing condition holds:

−(1− q)β̄iG(πj, σ(·)) > −qβ̄iI(πj, σ(·)).
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Because β̄iI(πj, σ(·)) = 1− βi
G

(πj, σ(·)), we then have

β̄iG(πj, σ(·))
1− βi

G
(πj, σ(·))

<
q

1− q
.

Analogously, the ambiguity averse j voter will vote for conviction informatively if and
only if

minπj∈ΠE[uj(C, ·) | piv, sj = g] > minπj∈ΠE[uj(A, ·) | piv, sj = g].

As the utility of convicting the guilty and acquitting the innocent is zero, we have

minπj∈ΠE[uj(C, I) | sj = i] > minπj∈ΠE[uj(A,G) | sj = i], (2)

which is equivalent to:

−q(1− βg
G

(πj, σ(·))) > −(1− q)β̄gG(πj, σ(·)),

that is
β̄gG(πj, σ(·))

1− βg
G

(πj, σ(·))
>

q

1− q
.

Given that in an informative equilibrium all jurors behave the same and that σ(i) = 0
and σ(g) = 1, in the remainder of this study, we omit the index j, when referring to the
equilibrium beliefs and strategies of a specific juror, and, for the rest of this subsection,
we also omit to specify the equilibrium strategy when describing the belief function.

Thus, the condition for informative voting being a Nash equilibrium, can simply be writ-

ten as
β̄i
G(π)

1−βi
G

(π)
< q <

β̄g
G(π)

1−βg
G

(π)
.

Notice that

βiG(π) =
(1− π)πk̂−1(1− π)n−k̂

(1− π)πk̂−1(1− π)n−k̂ + π(1− π)k̂−1πn−k̂
=

1

1 + (1−π
π

)2k̂−n−2

is strictly increasing with π when k ≥ n+2
2

, for example, when k̂ = n, it reaches its

maximum when π = p̄; whereas, if k < n+2
2

, for example, when k̂ = n+1
2

, βiG reaches its
maximum when π = p; and,

βgG(π) =
ππk̂−1(1− π)n−k̂

ππk̂−1(1− π)n−k̂ + (1− π)(1− π)k̂−1πn−k̂
=

1

1 + (1−π
π

)2k̂−n

is strictly increasing with p when k ≥ n
2
, when π = p, it reaches its minimum.

Proposition 1 Under the Maxmin approach and ambiguous information p, with p ∈
[p, p̄], informative voting is an equilibrium for ambiguity averse voters if and only if
β̄i
G(π)

1−βi
G

(π)
< q

1−q <
β̄g
G(π)

1−βg
G

(π)
.
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2.3 Strategic Voting Under Unanimity

In this section, we study the Symmetric Responsive Nash Equilibrium under unan-
imous voting rule, when informative voting is not an equilibrium, that is, equation (1)
and equation (2) are not satisfied at the same time. Under the Maxmin approach, voter
strategic behaviour is still captured by considering the minimum level of utility of either
votes one can cast, and each voter chooses the action, which gives the highest utility
between the two.

A voter j’s expected utility of voting for acquittal, conditional on being pivotal and
receiving an innocent signal is

E[uj(A, ·) | piv, sj = i] = −(1− q)Pr(G|piv, sj = i).

We denote Pr(G|piv, sj = i) as βiG(π, σ(·)), which is the posterior belief that the defendant
is guilty conditional on the voter being pivotal and receive signal i, that is

βiG(π, σ(·)) =
1

1 + ( π
1−π )( γI

γG
)n−1

,

where
γI(π, σ(·)) = πσ(i) + (1− π)σ(g);

and
γG(π, σ(·)) = πσ(g) + (1− π)σ(i).

An ambiguity averse voter assesses her action to acquit by its minimum expected utility
among all possible priors, that is,

minπ∈ΠE[uj(A, ·) | piv, sj = i] = −(1− q)maxπ∈Πβ
i
G(π, σ(·)).

Define maxπ∈Πβ
i
G(π, σ(·)) as β̄iG(π, σ(·)), we have

minπ∈ΠE[uj(A, ·) | piv, sj = i] = −(1− q)β̄iG(π, σ(·)). (3)

An ambiguity averse voter accesses her action to convict by its minimum expected utility,
conditional on being pivotal and receiving an innocent signal. That is,

minπ∈ΠE[uj(C, ·) | piv, sj = i] = −qmaxπ∈Πβ
i
I(π, σ(·)).

