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Abstract

This paper investigates the role played by cooperation for the sustainable
harvesting of an ecosystem. To achieve this, a bio-economic model based on
a multi-species dynamics with inter-specific relationships and multi-agent
catches is considered. A comparison between the non-cooperative and co-
operative optimal strategies is carried out. Revisiting the tragedy of open
access and over exploitation issues, it is first proved analytically how har-
vesting pressure is larger in the non-cooperative case for every species. Then
it is examined to what extent gains from cooperation can also be derived
for the state of the ecosystem. It turns out that cooperation clearly pro-
motes the conservation of every species when the number of agents is high.
When the number of agents remains limited, results are more complicated,
especially if a species-by-species viewpoint is adopted. However, we identify
two metrics involving the state of every species and accounting for their eco-
logical interactions which exhibit gains from cooperation at the ecosystem
scale in the general case. Numerical examples illustrate the mathematical
findings.
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1. Introduction1

Cooperation is crucial for the sustainable management of renewable re-2

sources, exploited ecosystems and biodiversity, as stressed by the well-known3

Tragedy of the Commons. Game theory is a particularly relevant modeling4

tool to study such issues because it provides important quantitative and5

qualitative insights into the strategic interactions between users exploiting6

a common renewable resource, as in Kaitala & Munro (1995); Hannesson7

(1997); Kaitala & Lindroos (2007); Finus (2001) to quote a few. However,8

as pointed out by Bailey et al. (2010), the majority of game-theoretic mod-9

els have been applied to single stocks. Notable exceptions exist, such as the10

study of predator-prey models (Mesterton-Gibbons, 1996), but the use of11

game theory in a broader ecosystem-based context remains an open field of12

research.13

In the extensive game theory literature applied to fisheries, the dynamic14

model of Levhari & Mirman (1980) provides a solid framework for analyzing15

the consequences of users’ strategies on the resource in open-access fisheries.16

Using a dynamic Cournot-Nash solution, these authors show that the non-17

cooperative equilibrium yields a higher harvest fraction and a smaller steady-18

state stock than the cooperative equilibrium. The non-cooperative situation19

refers to a framework in which each user maximizes their own intertemporal20

utility without taking into account other users’ utility. By contrast, in the21

cooperative case, users jointly define a harvesting strategy. The result of22

Levhari & Mirman (1980) illustrates the famous tragedy of over-exploitation23

of resources in open access (Dutta & Sundaram, 1993). Between these two24

extreme cases, full cooperation and no cooperation, the sustainability of25

partial cooperation has recently been studied by Kwon (2006); Breton &26

Keoula (2011) or Doyen & Pereau (2012).27

Expanding the approach of Levhari & Mirman (1980), the works of Fis-28

cher & Mirman (1992, 1996) deal with the interaction between two different29

species of fish, including prey-predator relations, symbiotic interactions, and30

mutual competition. Contrary to Levhari & Mirman (1980), the model of31

Fischer & Mirman (1992) assumes that users do not compete for the same32

stock, each user targeting only one specific and exclusive species. Thus,33

externalities only arise from ecological interactions and interspecific mecha-34

nisms. In Fischer & Mirman (1996), this assumption is relaxed since both35

the users and species interact. In the case of only positive (or symmetrically36

negative) interspecies relationships characterizing a symbiotic network, re-37

sults show that, without cooperation, there is always overfishing as compared38

to the cooperative case. Results are ambiguous in the case of predator-prey39
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relationships, in particular concerning the prey. In the same vein, Datta40

& Mirman (1999), refining the demand side in a two-species model, also41

show how results are ambiguous in the sense that they depend on both the42

preference parameters and the sign of ecological interactions.43

Generalizing these results based on dynamic games to a general multi-44

species and multi-agent framework is an important challenge for ecosystem45

and biodiversity management. This is especially relevant for operationaliz-46

ing the Ecosystem-Based Fisheries Management (EBFM), which advocates47

an integrated and bio-economic management of marine resources account-48

ing for their complexity to promote their sustainability (Pikitch et al., 2004;49

Sanchirico et al., 2008; Kellner et al., 2011; Doyen et al., 2013). Such a50

prospect is in line with “models of intermediate complexity”, as proposed in51

Plaganyi et al. (2014). These models of intermediate complexity, such as the52

dynamic multi-species and multi-agent model studied in the present paper53

allow to address the ecosystem approach at medium scales for fisheries man-54

agement. Medium scale means a compromise between very stylized models55

underlying single species approaches and high dimensional models trying to56

capture the whole complexity of socio-ecosystems, such as the so-called ‘end-57

to-end’ modeling (Rose et al., 2010). The intermediate complexity approach58

is illustrated by recent applied bio-economic works using extended Lotka-59

Volterra models including Cissé et al. (2013) in French Guiana or Hardy et60

al. (2013) in the Solomon Islands.61

In line with these issues, the present article expands the model of Lev-62

hari & Mirman (1980) to a general multi-species (or multiple groups of63

species) and multi-agent context. A multi-species Gompertz dynamics as64

in Mutshinda et al. (2009) instead of the seminal Lotka-Volterra dynamics65

is considered. Such a Gompertz model turns out to be very convenient in66

mathematical terms. Moreover, fitting again with the Levhari & Mirman67

(1980) framework, the present study assumes that the overall objective of the68

agents involved in the harvesting of the ecosystem consists in the maximiza-69

tion of their discounted utilities derived from the consumption of the differ-70

ent species. Revisiting the Tragedy of Open Access and over-exploitation71

issues for a general multi-species ecosystem, the paper addresses two main72

questions:73

• Is there a gain from cooperation in terms of catch pressure?74

• Is there a gain from cooperation in terms of ecosystem state and bio-75

diversity?76

In that regard, the contribution of the paper is threefold. First, analytic77
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results clearly show how cooperation leads to less catch pressure, as com-78

pared to the non-cooperative case, regardless the number of species in the79

ecosystem. Second, gains in terms of biodiversity are also clearly elicited80

whenever the number of agents is high by using the species richness index.81

Third, even with few agents, two ecosystem and integrated metrics proving82

an overall gain from cooperation between agents are identified. The first83

ecosystem metric, relying on ecosystem equilibria, depends only on species84

interactions, while the second ecosystem criteria, related to the value func-85

tion of the game, combines both the species interactions and the ecosystem86

services.87

The paper is organized as follows: Section 2 presents the bio-economic88

model based on a multi-species multi-agent dynamics and defines the non-89

cooperative and cooperative optimality problems. Section 3 is devoted to90

the analytical results comparing the cooperative and the non-cooperative91

outcomes in terms of catches, stocks, and biodiversity. Section 4 exemplifies92

the findings through numerical examples. Section 5 discusses the results and93

concludes the paper.94

2. The bio-economic model95

2.1. The multi-species dynamics96

The two-species model of Fischer & Mirman (1992, 1996) is extended97

to a multi-species general framework with a Gompertz function in discrete98

time inspired by Mutshinda et al. (2009). Thus, for each species j = 1, ..,m,99

the dynamics of the state xj(t) (biomass, abundance, etc.) of the species is100

described by101

xj(t+ 1) = Gj (x1(t), ., xm(t))

