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Abstract

Strong Nash equilibrium (see Aumann, 1959) and coalition-proof Nash equi-
librium (see Bernheim et al., 1987) rely on the idea that players are allowed to
form coalitions and to make joint deviations. They both consider a case in which
any coalition can be formed. Be that as it may, there are many real life examples
where some coalitions/subcoalitions cannot be formed. Furthermore, when all
coalitions are formed, there may occur conflicts of interest such that a player is
not able to choose an action that simultaneously meets the requirements of two
coalitions that he/she is a member of. Stemming from these criticisms, we study
an organizational framework where some coalitions/subcoalitions are not formed
and where the coalitional structure are formulated in such a way that there re-
main no conflicts of interest. We define an organization as an ordered collection
of partitions of the set of players in such a way that any partition is coarser than
the partitions that precede it. For a given organization, we introduce the notion
of organizational Nash equilibrium. We analyze the existence of equilibrium in a
subclass of games with strategic complementarities and illustrate how the pro-
posed notion refines the set of Nash equilibria in some examples of normal form
games.
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1 Introduction

In the final scene of the western movie The Good, the Bad and the Ugly, there are three
cowboys resolving their conflict via a truel. They all claim rights to some amount of
money which will be collected by those who survive this truel. Clearly, this situation can
be described as a strategic game. In the movie, it turns out that the Good cooperates
with the Ugly whereas the Bad does not participate in any coalition. Now, knowing
that only a single coalition is formed, would not the notions of strong Nash equilibrium
(see Aumann, 1959) and coalition-proof Nash equilibrium (see Bernheim et al., 1987)
be misleading? Perhaps more importantly, would not it be possible to find a new
equilibrium notion that makes more precise predictions than Nash equilibrium (see
Nash, 1951)? More generally, if it is known that there are players who cooperate
with some of the other players but do not cooperate with some of them, then how
come a notion which presumes that every player acts as his/her own or a notion which
presumes that players participate in any combination of coalitions can make correct
and/or precise predictions?

In non-cooperative game theory, there are numerous papers focusing on the ways
of refining the set of Nash equilibria (see Aumann, 1959; Selten, 1965, 1975; Myerson,
1978; Kohlberg and Mertens, 1986; Bernheim et al., 1987, among others). Some of these
equilibrium refinements allows players to form coalitions and to make joint deviations.
Among these coalitional refinements, in this paper, we are mainly concerned with strong
Nash equilibrium (SNE) and coalition-proof Nash equilibrium (CPNE).1 Both of these
equilibrium notions satisfy a certain type of coalitional stability. In particular, at a
SNE, it should be the case that the members of any particular coalition prefer not to
deviate collectively. As coalitions do not face too much restrictions in choosing their
joint deviations, the set of SNE generally turns out to be empty. Stemming from this
observation, Bernheim et al. (1987) propose the notion of CPNE according to which
the members of a coalition cannot make binding commitments (i.e., agreements must
be self-enforcing2). Accordingly, if no coalition is able to deviate from a strategy profile
via self-enforcing contracts, then that strategy profile is said to be coalition-proof.

An important observation would be that both SNE and CPNE consider a case in
which any coalition can be formed. However, in real life situations, we see that there
are many instances at which some coalitions are not/cannot be formed. Moreover,
even if a particular coalition is formed, this would not necessarily imply that all of its
subcoalitions will be formed. Indeed, a game might have players that hate/dislike each
other or that simply cannot communicate to form a coalition. Consider, for example,

1These are known to be the most prominent coalitional refinements of Nash equilibrium. For studies
on these refinements, see Bernheim and Whinston (1987); Greenberg (1989); Dutta and Sen (1991);
Konishi et al. (1997a,b, 1999) among others. In addition to these solution concepts, there are other
refinements of Nash equilibrium which also utilize a coalitional structure: strong Berge equilibrium
(Berge, 1957), the largest consistent set (Chwe, 1994), negotiation-proof Nash equilibrium (Xue, 2000),
etc.

2A joint strategy profile of a coalition is self-enforcing if the coalition members do not desire further
deviations.
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two countries with a history of bad relations. These countries might not prefer to
create a two-player coalition; or even if they meet at a global association, they might
still refuse to form the two-player subcoalition.3 Following the studies on conference
structures in the vein of Myerson (1980), consider also two academic scholars who have
never met each other or anyone that could have connected them in a conference. Such
scholars, even if they belong to the same society, cannot or choose not to collaborate.
As for another example, we note that some coalitions cannot be formed because of
some rules or regulations. For instance, the competition laws in many countries forbid
firms that compete in the same market to cooperate. Yet, firms among which there is
no competition are allowed to cooperate with each other. Along a similar line, in sports
competitions, a player in a team is not permitted to form a coalition with a player of
the opponent team whereas he/she is apparently cooperating with his/her teammates.

Another important observation on SNE and CPNE lies within the actions of players.
Considering a coalition and its subcoalition, the notion of SNE allows both coalitions to
determine joint strategy profiles in such a way that a member of the subcoalition cannot
take an action that would simultaneously fulfill the interests of both coalitions (vertical
conflict of interest). As a matter of fact, the notion of CPNE overcomes this conflict
by restricting each coalition to respect the rationality of its subcoalitions/members.
Be that as it may, since CPNE allows for coalitions that have non-empty intersection,
a player participating in two coalitions may not be able to take an action that would
simultaneously fulfill the interests of both coalitions (horizontal conflict of interest).

With the former observation in mind, is it really reasonable/feasible to control for
all coalitions? If a coalition simply is not/cannot be formed, why would its members’
hypothetical best actions be effective in the equilibrium behavior? Concerning the
latter observation, can there be a specific structure that eliminates both vertical and
horizantal conflicts of interests simultaneously? In this paper, motivated by the obser-
vations above and the associated questions, we aim to formulate two new equilibrium
refinements: Our notions (i) resolve the problems of vertical and horizantal conflicts
of interests, and (ii) prove to be more useful than the notions of SNE and CPNE (and
even than Nash equilibrium) in cases where some coalitions are formed whereas some
other coalitions are not formed.

Note that the former observation calls for a general coalitional structure that does
not necessarily include some coalitions; whereas the latter observation calls for a spe-
cific framework, thereby restricting the set of coalitional structures to be studied. More
precisely, in order to eliminate vertical conflicts of interest, every coalition should re-
spect to the rationality of its subcoalitions/members (as it does in the case of CPNE).
In addition to this, to be able to eliminate horizontal conflicts of interest, the coalitional
structure should be formulated in such a way that for any pair of active (or formed)

3One may argue that they would if it will benefit them, but (i) forming a coalition does not
necessarily make them better off (at the equilibrium) since there is strategic interaction with other
players; and (ii) a possible reason why they would not participate in the same coalition is that it is
somehow costly. For the latter, we must note that such a cost cannot be implemented into the payoff
functions of the game.
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coalitions, it is either the case that they are disjoint or that one coalition contains the
other. This is what we refer to as organizational structure.

