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Abstract

In this paper we address the joint distribution and growth processes by combining the

inherent conservative property of distributions, highlighted by the mean-field game liter-

ature, and simple capital accumulation dynamics of benchmark economic growth theory.

Given an initial unequal distribution of capital, and assuming a deterministic setting, we

show that there are three main types of evolutions: asymptotic equality but no long run

growth, asymptotic growth and a stationary distribution featuring inequality, or growth

together with increasing inequality. The last type of evolution is Pareto optimal if capital

accumulation depends linearly on the capital stock. Introducing a multiplicative random

capital redistribution process, we show that we always get an increase in inequality al-

though it can occur together with growth (if noise is relatively low) or within a non-growth

context (when noise is very high).
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1 Introduction

Although there were optimistic empirical work recording both economic growth and a long-run

decrease in inequality (Kuznets (1955)) most of the evidence taking data after the WWII is not

particularly supportive on the existence of a Kuznets curve (see Barro (2000), Forbes (2000) or

Anand and Segal (2008)). Although the evidence is mixed (and very sensitive to methods used

and data sampled) a short run positive relationship between growth and inequality is maybe

the most robust result.

If we zoom out by including wider historical periods, the per-capita income ratio between the

richest and poorest nations grew by a factor of 7 after the early 1800’s (see Maddison (2007)).

It may have grown at a factor in the thousands if we consider individuals. The acceleration of

both growth and inequality generated by the first industrial revolution allowed for a consensus

among economic historians on the existence of a ”Great Divergence” (see Pomeranz (2000)),

that started around 1800 and has progressively increased afterwards.

Those two types of evidence are not contradictory. They mean that there are countervailing

forces acting in the short-to-medium run concurring to the reduction of inequality. First,

globallzation and the flow of capital and ideas between countries may generate convergence

forces. Particularly between successive ”Industrial Revolutions” , after an initial outbreak of

inequality, there are homogeinizing forces at work through international flows of capital and

ideas (see Milanovic (2016)). Second, when the social fabric becomes fragile after heavy shocks

generated by natural disasters or diseases, or man-made disasters, as wars and revolutions, it

usually follows a period of reduction of inequality. Scheidel (2017) sees violence as the ”Great

Leveller”.

We cannot discard those leveller effects as endogenous consequences of inequality itself:

inequality between nations by widening relative prices creates an incentive for geographical

relocation of capital, and inequality may jeopardize implicit or explicit contracts within nations,

materialized in institutions safeguarding property rights, breeding political crises that can lead

to massive relocation of capital ownership among social groups.

Does inequality causes growth or growth causes inequality ? When performing empirical

research based on relatively short samples of data it is fundamental to have the causation

working in the right direction. However, when we consider the long term, in a historical sense,

the answer is they must be coupled processes: there is a growth-inequality nexus.

This paper addresses the growth-inequality (GI) nexus based on two simple ideas: first, as

in simple growth models, we assume that the dynamics of income is generated by the dynamics
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of capital accumulation, and, second, the distribution of capital is driven by a conservative

process, because total mass should always some to one at all times.

Whether we have an ad-hoc dynamics of capital accumulation (as in Solow (1956)), a cen-

tralized planner (as in the Ramsey (1928) model) or a decentralized market economy (as in

mean-field game models), the capital accumulation process can be different, but the existence

of an underlying conservative process cannot. This conservation property also holds whether

we have a deterministic or a stochastic environment. This conservation property is at the core

of the mean-field games approach (initiated by Lasry and Lions (2007) see Gomes and Saúde

(2014) for a survey). From that conservation law three fundamental properties of the dynamics

of the distribution are simultaneously determined: growth, ergodicity and inequality.

Lets us assume that the economy has one initial uneven distribution of capital, and therefore

of income per capita. Economic growth can only exist if a significant part of the distribution of

capital is stretched towards including in its support higher levels of the capital stock. However,

the conservative law is still exerting its powerful effect. It only allows for two possibilities: either

the distribution is stationary or it should work in the opposite sense of the capital accumulation

by fixing an equal mass to lower levels of income. In the first case the process is ergodic and

inequality would not be eliminated but would remain constant, but in the second it is non-

ergodic and inequality will become asymptotically infinite. We will prove that those cases can

occur with constant returns, AK, production functions.

Equality can only be reached in the long run if the process of potential stretching of the

distribution is avoided. This case can only occur if long-run growth does not exist: the economy

will converge to a finite, equality distributed capital stock. This is only possible if the production

technology displays decreasing returns to scale as in the Solow (1956) model. In this case the

process displays both ergodicity and equality but not economic growth.

Assuming that growth is possible, i.e, there is a constant returns technology, having an

ergodic process requires a very specific redistribution policy. The inequality-amplifying mech-

anism is related to the existence of a positive local correlation between the savings rate and

the capital stock. The only way to allow for growth and stationary inequality is to disconnect

income, which is positively related to the capital stock, and savings.