= xj(t) exp

{

rj +

m
∑

k=1

sjk log(xk(t))

}

. (1)

where rj stands for the intrinsic growth rate of species j and the coefficient102

sjk represents the interspecific relationship between species j and k 1. More103

specifically, sjk replicates the per capita effect of species k on the growth of104

1The Gomperz dynamics (1) is analogous to that used by Fischer & Mirman (1992) in
the two-dimensional case as the equality xs = es log(x) entails that

xj(t+ 1) = Rjxj(t)
αjj
∏

k 6=j

xk(t)
αjk ,
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species j from time t to time t+ 1. When trophic parameter sjk is positive105

and skj is negative, it means that species k is a prey for predator j. When106

sjk and skj are negative, the two species are in mutual competition. If107

both parameters are positive, the two species are in a symbiotic relation.108

All diagonal coefficients sjj are supposed to be non-positive sjj ≤ 0 to109

capture the intraspecific competition. The whole set of species interactions110

is collected in the squared (m×m) matrix S = (sjk) and the intrinsic growth111

rate for species j in the vector r = (rj). To obtain bounded solutions for112

the ecosystem dynamics, it is assumed that ‖S‖∞ = maxj,k |sjk| < 1.113

When the resource is exploited, the dynamics of species becomes114

xj(t+ 1) = Gj (x1(t)− h1(t), . . . , xm(t)− hm(t)) ,

= (xj(t)− hj(t)) exp

{

rj +

m
∑

k=1

sjk log (xk(t)− hk(t))

}

, (2)

where hj(t) stands for the harvest of species j induced at time t by the n115

agents namely116

hj(t) =

n
∑

i=1

hij(t). (3)

Since harvesting reduces species’ stocks, the value xj − hj measures the117

amount of species j available for growth and species interactions into the118

next period. Since the catches cannot exceed the stock, the scarcity con-119

straint 0 ≤ hj(t) ≤ xj(t) is binding for every species j.120

2.2. Utility of agents121

Agents, labeled i = 1, . . . , n, potentially harvest and derive ecosystem122

services from the catch of the m species. Once again following Fischer &123

with Rj = erj , αjj = 1 + sjj and αjk = sjk. Interestingly, such a dynamics can also be
related to the usual Gomperz mono-specific dynamics in continuous time (Nobile et al.,
1982)

ẋ(t) = rx(t) log

(

K

x(t)

)

and its ‘Lotka-Volterra’ version

ẋj(t) = xj(t)

(

rj +
∑

k

sjk log(xk(t))

)

.

Using the first order approximation of x(t+ 1) with respect to x(t) or assuming that the
rate of growth rj +

∑

k sjk log(xk(t)) remains constant between period t and t + 1, we
precisely obtain dynamics (1).
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Mirman (1996) and for the sake of simplicity, the agents are assumed to124

be identical in the sense that they have the same preferences regarding125

consumption of the different species. More specifically, for every agent i,126

the common one-period utility from consuming the basket of catches hi =127

(hi,1, . . . , hi,m) is a logarithmic function defined as follows:128

Ui (hi) = U (hi) = U (hi,1, . . . , hi,m) =

m
∑

j=1

aj log(hij), (4)

where aj ≥ 0 captures the preferences2 of agents with respect to species j.129

More complex utility function coping with consumer preferences for variety130

can be found for instance in Quaas & Requate (2013). Cost of harvesting131

(Mesterton-Gibbons, 1993) as well as the demand side (Datta & Mirman,132

1999) are not taken into account here. In the context of the ‘fish war’,133

examples of asymmetric players can be found in Breton & Keoula (2014)134

and Doyen & Pereau (2012).135

In line with Levhari & Mirman (1980) in the mono-species case or Fis-136

cher & Mirman (1996) in the two-species case, we aim at designing optimal137

feedback or Markov-perfect harvesting rules for each species j such that138

hij(t) = Fij(t)xj(t)

where Fij(t) measures the harvest fraction at time t. Hereafter the vector139

Fi = (Fi1, .., Fim)′ stands for the transpose vector of harvest fractions. The140

harvest fractions in the non-cooperative and cooperative cases are denoted141

by Fnc(t) and F c(t) respectively.142

2.3. Non-cooperative vs cooperative optimality problems143

We aim at comparing the solutions in terms of states or controls of144

the non-cooperative and cooperative versions of the problem consisting in145

maximizing the intertemporal sum of discounted utilities of multi-species146

catches.147

2The limit limhi→0 U(h) = −∞ of the logarithmic utility when catch of one species
vanishes, captures a strong incentive both to the diversity in harvesting and to avoid
extinction of every species which is interesting in terms of biodiversity conservation. Of
interest is also the fact that this utility function is a case of iso-elastic functions where
relative risk aversion is constant. Said differently, the marginal utility of the species
∂U
hj

=
aj

hj
goes to infinity when this species goes to extinction. At the opposite end, the

marginal utility of the species goes to zero when its catch is very large.
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In the non-cooperative context, the maximization program of agent i =148

1, .., n can be written as:149

max
Fi,1(t),...,Fi,m(t)

∞
∑

t=0

ρtU (hi,1(t), . . . , hi,m(t)) (5)

subject to the dynamics (2) and the scarcity constraint 0 ≤ Fij(t) ≤ 1.150

The common one-period discount factor is denoted by ρ with 0 ≤ ρ ≤ 1.151

The solution of this dynamic game is considered in the Markov-perfect Nash152

sense as clarified in the following sections.153

In the cooperative case, the program is given by154

max






F1,1(t), . . . , F1,m(t)
. . .

Fn,1(t), . . . , Fn,m(t)

∞
∑

t=1

ρt
n
∑

i=1

U (hi,1(t), . . . , hi,m(t)) , (6)

again under the dynamics (2) and the scarcity constraint 0 ≤ Fij(t) ≤ 1.155

3. Results156

3.1. Non-cooperative optimal harvest157

To obtain the Markov-perfect Nash (or feedback) solution of this dy-
namic game (see Dutta & Sundaram (1992); Basar & Older (1995)), we
assume that player i believes that the other players use a feedback Marko-
vian strategy (Long, 2010). The Bellman equation corresponding to this
optimization problem is