We know βiI(π, σ(·)) = 1−βiG(π, σ(·)). Hence, maxπ∈Πβ
i
I(π, σ(·)) = 1−minπ∈Πβ

i
G(π, σ(·)).

Define minπ∈Πβ
i
G(π, σ(·)) as βi

G
(π, σ(·)), we then have

minπ∈ΠE[uj(C, ·) | piv, sj = i] = −q(1− βi
G

(π, σ(·))). (4)

Similarly, an ambiguity averse voter’s minimum expected utility of voting to acquit,
conditional on being pivotal and receiving a guilty signal is

minπ∈ΠE[uj(A, ·) | piv, sj = g] = −(1− q)β̄gG(π, σ(·)); (5)
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and her minimum expected utility of voting to convict, conditional on being pivotal and
receiving a guilty signal is

minπ∈ΠE[uj(C, ·) | piv, sj = g] = −q(1− βg
G

(π, σ(·))), (6)

where

βgG(π, σ(·)) =
1

1 + (1−π
π

)( γI
γG

)n−1
,

where
γI(π, σ(·)) = πσ(i) + (1− π)σ(g);

and
γG(π, σ(·)) = πσ(g) + (1− π)σ(i).

Hence, β̄gG(π, σ(·)) and βg
G

(π, σ(·)) are respectively the maximum level of the posterior
belief and the minimum level of the posterior belief that the defendant is guilty conditional
on the voter being pivotal and receiving signal g.

Notice that because receiving a guilty signal can never be information in favour of the
innocence of the defendant more than receiving an innocent signal can ever be, we know
that βgG(π, σ(·)) > βiG(π, σ(·)). Therefore, β̄gG(π, σ(·)) > β̄iG(π, σ(·)); and 1−βg

G
(π, σ(·)) <

1− βi
G

(π, σ(·)). Thus:

β̄gG(π, σ(·))
1− βg

G
(π, σ(·))

>
β̄iG(π, σ(·))

1− βi
G

(π, σ(·))
. (7)

Lemma 1 If
β̄g
G(π,σ(·))

1−βg
G

(π,σ(·)) >
β̄i
G(π,σ(·))

1−βi
G

(π,σ(·)) , (0 < σ(i) < 1, σ(g) = 1) is the Symmetric Re-

sponsive Nash Equilibrium.

Proof. Assume equation (1) does not hold, that is voter’s minimum expected utility
of voting for acquittal is no larger than the minimum expected utility of voting for
conviction, conditional on being pivotal and receiving an innocent signal, that is

−(1− q)β̄iG(π, σ(·)) ≤ −q(1− βi
G

(π, σ(·))).

It is equivalent to
β̄iG(π, σ(·))

1− βi
G

(π, σ(·))
≥ q

1− q
.

If inequality (7) holds, it must be

β̄gG(π, σ(·))
1− βg

G
(π, σ(·))

>
q

1− q
.

And this proves that if 0 < σ(i) ≤ 1, then σ(g) = 1. Because the strategic voting
equilibrium has to be responsive, then we have the equilibrium, such that (0 < σ(i) <
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1, σ(g) = 1). And 0 < σ(i) < 1 simply means that voters randomise when receiving an
innocent signal, which requires

β̄iG(π, σ(i))

1− βi
G

(π, σ(i))
=

q

1− q
.

If equation (2) fails to hold, that is voter’s minimum expected utility of voting for convic-
tion is no larger than the minimum expected utility of voting for acquittal, conditional
on being pivotal and receiving a guilty signal, that is

−q(1− βg
G

(π, σ(·))) ≤ −(1− q)β̄gG(π, σ(·)),

we can also conclude that
β̄gG(π, σ(·))

1− βg
G

(π, σ(·))
≤ q

1− q
.