Would it be optimal to follow an stationary ergodic distribution policy if we assume a simple

utilitarian social welfare functional ? Using a distributional extension of the Ramsey (1928)

model, in its endogenous growth Rebelo (1991) version, we will see that it is not. Although

it would be optimal to introduce some re-distribution of capital it should not be extended to
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the point at which it could reduce the asymptotic rate of economic growth (a similar result has

been reached by Bourguignon (1981) using a static model).

Would the introduction of a stochastic redistribution of capital (through stochastic savings

) changes anything ? As in the mean-field games literature, while for the deterministic case the

conservation law is modelled by a first-order PDE, in the stoochastic case it is modelled by a

forward Kolmogorov equation (or Fokker-Planck) parabolic PDE equation. Differently from the

first-order PDE which features a distribution moving, in time, in the forward direction over its

support, the introduction of noise adds a diffusion mechanism which can move the distribution

in both ways. Assuming constant returns to scale, there are two possible results depending

on the relative magnitude of the drift and the volatility components: if volatility is low, the

process will display long run growth, and a non-ergodic increase in inequality; but if volatility

is high there will not be long-run growth and the process will be ergodic, however converging

for a state with increasing inequality and not equality as in the deterministic case.

The optimal central planner’s solution for the stochastic version is consistent with one of

those two dynamics. Therefore, the growth process, not the inequality increase process, can be

countered by the existence of random redistribution of income.

Related literature. There are other equivalent approaches dealing with the joint deter-

mination of inequality and growth by Quah (2002) and Azariadis and Stachurski (2005) using

maps. Although the results are similar using PDE’s allows for an analytical approach and to

the derivation of qualitative results.

In this paper the GI nexus results in a first-order PDE for the deterministic case in a

parabolic PDE for the stochastic case. Optimal GI nexus are modelled as optimal control

problems of first order or parabolic PDE’s, generating systems of forward-backward PDE’s.

The recent interest in using PDE for modelling distributional issues in macro models, and in

particular for mean-field games, has been surveyed in Achdou et al. (2014).

There is a recent literature on spatial Ramsey models (see Brito (2004), Brock and Xepa-

padeas (2008) and Boucekkine et al. (2009)) which also feature optimal control of parabolic

PDE’s. However, those models address the spatial distribution of capital and the existence

of spatial agglomeration of production. Although the most common asymptotic state tend to

display infinite variance, as in this paper, the interpretation is very different. In spatial-Ramsey

models the independent variable is space an asymptotic infinite variance is associated to con-

vergence in output along space. However, in this paper, because the independent variable is the

capital stock owned by different ranks of the population an infinite variance means asymptotic
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extreme inequality.

In section 2 we present the GI nexus for simple deterministic growth models and in section

3 we present the optimal distribution for a centralized economy. In section 4 we present the

GI nexus for simple stochastic growth model and in 5 we study the optimal distribution. 6

contains some final remarks.

2 The GI nexus in simple growth models

Let ki(t) be the capital stock at time t ∈ [0,∞) of agents of type i ∈ I, where I is a continuum.

There is a order relationship such that ki(t) ≤ kj(t) if i ≤ j for j 6= i ∈ I.

Capital for agents of type i have, at every time time t, accumulates at rate µi(k)

dki(t) = µ(ki(t))dt.

This equation is a budget constraint such that µ(ki(t)) = y(ki(t))− c(ki(t))− δki(t), where y,

c and δ denote income, consumption and a capital depreciation rate, respectively.

The density of agents having capital stock ki, at time t is denoted by n(ki(t), t) ∈ C∞c (R2
+),

and satisfies the constraint ∫
I
n(ki, t)di = 1, for every t ∈ [0,∞).

Because the indexing set I has a order relationship we can see the capital stock of agents i as

a mapping ki : I 7→ K ⊆ R+. Therefore, we can equivalently set the budget constrain and the

density as satisfying

dk = µ(k)dt, (1)

and ∫
K
n(t, k)dk = 1, for every t ∈ [0,∞). (2)

Proposition 1. Assume that the density of agents verifies equation (2) and that the accumu-
lation equation (1) holds. Then the distribution satisfies the first-order PDE 1

nt(t, k) + (µ(k)n(t, k))k = 0, (t, k) ∈ K × [0,∞) (3)

1We denote the partial derivatives by an index. For instance nt(t, k) =
∂n

∂t
(t, k) and nk(t, k) =

∂n

∂k
(t, k). For

functions we denote (µ(k)n(t, k))k =
∂

∂k
(µ(k)n(t, k)). See the proof in the Appendix.
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Equation (3) features a conservation law for the density. It basically implies that the

distribution of capital among agents has always the density mass equal to one. Then we can

compute the average per capita capital stock at time t

k̄(t) =

∫
K
n(t, k) kdk (4)

and its dispersion is given by the standard deviation, at time t,

σ(t) = σ(K(t)) =

(∫
K
n(t, k)(k − k̄(t))2dk

) 1
2

. (5)

There are two properties of the dynamics of the density we focus in this paper: the long-run

growth properties and the distributional properties. We say there is long run growth if per

capita capital is asymptotically unbounded, i.e., limt→∞ k̄(t) = +∞. We say the distribution

is stationary if σ(t) = σ∗ constant for all t ∈ R+ and it is ergodic if limt→∞ σ(t) = σ∗. There

is equality if σ(t) = 0 and inequality if σ(t) > 0. If the distribution is ergodic we can have

equality or inequality in the long run if σ∗ = 0 or σ∗ > 0, respectively.