The intuition behind the organizational framework is as follows: In a non-cooperative
game, players may prefer to form coalitions if they are allowed to. We assume that if
a player is a member of a coalition, he/she cannot be a member of another coalition.
Accordingly, the set of these coalitions turns out to be a partition of the player set.
As coalitions may prefer to unite to form greater coalitions, in the next step we have
another partition of the player set which will be coarser than the former partition. This
recursively leads to a collection of partitions in which any partition is coarser than the
partitions that precede it, i.e., to an organization. For an example, consider a university
as a set of faculty members, each of whom belongs to one department. Moreover, each
department belongs either to the school of social sciences or to the school of natural
sciences. Similarly, a company (with its divisions, departments, units, and employees)
can be considered to be another example.4

In this paper, we take the organizational structure as given.5 Accordingly, for any
organization, we define the notion oforganizational Nash equilibrium (ONE) for which
we utilize strict Pareto dominance to describe the preference relations of coalitions (Sec-
tion 3). We provide a monotonicity property for the proposed notion in such a way that
as we consider greater organizations, the equilibrium set is more refined; we analyze
the existence of equilibrium for a subclass of games with strategic complementarities;
and we study some examples of normal form games through which we understand how
our organizational refinement works and how its predictions are different from those
made by SNE and CPNE (Section 4). We conclude in Section 5.

4We can provide more solid real life examples: In a doubles tennis match, there is a total of four
players in two teams, and a player cannot participate in the same coalition with his/her opponent.
For a larger organization, we can consider a football/soccer game in which there are twenty two
players. Teammates playing in the same position form small coalitions; such as defenders, midfielders,
strikers. Then these small coalitions join together to form the team. Clearly, no coalition includes
players from both teams. As for another example, we can consider the market for GSM services.
Since a consumer needs a mobile phone and a line to receive this service, there are phone producers
and telecommunication companies operating in this market. Two telecommunication companies are
forbidden to form a coalition, whereas a telecommunication company is allowed to form a coalition
with a phone producer. In order for us to have an organization in such a scenario, we need a regularity
condition that an agreement between a telecommunication company and a phone producer restricts one
of them to make another agreement without the presence of the other. Considering such a regularity
condition, a coalitional structure emerging from the transfer market seems like a better example: If
a team signs a contract with a player, the player cannot sign another contract with another team.
And if the team signs a contract with another player, this would not be without the presence of the
former player. Finally, we recall the example mentioned at the beginning of the paper, which is the
truel took place in the final scene of the western movie The Good, the Bad and the Ugly. There we
see an organization since the only formed coalition is between the Good and the Ugly.

5Our approach may seem rather ad-hoc. However, it must be understood that we do not intend to
impose any type of coalitional structures. We simply argue that (i) there are many real life examples
in which the coalitional structure does not include some coalitions/subcoalitions and (ii) an important
subset of such coalitional structures consists of organizations. We present a solution concept to be
studied only for such coalitional structures.
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2 Preliminaries

Let Γ = (N, (Xi)i∈N , (ui)i∈N) be an |N |-player normal form game in which N de-
notes the finite set of players, Xi denotes the strategy set for player i ∈ N , and
ui :

∏
i∈N Xi → R denotes the utility function for player i ∈ N . For any coalition

S ⊂ N , let XS ≡
∏

i∈S Xi denote the set of strategy profiles for the members of this
coalition. For any S ⊂ N , set X−S = XN\S. And further set XN = X.

First, the following is the definition of Nash equilibrium.

Definition 2.1. Given a normal form game Γ, a strategy profile x∗ ∈ X is a Nash
equilibrium if for every i ∈ N and every x′i ∈ Xi: ui(x

∗) ≥ ui(x
′
i, x
∗
−i).

The notion of strong Nash equilibrium (SNE) is a refinement of Nash equilibrium
which indeed requires a strong notion of coalitional stability.

Definition 2.2. Given a normal form game Γ, a strategy profile x∗ ∈ X is a strong
Nash equilibrium (SNE) if for no coalition S ⊂ N , there exists some x′S ∈ XS such
that for every i ∈ S: ui(x

′
S, x

∗
−S) > ui(x

∗).

Another well-known refinement of Nash equilibrium is the notion of coalition-proof
Nash equilibrium (CPNE) proposed by Bernheim et al. (1987). Before proceeding to
its definition, we first define a reduced game.

Definition 2.3. Given a normal form game Γ, a coalition S ⊂ N , and a strategy
profile x−S ∈ X−S, the reduced game ΓS|x−S

= (S, (Xi)i∈S, (vi)i∈S) is defined in such
a way that for every i ∈ S, vi : XS → R is given by vi(x

′
S) = ui(x

′
S, x−S).

Bernheim et al. (1987) introduce self-enforceability so as to weaken the coalitional
stability the notion of SNE requires. As a consequence, they obtain an equilibrium
notion which is weaker than the notion of SNE. Because of this relation, the set of
CPNE always includes the set of SNE.

Definition 2.4. Given a normal form game Γ,

(i) If Γ is a single-player game, then a strategy profile x∗ ∈ X is a coalition-proof
Nash equilibrium (CPNE) if and only if x∗ maximizes u1.

(ii) Let |N | > 1 and assume that the set of CPNE has been defined for any game with
less than |N | players. Define a strategy profile x∗ ∈ X to be self-enforcing if for every
S ( N : x∗S ∈ CPNE(ΓS|x∗−S

). Then a strategy profile x∗ ∈ X is a CPNE if and only
if it is self-enforcing and there is no other self-enforcing strategy profile x ∈ X such
that for every i ∈ N : ui(x) > ui(x

∗).

Despite both notions’ plausible refinement structures, there are normal form games
in which these refinements (i) cannot make any prediction or (ii) make undesirable
predictions. For instance, the normal form game given in Table 1 has two Nash equi-
libria: (x1, x2, x3) and (y1, y2, y3); but it has no SNE. More precisely, the grand coalition
N deviates from (x1, x2, x3) to (y1, y2, y3), whereas the coalition {1, 2} deviates from
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(y1, y2) to (x1, x2) given that Player 3 sticks to y3. As a result, none of the Nash
equilibria is coalitionally stable in the sense of SNE. Furthermore, this game has a
unique CPNE: (x1, x2, x3). In particular, we can see that the deviation by N from
(x1, x2, x3) to (y1, y2, y3) is not self-enforcing, since the subcoalition {1, 2} further devi-
ates to (x1, x2). Since there is no other coalition that would like to deviate, the profile
(x1, x2, x3) turns out to be a CPNE. Also note that the unique CPNE is strictly Pareto
dominated by the other Nash equilibrium, (y1, y2, y3).

Table 1

x3

y1 0, 0, 0 0, 0, 0
x1 1, 1, 1 0, 0, 0

x2 y2

y3

y1 0, 0, 0 2, 2, 2
x1 3, 3, 0 0, 0, 0

x2 y2

We can also provide an example for which there exists no CPNE, hence no SNE.