Vi (x) = max
Fi=(Fi1,...,Fim)′







U(hi) + ρVi



G







1− Fi −
∑

l 6=i

Fl



x















= max
Fi







a′ log(Fix) + ρVi



G







1− Fi −
∑

l 6=i

Fl



x















(7)
where a = (a1, .., am)′ stands for the (m × 1)-size transpose vector of pref-158

erence parameters of the utility function (4). Using dynamic programming159

and assuming the uniqueness of the value function Vi solution of (7), the160

optimal catch rate Fnc
ij can be identified for every agent i as displayed in the161

following proposition 1. The proof can be found in Appendix A.1. At this162

stage, it is convenient to introduce the notation M for the matrix:163
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M = I + S′ (8)

where I denotes the identity matrix (m,m). Such a matrix M plays a key164

role in the multi-species dynamics. The following notation w is also useful165

for the vector:166

w = (I − ρM)−1
a. (9)

For the vector w to make sense, it is assumed that167

I − ρM is invertible3. (10)

It turns out that w can be considered as a vector of ‘shadow’ prices for the168

different species. This vector w is indeed a marginal value in the sense that169

it is a derivative of the value function V with ∂V
∂ log(x) = w as proved4 in170

Appendix A.1. The bio-economic interpretation of this vector w is elab-171

orated hereafter especially in Section 3.6. The proposition related to the172

non-cooperative optimal harvest fraction reads as follows:173

Proposition 1. Assume that there is a unique value function solution of174

Nash-Bellman equations (7). Assume also that matrix S is such that condi-175

tion (10) holds true and that (Mw)j > 0 for every species j. Then the ag-176

gregate non-cooperative optimal harvest fraction for all species j = 1, . . . ,m177

is given by178

Fnc
j (t) = Fnc

j =
naj

naj + ρ (Mw)j
. (11)

179

Let us first point out that this optimal harvest fraction Fnc
j (t) = Fnc

j is180

not time-dependent for every species. Although the optimal strategy defined181

3This is not a too demanding requirement. Typically, when ρ ≈ 1, it means that S is
invertible which is the case for most trophic networks. For instance, in the two-species

case, we have S =

(

− +
− −

)

and thus det(S) > 0.

4The intuition for the value function to have a log-linear form, namely to be a linear
combination of the logarithm of the states log(x) arises, first, from the form of the utility
function U(x) = a′log(x), which is also linear in log(x), and, second, from the linearity of
the dynamics with respect to the (transformed) state log(x(t)). However, the dynamics
is not linear in control, namely catch H or harvest rate F , which makes it possible to use
usual first-order optimality conditions in the dynamic programming equation.
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in terms of harvest rate does not depend on time, catches hij(t) fluctuate182

throughout time for every species due to stock variations and species inter-183

actions.184

Let us now comment on the condition (Mw)j > 0 involved in Propo-185

sition 1. This condition justifies compliance with the scarcity constraint186

0 ≤ Fnc
j < 1 since the discount factor is strictly positive (0 < ρ). The187

condition (Mw)j > 0 can be rewritten for a given species j as188

(1 + sjj)wj +
∑

k 6=j

skjwk > 0, (12)

where the wj coefficients depend both on ecological parameters (the in-189

terspecies parameters S) and on the economic parameters (the preference190

parameters a and the discount factor ρ). Assuming that the weights wj have191

closed levels in the sense that wj ≈ wk, a condition similar to Fischer & Mir-192

man (1992) can be derived stating that the sum of the direct effect given by193

(1 + sjj) and the indirect effect given by
∑

k 6=j skj on the evolution of the194

biomass of species j has to be positive. Condition (12) always holds true195

when all the species are in a symbiotic relation (skj > 0 ∀k) and the weights196

wj are positive. With only one species and assuming that s11 =
−r

log(K) where197

K denotes the carrying capacity, condition (12) reads log(K) > r, meaning198

that the carrying capacity K is large enough as compared to the intrinsic199

growth, which generally occurs.200

To be in line with the paper of Fischer & Mirman (1996), we assume201

for a moment that the number of species is reduced to m = 2 species. The202

computation of ‘prices’ w through definition (9) yields203

w1 =
a1 (1− ρ (1 + s22)) + ρs21a2

∆
, (13)

w2 =
a2 (1− ρ (1 + s11)) + ρs12a1

∆
, (14)

where

∆ = det(I − ρM) = (1− ρ (1 + s11)) (1− ρ (1 + s22))− ρ2s21s12

stands for the determinant of matrix I − ρM = I − ρ(I +S′). The interpre-204

tation of this vector w in bio-economic terms is developed in particular in205

Section 3.6. The marginal values wj imply the following harvesting mortality206

for the two species:207
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Fnc
1 =

n∆

(n− (n− 1) ρ (1 + s11)) (1− ρ (1 + s22)) + ρs21

(

a2

a1
− (n− 1) ρs12

) , (15)

Fnc
2 =

n∆

(n− (n− 1) ρ (1 + s22)) (1− ρ (1 + s11)) + ρs12

(

a1

a2
− (n− 1) ρs21

) . (16)

Such relations for two species highlight the complexity and non-linearity208

underlying the optimal catch rates with respect to the ecological parameters209

as well as the discount factor and the number of agents.210

3.2. Cooperative optimal harvest211

In the cooperative case, again using dynamic programming, the harvest212

fractions F c
j can be identified as displayed by the following proposition. They213

again involve the preferences a, the vector w defined by (9), and the matrix214

M related to species interactions and defined by (8).215

Proposition 2. Postulate the assumptions of Proposition (1). Then the216

optimal aggregated cooperative harvest fractions for all species j = 1, ..,m217

are given by218

F c
j (t) = F c

j =
aj

aj + ρ (Mw)j
. (17)

219

Proposition 2 is a direct consequence of Proposition (1) with only one220

player n = 1 in the non-cooperative context. In particular, in the two-species221

case, the harvest fractions become222

F c

1
=

∆

(1− ρ (1 + s22)) + ρs21

(

a2

a1

) ,

F c

2
=

∆

(1− ρ (1 + s11)) + ρs12

(

a1

a2

) .

223

Although the formulation of these catch rates is simpler than the non-224

cooperative one in (16), it remains highly non-linear, in particular because225

of the determinant ∆ = det(I − ρM).226
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3.3. The Tragedy of the Commons revisited227

Comparing the optimal harvest fractions in both non-cooperative (11)228

and cooperative (17) cases leads to the following proposition. It points out229

the overall gain from cooperation in terms of catch pressure in the sense230

that, for every species, the optimal harvesting rate is strictly higher in the231

non-cooperative case as compared to the cooperative context.232

Proposition 3. Postulate the assumptions of Proposition (1). If the num-233

ber of agents is strictly greater than one, for all exploited species j, the234

aggregate optimal non-cooperative harvest fraction is strictly larger than the235

aggregate optimal cooperative harvest fraction :236

n > 1 =⇒ Fnc
j > F c

j . (18)