Assumption 1. In order to allow for long run growth we introduce the assumption that K =
R++. We also assume that the initial distribution, n(0, k) = φ(k), is a C∞c (R+) function
satisfying, additionally the following properties∫ ∞

0

φ(k) dk = 1, lim
k→0+

φ(k) = lim
k→∞

φ(k) = 0, (6)

and always displays inequality, ∫ ∞
0

φ(k)
(
k − k̄(0)

)2
dk > 0

where the initial aggregate per capita capital stock is

k̄(0) =

∫ ∞
0

φ(k)k dk > 0.

The solution for generic non-linear first order PDE’s can display several types of behavior

(see (Dafermos, 2000, p.13) : (1) blow-up if the the solution becomes infinite when a certain

level for k is reached in finite time, (2) globally bounded solutions while k goes to infinite in

infinite time; (3) progressive concentration along time tending asymptotically to a degenerate

distribution concentrated at a finite value for k, k∗, in infinite time; (4) shock-waves such that,
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after a surface Γ(t, k) is reached, the solution becomes non-smooth and multivalued; or (5)

rarefaction waves such that the distribution becomes increasingly dispersed.

A first-order PDE as equation (3), whose coefficients are independent from the endogenous

variable n, can only have the first three types of behavior. We first need to distinguish cases

for which µ(k) is always positive, or can have any sign.

If we assume that function µ(k) is continuous and differentiable, a standard method for

solving first-order PDE is the method of characteristics. Characteristic lines can be seen as

functions k(t) satisfying
dk(t)

dt
= µ(k(t))

such that the density n(t, k) = n(t, k(t)) is constant. Given the initial distribution φ(k) and the

conservation law encoded in equation (6) the evolution of the stock of capital ki(t) is described

by an associated characteristic line.

Semi-linear first-order PDE’s, as equation (3), can only have three types of characteristic

lines: blow-up, parallel or converging to a point in infinite time. In our model only the last two

can occur.

2.1 Parallel characteristics

Parallel characteristics exist when the accumulating function µ(k) has the same sign for every

k ∈ R+. In this case the PDE (3) has one unique classical solution:

Proposition 2. Assume the initial distribution is n(k, 0) = φ(k). Then if µ(k) > 0 for all
k ∈ R++ equation (3) has one unique classic (smooth) solution

n(t, k) = φ

(
t−
∫ k

0

d`

µ(`)

)
1

µ(k)
(7)

If φ(k) = δ(k − k̄), with the initial capital distribution evenly distributed at a level k̄, we

can the solution of equation (3) is

n(t, k) = e−µtδ(ke−mut − k̄)

implying that the mean and the standard deviation are

k̄(t) = k̄eβt

and σ(k(t)) = 0 for all t ≥ 0. In this case there is growth and permanent equality.
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From now on we assume that there is initial heterogeneity, that is σ(0) > 0.

Assume the technology of production displays constant returns to scale, yi(t) = Aki(t), that

there is depreciation of capital and that consumption is a linear function of the stock of capital,

ci(t) = cki(t). Further assuming that agents have homogeneous technology and preferences,

yielding

dk(t) = µk(t) = (A− δ − c)k(t)

and that µ > 0. The solution for equation (3) given an initial distribution n(x, 0) = φ(k) is

now

n(t, k) = e−µtφ
(
ke−µt

)
, (t, k) ∈ R2

++ (8)

We assume an initial distribution

φ(k) =
2√

π(1 + erf(k0))
e−(k−k0)

2

, (9)

where erf(k0) = 2√
π

∫ k0
0
e−x

2
dx. The average capital stock and the standard deviations are

k̄(0) = k0 + ξ(k0) ≈ k0

and

σ(0) =

[
1

2
− ξ(k0)k̄(0)

] 1
2

≈ 1√
2

where ξ(k0) ≡
e−k

2
0

√
π(1 + erf(k0))

.

equation (8) becomes

n(t, k) = 2e−µtξ(k0)e
−(ke−µt−k0)

2
+k20 , (t, k) ∈ R2

++.

The average capital per capita is

k̄(t) = eµt (k0 + ξ(k0))

and the standard deviation is

σ(k(t)) =
eµt√

2
[1− 2ξ(k0)(1 + ξ(k0))]

1
2 , t ≥ 0.