Table 2

x3

y1 0, 0, 0 0, 0, 1
x1 1, 1, 0 0, 0, 1

x2 y2

y3

y1 0, 1, 2 2, 0, 1
x1 2, 0, 0 0, 2, 1

x2 y2

For instance, in the normal form game given in Table 2, there are two Nash equilibria:
(x1, x2, x3) and (y1, y2, x3). The coalition {2, 3} makes a self-enforcing deviation from
(x2, x3) to (y2, y3) given that Player 1 sticks to x1. In a similar manner, the same
coalition deviates from (y2, x3) to (x2, y3) given that Player 1 sticks to y1.

3 Organizational Refinements of Nash Equilibrium

In this section, we first introduce a notation relevant to our definition of organizational
refinement. While doing that, we also provide equivalent definitions for the notions
of SNE and CPNE. These equivalent definitions are consistent with the introduced
notation which will make them apparently comparable to the notion proposed in this
paper. Afterwards, we present the notion of organizational Nash equilibrium (ONE).

3.1 Criticisms of SNE and CPNE

For any strategy profile x ∈ X and any set of strategy profiles Y ⊂ X, define BN(x, Y )
and BN(Y ) as follows:

BN(x, Y ) = BN(Y ) = {y ∈ Y | @z ∈ Y, ∀i ∈ N : ui(y) < ui(z)}.

6



For any coalition S ⊂ N with |S| < |N |, any strategy profile x ∈ X, and any set
YS ⊂ XS, define6

BS(x, YS) = {y ∈ X | yS ∈ YS and @zS ∈ YS,∀i ∈ S : ui(yS, x−S) < ui(zS, x−S)}.

We refer to BS(x, YS) as the set of rational (or weakly Pareto optimal) responses of S
to the strategy profile x ∈ X within the set YS ×X−S. For any strategy profile x ∈ X,
define

B(x) =
⋂
S⊂N

BS(x,XS).

We now prove that a SNE is a fixed point7 of this correspondence.

Proposition 3.1. A strategy profile x ∈ X is a strong Nash equilibrium if and only if
x ∈ B(x).

Proof. Take any x ∈ X such that x ∈ B(x). Suppose that x is not a SNE. Then
∃S ⊂ N such that ∃zS ∈ XS,∀i ∈ S : ui(zS, x−S) > ui(xS, x−S). Then x /∈ BS(x,XS);
a contradiction.

Conversely, take any x ∈ SNE(·). Suppose that x /∈ B(x). Then ∃S ⊂ N such that
x /∈ BS(x,XS); that is, ∃zS ∈ XS,∀i ∈ S : ui(zS, x−S) > ui(xS, x−S); a contradiction.

Unfortunately, without additional restrictions, the correspondence above is unlikely
to be nonempty-valued due to two types of conflicts of interest, which we call vertical
and horizontal conflicts of interest.

Table 3

D 4, 0 1, 1
C 2, 2 0, 4

C D

A vertical conflict of interest arises between a coalition and its subcoalitions. For
an example, consider the Prisoner’s Dilemma which is represented by the matrix given
in Table 3. Take the grand coalition N and observe that the only strategy profile
which is strictly Pareto dominated by another is the unique Nash equilibrium: (D,D).
Thus BN(X) includes all strategy profiles except (D,D); i.e., at each of the three
strategy profiles in BN(X), at least one player is required to cooperate against his/her
individual rationality. Hence there always is a player that faces a conflict of interest
between coalitional rationality and his/her own individual rationality. More precisely,

6Note that BS(x, YS) does not impose any restriction on the joint strategy profile for the non-
members of the coalition S. More precisely, for any y = (yS , y−S) ∈ BS(x, YS) and any y′−S ∈ X−S ,
we have (yS , y

′
−S) ∈ BS(x, YS) as well.

7A fixed point x of a correspondence of F : X → X is defined to satisfy x ∈ F (x).
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for any x ∈ BN(X), we either have x /∈ B1(x,X1) or x /∈ B2(x,X1), or both. This
surely implies that for any x ∈ X: B(x) = ∅. It is also worth noting that for games
with more players, the same type of conflict may arise between a coalition of at least
three players and its subcoalitions of multiple players.

It is possible to eliminate such vertical conflicts of interest. For example, in a two-
player game, no vertical conflict of interest would arise if the grand coalition respects
the rationality of each player by restricting itself to the set of individually rational
strategy profiles (i.e., the set of Nash equilibria). More generally, no vertical conflict
of interest arises if each coalition respects the rationality of its proper subcoalitions,
i.e., restricts itself to the strategy profiles from which none of its subcoalitions has an
incentive to deviate.

As discussed below, this idea is closely related to self-enforceability in CPNE. Here
we formalize the idea as follows. For a set of strategy profiles Y ⊂ X, define

[Y ]S = {yS ∈ XS | ∃y−S ∈ X−S : (yS, y−S) ∈ Y }.

Take any x ∈ X. For any i ∈ N , define Ri(x) = Bi(x,Xi). For any coalition S ⊂ N
with |S| = 2, define

ES(x) =
{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂
i∈S

Ri((yS, x−S))
}
.

The set [ES(x)]S can be interpreted as the set of Nash equilibria of the reduced game
played by the coalition S given that the actions of the other players are fixed to x−S.
Then define

RS(x) = BS (x, [ES(x)]S) .

This is the set of rational responses of coalition S among the strategy profiles which
its members can jointly reach and which are rational for all of its members. In other
words, coalition S restricts itself to the strategy profiles acceptable to all of its members.
For any coalition S ⊂ N with |S| = 3, define

ES(x) =
{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂
C(S

RC((yS, x−S))
}
. (3.1)

Similarly, the set [ES(x)]S can be interpreted as the equilibrium set of the corresponding
reduced game. In a similar way,

RS(x) = BS (x, [ES(x)]S) . (3.2)

This is the set of rational responses of coalition S among the strategy profiles which
its members can jointly reach and which are rational for all of its subcoalitions. In
other words, coalition S restricts itself to the strategy profiles acceptable to all of its
subcoalitions. Using (3.1) and (3.2) inductively, define ES(·) and RS(·) for S ⊂ N with
|S| = 4, 5, . . . , |N |. Finally, for any strategy profile x ∈ X, define

R(x) =
⋂
S⊂N

RS(x).

We first prove the following lemma.
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Lemma 3.1. For any coalition S ⊂ N with |S| ≥ 2 and any strategy profile x ∈ X,
we have ⋂

C(S

RC(x) =
⋂
C⊂S

|C|=|S|−1

RC(x).

Proof. It is trivial that the left-hand side is included in the right-hand side.
Conversely, take any

x ∈
⋂
C⊂S

|C|=|S|−1

RC(x),

and suppose that

x /∈
⋂
C(S

RC(x).