The proof of the previous assertion stems from the following formulation237

for the mortality238

Fnc
j =

aj

aj +
ρ
n
(Mw)j

>
aj

aj + ρ (Mw)j
= F c

j

since n > 1, Mw > 0 and ρ > 0. This result is a generalization in a multi-239

species and ecosystem context of the well-known Tragedy of Open Access. It240

stresses that harvesting pressure on every species involved in the ecosystem241

is strictly greater when the agents fail to cooperate.242

3.4. How cooperation promotes biodiversity with many agents243

At this stage, we can wonder whether the gains from cooperation stressed244

in Proposition 3 in terms of catches can induce better stocks for species x(t)245

or better biodiversity levels or better ecosystem states. It turns out that the246

results are more complicated in terms of stock as compared to harvest. In247

particular, the findings depend on the number of agents. We first focus on248

the simplest case where the number of agents is very high. Such a situation is249

mathematically stylized by considering that the number of agents converges250

towards infinity n → +∞ as in numerous works on dynamic games. In251

particular, Wiszniewska-Matyszkiel (2002) relates such an assumption to a252

continuum of players. In a similar modeling context, Mesterton-Gibbons253

(1993) shows that the stock associated with the non-cooperative outcome254

converges to the bio-economic equilibrium (or open access stock) with nil255

payoffs for the agents when their number converges towards infinity.256

Let us first point out that in the non-cooperative case the aggregate257

harvest fraction identified in Proposition 1 increases with the number of258
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players5. More specifically, whenever n → ∞, it turns out, as soon as259

aj > 0, that Fnc
j → 1 implying the depletion of every exploited stock and260

thus the erosion and loss of biodiversity. This result corresponds to the261

following proposition.262

Proposition 4. Postulate the assumptions of Proposition (1). When the263

agents are numerous and do not cooperate, the exploited species (species264

such that aj > 0) collapse in the following bio-economic sense:265

aj > 0 =⇒ lim
n→+∞

xncj (t) = lim
n→+∞

hncj (t) = 0, ∀t ≥ 1. (19)

By contrast, when agents do cooperate, the global catches of each species266

do not depend on the number of players as claimed by Proposition 2. Thus,267

when the number of agents is large, only the individual harvests as part of268

the aggregated harvest are reduced. In other words, the stocks and their269

dynamics are not altered by a high number of agents in the cooperative case.270

We then obtain the following condition as proved in Appendix A.2.271

Proposition 5. Postulate the assumptions of Proposition (1). Consider a272

strictly positive initial state x0 > 0. When agents do cooperate, the whole273

ecosystem persists in the following sense274

lim
n→+∞

xcj(t) > 0 ∀t ≥ 1, ∀j (20)

275

We deduce that the number of surviving species in the cooperative con-276

text is larger as compared to the non-cooperative case. In other words,277

species richness is strictly greater in the cooperative context for a large278

number of agents. This result, captured by Proposition 6 below, is a way279

to revisit the Tragedy of Open Access in multi-species, multi-agent, and280

ecosystems contexts. It is convenient to introduce the species richness index281

sr(x) =
∑

species j

1

R

∗
+
(xj)

5This results from the computation of the ratio

Fnc
j (n+ 1)

Fnc
j (n)

=
aj +

ρ

n
(Mw)j

aj +
ρ

n+1
(Mw)j

> 1

since (Mw)j > 0 for every species j and ρ > 0.
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where 1
R

∗
+
means the characteristic (Boolean) function of strictly positive282

reals6.283

Proposition 6. Postulate the assumptions of Proposition (1). Assume also284

that at least one species is harvested namely that there exists aj > 0. Con-285

sider a strictly positive initial state x0 > 0. When the numerous agents do286

cooperate, the ecosystem is more diverse in the sense that at every time t > 0287

sr

(

lim
n→+∞

xc(t)

)

> sr

(

lim
n→+∞

xnc(t)

)

(21)

288

Although numerous other biodiversity metrics such as the Shannon or Simp-289

son index are proposed in the ecological literature, species richness is one of290

the most popular because it informs on extinction risks in a very simple man-291

ner. Thus Proposition 6 points out that the biodiversity in the ecosystem292

is directly altered when many agents exploiting it fail to cooperate. There-293

fore, it is another analytical proof of the tragedy of unregulated access. The294

ecological viewpoint underlying Proposition 6 constitutes an original contri-295

bution in that vein, especially in a multi-species and ecosystem context.296

3.5. How cooperation promotes biodiversity with few agents297

When the number of agents is limited, Section 4, which is dedicated to298

numerical examples, shows how some species (typically mesopredator) can299

benefit from non cooperation. In other words, if the comparison between300

cooperative and non-cooperative outcomes is only carried out species by301

species, the gains from cooperation for the stocks and states of the ecosys-302

tem are more ambiguous. Here, we proceed differently and exhibit a first303

aggregated metric for stocks to assess the gains induced by cooperation.304

This first ecosystem indicator relies on the equilibria and steady states for305

the optimal solutions. Using dynamics (2), stationary states x∗ are charac-306

terized for every species j by307

0 = log (1− Fj) + rj +
m
∑

k=1

sjk log(x∗)k +
m
∑

k=1

sjk log (1− Fk)

6The characteristic function is defined by

1

R

∗

+
(x) =

{

1 if x > 0
0 otherwise
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This reads in matrix form:

−S log(x∗) = r + (I + S) log (1− F )

Assuming that matrix S is invertible, this yields:308

log(x∗) = −S−1r − (I + S−1) log (1− F )

In line with that formulation at equilibrium, let us consider the following309

ecosystem metric:310

er(x) = exp

( m
∑

j=1

γi log(xj)

)

= exp

(

γ′ log(x)

)

(22)

where the vector γ is defined by311

γ = −(1, . . . , 1).(I + S−1)−1 (23)

and (1, . . . , 1) means the unit vector of dimension m. The exponential in312

definition (22) guarantees that the metric er(x) is a positive index. Here-313

after we name this index er the ecosystem richness in comparison to the314

species richness used previously. A gain from cooperation can be derived for315

this ecosystem richness as follows:316

Proposition 7. Assume that matrices S and I + S−1 are invertible. At317

equilibrium, the cooperative management of the ecosystem performs better318

than the non-cooperative management in the sense that319

er(xc∗) ≥ er(xnc∗ )

320

A detailed proof is given in Appendix A.3. The intuition for the proof321

relates to the difference:322

log(xc∗)− log(xnc∗ ) = −(I + S−1) log

(

1− F c

1− Fnc

)

and catch pressure inequality F c < Fnc underlying Proposition 3.323

At this stage, we can point out that this ecosystem metric has strong
similarities to a trophic index (Pauly & Watson, 2005) advocated for ecosys-
tem management for fisheries in relation to the metaphor of ‘fishing down
the food web’. To illustrate this claim, consider the 2D example of a very
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simple predator-prey ecosystem where the interactions between species are
captured by the matrix

S =

(

0 α

−β 0

)

where α and β are positive parameters. Using equation (23), we can indeed324

compute the vector γ = (γ1, γ2)
′:325

γ = −(1 1)(I+S−1)−1 = −
1

1 + αβ
(1 1)

(

αβ α

−β αβ

)

=
1

1 + αβ
(−αβ+β −αβ−α).