For values of k0 > 2 a very tight approximation of the average and the variance for k results

k(t) ≈ k0 e
βt, σ(k(t)) ≈ eβt√

2
.
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(a) Density for several increasing dates

(b) Density plot

(c) Average capital intensity (d) Standard deviation

Figure 1: Linear accumulation function for µ > 0 and an initial normal distribution
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In Figure 1 we represent the solution for several increasing times, a 3d plot and the average

and the standard deviation of per capita capital.

If µ > 0 there is both growth and a progressively higher dispersion of income:

lim
t→∞

k̄(t) = lim
t→∞

σ(t) =∞.

This is natural because an initial heterogeneity is amplified because we assumed all agents face

an equal rate of growth of the capital stock. Those assumptions imply that the characteristics

are ki(t) = ki(0)eµt.

Now consider the case in which µ = µ̄ is positive and constant. Given an initial distribution

φ(k) the unique solution is

n(t, k) = φ(k − µ̄t), (t, k) ∈ R2
+

If we assume the same particular distribution as in equation (9), we get the density

n(t, k) =
2√

π(1 + erf(k0))
e−(k−k0−µt)

2

and the average en standard deviation for per capita capital

k̄(t) =
1√

π(1 + erf(k0))

(√
π(µt+ k0)(1 + erf(µt+ k0)) + e−(µt+k0)

2
)

and

σ(t) =

(
2√

π(1 + erf(k0))

) 1
2
{√

π

2
(1 + erf(k0))

(
(µt+ k0 − k̄(t))2 +

1

2

)
+

+

(
µt+ k0

2
− k̄(t)

)
e−(mut+k0)

2

} 1
2

.

Figure 2 depicts 2d- and 3d- trajectories and the time paths for the mean and the standard

deviation capital per capita. We can see that the average and the standard deviations can be

approximate by

k̄(t) ≈ k0 + µt, σ(t) =
1√
2
, t ≥ 0

which means that we have long-run growth and a stationary distribution. Although initial

inequality is not eliminated it does not increase either. In this case the characteristics for

capital accumulation are linear ki(t) = ki(0) + µt.
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(a) Density for several increasing dates

(b) Density plot

(c) Average capital intensity (d) Standard deviation

Figure 2: Constant accumulation function for µ > 0 and an initial normal distribution
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2.2 Converging characteristics

Let the capital accumulation function to be as in the Solow (1956) model

µ(k) = sAkα − δk, (s, α, δ) ∈ (0, 1)3, A > 0

In this case the solution to equation (??) is

n(t, k) = eδk−sAk
α

φ

((
sA

δ
+

(
k1−α − sA

δ

)
eδ(1−α)t

) 1
1−α
)

(10)

Differently from the previous cases, the accumulation equation has a fixed point

k∗ =

(
sA

δ

) 1
1−α

,

which implies that the value of the accumulation function changes sign µ(k) > 0 if k ∈ (0, k∗)

and µ(k) < 0 if k ∈ (0, k∗). This implies that the characteristic lines

ki(t) =
(
(k∗)1−α +

(
ki(0)1−α − (k∗)1−α

)
e−(1−α)δt

) 1
1−α ,

will converge to point asymptotically k∗, in infinite time, 2. with a positive slope if 0 < k < k∗

or with a negative slope if k∗ < k <∞, or they are constant if k = k∗. I

In this case the density is non-smooth locally at k∗ and will converge to a degenerate

distribution concentrated in k = k∗. This means that per average capital per capita k̄(t) will

also converge to k∗, i.e.. limt→∞ k̄(t)(t) = k∗ and the standard deviation will converge zero,

limt→∞ σ(t) = 0 (see Figure 3).

Proposition 3. If there is one point k∗ such that µ(k∗) = 0, and µ(k) is locally concave, then
for any smooth initial distribution φ(k) the density n(t, k) is a weak solution of (3) converging
assimptotically to degenerate distribution concentrated in k = k∗.

We can readily conclude that if the capital accumulation function has a fixed point and is

locally concave then there will be asymptotic equality but there is no long-run growth. This is

a case of β− and σ− convergence.

2This is different from the shock- or the rarefaction waves cases, which is much studied in the theory of
first-order PDE’s, where collision occurs at finite time.
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(a) Density for several increasing dates

(b) Density plot

Figure 3: Solow accumulation function µ(k) = skα − δk and an initial normal distribution

2.3 Suming up

Summing up, while with a linear accumulation equation we have growth but inequality increases,

in the case in which there is a fixed point and the accumulation function is concave we have

asymptotic equality but there is no long-run growth. This conclusion seems natural if we

depart from an unequal distribution and it just recasts well known results in a consistent

growth-distributional framework.

For the existence of long-run growth there should be a section of the distribution with

positive mass that should become unbounded. This fact together with the existence of mass

conservation associated with the aggregate distribution, implies that the increase in inequality

associated to long-run growth is a powerful force.