Then ∃C ( S such that x /∈ RC(x). Note that there exists C ′ ⊂ S such that C ⊂ C ′

and |C ′| = |S| − 1. Since the definition is recursive, it follows that x /∈ RC′(x); a
contradiction.

As we now show, a fixed point of the correspondence above turns out to be a CPNE,
which was formally defined in the previous section.

Proposition 3.2. A strategy profile x ∈ X is a coalition-proof Nash equilibrium if and
only if x ∈ R(x).

Proof. We prove this result by induction. Clearly, the statement holds when |N | = 1.
For some k ∈ N, assume that it holds when |N | ≤ k − 1 and consider the case where
|N | = k.

Take any x ∈ X such that x ∈ R(x). And suppose that x is not a CPNE. Then
either (i) x is not self-enforcing; or (ii) x is self-enforcing but there exists another
self-enforcing strategy profile z ∈ R(x) such that ∀i ∈ N : ui(z) > ui(x). If (i) is
the case, then ∃S ( N such that xS /∈ CPNE(ΓS|x−S

). But then x /∈ RS(x) by the
induction hypothesis; a contradiction. On the other hand, if (ii) is the case, it must
be that x /∈ RN(X); a contradiction.

Conversely, take any x ∈ CPNE(·). And suppose that x /∈ R(x). Then either (i)
x /∈ RN(x); or (ii) x /∈

⋂
S(N RS(x). If (i) is the case, then there exists another strategy

profile z ∈ R(x) such that ∀i ∈ N : ui(z) > ui(x). By the induction hypothesis, it
must be that z is self-enforcing; a contradiction. On the other hand, if (ii) is the case,
then

x /∈
⋂
S⊂N

|S|=|N |−1

RS(x)

by Lemma 3.1. Following a similar reasoning, it follows for some S ⊂ N with |S| =
|N | − 1 that xS is not a CPNE of the corresponding reduced game. This means that
x is not self-enforcing; a contradiction.
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Although the definition of CPNE eliminates vertical conflicts of interest, there may
still be horizontal conflicts of interest. A horizontal conflict of interest cannot arise
between a coalition and its subcoalitions, by definition. It arises between two coalitions
with a non-empty intersection. And, such a problem arises as soon as there are three
players. For an example, consider the following normal form game given in Table 4.
There exist two coalitions A = {1, 2} and B = {2, 3} with the corresponding sets of
rational responses: RA((y1, y2, x3)) = {(x1, z2, ·)} and RB((y1, y2, x3)) = {(·, x2, y3)}.
Surely, these sets have an empty intersection. The problem in this example is that
Player 2 belongs to both coalitions A and B, and each of these coalitions requires
him/her to behave differently than the other coalition requires. In other words, he/she
faces a horizontal conflict of interest as it is impossible for him/her to choose an action
that simultaneously meets the requirements of both coalitions.

Table 4

x3

z1 1, 5, 8 0, 2, 0 7, 2, 3
y1 0, 0, 3 5, 1, 8 4, 0, 0
x1 0, 4, 3 0, 7, 3 7, 7, 0

x2 y2 z2

y3

z1 2, 0, 4 0, 1, 0 0, 0, 0
y1 0, 2, 9 1, 0, 4 0, 0, 0
x1 2, 0, 9 0, 0, 0 6, 6, 2

x2 y2 z2

Since a horizontal conflict of interest arises between coalitions with a non-empty
intersection, an easy way to eliminate this type of conflicts of interest would be to
restrict coalition formation in such a way that all active (or formed) coalitions are
mutually disjoint. However, we do not need to impose such a restrictive requirement.
This is because if an active coalition is a proper subset of another active coalition, then
there would still be no horizontal conflict of interest between these coalitions.

To sum up, if (i) one uses a similar formulation to R(·) above, and if (ii) any pair of
active coalitions has the property that either they are disjoint or one is a subset of the
other, then there is neither vertical nor horizontal conflicts of interest. Accordingly, we
say that a collection S of coalitions in N is conflict-free if for any A,B ∈ S , we have
one of the following three properties: (i) A ∩B = ∅; (ii) A ⊂ B; or (iii) B ⊂ A.

Proposition 3.3. Let S be a collection of coalitions in N and assume that it includes
all singleton coalitions. Then S is conflict-free if and only if there exists a finite
sequence O = {P0, P1, . . . , Pk} of partitions of N with the following properties:

(a) For any S ∈ S , there exists P ∈ O with S ∈ P .

(b) For any i ∈ {0, . . . , k − 1}, Pi is finer than Pi+1.

Proof. Assume that S is conflict-free. We now construct a finite sequence O satisfying
the properties above. First, let P0 consist of all singleton coalitions. Let P1 include all
two-player coalitions in S . For some i ∈ N , if i /∈ S for some S ∈ P1, then let {i} be
included in P1 as well. Then P1 turns out to be a partition of N . Let P2 include all
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1 2 3 4 5 6 7 8 9 10 11 P0

1 2 3 4 5 6 7 8 9 10 11 P1

1 2 3 4 5 6 7 8 9 10 11 P2

1 2 3 4 5 6 7 8 9 10 11 P3

Figure 1: Example of an Organization

three-player coalitions in S . For some S ∈ P1, if S 6⊂ S ′ for some S ′ ∈ P2, then let
S be included in P2 as well. Then P2 turns out to be a partition of N . This process
continues until there is no coalition remaining in S . Accordingly, both (a) and (b) are
satisfied by construction.

Conversely, take any two coalitions S and S ′ such that S ∈ P and S ′ ∈ P ′ for some
P, P ′ ∈ O. If P = P ′, then S ∩ S ′ = ∅. If P 6= P ′, then one of them is finer than the
other. Without loss of generality, assume that P is finer than P ′. Then there exists
S ′′ ∈ P ′ such that S ⊂ S ′′. If S ′ = S ′′, then S ⊂ S ′. If not, noting that S ′ ∩ S ′′ = ∅,
we have S ∩ S ′ = ∅. Hence S is conflict-free.

We define an organization O = {P0, P1, . . . , Pk} of N as an ordered collection of
partitions of N with properties (a) and (b) above, where P0 = {{1}, . . . , {|N |}}. Now,
for a given organization O = {P0, P1, . . . , Pk}, let

S O = {S ⊂ N | ∃P ∈ O such that S ∈ P}. (3.3)

Given a partition P ∈ O, let P− be the coarsest partition in O that is finer than P and
let P+ be the finest partition in O that is coarser than P . To put it differently, P− is
the layer just below P and P+ is that just above P .

Moreover, given a partition P ∈ O and a coalition S ∈ P , we define the suborgani-
zation OS∈P as an ordered collection {P ′0, P ′1, . . . , P ′−} of partitions of S such that for
each partition P ′t therein, we have P ′t ⊂ Pt. Finally, we define

ρO(S, P ) = {C ∈ S O | C ∈ P− and C ⊂ S}, (3.4)

to be the coarsest partition in OS∈P ; which is indeed a partition of S.
For a concrete example, consider the organization illustrated in Figure 1. Let

O = {P0, P1, P2, P3} where

P0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}},
P1 = {{1, 2, 3}, {4, 5}, {6, 7, 8}, {9, 10}, {11}},
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P2 = {{1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10}, {11}}, and

P3 = {{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11}}.