And because of equation (7), we have

β̄iG(π, σ(·))
1− βi

G
(π, σ(·))

<
q

1− q
,

leading to a contradiction, since it says that when 0 ≤ σ(g) < 1, σ(i) = 0). Due to the
requirement of being responsive, σ(g) cannot equal to 0, however, (0 < σ(g) < 1, σ(i) = 0)
would not satisfy being a symmetric responsive Nash equilibrium. When 0 < σ(g) < 1,
being pivotal means that the other n − 1 voters all received signal g, because if they
received signal i, they would vote to acquit with probability 1. But if this is the case, then
a pivotal voter with a guilty signal would always vote to convict. Thus, this contradicts
the assumption 0 < σ(g) < 1.

Lemma 2 The function
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
is continuous at every σ(i) ∈ [0, 1].

Proof. Let Π = (0.5, 1). Define φ : [0, 1]→ 2Π by φ(σ(i)) = [π, π̄] for every σ(i) ∈ [0, 1].
Note that φ is nonempty, continuous and compact-valued and that βiG(π, σ(i)) is con-
tinuous in both π and σ(i). Thus by Berge Maximum Theorem (Aliprantis and Border,

2006), both β̄iG(π, σ(i)) and βi
G

(π, σ(i)) are continuous, and so is
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
.

Therefore, Lemma 1 suggests that the symmetric responsive equilibrium exists when
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
= q

1−q . As shown in Figure 4,4 if
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
< q

1−q , voters will vote in-

formatively, which is the orange shaded area. If
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
> q

1−q , then voters vote for

conviction regardless of the signals, that is (σ(i) = 1, σ(g) = 1), which is the green shaded

4Figure 4 has been obtained by a numerical simulation of the function
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
, when fixing n = 5,

p ∈ [0.70, 0.80] and letting the variable σ(i) vary between 0 and 1. Other simulations for other values of n
and the interval of p led to similar qualitative behaviours for this function. Since we do not have a formal
proof that the function is strictly monotonic, we provide this figure for purely illustrative purposes, and
only claim existence of a strategic equilibrium for intermediate levels of q, leaving the proof of uniqueness
of such equilibrium to further research.

18



area. In between is the are where voters can randomise their strategy when receiving an
innocent signal. And there exists such strategy 0 < σ∗(i) < 1 if and only if there is a

horizontal line q
1−q intercepting the continuous function

β̄i
G(π,σ∗(i))

1−βi
G

(π,σ∗(i))
.

σ* (i)

0.2 0.4 0.6 0.8 1.0
σ(i)

5

10

15

βG
i /(1-β

G
i )

Figure 4: Symmetric Responsive Equilibrium (0 < σ(i) < 1, σ(g) = 1)

Proposition 2 Under the Maxmin approach and ambiguous information p, with p ∈
[p, p̄], there exists a Symmetric Responsive Nash Equilibrium for the unanimity rule, when

1−p
1−p+p̄ < q <

1+(
1−p

p
)n−2

1+(
1−p

p
)n−2(2+( 1−p̄

p̄
)n−2)

, such that 0 < σ∗(i) < 1, and such that
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
=

q
1−q .

Proof. Given σ(g) = 1, then

γI(π, σ(i)) = πσ(i) + (1− π);

and
γG(π, σ(i)) = π + (1− π)σ(i),

with 0 < σ(i) < 1. Then,

βiG(π, σ(i)) =
1

1 + ( π
1−π )(πσ(i)+(1−π)

π+(1−π)σ(i)
)n−1

.

Because βiG(π, σ(i)) is continuous at σ(i) = 0, as shown in Figure 5, we have

lim
σ(i)→0+

βiG(π, σ(i)) =
1

1 + (1−π
π

)n−2
.
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Figure 5: 3D Plot of βiG(π, σ(i))

Hence,

lim
σ(i)→0+

β̄iG(π∗, σ(i)) =
1

1 + (1−π∗

π∗ )n−2
,

with π∗ = p̄, and

lim
σ(i)→0+

βi
G

(π∗, σ(i)) =
1

1 + (1−π∗

π∗ )n−2
,

with π∗ = p. Therefore, by continuity

lim
σ(i)→0+

β̄iG(π, σ(i))

1− βi
G

(π, σ(i))
=

limσ(i)→0+ β̄iG(π, σ(i))

1− limσ(i)→0+ βi
G

(π, σ(i))
=

1

1+( 1−p̄
p̄

)n−2

1− 1

1+(
1−p

p
)n−2

. (8)

Similarly, βiG(π, σ(i)) is continues at σ(i) = 1, and then,

lim
σ(i)→1−

βiG(π, σ(i)) =
1

1 + ( π
1−π )

.