The only possibility to have ergodicity and growth, but still inequality, is if the accumula-

tion is independent from the k. In this case, although the initial inequality is kept, it does not

increase with time. This is only possible if the accumulation function is constant and indepen-

dent from the capital stock. If we assume that income is a function of the capital stock this

requires a consumption function which is is constant and capital independent savings. Formally,

if output is y(k) = (A− δ)k then consumption should be of type c(k) = y(k)− µ̄).

The question naturally arises: would a Ramsey central planner allocate consumption in this

way ?
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3 The optimal GI nexus

We consider next the problem for a central planner who wants to maximize a social utility

function by optimally choosing the change in the distribution of capital among agents. The

central planner controls the allocation of consumption for agents identified by their capital

stock. These assumptions yield the accumulation function is µ(t, k) = Af(k)− c(t, k).

We also assume a Bergson - Samuelson social welfare function in which the planner maxi-

mizes the present value of the average utility. As instantaneous average utility uses population

distribution as a weighting scheme this implies that the utility is bounded, although it intro-

duces the state variable in the utility functional.

The planner’s problem is the following optimal control problem of a first-order PDE:

max
c(t,k)

∫ ∞
0

∫ ∞
0

u(c(t, k))n(t, k)dke−ρtdt (11)

subject to

nt(t, k) + (µ(k, c(t, k))n(t, k))k = 0 (12)

n(k, 0) = φ(k) (13)

where the population distribution satisfies∫ ∞
0

n(t, k)dk = 1, lim
k→∞

= lim
k→0+

= 0.

The first-order necessary conditions for an optimum are:

Proposition 4. Let (c∗, n∗) ∈ C∞c (R2
++) be optimal distributions are let q ∈ PC∞c (R2

++) be a
co-state variable. Then the following optimality conditions hold

u
′
(c∗(t, k)) + µc(k, c

∗(t, k))n∗(t, k) = 0 (t, k) ∈ R2
++ (14)

u(c∗(t, k)) + qt(t, k) + µ(k, c∗(t, k))qk(t, k)− ρq(t, k) = 0, (t, k) ∈ R2
++ (15)

lim
t→∞

q(t, k)e−ρt = 0, (t, k) ∈ {t→∞}× R++ (16)

for admissible paths satisfying equations (12) and (13).

Our problem is called in the literature a mean-field optimal control problem or a optimal

control of a conservation law 3. The first-order conditions are a system of two first-order PDE:

3 See Lasry and Lions (2007) and Bensoussan et al. (2013).
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the state variable is driven by a conservation law and the generalized Euler equation (12) and

the co-state variable, q(t, k), is driven by a Hamilton-Jacobi equation (14)4. The problem is

constrained by the known initial distribution, in equation (13), and by a transversality condition

(16).

The optimal consumption level is determined by equation (14) which states that the marginal

utllity of consumption should equal the average marginal cost measured by the marginal reduc-

tion in average savings.

In order to have an intuition on the behavior of the optimal distribution, and to allow

for long-run growth, we introduce the following assumptions on preferences and technology:

u(c) = ln(c) and µ(t, k) = Ak − c(t, k). In this case, equations (14)-(15) imply that the

optimality conditions become a recursive system,

qt(t, k) + Akqk(t, k) + ln (q−1k (t, k))− ρq(t, k)− 1 = 0 (17)

nt(t, k) +
((
Ak − q−1k (t, k)

)
n(t, k)

)
k

= 0 (18)

lim
t→∞

e−ρtq(t, k) = 0 (19)

n(k, 0) = φ(k) (20)

A solution of the Euler equation (17), verifying the transversality constraint, is

ρq(t, k) = ln
(
ρ k e

γ
ρ

)
(21)

where γ ≡ A− ρ is the optimal long run growth rate. The optimal consumption distribution is

a function of the capital stock c∗(t, k) = ρk. Then the budget constraint (18) is

nt(t, k) + (γkn(t, k))k = 0

which has solution

n∗(t, k) = φ
(
ke−γt

)
e−γt. (22)

This has the behavior that we already studied in section 2 and depicted in Figure 1. The optimal

policy is to redistribute because net savings are smaller tan income µ(k) = (A−ρ)k = γh < Ak,

although is designed in a way to allow for long-run growth. This means that this policy does

not prevent inequality to increase along time.

4See (Evans, 1998, ch 3).
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4 The stochastic GI nexus

Can the introduction of uncertainty change those results ? That is, would keeping the assump-

tion that there are constant returns to scale would a random redistribution of income introduce

a break over this powerful force for increase in inequality ? Or would it reduce inequality or

would, paradoxically, increase it ?

In this section we take the linear accumulation case to answering that question.

Let ki = k ∈ R+ be a the capital stock for agents i ∈ I and again assume that the initial

distribution is n(k, 0). Now assume that the accumulation equation is given by the diffusion

process

dKi(t) = µ(K(t))dt+ σ(K(t))dW (t)

where W (.) is a standard Brownian motion.