Since −αβ + β > −αβ − α and consequently γ1 > γ2, such a computation326

suggests that the ecosystem richness er gives more weight to the predator327

than to the prey and accounts for their trophic interaction intensity.328

At this stage, let us emphasize that the numerical examples described329

in Section 4 for three-species food webs point out the extent to which the330

gains from cooperation can be ambiguous if the analysis is only carried331

out species by species. By contrast, the ecosystem richness er(x) proposed332

here is a generic aggregation between species that takes into account for333

the structure and intensity of their relationships and exhibits a gain from334

cooperation in every case. Interestingly, this indicator er only depends on335

the ecology through the matrix S of interactions between species. However,336

the quantitative gain from cooperation er(xc∗) − er(xnc∗ ) is affected by the337

economic parameters (the discount rate ρ, the preferences of agents a, and338

the number of agents) as it also depends on the spread between the harvest339

rates F c and Fnc.340

Furthermore, it is worth stressing that this gain from cooperation is341

only proved for equilibria of the system. The next paragraph also identifies342

a global bio-economic index that leads to a gain from cooperation over the343

whole optimal trajectory and transient of the state x(t) of the ecosystem.344

3.6. The value of the ecosystem345

The marginal value of species underlying the vector w as well as the value346

functions V associated with the optimality problems in both cooperative and347

non-cooperative cases suggest a way to assess the state x(t) of the ecosystem,348

balancing the functional diversity of matrix S related to species interactions349

and the ecosystem services relying on preferences a. Indeed, let us consider350

the indicator351

Ecos(x) = w′ log(x) =
∑

j

wj log(xj). (24)
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This indicator makes sense in terms of metrics because it can be proved that352

w > a ≥ 0 under the assumptions of Proposition 1 for instance7. At this353

stage, it is worth examining the vector w for the two-species case displayed in354

equation (14) for a predator-prey system. In particular, it can be emphasized355

that a species without economic value, typically a prey such that a2 = 0, is356

priced in the sense that it gets get a strictly positive weight w2 > 0. Such a357

result occurs because of the trophic interactions due to s12 > 0, the economic358

utility of predator a1 > 0, and the account of future with discount factor ρ.359

In other words, w2 evaluates the marginal (and indirect here) contribution360

of the prey (j = 2) to the ecosystem (provisioning) services related to utility361

U . More generally, the vector w assesses the marginal contribution to the362

ecosystem services U of the different species involved in the ecosystem.363

Regarding the gains from cooperation, we then can prove that the ecosys-364

tem directly benefits from cooperation in the sense of the index Ecos as365

follows. To achieve this, an extension of the condition (Mw)j > 0 used in366

the propositions below is required.367

Proposition 8. Postulate that (Mkw)j > 0 for every species j and every368

integer k ∈ N. The cooperative ecosystem performs better than the nonco-369

operative ecosystem at every time t in the sense that370

Ecos(xc(t)) ≥ Ecos(xnc(t)) (25)

371

The proof is given in Appendix A.4. The numerical examples and Figures372

2, 3, and 4 in Section 4 display the gains from cooperation for this ecosystem373

metric Ecos.374

4. Numerical examples375

The following simulations illustrate in numerical terms the analytical376

findings of the previous section8. They especially show to what extent co-377

operation favors biodiversity, catches and the whole ecosystem states as378

7From the very definition of w (eq 9), we derive that (I − ρM)w = a or equivalently

w − a = ρMw

As Mw > 0 then we deduce w − a > 0 as expected.
8Simulations have been done using the scientific software Scilab 5.5. The numerical

codes are displayed in appendix.
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compared to the non cooperative situation. We focus on the most chal-379

lenging case of trophic interactions. Two examples involving three species380

are examined. The second example in particular shows how a species can381

benefit from non-cooperation and that the comparison between cooperative382

and non-cooperative performances based on a species-by-species viewpoint383

has to be overcome with more integrated indicators.384

4.1. A three-species ecosystem385

Consider a stylized numerical example involving three species in a situ-386

ation of omnivory as illustrated by Figure 1: A top predator (species 1), a387

mesopredator (species 2) and a prey (species 3) are in trophic interactions.388

The biological parameters are (rounded to 10−4)389

r =





−0.0026
0.0392
0.0644



 S =





−0.0218 0.0005 0.0001
−0.0143 −0.0153 0.0003
−0.0003 −0.0085 −0.0161





Note that the predator is not viable without the other species because of its390

negative intrinsic growth rate r1 < 0. The economic context is characterized391

by a discount factor ρ = 0.98 for three players n = 3. Utility coefficients392

now capture how predators are preferred to preys:393

a =
(

3 2 1
)′
.

Using Propositions 1 and 2 to compute the aggregate harvest fraction in394

cooperative F c and non-cooperative Fnc cases, we obtain (rounded to 10−4)395

harvest fractions (%) Species 1 Species 2 Species 3

cooperative F c 5.45 3.91 3.52
non-cooperative Fnc 14.79 10.88 9.87

396

Consequently, Proposition 3, which claims higher catch pressure in the non-397

cooperative context, namely Fnc
j > F c

j for every species j = 1, 2, 3, is again398

confirmed. Moreover, for these numerical values, the steady state for every399

species is larger in the cooperative case than in the non-cooperative case400

xcj,∗ > xncj,∗. The top of Figure 2 shows that both the predators xc1(t) and401

xc2(t) as well as the prey xc3(0) are better off in the cooperative case over402

all the trajectories namely, over a time simulation of 1000 periods. In the403

cooperative case, the stock of every species converges towards a positive404

equilibrium level xcj,∗. By contrast, the top predator xnc1 (t) and the prey405
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xnc3 (t) are jeopardized in the non-cooperative case because the harvesting406

pressure is too high. Hence, by reducing the mortality on every species,407

cooperation prevents erosion of the prey and loss of the predator. In other408

words, species richness performs better in the cooperative context. The409

gains from cooperation for biodiversity and the ecosystem are also displayed410

at the bottom of Figure 2 through the Simpson index (left)411

Simpson(x) = 1−
∑

j

(

xj
∑

l xl

)2

(26)

as well as the ecosystem value Ecos defined previously in equation (24).412

It can be observed that both metrics show better score in the cooperative413

framework. For the metric Ecos, the simulations confirm Proposition 8.414

Hence, cooperation promotes biodiversity and the ecosystem. Increasing415

the number of agents n would also reinforce the gain from cooperation as416

claimed by Proposition 5.417

Examining the marginal prices w ≈
(

54 51 28
)′

induced by the value418

function shows that the trophic relations combined with the intertemporal419

viewpoint significantly affect the initial utility preferences underlying a. In420

particular, the important marginal contribution of species 2 as compared to421

its initial utility weight points out the major role it plays in the ecosystem422