Hence,

lim
σ(i)→1−

β̄iG(π∗, σ(i)) =
1

1 + ( π∗

1−π∗ )
,

with π∗ = p, and

lim
σ(i)→1−

βi
G

(π∗, σ(i)) =
1

1 + ( π∗

1−π∗ )
,

with π∗ = p̄. Therefore, by continuity

lim
σ(i)→1−

β̄iG(π, σ(i))

1− βi
G

(π, σ(i))
=

limσ(i)→1− β̄
i
G(π, σ(i))

1− limσ(i)→1− β
i

G
(π, σ(i))

=

1

1+(
p

1−p
)

1− 1
1+( p̄

1−p̄
)

=
1− p
p̄

. (9)
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Therefore, whenever q
1−q is strictly between the values identified in equations (8) and (9),

that is
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
= q

1−q , there exists 0 < σ(i) < 1 as an equilibrium.

Note that this condition can also be split into two components, as follows:

q <
1 + (

1−p
p

)n−2

1 + (
1−p
p

)n−2(2 + (1−p̄
p̄

)n−2)
; (10)

and

q >
1− p

1− p+ p̄
. (11)

Therefore, we proved that as long as
1−p

1−p+p̄ < q <
1+(

1−p

p
)n−2

1+(
1−p

p
)n−2(2+( 1−p̄

p̄
)n−2)

, there exists

0 < σ∗(i) < 1, which is the equilibrium strategy when voter receives signal i.

In addition, if condition (11) is violated, that is q <
1−p

1−p+p̄ , there exists a Symmetric

Non-Responsive Strategic Nash Equilibrium, that is (σ(i) = 1, σ(g) = 1), where voters
vote for conviction regardless of their signals. This strategy leads to the highest type I
error, Pr(C|I) = 1, and the lowest type II error, Pr(A|G) = 0.

Corollary 1 Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],
for unanimous voting, there exists Symmetric Non-Responsive Nash Equilibrium with

(σ(i) = 1, σ(g) = 1) if and only if
β̄i
G(π,σ(i))

1−βi
G

(π,σ(i))
> q

1−q , that is as long as q <
1−p

1−p+p̄ .

2.4 Strategic Voting Under Non-Unanimity

For non-unanimous voting, k̂ 6= n, we have

βiG(π, σ(·), k̂) =
1

1 + ( π
1−π )( γI

γG
)k̂−1( 1−γI

1−γG
)n−k̂

and

βgG(π, σ(·), k̂) =
1

1 + (1−π
π

)( γI
γG

)k̂−1( 1−γI
1−γG

)n−k̂
,

where
γI(π, σ(·)) = πσ(i) + (1− π)σ(g),
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and
γG(π, σ(·)) = πσ(g) + (1− π)σ(i).

Because βgG(π, σ(·), k̂) > βiG(π, σ(·), k̂), Lemma 1 also holds for the case where k̂ 6= n.
Hence, we also have a Symmetric Responsive Nash Equilibrium for non-unanimous vot-
ing, (0 < σ(i) < 1, σ(g) = 1). Using Lemma 2, we can also prove the existence of the
symmetric responsive Nash equilibrium for non-unanimous voting rule. The formal proofs
can be found in Appendix A, whereas the main results for this case are summarised below.

Proposition 3 Under the Maxmin approach and ambiguous information p, with p ∈
[p, p̄], for the non-unanimous voting rule, there exists Symmetric Responsive Nash Equi-

libria, (0 < σ(i) < 1, σ(g) = 1), if and only if
β̄i
G(π,σ(i),k̂)

1−βi
G

(π,σ(i),k̂)
= q

1−q , that is,

1. if k̂ > n+2
2

and
1+( p̄

1−p̄
)n−k̂+1

1+( p̄
1−p̄

)n−k̂+1(2+(
p

1−p
)n−k̂+1)

< q <
1+(

1−p

p
)2k̂−n−2

1+(
1−p

p
)2k̂−n−2(2+( 1−p̄

p̄
)2k̂−n−2)

;

2. if 0 < k̂ ≤ n+2
2

and
1+( p̄

1−p̄
)n−k̂+1

1+( p̄
1−p̄

)n−k̂+1(2+(
p

1−p
)n−k̂+1)

< q <
1+( 1−p̄

p̄
)2k̂−n−2

1+( 1−p̄
p̄

)2k̂−n−2(2+(
1−p

p
)2k̂−n−2)

.