The dynamics of the distribution is now given by the forward Kolmogorov (also caller

Fokker-Planck) equation

nt(t, k) + (µ(k)n(t, k))k −
1

2

(
σ2(k)n(t, k)

)
kk

= 0 (23)

together with the initial condition n(k, 0) = φ(k) for φ(.) ∈ L1(R+)

Example : Multiplicative noise We assume that the accumulation equation is the linear

stochastic differential equation

dk(t) = µk(t)dt+ σk(t)dW (t)

with µ > 0 and σ > 0. This equation may generate long run growth, because of the linearity

in the drift part, but by making the random distribution mechanism it can work against the

inequality-increasing dependence on accumulation on the (private) level of capital stock.

This dynamics of the distribution of population is driven by the forward-parabolic PDE

nt(t, k) + (µkn(t, k))k −
1

2

(
σ2k2n(t, k)

)
kk

= 0 (24)

where again the initial distribution is given n(0, k) = φ(k).

In the appendix we prove that the solution to this initial-value problem is

n(t, x) =

∫ ∞
0

φ(ξ) g

(
t, ln

(
k

ξ

))
1

ξ
dξ. (25)
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Figure 4: Stochastic accumulation function with multiplicative noise for the case µ > σ2

where

g(t, y) = (2πσ2t)−
1
2 exp

[
(µ− σ2)t−

(
y − t(µ− 3

2
σ2)
)2

2σ2t

]
, x ∈ R. (26)

We show in the appendix that the real part of the characteristic exponent of this equation is

Re(λ(ω)) ≡ µ− σ2 + 2(πσω)2

where ω ∈ (−∞,∞) are frequencies. The drift component of the Gaussian kernel is e(µ−σ
2)t, and

describes the time-behavior of the distribution along characteristic lines analogous to those of

the deterministic model. Therefore, we readily conclude that: (1) if µ > σ2 the drift component

is dominant and the distribution will move forward along the domain of k in an analogous way

as to the deterministic model; but (2) if µ < σ2 the diffusion component is dominant and

the distribution will not tend to move forward in time. Therefore, in both cases the standard

deviation of the distribution will become asymptotically infinite, but while in the first case

we have long run growth, in the second we will have not. This last case cannot occur in

deterministic models.

Figure 4 shows trajectories for the case µ > σ2.

16



5 The optimal stochastic GI nexus

Assuming again a log utility function and the accumulation equation

dki(t) = (Aki(t)− ci(t, k(t))) dt+ σki(t)dW (t)

the planners problem is

max
c(t,k)

∫ ∞
0

∫ ∞
0

u(c(t, k))n(t, k)e−ρtdkdt (27)

subject to

nt(t, k) + (µ(k, c(t, k))n(t, k))k −
1

2

(
σ2(k)n(t, k)

)
kk

= 0 (28)

n(k, 0) = φ(k) (29)

where the population distribution verifies the same properties as in the deterministic problem:∫∞
0
n(t, k)dk = 1 and n(0, k) = n(∞, k) = 0.

Proposition 5. Let (c∗, n∗) ∈ C∞c (R2
++) be optimal distributions are let q ∈ PC∞c (R2

++) be a
co-state variable. Then the following optimality conditions hold

u
′
(c∗(t, k)) + µc(k, c

∗(t, k))n∗(t, k) = 0, (t, k) ∈ R2
++ (30)

u(c∗(t, k)) + qt(t, k) + µ(k, c∗(t, k))qk(t, k)− ρq(t, k) +
σ2(k)

2
qkk(t, k) = 0, (t, k) ∈ R2

++(31)

lim
t→∞

q(t, k)e−ρt = 0, (t, k) ∈ {t→∞}× R++ (32)

for admissible paths satisfying equations (28) and (29).

If we assume that the utility function is logarithmic then equations (30)-(31) also become a

recursive PDE-system

qt(t, k) + Akqk(t, k) + ln (q−1k (t, k)) +
1

2
σ2k2qkk(t, k)− ρq(t, k)− 1 = 0 (33)

nt(t, k) +
((
Ak − q−1k (t, k)

)
n(t, k)

)
k
− σ2

2

(
k2n(t, k)

)
kk

= 0 (34)

lim
t→∞

e−ρtq(t, k) = 0. (35)

There is a time-independent solution for equation (33) which is the same solution as for the

deterministic case, displayed in equation (21).
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Therefore, we obtain a PDE for the optimal dynamics of the distribution

nt(t, k) + (γkn(t, k))k −
σ2

2

(
k2n(t, k)

)
kk

= 0

whose solution is

n∗(t, x) =

∫ ∞
0

φ(ξ) g

(
t, ln

(
k

ξ

))
1

ξ
dξ. (36)

where

g(t, y) = (2πσ2t)−
1
2 exp

[
(γ − σ2)t−

(
y − t(γ − 3

2
σ2)
)2

2σ2t

]
, x ∈ R. (37)

The optimal distribution has the same properties as those analysed in section 5: if γ > σ2

there will be long-run growth and if γ < σ2 there will not be long-run growth. In both cases

there is increasing in inequality.