Moreover, if we consider S = {1, 2, 3, 4, 5, 6, 7, 8} and P = P3, then the corresponding
suborganization is OS∈P = {P ′0, P ′1, P ′−} such that

P ′0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}},
P ′1 = {{1, 2, 3}, {4, 5}, {6, 7, 8}}, and

P ′− = {{1, 2, 3, 4, 5}, {6, 7, 8}}.

3.2 Organizational Nash Equilibrium

In this subsection, we present a new refinement of Nash equilibrium for which there
does not exist any vertical or horizontal conflict of interest. Consider a normal form
game Γ and an organization O = {P0, P1, . . . , Pk}. Take any strategy profile x ∈ X.
For any player i ∈ N , define ROi (x) = Bi(x,Xi). Then for any coalition S ∈ P1, the
sets EOS (x) and ROS (x) are defined as follows:

EOS (x) =

{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂

{i}∈ρO(S,P )

ROi ((yS, x−S))

}
ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
Moreover, for any coalition S ∈ S O \ P1, the sets EOS (x) and ROS (x) are inductively
defined as follows:

EOS (x) =

{
y ∈ X

∣∣∣ (yS, x−S) ∈
⋂

C∈ρO(S,P )

ROC ((yS, x−S))

}
ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
Accordingly, for any x ∈ X, define

RO(x) =
⋂

S∈SO

ROS (x).

We call a strategy profile x ∈ X satisfying x ∈ RO(x) an O-organizational Nash
equilibrium, or simply an organizational Nash equilibrium. Let ONEO(Γ) be the set of
O-organizational Nash equilibria of Γ.

We first show that ONE is indeed a refinement of Nash equilibrium.

Proposition 3.4. For any normal form game Γ and any organization O,

ONEO(Γ) ⊂ NE(Γ)

Proof. Omitted.
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It is worth noting that, given two organizations, the sets of equilibria may turn out
to be very different. However, as we show in the following, the sets of ONE coincide
for equivalent organizations.

Definition 3.1. Two organizations O and O′ are equivalent if S O = S O′ .

Remark 3.1. Given a normal form game Γ and two equivalent organizations O,O′:

ONEO(Γ) = ONEO
′
(Γ).

Proof. Consider any coalition S ∈ S O. Since O and O′ are equivalent, S ∈ S O′ .
Moreover for each subcoalition C ⊂ S, if C ∈ S O, then C ∈ S O′ . This implies that
in organizations O and O′, the coalition S considers the rational responses of the same
subcoalitions when making a joint decision. Then ROS = RO

′
S . Since S is arbitrarily

chosen, it follows that RO = RO
′
. Hence the sets of ONE coincide.

We now focus on the elimination of vertical and horizontal conflicts of interest.
Although the former result in Proposition 3.5 is also valid for CPNE, the latter is only
valid for ONE. The reason is that CPNE eliminates vertical conflicts of interest, but
cannot eliminate horizontal conflicts of interest; whereas the notion of ONE is able to
eliminate both types of conflict of interest.

Proposition 3.5. For any normal form game Γ and any organization O, there exists
neither (i) vertical nor (ii) horizontal conflicts of interest within the analysis of ONE.
Formally, (i) given two coalitions S, S ′ ∈ S O such that S ′ ( S, if (yS, ·) ∈ ROS (x) for
some x ∈ X, then (yS′ , ·) ∈ ROS′(yS, x−S); and (ii) given two coalitions S, S ′ ∈ S O

such that S ′ 6⊂ S and S 6⊂ S ′, for any x ∈ X: ROS (x) ∩ROS′(x) 6= ∅.

Proof. For (i), consider any coalition S ∈ P1 and set S ′ = {i} for some member i of S.
Take any x ∈ X and any (yS, ·) ∈ ROS (x). Noting that ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
by

definition, we find that

(yS, ·) ∈
⋂
i∈S

ROi ((yS, x−S)).

This implies that (yS′ , ·) ∈ ROS′(yS, x−S).
Now, consider any coalition S ′ ∈ P2. If S ′ ⊂ S is a singleton, then the result

similarly follows. If not, then S ′ ∈ P1. Take any x ∈ X and any (yS, ·) ∈ ROS (x).
Noting that ROS (x) = BS

(
x,
[
EOS (x)

]
S

)
by definition, we find that

(yS, ·) ∈
⋂
C(S

C∈P0∪P1

ROC ((yS, x−S)).

This implies that (yS′ , ·) ∈ ROS′(yS, x−S).
The rest follows recursively.

As for (ii), consider two coalitions S, S ′ ∈ S O such that S ′ 6⊂ S and S 6⊂ S ′. By the
definition of organizations, it must be that S and S ′ are disjoint. The proof concludes
with an observation that each ROS concerns only the relevant part of strategy profiles
for S; i.e., if (yS, y−S) ∈ ROS (x) then for every y′−S ∈ X−S: (yS, y

′
−S) ∈ ROS (x).
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According to the definition of SNE, any coalition of players can jointly deviate to
any of their joint strategy profiles. On the other hand, our organizational refinement
restricts the set of coalitions that can deviate and the set of strategy profiles that a
particular coalition can deviate to. Accordingly, our notion of ONE turns out to be
weaker than the notion of SNE.8

Proposition 3.6. For any normal form game Γ and organization O = {P0, P1, . . . , Pk},

SNE(Γ) ⊂ ONEO(Γ).

Proof. Take any x∗ ∈ SNE(Γ). Suppose that x∗ is not an O-organizational Nash
equilibrium of Γ. We then see that there should exist some partition(s) Pt ∈ O such
that there is S ∈ Pt satisfying x∗S /∈ ROS (x∗). We take the one with the smallest t and
denote it by P̄ . The corresponding coalition is denoted by S̄.

Then for every S ′ ∈ P̄− with S ′ ⊂ S̄:

x∗S′ ∈ ONE
OS′∈P̄− (ΓS′|x∗−S′

).

It must be that there is yS̄ ∈ XS̄ such that

(i) ∀i ∈ S̄ : ui(yS̄, x
∗
−S̄) > ui(x

∗) and

(ii) ∀S ′ ∈ P̄− with S ′ ⊂ S̄ : yS′ ∈ ONE
OS′∈P̄− (ΓS′ |x∗−S′

).

We then conclude that x∗
S̄

is not Pareto optimal for S̄ given that the complementary
coalition chooses x∗−S̄. This is a contradiction; which completes the proof that x∗ is an
O-organizational Nash equilibrium.

3.3 Illustrative Examples

By Proposition 3.6, we understand the relation between the predictions of ONE and
SNE. In this section we consider two examples of normal form games which help us
understand how ONE refines the set of Nash equilibria and how its predictions are
different from those of CPNE. Insights gained from these equilibrium analyses will be
further discussed in Concluding Remarks below.