Corollary 2 Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],

for non-unanimous voting, if q <
1+( p̄

1−p̄
)n−k̂+1

1+( p̄
1−p̄

)n−k̂+1(2+(
p

1−p
)n−k̂+1)

, there exists Symmetric Non-

Responsive Nash Equilibria, that is (σ(i) = 1, σ(g) = 1), where voters vote for conviction
regardless of their signals, which leads to the highest type I error, Pr(C|I) = 1, and the
lowest type II error, Pr(A|G) = 0.

3 Comparative Statics Results

Consider the 12-person jury example as in Feddersen and Pesendorfer (1998), that is
when n = 12, p = 0.8 and k̂ = 12 or 7. We know that when signal precision is uniquely
defined, voters behave symmetrically and responsibly if and only if 1−p < q < 1

1+( 1−p
p

)n−2
.

Especially, from Figure 6, we can see the cut-off value of q for informative voting being
an equilibrium is very high, which is almost 1. This says that, it is almost impossible
for voters to vote informatively in this scenario. For any level of q, which is exogenously
given and set equal to q = 0.9, which is below the cut-off value for informative voting,
strategic equilibria arise. We can compute the voter’s strategy for this case, which is
exactly equal to σ(i) = 0.575, σ(g) = 1.

0.2 0.99

σ(i) = 1 0 < σ(i) < 1 σ(i) = 0

Figure 6: 12-person jury: Threshold values of q for different voting equilibria when p = 0.8
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However, if we were in the presence of ambiguous information and voters were ambiguity
averse and choosing their beliefs according to the Maxmin, we would be able to observe
voters voting informatively under the unanimity rule, for a larger range of thresholds of
reasonable doubts, below the level 0.9.

Take the signal precision to belong to p ∈ [0.6, 0.8], from Figure 7, the cut-off value for
informative voting being an equilibrium is 0.894, which is smaller than the given reason-
able doubt level 0.9. Voters’ strategy is σ(i) = 0, σ(g) = 1 in this case, since voters cast
their votes according to the signals they receive.

0.36 0.894

σ(i) = 1 0 < σ(i) < 1 σ(i) = 0

Figure 7: 12-person jury: Threshold values of q for different voting equilibria when
p = [0.55, 0.8]

On the other hand, although the cut-off value for the strategy σ(i) = 1, σ(g) = 1 being
an equilibrium is increased, it will never exceed 0.5.

Under majority voting rule, if the signal precision is ambiguous, we observe similar results
as we do under the unanimous voting rule, that is, the threshold for informative voting
being an equilibrium is lower given p ∈ [0.6, 0.8] than that when p = 0.8. The results are
summarised in Table 4.

In Table 4, we looked at the three different voting rules, unanimity, simple majority and
super majority. We found that (1) when information is downward ambiguous, the thresh-
old level of q for voting informatively is lower. Thus, (2) informative voting is the only
equilibrium for these three voting rules. The unanimity rule is the least preferred one
when p = 0.8. However, (3) when p = [0.55, 0.8], it outperforms other voting rules as it
leads to the smallest type I error as opposed to other rules.

In Pan et al. (2016), we present and discuss experiments for the two-point non-common
prior model. Based on the same parameters as the ones used in those experiments, n = 5,
q = 0.5, p = {0.6, 0.9}, we first check how the threshold level of the reasonable doubt
required for informative voting to be an equilibrium is affected by the introduction of
imprecise probabilities belonging to an interval, rather, as opposed to the case when the
precision of the signal is known and unique. We do so, by conducting a simple simulation
so as to find out what is the voting strategy under unanimous voting rule when interval
ambiguous information is provided instead of two-point ambiguous information, that is
when signal precision is at least 0.6, but at most 0.9.
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Table 5 shows that if the signal precision is amplified from its initial value 0.6, the thresh-
old level of q for voting informatively under unanimity voting is increased. Whereas, if
the signal precision is undermined from its initial value 0.9, the threshold level of q under
the unanimity rule for voting informatively is decreased. Conversely for the majority
voting rule. Because in the experiments we conducted we set the q = 0.5, which is very
low, we do not observe the switch of voting strategy.