functioning as a mesopredator and the indirect effects underlying the trophic423

web.424

4.2. Why cooperation is not sufficient for some species425

The following example shows how things can be more complicated be-426

cause non-cooperation can promote the state of some species in certain cases427

where the number of agents remains bounded.428

Consider a stylized numerical example once again involving three species429

m = 3 where a top predator (species 1), a mesopredator (species 2) and a430

prey (species 3) again engage in a situation of omnivory. The predators431

(species 1 and 2) are again assumed to be preferred in terms of economic432

demand. As compared to the previous numerical example, the strength of433

trophic interactions between species has been reinforced through sjk. Thus434

the bio-economic parameters (rounded to 10−4) are435

r =





−0.00002
0.00018
0.00027



 S =





−0.01902 0.00072 0.00030
−0.01819 −0.01766 0.00054
−0.00757 −0.01364 −0.01254



 a =





3
2
1




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Figure 3 shows how non cooperation fosters the mesopredator species436

contrary to the previous example. The intuition for such a result to occur437

is that the extinction of the top predator (species 1) in the non-cooperative438

framework promotes the mesopredator (species 2) by limiting its predation439

by predator 1 and compensates for the loss of preys (species 3) after a440

transition period. Such a situation illustrates the so-called ‘mesopredator441

release’ hypothesis (Crooks and Soulé, 2013) where the decline of top preda-442

tors in an ecosystem promotes the populations of mesopredators. However,443

although species 2 performs better asymptotically in the non-cooperative444

case, the computation of usual diversity indicators shows that biodiversity445

still benefits from cooperation. For instance, species richness is higher in the446

long run with cooperation since the top predator collapses without cooper-447

ation. Computing the Simpson index as displayed at the bottom (left) of448

Figure 3 also highlights the advantage of cooperation. Similarly, the ecosys-449

tem value Ecos(t) (right) displays higher levels for cooperation as expected450

from Proposition 8. Furthermore, from Proposition 7 based on the indi-451

cator ecosystem richness er(x), we also know that gains from cooperation452

can be exhibited at equilibrium. In other words, we restate the fact that453

such a situation of ‘mesopredator release’ is detrimental to biodiversity and454

ecosystems.455

Moreover, when the number of agents significantly increases to n = 22,456

the non-cooperative benefits on species 2 vanish as shown by Figure 4 be-457

cause the mesopredator is also jeopardized by non-cooperative strategies.458

This is consistent with Proposition 5 claiming that with a high number459

of agents harvesting the ecosystem, species richness is strongly altered by460

non-cooperative strategies as compared to cooperative behaviors.461

As regards ecosystem richness er(x), when computing the weights γ462

underpinning the metric er(x) as in equation (23), it is of interest to observe463

that (rounded to 10−3)464

γ =
(

0.046 0.031 0.011
)′
.

Since γ1 > γ2 > γ3, the weights of each species in the indicator strongly re-465

late to their trophic levels in the ecosystem in the same vein as the trophic466

index (Pauly & Watson, 2005) advocated for ecosystem-based fishery man-467

agement.468

5. Discussion and conclusion469

This paper adopts an ecosystem-based approach to revisit the Tragedy470

of Open Access and over-exploitation issues. More specifically, it provides a471
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bio-economic generalization of the multi-species and multi-agent approach472

of the ‘fish war’ model of Fisher and Mirman (1992, 1996). This extension473

stems from the use in discrete time of the multi-species Gompertz dynamics474

where ecological (typically trophic) interactions between species occur. It475

enables us to compare both theoretically and numerically the impact of476

cooperative and non-cooperative harvesting strategies on the ecosystem.477

Results clearly show that cooperation implies lower harvest fractions478

than non-cooperation and in this sense less catch pressure over the whole479

ecosystem. This a first contribution to the well-known issue of the Tragedy480

of the Commons. Moreover, the gains in terms of biodiversity and ecosystem481

performance are also clearly highlighted whenever the number of agents is482

high by using the well-known species richness index. This justifies the title483

of the paper stressing ‘The Tragedy of Open Ecosystems‘ since an open or484

unregulated ecosystem implicitly induces a non-cooperative situation where485

the agents exploit the commodities or services delivered by the ecosystem486

as soon as they benefit from the harvesting of underlying stocks.487

The gains from cooperation for the ecosystem state turn out to be slightly488

more tricky when the number of agents remains limited because they de-489

pend in a complex way on species interactions, species preferences, and490

future preferences based on the discount factor, as already pointed out in491

Fischer & Mirman (1996) in the two-species context. The case of trophic492

relationships is the most difficult to address. In particular, the paper identi-493

fies situations where mesopredators, namely species of intermediary trophic494

level, benefit from non-cooperation. Such a configuration exemplifies the so-495

called ‘mesopredator release’ hypothesis where the erosion of top predators496

in an ecosystem promotes the populations of mesopredators. However, in497

the general context, the paper exhibits two ecosystem and integrated criteria498

proving an overall gain from cooperation between agents.499

The first ecosystem criterion, named ecosystem richness, relies on ecosys-500

tem equilibria and depends only on species interactions. Interestingly, this501

ecosystem metric has strong similarities with the trophic index (Pauly &502

Watson, 2005) in the sense that it gives greater weight to predators than503

to preys. The second metric, termed value of the ecosystem, informs on504

the transients of the trajectories and is based on the value function of the505

non-cooperative game. It thus depends on both ecological and economic pa-506

rameters. In particular, the weight of every species in this metric captures507

the marginal contribution of species to ecosystem services as a whole. For508

instance preys without direct economic value are positively priced due to509

their role in ecosystem functioning and their indirect role in production.510

Stylized numerical examples also show how cooperation promote bio-511
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diversity by preventing predators from collapsing in contrast to the non-512

cooperative case. The ecological gain is also reinforced by the use of the513

Simpson biodiversity metric for these simulations. All these results question514

the choice of relevant biodiversity indicators (Magurran, 1988) to assess the515

biodiversity performance of harvesting strategies as stressed in Doyen et al.516

(2013). They suggest accounting for explicit biodiversity values as in Brock517

& Xepapadeas (2003); Kellner et al. (2011) or constraints in the optimal518

control problem. Regarding this last point, another alternative would con-519

sist in adopting a viable control approach aimed at balancing biodiversity520

and economic constraints as in Pereau et al. (2012).521

Furthermore, the modeling prospect developed in the present paper is in522

line with ‘models of intermediate complexity’ as proposed in Plaganyi et al.523

(2014) to operationalize the ecosystem-based approach for biodiversity and524

ecosystem services management. These models of intermediate complexity,525

such as the one examined here, make it possible to address the ecosystem526

approach at an intermediate scale, as a compromise between analytically527

tractable models such as MEY-MSY approaches (Larkin et al., 2011) for528

single stocks and very high dimensional and numerical models trying to cap-529

ture the ‘end-to-end’ complexity of the ecosystem. These latter ‘end-to-end’530

models are usually characterized by a reduced mathematical understanding531

and may appear as ‘black boxes’. In particular, the numerous uncertain-532

ties affecting the mechanisms of such ‘end-to-end‘ modeling as well as the533

difficulties in parameterizing them can significantly alter the reliability of534