6 Final remarks

Although other types of distribution dynamics that have been shown can describe well the

data, as twin-peaks (Quah (2002)), or ”elephant-shaped” change in the distribution profile, or

waves of equality-inequality following industrial revolutions (Milanovic (2016), or even Kuznets

(1955)) we think are non inconsistent with the existence of a conservation law.
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A Proofs

Proof of Proposition 1. Taking a time derivative of equation (2)

d

dt

(∫
K
n(t, k)dk

)
= 0. (38)

Expanding, and writing K = (k, k), we get

d

dt

(∫
K
n(t, k)dk

)
=

∫
K

∂n

∂t
(t, k)dk +

∫ k

k

n(t, k)
dk(t)

dt
=

=

∫
K

∂n

∂t
(t, k)dk +

∫ k

k

n(t, k)µ(k) =

=

∫
K

(
∂n

∂t
(t, k) +

∂

∂k
(µ(k)n(t, k))

)
dk.

Equation (38) holds if and only iff the distribution n(t, k) solves the first order PDE (3).

Proof of Proposition 2. Equation (3) can be expanded to

∂n

∂t
(t, k) + µ(k)

∂n

∂k
(t, k) + s

′
(k)n(t, k) = 0

Let
u(t, k) = µ(k)n(t, k).

But
∂u

∂t
(t, k) + µ(k)

∂u

∂k
(t, k) = µ(k)

(
∂n

∂t
(t, k) + µ(k)

∂n

∂k
(t, k) + µ

′
(k)n(t, k)

)
.

If µ(k) > 0 for all k ∈ R+ then (3) implies that u(t, k) follows the homogeneous first-order
PDE

∂u

∂t
(t, k) + µ(k)

∂u

∂k
(t, k) = 0.

We can solve this equation by using the method of characteristics, i.e., curves satisfying k = k(t)
such that the value of u(t, k) is constant. Define v(t) = u(t, k(t)). Then

dv

dt
(t) =

∂u

∂t
(t, k(t)) +

∂u

∂k
(t, k(t))

dk

dt
(t).

Therefore, along a characteristic the following ordinary differential equations should hold
dk

dt
(t) = µ(k(t))

dv

dt
(t) = 0
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We solve the first equation by separation of variables and integrating∫
dk

µ(k)
=

∫
dt = t− ξ

where ξ is a constant of integration. Therefore, along a characteristic we have ξ = t−
∫ k d`

µ(`)
,

and the second equation yields v(t) = v(0) = u(ξ, 0) = φ(ξ), where ξ = k(0).

Derivation of equation (10). In order to apply the method of characteristics we set t = t(x),
k = k(x) and z(x) = n(t(x), k(x)) (see (Evans, 1998, section 3.2)). Taking derivatives as regards
variable x we have the system

dt(x)

dx
= 1

dk(x)

dx
= µ(k(x)) = sAk(x)α − δk(x)

dz(x)

dx
= −µ′(k(x))z(k(x))

Solving and taking the initial values (t(0), k(0), z(0) = (0, ξ, φ(ξ)) we get the solutions

t(x) = x (39)

k(x) =

(
sA

δ
+

(
ξ1−α − sA

δ

)
e−δ(1−α)x

) 1
1−α

(40)

z(x) = φ(ξ)e−
∫ k µ′ (k(l))dl (41)

Transforming back to (t, k) and solving equation (40) for ξ we get

ξ =

(
sA

δ
+

(
k1−α − sA

δ

)
eδ(1−α)t

) 1
1−α

and because n(t, k) = φ(ξ)e−µ(k), we readily obtain equation (10).

Proof of Proposition 4. Assume we know the optimal consumption distribution (c∗(t, k))(t,k)∈R2
+

.

We denote u∗(t, k) = u(c∗(t, k)) and µ∗(t, k) = µ(k, c∗(t, k))).
In the optimum the value of the program is

V (c∗, n∗) =

∫ ∞
0

∫ ∞
0

u∗(t, k)n(t, k)e−ρtdkdt =

=

∫ ∞
0

∫ ∞
0

u∗(t, k)n∗(t, k)e−ρt − λ(t, k) (n∗t (t, k) + (µ∗(t, k)n∗(t, k))k) dkdt
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where λ(t, k) is the co-state variable. Using integration by parts we get

V (c∗, n∗) =

∫ ∞
0

∫ ∞
0

[
u∗(t, k)e−ρt + (λt(t, k) + µ∗(t, k)λk(t, k))

]
n∗(t, k)dkdt+

−
∫ ∞
0

λ(t, k)n∗(t, k)dk|∞t=0 −
∫ ∞
0

λ(t, k)µ∗(t, k)n∗(t, k)dt|∞k=0

(42)

Next we introduce admissible perturbations in both state and control variables, n(t, k) =
n∗(t, k) + εδn(t, k) and c(t, k) = c∗(t, k) + εδc(t, k). The perturbed state variable should satisfy∫∞
0
δn(t, k)dk = 1, limk→∞ δn(t, k) = limk→0+ δn(t, k) = 0 and δn(0, k) = 0.
If the program is optimum it verifies V (c∗, n∗) ≥ V (c, n) for all admissible pairs (c, n) . A

necessary condition for this is that

δV (c∗, n∗) = lim
ε→0

V (c∗ + εδc, n
∗ + εδn)

ε
=
∂V (c∗, n∗)

∂ε
= 0.