However, the ambiguous information not only affects the threshold level of q, it also af-
fects the symmetric responsive voting strategy σ(i). From Table 6, we do observe the
dramatic decrease of type I error for unanimous voting rule when the information is am-
plified from 0.6, which is caused by the decrease in σ(i). This suggests that if q is set
fairly low, we should amplify the information precision from its initial level as it will lower
the probability of voting against the received private signals.
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Table 4: 12-Person Jury Case under Different Information Structures, given q = 0.9

Signal Precision Voting Rule Threshold for σ(i) = 1 Threshold for σ(i) = 0 Informative Voting Pr(C|I) Pr(A|G)

p = 0.8 k̂ = 12 0.2 0.99 No 0.0069 0.6540

k̂ = 8 0.00098 0.94 No 0.0011 0.0666

k̂ = 7 0.00025 0.5 Yes 0.0039 0.0194

p = [0.55, 0.8] k̂ = 12 0.36 0.894 Yes 0.0000 0.9313

k̂ = 8 0.218 0.701 Yes 0.0006 0.0726

k̂ = 7 0.188 0.5 Yes 0.0039 0.0194
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Table 5: Group Decision under Different Information Structures, given n = 5, q = 0.5

Signal Precision Voting Rule Threshold for σ(i) = 0 Informative Voting

p = 0.6 k̂ = 5 0.7714 No

k̂ = 3 0.4 Yes

p = 0.9 k̂ = 5 0.9986 No

k̂ = 3 0.1 Yes

p = [0.6, 0.9] k̂ = 5 0.8137 No

k̂ = 3 0.3077 Yes

Table 6: Voting Strategies and Resulted Errors across Different Information Structures,
given n = 5, q = 0.5

n = 5 p = 0.6 p = 0.9 p = {0.6, 0.9} p = (0.6, 0.9)

k̂ = 5 True p = 0.6 True p = 0.9 True p = 0.6 True p = 0.9

σ(i) 0.5959 0.4982 0.5618 0.5618 0.5248 0.5248
Pr(C|I) 0.25 0.0496 0.2176 0.0815 0.1867 0.0614
Pr(A|G) 0.59 0.2227 0.6185 0.2007 0.6515 0.2161

k̂ = 3 True p = 0.6 True p = 0.9 True p = 0.6 True p = 0.9

σ(i) 0 0 0 0 0 0
Pr(C|I) 0.32 0.0086 0.32 0.0086 0.32 0.0086
Pr(A|G) 0.32 0.0086 0.32 0.0086 0.32 0.0086
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4 Conclusion

We explored the effect of ambiguity in collective decision-making, using a jury voting
model à la Feddersen and Pesendorfer (1998) in which the reliability of the private infor-
mation voters possess becomes ambiguous, and by allowing for ambiguity-averse voters
who are MaxMin Expected Utility maximizers à la Gilboa and Schmeidler (1989) when
forming subjective beliefs prior to casting their votes.

In this new environment, we chose the Full-Bayesian updating rule to update the condi-
tional probability of the defendant being guilty conditional on the pivotal voter getting
a certain signal. Pires (2002) provides a decision-theoretic axiomatization of this up-
dating rule. Also, Eichberger et al. (2007) provides an axiomatic proof for updating
non-additive capacities by using the Full-Bayesian Updating rule. The reason for aban-
doning the standard Bayesian Updating rule, Pr(A|B) = Pr(A∩B)

Pr(B)
, is that the implicit

assumption it requires, namely that both A ∩ B and B are measurable sets, is violated
when ambiguity in those probability measures is introduced. Put differently, under ambi-
guity, there is no sufficient information for decision-makers to assign a precise probability
for all relevant events, Therefore, the conditional probability Pr(A|B) is not well-defined,
making the standard Bayesian Updating rule not a proper updating rule to use under
ambiguity.

In this ambiguous environment, and when adhering to unanimity voting, we proved the
existence of both an informative voting equilibrium and of strategic voting equilibria.
Unanimity voting leads to informative voting in cases in which strategic voting with
randomization would have otherwise occurred in the absence of ambiguity.