We first recall the three-player normal form game given in Table 4 for which we
have observed horizontal conflicts of interest. This game has three Nash equilibria:
(z1, x2, x3), (y1, y2, x3), and (x1, z2, y3). The coalition {1, 2} deviates from the first
and the second, the coalition {2, 3} deviates from the second and the third, and the
coalition {1, 3} deviates from the first and the third. Further note that all of these
deviations are self-enforcing. Therefore, this game possesses no SNE or CPNE.

In this example, we consider

O1 = {P0, {{1, 2}, {3}}, {N}},
O2 = {P0, {{1}, {2, 3}}, {N}},
O3 = {P0, {{1, 3}, {2}}, {N}};

8This also implies that an ONE exists for every normal form game which possesses a SNE.
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Table 4 [Revisited]

x3

z1 1, 5, 8 0, 2, 0 7, 2, 3
y1 0, 0, 3 5, 1, 8 4, 0, 0
x1 0, 4, 3 0, 7, 3 7, 7, 0

x2 y2 z2

y3

z1 2, 0, 4 0, 1, 0 0, 0, 0
y1 0, 2, 9 1, 0, 4 0, 0, 0
x1 2, 0, 9 0, 0, 0 6, 6, 2

x2 y2 z2

and we find the following sets of ONE:

ONEO1(·) = {(x1, z2, y3)},
ONEO2(·) = {(z1, x2, x3)},
ONEO3(·) = {(y1, y2, x3)}.

The arguments are as follows: In O1, the only active two-player coalition is {1, 2}.
This coalition deviates from (z1, x2, x3) and (y1, y2, x3), but not from (x1, z2, y3). The
other two-player coalitions cannot deviate from any of these strategy profiles, since
they are not formed. Noting that every Nash equilibrium is Pareto optimal for the
grand coalition, we conclude that (x1, z2, y3) is the unique coalitionally stable outcome
for this particular organization. As for O2 and O3, similar reasonings would apply.

It is worth mentioning here that, as illustrated in the example above, it may be the
case that each Nash equilibrium is supported by some organizational structure as the
unique coalitionally stable outcome. However, this is not necessarily true for all normal
form games, since the notions of ONE and CPNE coincide in two-player games:

Remark 3.2. In a two-player normal form game, since the only non-trivial organization
includes all possible coalitions, ONE and CPNE coincide.

We now provide an example in which the non-empty sets of CPNE and ONE are
disjoint. This implies that one set of equilibrium does not necessarily include the other.
To do this, we refer to the normal form game given in Table 1:

Table 1 [Revisited]

x3

y1 0, 0, 0 0, 0, 0
x1 1, 1, 1 0, 0, 0

x2 y2

y3

y1 0, 0, 0 2, 2, 2
x1 3, 3, 0 0, 0, 0

x2 y2

Recall that there are two Nash equilibria: (x1, x2, x3) and (y1, y2, y3), and that
there exists a unique CPNE: (x1, x2, x3). The reason is that the coalition {1, 2} makes
a self-enforcing deviation from (y1, y2, y3); whereas the deviation of the grand coalition
from (x1, x2, x3) to (y1, y2, y3) will be blocked by the subcoalition {1, 2}, as they would
further deviate from (y1, y2, y3). On the other hand, if we analyze ONE of this game
for the organization {P0, {{1}, {2, 3}}, {N}}, we find that the unique ONE turns out
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to be (y1, y2, y3). The reason is that since the coalition {1, 2} is now inactive, they
would not deviate from (y1, y2, y3) and they would not block the deviation of the grand
coalition from (x1, x2, x3) to (y1, y2, y3). As a matter of fact, by a similar reasoning, also
for the organizations {P0, {{1, 3}, {2}}, {N}} and {P0, {N}}, the unique ONE of this
game would be (y1, y2, y3). It is also worth mentioning that this is an example which
highlights the importance and usefulness of our organizational refinement. Apparently,
the unique ONE strictly Pareto dominates the unique CPNE.

4 The Results

4.1 Existence of Equilibrium

Although the formulation of our organizational refinement eliminates both types of
conflicts of interest, a normal form game might not have an ONE for some organizations.
For an example, consider the normal form game given in Table 5. This game has a
unique Nash equilibrium: x ≡ (x1, x2, x3).

Table 5

x3

y1 0, 0, 0 2, 2, 0
x1 1, 1, 1 0, 0, 0

x2 y2

y3

y1 0, 1, 1 1, 0, 1
x1 1, 0, 0 0, 1, 1

x2 y2

Considering the organization O = {P0, {{1, 2}, {3}}}, we have RO1 (x) = (x1, ·, ·),
RO2 (x) = (·, x2, ·), and RO{1,2}(x) = (y1, y2, ·). Accordingly, RO(x) = ∅ which implies
the non-existence of ONE.

The observation above leads to a natural question to find classes of normal form
games for which an ONE exist. In this part of the paper, we prove the existence of our
organizational refinement in a subclass of games with strategic complementarities (see
Topkis, 1998; Amir, 2005; Vives, 2005, among others).9 Below are the definitions that
will be utilized throughout this subsection.

A set is a lattice if it contains the supremum and the infimum of every pair of
its elements. A lattice is complete if each non-empty subset has a supremum and an
infimum.10 Moreover, a subset Y of a lattice X is a subcomplete sublattice of X if for
every non-empty subset Y ′ of Y , the supremum of Y ′ and the infimum of Y ′ exist and
are contained in Y .

9Games with strategic complemetarities are commonly utilized in the literature both for the ex-
istence of Nash equilibrium (see Zhou, 1994; Echenique, 2005; Calciano, 2007; Keskin et al., 2014,
among others) and for the existence of the refinements of Nash equilibrium; such as minimally altru-
istic Nash equilibrium (see Karagozoglu et al., 2013), perfect equilibrium (see Carbonell-Nicolau and
McLean, 2014), and strong Berge equilibrium (see Keskin and Saglam, 2014).

10Note that a complete lattice X is compact in its interval topology which is the topology generated
by taking the closed intervals, [y, z] = {x ∈ X : y ≤ x ≤ z} with y, z ∈ X as a subbasis of closed sets
(see Birkhoff (1967)).
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Let X be a lattice and T be a partial order. A function f : X → R is called
quasi-supermodular if for all x, y ∈ X, f(x) ≥ f(x ∧ y) implies f(x ∨ y) ≥ f(y) and
f(x) > f(x ∧ y) implies f(x ∨ y) ≥ f(y). We say that a function f : X × T → R
satisfies the single crossing property in (x, t) if for all x, x′ ∈ X and t, t ∈ T with x > x′

and t > t′: f(x, t′) ≥ f(x′, t′) implies f(x, t) ≥ f(x′, t) and f(x, t′) > f(x′, t′) implies
f(x, t) > f(x′, t).