these models for stakeholders. In that respect, the present work paves the535

way toward the mathematical control of complex decision models for the536

management of ecosystems and socio-ecosystems.537

Many improvements to the present game modeling can of course be538

made. Taking uncertainties into account through a stochastic control frame-539

work as in DeLara & Doyen (2008) would be worthwhile to reinforce the540

relevance of the mathematical model used here for operationalizing the541

ecosystem-based approach. Moreover, using profit and integrating effort542

costs instead of only considering the utility of catches, would also improve543

the credibility of the modeling work as a whole by better corresponding544

to well-known bio-economic MEY targets that can promote the reconcili-545

ation between economic and ecological goals. Moreover, the heterogeneity546

of agents should be taken into account. Lastly, it would be interesting to547

analyze the issue of cooperation in terms of coalition formation models as in548

Kwon (2006); Breton & Keoula (2011), or Doyen & Pereau (2012) because549

it would make it possible to refine the results related to the Tragedy of Open550

Ecosystems between the two extreme cases of cooperative and individualis-551
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tic behaviors and foster analysis in terms of community-based management552

and governance of socio-ecosystems in the same vein as Ostrom E. (1990).553
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Appendix A. Proofs669

Appendix A.1. Proof of Proposition 1670

The resolution of the model follows the method proposed by Long (2010)671

(see Section 3.1.3 ‘Some technical notes on feedback strategies in fishery672

problems”, p 82-84).673

First set the vector y(t) = log(x(t)′) = (log(x1), .., log(xm))′. Taking674

the logarithm of ecosystem dynamics (2) controlled by the harvesting rate675

F = (F1, .., Fm)′ gives the linear dynamics written in matrix form676

y(t+ 1) = r +M ′ log(1− F (t)) +M ′y(t). (A.1)

where we use the notation M = (I + S)′ as defined in equation (8). Using677

the change of variable from x(t) to y(t), Bellman equation corresponding to678

the non-cooperative optimization problem (5) can be written as follows679

Vi (y) = max
Fi

{

a′(y + log(Fi)) + ρVi (log (G ((1− Fi − F−i)x)))
}

.

where F−i stands for the aggregate catch rate of players different than i.680

Using the dynamics (A.1), it reads681

Vi(y) = max
Fi

(

a′ log(Fi) + a′y + ρVi

(

r +M ′ log (1− Fi − F−i) +M ′y
))

.

Following Long (2010) or Fischer & Mirman (1992), we now prove that the
value function (assumed to be unique9) takes a log-linear form namely it is
a linear combination of logarithms y in the sense that

Vi(y) = υ + w′y

where υ and w are vectors of size (m× 1). We determine the coefficients υ682

and w by applying the Bellman principle. The Bellman equation for every683

agents i becomes684

9Regarding uniqueness, we have not find out clear proof in the literature. However as
mentioned in (Fischer & Mirman, 1992), in view of the log-linear nature of the objective
and dynamics, it seems unlikely that another functional form can serve as a value function.
This belief is also derived from the functional form of the value function for finite horizon
versions of this problem. Finally, our belief in the uniqueness of the solution is bolstered by
the fact that given this log-linear form, there is a unique solution satisfying the functional
equations.
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Vi(y) = max
Fi





a′y + a′ log(Fi) + ρυ

+ρw′

(

r +M ′ log (1− Fi − F−i) +M ′y

)



 .

First order optimality conditions give for every species j685

aj

Fij
=

ρ (Mw)j
1− Fij − F(−i)j

We deduce that users are identical in the sense that Fij = Fj for every i.686

Thus F(−i)j = (n− 1)Fij and we obtain687

Fnc
ij =

aj

naj + ρ (Mw)j
.

The aggregate non-cooperative harvesting rate is688

Fnc
j =

naj

naj + ρ (Mw)j
.

as required. The scarcity constraint Fnc
j ≤ 1 is satisfied because of assump-689

tion ρ (Mw)j > 0.690

The vector w is obtained by identification with the form of the value691

function V (y) = υ + w′y. We obtain10692

a′ + ρw′M ′ = w′,

or equivalently w = (I − ρM)−1
a as required.693

Appendix A.2. Proof of Proposition 5694

In the cooperative case, we know from Proposition 2 that695

F c
j =

aj

aj + ρ (Mw)j
. (A.2)

Consequently from assumption Mw > 0, we derive that

F c
j < 1, ∀j

Assume now for a moment that lim
n→+∞

xcj(1) = 0. From Gompertz dy-696

namics (1), this implies that697

10The computation of the term υnc is omitted.
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xcj(0) = 0 or F c
j (0) = 1 or exp

(

1 + rj +

m
∑

k=1

sjk log(xk(0)(1 − F c
k (0))

)

= 0

This is contradictory since the initial state xcj(0) is supposed to be strictly698

positive in all of its components and the exponential is also strictly positive.699

We proceed iteratively to obtain the assertion for every time t = 2, ....700

Appendix A.3. Proof of Proposition 7701

By taking the logarithm of the exploited dynamics (2) at the steady state702

xj(t+ 1) = xj(t) = x∗j, we obtain703

log(x∗j) = log(x∗j − hj) + rj +
∑

k

sjk log(x∗k − hk)

Since hj = Fjxj it yields704

log(x∗j) = log((1− Fj)x∗j) + rj +
∑

k

sjk log((1− Fk) x∗k)

0 = log (1− Fj) + rj +
∑

k

sjk log (1− Fk) +
∑

k

sjk log x∗k

In matrix form, it gives705

0 = (I + S) log (1− F ) + r + S log(x∗)

−S log(x∗) = (I + S) log (1− F ) + r

where the notation log (x) means the vector of logarithms by species namely706

(log (x))j = log (xj). Assuming that S is invertible, this reads:707

log(x∗) = −S−1L

with L = r +M ′ log (1− F ). The comparison between species states in the708

cooperative xc∗ and non-cooperative xnc∗ cases yields709

log(xc∗)− log(xnc∗ ) = −S−1 (Lc − Lnc) = −(I + S−1) log

(

1− F c

1− Fnc

)

.

We deduce that710
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er(xc∗)

er(xnc∗ )
=

exp
(

−(1, . . . , 1).(I + S−1)−1 log(xc∗)
)

exp (−(1, . . . , 1).(I + S−1)−1 log(xnc∗ ))

= exp
(

−(1, . . . , 1).(I + S−1)−1 (log(xc∗)− log(xnc∗ ))
)

= exp

(

(1, . . . , 1). log

(

1− F c

1− Fnc

))

.