This has allowed us to show instances in which unanimity voting outperforms non-
unanimous voting and, therefore, to provide us with alternative ways to improve upon
the type I errors induced by the adoption of the unanimity rule. This can be achieved by
selecting the appropriate width of the interval within which the ambiguity lies, for any
combinations of the given level of the threshold of reasonable doubt and jury size. For
example, we found that if we can undermine the information precision from its initial
level, we can allow for a wider range of the reasonable doubt for informative voting to
prevail as an equilibrium. In some alternative collective decision-making scenarios, we
might instead be restricted to satisfying a very low level of the reasonable doubt for a
collective decision to be reached in a specific direction. In those scenarios, if unanimity
voting were to be chosen, we would need to amplify the information precision from its
initial level to induce the lowering of the probability of voting against the private signal,
that is, to decrease the occurrence of type I errors.

The intuition for these results lies in the observation that when information becomes am-
biguous, voters are more reluctant to rely on the collective information of others but their
own, changing their ‘perceived’ pivotality, hence their optimal strategies as to whether to
vote informatively or against their private information when their votes contribute to the
final collective decision. Under unanimity, this helps restore incentives for voters to vote
informatively in equilibrium, in spite of, and in accordance with, each of them voting
strategically.
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A

Proof of Proposition 3

Proof. Given σ(g) = 1, we have

βiG(π, σ(i), k̂) =
1

1 + ( π
1−π )(πσ(i)+(1−π)

π+(1−π)σ(i)
)k̂−1( π

1−π )n−k̂
=

1

1 + ( π
1−π )n−k̂+1(πσ(i)+(1−π)

π+(1−π)σ(i)
)k̂−1

.
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Because βiG(π, σ(i), k̂) is continuous at σ(i) = 1, and then,

lim
σ(i)→1−

βiG(π, σ(i), k̂) =
1

1 + ( π
1−π )n−k̂+1

.

Hence,

lim
σ(i)→1−

β̄iG(π∗, σ(i), k̂) =
1

1 + ( π∗

1−π∗ )n−k̂+1
,

with π∗ = p, and

lim
σ(i)→1−

βi
G

(π∗, σ(i), k̂) =
1

1 + ( π∗

1−π∗ )n−k̂+1
,

with π∗ = p̄. Therefore,

lim
σ(i)→1−

β̄iG(π, σ(i), k̂)

1− βi
G

(π, σ(i), k̂)
=

limσ(i)→1− β̄
i
G(π, σ(i), k̂)

1− limσ(i)→1− β
i

G
(π, σ(i), k̂)

=

1

1+(
p

1−p
)n−k̂+1

1− 1

1+( p̄
1−p̄

)n−k̂+1

. (12)

And βiG(π, σ(i), k̂) is continuous at σ(i) = 0, then, we have

lim
σ(i)→0+

βiG(π, σ(i), k̂) =
1

1 + (1−π
π

)2k̂−n−2
.

We can see that the monotonicity of limσ(i)→0+ βiG(π, σ(i), k̂) depends on k̂. When

k̂ > n+2
2

, limσ(i)→0+ βiG(π, σ(i)v) is an increasing function of π. When n+1
2

< k̂ ≤ n+2
2

,

limσ(i)→0+ βiG(π, σ(i), k̂) is an increasing function of π.

If k̂ > n+2
2

,

lim
σ(i)→0+

β̄iG(π∗, σ(i), k̂) =
1

1 + (1−π∗

π∗ )2k̂−n−2
,

with π∗ = p̄, and

lim
σ(i)→0+

βi
G

(π∗, σ(i), k̂) =
1

1 + (1−π∗

π∗ )2k̂−n−2
,

with π∗ = p. Therefore,

lim
σ(i)→0+

β̄iG(π, σ(i), k̂)

1− βi
G

(π, σ(i), k̂)
=

limσ(i)→0+ β̄iG(π, σ(i), k̂)

1− limσ(i)→0+ βi
G

(π, σ(i), k̂)
=

1

1+( 1−p̄
p̄

)2k̂−n−2

1− 1

1+(
1−p

p
)2k̂−n−2

. (13)

Therefore, whenever q
1−q is strictly between the values identified in equations (12) and

(13), there exists σ∗(i) ∈ (0, 1) such that
β̄i
G(π,σ∗(i),k̂)

1−βi
G

(π,σ∗(i),k̂)
= q

1−q .