Defining the current-value co-state variable as q(t, k) = λ(t, k)eρt the integral derivative is

δV (c∗, n∗) =

∫ ∞
0

∫ ∞
0

(u∗c(t, k) + µ∗c(t, k)qk(t, k)) e−ρtn∗(t, k)δc(t, k) dkdt+

+

∫ ∞
0

∫ ∞
0

[u∗c(t, k) + (qt(t, k)− ρq(t, k) + µ∗(t, k)qk(t, k))] e−ρtδn(t, k)dkdt+

−
∫ ∞
0

q(t, k)e−ρtδn(t, k)dk
∣∣∞
t=0

+

−
∫ ∞
0

q(t, k)e−ρt (µ∗c(t, k)n∗(t, k)δc(t, k) + µ∗(t, k)δn(t, k)) dt
∣∣∞
k=0

(43)

It is equal to zero if equation (14)-(16) hold.

Proof of equation (25) . By the change in variable, x = x(k) ≡ ln (k) we can transform equation
(24) into a linear PDE with constant coefficients

ut(t, x) =
σ2

2
uxx(t, x)−

(
µ− 3

2
σ2

)
ux(t, x) +

(
σ2 − µ

)
u(x, t), (t, x) ∈ R2

+ (44)

where n(t, k) = u(t, x(k)) = u(t, lnx(k)). Change, for a while, the domain of x from R+ to R
and introduce the Fourier transform of u(t, x),

U(t, ω) = F [u(t, x)](ω) ≡
∫ ∞
−∞

u(t, x)e−2πixωdw

where i2 = −1. Then, equation (44) can be transformed into

Ut(t, ω) = −λ(ω)U(t, ω) (45)
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where

λ(ω) = σ2 − µ− (2πσω)2

2
−
(
µ− 3

2
σ2

)
2πiω.

As equation (45) is a linear ODE for U(t, .) it has the solution

U(t, ω) = Ψ(ω)G(t, ω)

where Ψ(ω) is an arbitrary function and G(t, ω) is the Gaussian kernel

G(t, ω) =

{
1 t = 0

e−λ(ω)t t > 0.

Taking inverse Fourier transforms,

u(t, x) = F−1[U(t, ω)](x) ≡
∫ ∞
−∞

u(t, x)e2πixωdω

we know that u(t, x) = F−1[Ψ(ω)G(t, ω)](x) = ψ(x) ∗ g̃(t, x), that is

u(t, x) =

∫ ∞
−∞

ψ(s)g(t, x− s)ds (46)

where g(t, x) = F−1[G(t, ω)](x) = F−1[e−λ(ω)t](x) and ψ(x) = F−1[Ψ(ω)](x). Then g(0, x) =
δ(x), for t = 0 and g(t, x) for t > 0 is in equation (26).

Transforming back x = ln (k) and using the initial condition n(0, k) = φ(x) we finally get
equation (25).

Proof of Proposition 5. Using the same approach as the in the proof of Proposition 4, the value
function is, at the optimum, V (c∗, n∗) = V ∗1 +V ∗2 where V ∗1 is the same as in equation (42) and

V ∗2 (c∗, n∗) =
1

2

∫ ∞
0

∫ ∞
0

λ(t, k)
(
σ2(k)n(t, k)

)
kk
dkdt =

=
1

2

∫ ∞
0

∫ ∞
0

σ2(k)n(t, k)λkk(t, k)dkdt−

− 1

2

∫ ∞
0

λ(t, k)
(
σ2(k)n(t, k)

)
k
− σ2(k)n(t, k)λk(t, k)dt

∣∣∞
k=0

The integral derivative is now δV (c∗, n∗) = δV1(c
∗, n∗) + δV2(c

∗, n∗) where δV ∗1 is the same as
in equation (43) and

δV ∗2 (c∗, n∗) =
1

2

∫ ∞
0

∫ ∞
0

σ2(k)λkk(t, k)δn(t, k)dkdt−

− 1

2

∫ ∞
0

σ2(k) [λ(t, k) (1 + nkk(t, k))− λk(t, k)] δn(t, k)dt
∣∣∞
k=0

.

The admissibility condition for the perturbation δn(t, k), together with the definition of q(t, k) ≡
e−ρtλ(t, k) lead to the optimality conditions (30)-(32).
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