Since for every species
1− F c

1− Fnc
≥ 1, we conclude with711

er(xc∗)

er(xnc∗ )
≥ 1

Appendix A.4. Proof of Proposition 8712

Consider the optimal cooperative xc(t) and non-cooperative xnc(t) tra-713

jectories starting from the same initial state x0. Let us prove that714

Ecos(xnc(t)) ≤ Ecos(xc(t)), ∀t = 0, 1, . . .

Taking the logarithm formulation of equation (2), we can derive by iter-715

ation that716

y(t) = M ′ty0 +
t−1
∑

s=0

M ′sr +
t
∑

s=1

M ′s log(1− F )

We deduce that717

Ecos(xnc(t))− Ecos(xc(t)) = w′
t
∑

s=1

M ′s (log(1− Fnc)− log(1− F c))

since the cooperative and non-cooperative initial states ync0 = yc0 coincide.718

Using matrix properties, the difference reads as follows:719

Ecos(xnc(t))− Ecos(xc(t)) =

t
∑

s=1

w′M ′s

(

log(1− Fnc)− log(1− F c)

)

=
t
∑

s=1

(M sw)′
(

log(1− Fnc)− log(1− F c)

)
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The assumption of Proposition 8 guarantees that vector M sw is positive for720

every species j and every time s. Moreover, from Proposition 3 related to the721

gain from cooperation for catch rates, the difference log(1−Fnc)−log(1−F c)722

is always non-positive for every species j.723

Appendix B. Scilab code for the simulations724

Below is the scilab code used for the simulations. Scilab is an open source
software for numerical computation available at http://www.scilab.org/en/download/latest

//The open ecosytem for n_pl players and n_sp species with a gompertz dynamics

clear

n_sp=3;//number of species

n_pl=3// number of player

//Dynamics parameters Simulation 1

r =[-0.0026, 0.0392, 0.0644]’ // intrinsic growth rate

S=[-0.0218 0.0005 0.0000; -0.0143 -0.0153 0.0003 ; -0.0003 -0.0085 -0.0161 ] // trophic interactions

// Dynamics parameters Simulation 2

//r=[-0.00002, 0.00018, 0.00027]’

//S=[-0.01902 0.00072 0.00030; -0.01819 -0.01766 0.00054 ; -0.00757 -0.01364 -0.01254 ]

A=(n_sp:-1:1)’ // Utility coefficients

rho=0.98

//Computation of optimal harvest rates F

W=inv(eye(n_sp,n_sp)-rho*(eye(n_sp,n_sp)+S)’)*A

disp(’marginal prices’, W)

Fmort_nc=n_pl*A./(n_pl*A+rho*(eye(n_sp,n_sp)+S)’*W)// Non cooperative total fishing mortality vector

Fmort_c=A./(A+rho*(eye(n_sp,n_sp)+S)’*W)// Cooperative total fishing mortality vector

disp(’Mortalities’, Fmort_nc,Fmort_c)

function BB=dyn_pop(B) // population dynamics

BB=B.*exp(r + S*log(B))

endfunction

function hnc=optstrategy_nc(B) // Optimal non-cooperative strategy

hnc=Fmort_nc.*B

endfunction

function hc=optstrategy_c(B) // Optimal cooperative strategy

hc=Fmort_c.*B

endfunction

function V=ecosystem(B)

V=W’*log(B)

endfunction

function D=Simpson(B)

D=1-sum((B/sum(B)).^2)

endfunction

// Simulations of catches and biomass nc and c

Horizon=500; // Temporal Horizon

B_init=[0.5 0.5 0.5]’; // initial state 3 species

Bnc=zeros(n_sp,Horizon+1); //init sequence biomass nc

Bc=zeros(n_sp,Horizon+1); //init sequence biomass c

hnc=zeros(Bnc);hc=zeros(Bc); //init sequence catch nc and c

Bnc(:,1)=B_init;

Bc(:,1)=Bnc(:,1);

for t=1:Horizon

hnc(:,t)=optstrategy_nc(Bnc(:,t));

Bnc(:,t+1)=dyn_pop(Bnc(:,t)-hnc(:,t));

Dnc(t)=Simpson(Bnc(:,t))

hc(:,t)=optstrategy_c(Bc(:,t));

Bc(:,t+1)=dyn_pop(Bc(:,t)-hc(:,t));

Dc(t)=Simpson(Bc(:,t))

Ec(t)=ecosystem(Bc(:,t))

Enc(t)=ecosystem(Bnc(:,t))

end;
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// plot

years=1:Horizon;

clf(0) // remove past content window 0

for i=1:n_sp

subplot(2,n_sp,i)

plot2d(years,[Bnc(i,years)’Bc(i,years)’],[5,2])//,rect=[0,0,Horizon,3*K(i)]);

xtitle(’Species’+string(i), ’time t’,’state x(t)’);

//legends([’non-cooperative’;’cooperative’],[5,2],opt="ur");

end

subplot(2,n_sp,n_sp+1)

plot2d(years,[Dnc(years) Dc(years)],[5,2],rect=[0,0,Horizon,1]);

//legends([’non-cooperative’;’cooperative’],[5,2],opt="ur");

xtitle(’rho = ’+string(rho), ’time t’,’Simpson ’);

subplot(2,n_sp,n_sp+2)

legends([’non-cooperative’;’cooperative’],[5,2],opt="ur");

subplot(2,n_sp,n_sp+3)

plot2d(years,[Enc(years) Ec(years)]-min(Enc),[5,2]);

xtitle(’rho = ’+string(rho), ’time t’,’Ecosystem Value’);
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Figure 1: A three-species food web in a configuration of omnivory.
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Figure 2: A three-species example with trophic interactions as defined in Section 4.1.
In blue (solid line) the cooperative trajectories. In red (dotted line) the non-cooperative
trajectories. On the top, stock states xnc

j (t) and xc
j(t) for the prey (right), the top predator

(left) and the mesopredator (center). Cooperation performs better for every species. In
particular, both the predator and the prey are jeopardized in the non-cooperative context.
At the bottom, the Simpson index and ecosystem index Ecos(t). Thus, cooperation also
performs better for these metrics.
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Figure 3: An ecosystem with three species where the gain from cooperation is more
ambiguous in terms of biodiversity performance. Parameters are defined in Section 4.2. On
the top, in blue (solid line), the cooperative trajectories xc

j(t) for the prey (right), the top
predator (left) and the mesopredator (center). In red (dotted line), the non-cooperative
trajectories xnc

j (t). Non-cooperation performs better for meso-predator species. However,
at the bottom, the Simpson diversity index and the value of the ecosystem Ecos show
better performance with cooperation.
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Figure 4: When the number of agents increases to n = 22 for the example defined in Section
4.2, the ecosystem performs better with cooperation in terms of biodiversity performance.
In blue (solid line), the cooperative trajectories xc

j(t) for the prey (right), the top predator
(left) and the mesopredator (center). In red (dotted line), the non-cooperative trajectories
xnc
j (t). Cooperation performs better for every species, the Simpson diversity index, and

the ecosystem value Ecos.
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