This is equivalent to requiring that conditions (14) and (15) below are satisfied at the
same time:
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q >
1 + ( p̄

1−p̄)n−k̂+1

1 + ( p̄
1−p̄)n−k̂+1(2 + (

p

1−p)n−k̂+1)
; (14)

and

q <
1 + (

1−p
p

)2k̂−n−2

1 + (
1−p
p

)2k̂−n−2(2 + (1−p̄
p̄

)2k̂−n−2)
. (15)

Thus, if k̂ > n+2
2

, as long as
1+( p̄

1−p̄
)n−k̂+1

1+( p̄
1−p̄

)n−k̂+1(2+(
p

1−p
)n−k̂+1)

< q <
1+(

1−p

p
)2k̂−n−2

1+(
1−p

p
)2k̂−n−2(2+( 1−p̄

p̄
)2k̂−n−2)

,

we have 0 < σ(i) < 1 as the equilibrium strategy, which indicates that voters are indif-
ferent to vote for convicting and acquitting when receiving signal i.

If 0 < k̂ < n+2
2

,

lim
σ(i)→0+

β̄iG(π∗, σ(i), k̂) =
1

1 + (1−π∗

π∗ )2k̂−n−2
,

with π∗ = p, and

lim
σ(i)→0+

βi
G

(π∗, σ(i), k̂) =
1

1 + (1−π∗

π∗ )2k̂−n−2
,

with π∗ = p̄. Therefore,

lim
σ(i)→0+

β̄iG(π, σ(i), k̂)

1− βi
G

(π, σ(i), k̂)
=

limσ(i)→0+ β̄iG(π, σ(i), k̂)

1− limσ(i)→0+ βi
G

(π, σ(i), k̂)
=

1

1+(
1−p

p
)2k̂−n−2

1− 1

1+( 1−p̄
p̄

)2k̂−n−2

. (16)

Therefore, whenever q
1−q is strictly between the limit identified in equation (12) and the

one identified in equation (16), there exists σ∗(i) ∈ (0, 1) such that
β̄i
G(π,σ∗(i),k̂)

1−βi
G

(π,σ∗(i),k̂)
= q

1−q .

Notice that this condition can be broken down into two conditions, as follows:

q >
1 + ( p̄

1−p̄)n−k̂+1

1 + ( p̄
1−p̄)n−k̂+1(2 + (

p

1−p)n−k̂+1)
; (17)

and

q <
1 + (1−p̄

p̄
)2k̂−n−2

1 + (1−p̄
p̄

)2k̂−n−2(2 + (
1−p
p

)2k̂−n−2)
. (18)

If k̂ = n+2
2

, we have

lim
σ(i)→0+

β̄iG(π∗, σ(i), k̂) =
1

1 + (1−π∗

π∗ )2k̂−n−2
=

1

2
,
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and

lim
σ(i)→0+

βi
G

(π∗, σ(i), k̂) =
1

1 + (1−π∗

π∗ )2k̂−n−2
=

1

2
.

Therefore,

lim
σ(i)→0+

β̄iG(π, σ(i), k̂)

1− βi
G

(π, σ(i), k̂)
=

limσ(i)→0+ β̄iG(π, σ(i), k̂)

1− limσ(i)→0+ βi
G

(π, σ(i), k̂)
= 1. (19)

And, we know that when k̂ ≤ n+2
2

, the limit value identified by condition (16) is larger
than 1. Therefore, whenever q

1−q is strictly between the limit identified in equation (12)

and the one identified in equation (16), there exists 0 < σ(i) < 1 as the symmetric respon-

sive equilibrium strategy, that is, n+1
2
< k̂ ≤ n+2

2
, as long as

1+( p̄
1−p̄

)n−k̂+1

1+( p̄
1−p̄

)n−k̂+1(2+(
p

1−p
)n−k̂+1)

<

q <
1+( 1−p̄

p̄
)2k̂−n−2

1+( 1−p̄
p̄

)2k̂−n−2(2+(
1−p

p
)2k̂−n−2)

.
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