The following definition of games with strategic complementarities is provided by
Milgrom and Shannon (1994) and Milgrom and Roberts (1996).

Definition 4.1. A normal form game Γ is a game with strategic complemen-
tarities if for every i ∈ N : (i) Xi is a non-empty complete lattice; (ii) ui is upper
semi-continuous in xi and continuous in x−i; and (iii) ui is quasi-supermodular in xi
and has the single crossing property in (xi, x−i).

As shown by Milgrom and Shannon (1994), in a game with strategic complemen-
tarities, the smallest and the largest serially undominated strategy profiles11 exist and
they are in fact the smallest and the largest Nash equilibria of the game, respectively
(see their Theorem 12). Furthermore, as shown by Milgrom and Roberts (1996), an ad-
ditional monotonicity assumption would suffice for the existence of CPNE in a subclass
of games with strategic complementarities. In particular, these authors assume that
each utility function ui is non-decreasing/non-increasing in x−i (see their Theorem 2).
In the following, by weakening the monotonicity assumption, we prove the existence of
our organizational refinement.

Proposition 4.1. Consider a game with strategic complementarities Γ and an orga-
nization O. Assume that for every i ∈ N and every S ∈ S O that includes i: either (i)
ui is non-decreasing in x−S, or (ii) ui is non-increasing in x−S. Then there exists an
O-organizational Nash equilibrium for this game.

Proof. Assume that (i) is the case. Consider the largest Nash equilibrium of the game,
denoted by x∗. As we know from Milgrom and Shannon (1994), x∗ is also the largest
serially undominated strategy profile in this game. Consider any coalition S ∈ P1

and the corresponding reduced game ΓS|x∗−S
= (S, (Xi)i∈S, (vi)i∈S). By definition, this

reduced game is a game with strategic complementarities in which each vi is non-
decreasing in x−i. We also know that x∗S is a Nash equilibrium for ΓS|x∗−S

; which means
that x∗S would survive the iterated elimination of strictly dominated strategies in the
reduced game. As a matter of fact, x∗S turns out to be the largest serially undominated
strategy profile in this game.12 It then follows from Milgrom and Shannon (1994) that
x∗S is the largest Nash equilibrium for the reduced game. Applying Theorem A2 of
Milgrom and Roberts (1996), for each subcoalition C ⊂ S, playing x∗C is preferred to
playing any other strategy profile in the reduced game. That theorem surely applies
for the coalition S itself. Accordingly, for any Nash equilibrium yS of the reduced

11A strategy profile is said to be serially undominated if it survives the iterated elimination of
strictly dominated strategies.

12The reader is referred to the Appendix for the proof of this claim.
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game ΓS|x∗−S
, we have for every i ∈ S: ui(yS, x

∗
−S) ≤ ui(x

∗
S). Therefore, x∗S is a

coalitional best response for S. Since S is arbitrarily chosen, for every coalition S ∈ P1:
(x∗S, ·) ∈ ROS (x∗).

Now, consider any coalition S ′ ∈ P2 and the corresponding reduced game ΓS′|x∗−S′
.

Noting that OS′∈P2 is the suborganization for this coalition and considering the argu-
ments above, we know that x∗S′ is an OS′∈P2-organizational Nash equilibrium of this
game. This is because for every member i ∈ S ′: (x∗i , ·) ∈ ROi (x∗) and for every active
subcoalition C ′ ⊂ S ′ in this suborganization: (x∗C′ , ·) ∈ ROC′(x

∗). Applying Theorem
A2 of Milgrom and Roberts (1996) once again, we conclude that for the coalition S ′,
playing x∗S′ is preferred to playing any other ONE in the reduced game ΓS′|x∗−S′

. Then

it similarly follows that for every coalition S ′ ∈ P2: (x∗S′ , ·) ∈ ROS′(x∗).
Finally, it recursively follows that for every coalition S ′′ ∈ S O: (x∗S′′ , ·) ∈ ROS′′(x∗).

Hence, x∗ ∈ RO(x∗), which in turn implies that x∗ ∈ ONE(Γ).
Arguments for (ii) similarly follow.

In the following normal form game given in Table 6, we can demonstrate how the
existence result works:

Table 6

x3

y1 3, 4, 0 5, 5, 0
x1 4, 4, 1 5, 3, 3

x2 y2

y3

y1 0, 1, 1 2, 2, 2
x1 1, 1, 0 1, 0, 2

x2 y2

This example is a game with strategic complementarities since each utility function
ui is quasi-supermodular in xi and has the single crossing property in (xi, x−i). Fur-
thermore, u1 is non-decreasing in x2 and u2 is non-decreasing in x1. Also note that
u3 is not monotone in x1 or x2, since (x1, y2, x3) yields the highest utility for Player 3.
Accordingly, this normal form game satisfies the conditions of our existence result for
the organization O∗ = {P0, {{1, 2}, {3}}}, but not for the other possible organiza-
tions. On top of that, it does not satisfy the conditions for the existence of CPNE
provided by Milgrom and Roberts (1996). There are two Nash equilibria: (x1, x2, x3)
and (y1, y2, y3). Now, analyzing the set of O∗-organizational Nash equilibria, we see
that the coalition {1, 2} deviates from (x1, x2, x3) to (y1, y2) given that Player 3 sticks
to x3. Noting that they would not deviate from the other Nash equilibrium, we find
that (y1, y2, y3) is the unique ONE for this game. On the other hand, there exists
no CPNE. The reason is that (i) the coalition {1, 2} still makes the aforementioned
deviation and (ii) the coalition {1, 3} makes a self-enforcing deviation from (y1, y2, y3)
to (x1, x3) given that Player 2 sticks to y2.

As for another example satisfying the conditions of Proposition 4.1, consider the
four-player normal form game given in Table 7. Once again, u1 is non-decreasing in x2

and u2 is non-decreasing in x1. We can also see that neither u3 nor u4 is monotone in
either of the other players’ strategies. This game has two Nash equilibria: (x1, x2, x3, x4)
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Table 7

x3

y1 3, 3, 2, 0 3, 3, 0, 2
y4 x1 3, 3, 2, 0 3, 3, 2, 0

x2 y2

y3

y1 1, 0, 1, 1 2, 2, 1, 2
x1 0, 0, 1, 1 0, 1, 1, 1

x2 y2

x3

y1 2, 5, 1, 1 5, 5, 1, 0
x4 x1 4, 4, 1, 1 5, 2, 1, 1

x2 y2

y3

y1 4, 3, 0, 0 5, 5, 0, 0
x1 3, 3, 0, 0 3, 4, 0, 0

x2 y2

and (y1, y2, y3, y4). Considering the organization O∗ above, we note that the coalition
{1,2} deviates from (x1, x2, x3, x4) to (y1, y2) given that Players 3 and 4 stick to (x3, x4),
and we find that (y1, y2, y3, y4) is the unique ONE for this game. Now, if we consider a
greater organization by adding P2 = {{1, 2, 3}, {4}} into the existing organization O∗,
the unique ONE ceases to exist. The reason is that the coalition {1, 2, 3} deviates from
(y1, y2, y3, y4) to (x1, x2, x3) given that Player 4 sticks to y4. As we see in this particular
example, adding a new coalition for which the utility functions of its members do not
have a monotonicity relation as described in Proposition 4.1 might lead to the non-
existence of equilibrium.

Another interesting note is that if we consider the organization {P0, {{1, 2, 3}, {4}}},
then the weakly Pareto optimal Nash equilibrium (x1, x2, x3, x4) is realized as the
unique ONE. Accordingly, one can claim that removing small coalitions from an or-
ganization or replacing small coalitions in an organization with larger coalitions might
turn out to be socially beneficial.

4.2 A Monotonicity Property

We start with a nice result indicating that the introduced refinement structures follow
in a monotonic fashion. In a normal form game, given two organizations O and O′, we
say that O is greater than O′ if (i) P ∈ O′ implies that P ∈ O and (ii)

[
P ′ ∈ O and

P ′ /∈ O′
]

implies that P ′ is coarser than the coarsest partition in O′. We show that
the equilibrium set is more refined for greater organizations.13

Proposition 4.2. For any normal form game Γ, if an organization O is greater than
another organization O′, then

ONEO(Γ) ⊂ ONEO
′
(Γ).

13It is important here that we do not compare any particular partitions when comparing organiza-
tions. Our definition of “being greater” indicates that an organization is greater than another if the
former completely preserves the structure of the latter and additionally includes coarser partitions.
Alternative definitions may yield different results.
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Proof. Take any x∗ ∈ ONEO(Γ). By definition, x∗ ∈ RO(x∗). This implies that for
every S ∈ S O: (x∗S, ·) ∈ ROS (x∗). Since O is greater than O′, we know that S O′ ⊂ S O

and that for every S ∈ S O \S O′ : @S ′ ∈ S O′ such that S ⊂ S ′. Accordingly, for every
S ′ ∈ S O′ : (x∗S′ , ·) ∈ RO

′

S′ (x
∗). Therefore, x∗ ∈ RO′(x∗); i.e., x∗ ∈ ONEO

′
(Γ). Then it

follows that ONEO(Γ) ⊂ ONEO
′
(Γ).

This monotonicity property leads to the following observation.

Corollary 4.1. Consider a normal form game Γ that possesses a Nash equilibrium.
Take any increasing sequence of organizations O1,O2, . . . ,Ot such that O1 = {P0} and
for any i ∈ {1, . . . , t − 1}, Oi+1 is greater than Oi. By Proposition 4.2, we know that
for any i ∈ {1, . . . , t− 1},

ONEOi+1(Γ) ⊂ ONEOi(Γ).

In addition to that, this sequence has a maximum organization for which the set of
ONE is non-empty.

Example 4.1. Consider a five-player normal form game given in Table 8 for which
there are three Nash equilibria: (x1, x2, y3, y4, x5), (y1, y2, x3, y4, x5), (y1, y2, y3, x4, x5).
We now set

P0 = {{1}, {2}, {3}, {4}, {5}},
P1 = {{1, 2}, {3}, {4}, {5}},
P2 = {{1, 2, 3}, {4}, {5}}, and

P3 = {{1, 2, 3, 4}, {5}}.

Table 8

x3

y1 1, 0, 1, 0, 0 0, 1, 1, 0, 0
y4 x1 0, 1, 1, 0, 0 1, 0, 1, 0, 0

x2 y2

y3

y1 1, 0, 0, 1, 0 0, 1, 0, 1, 0
x1 0, 1, 0, 1, 0 1, 0, 0, 1, 0

x2 y2

x3

y1 1, 0, 0, 1, 0 0, 1, 0, 1, 0
y5 x4 x1 0, 1, 0, 1, 2 1, 0, 0, 1, 0

x2 y2

y3

y1 1, 0, 1, 0, 0 0, 1, 1, 0, 0
x1 0, 1, 1, 0, 0 1, 0, 1, 0, 0

x2 y2

First consider O1 = {P0}. Then the set of ONE surely coincides with the set of Nash
equilibria. Then we consider O2 = {P0, P1}. We can see that the coalition {1, 2}
deviates to (x1, x2) given that Players 3, 4, and 5 stick to (x3, y4, x5). Since there is
no further deviation, (y1, y2, x3, y4, x5) is not coalitionally stable in the sense of ONE.
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x3

y1 0, 0, 0, 1, 1 1, 1, 1, 1, 1
y4 x1 2, 2, 0, 0, 1 0, 0, 0, 1, 1

x2 y2

y3

y1 0, 0, 1, 0, 1 1, 1, 0, 1, 1
x1 3, 3, 3, 3, 1 0, 0, 1, 0, 1

x2 y2

x3

y1 0, 0, 1, 0, 1 2, 2, 0, 0, 1
x5 x4 x1 4, 4, 4, 4, 1 0, 0, 1, 0, 1

x2 y2

y3

y1 0, 0, 0, 1, 1 2, 2, 2, 2, 1
x1 1, 1, 0, 0, 1 0, 0, 0, 1, 1

x2 y2

And since there is no other deviation, the remaining two Nash equilibria turn out to
be ONE of this game:

(x1, x2, y3, y4, x5), (y1, y2, y3, x4, x5).

If we consider O3 = {P0, P1, P2}, we can see that the coalition {1, 2, 3} deviates to
(x1, x2, x3) given that Players 4 and 5 stick to (x4, x5). Since there is no further devia-
tion, (y1, y2, y3, x4, x5) is not coalitionally stable in the sense of ONE. And since there
is no other deviation, there exists a unique ONE:

(x1, x2, y3, y4, x5).

Finally, when we consider O4 = {P0, P1, P2, P3}, the coalition {1, 2, 3, 4} deviates to
(x1, x2, x3, x4) given that Player 5 sticks to x5. Since there is no further deviation, the
set of ONE turns out to be empty.

It is also worth mentioning here that, considering all of the deviations above, the
five-player normal form game has neither a SNE nor a CPNE.

The following observation also follows from Proposition 4.2.

Corollary 4.2. Consider a normal form game Γ that possesses a Nash equilibrium.
Take any organization O and consider the set of all organizations O′ such that O is
greater than or equal to O′. In this set there exists a maximum organization for which
the set of ONE is non-empty.

In some normal form games, there may exist a “too big” organization which will fail
to take an action (or, reach an equilibrium). In such cases, it might help to dissolve all
of the coalitions in the final layer of the organization and play the game as a “smaller”
organization. The corollary above indicates that the dissolving process stops at a
unique point for which the normal form game possesses an ONE.

5 Concluding Remarks

We have studied cases in which some coalitions is not/cannot be formed. Taking the
organizational structures as given, we have introduced a refinement of Nash equilib-
rium. We have showed the existence of equilibria in certain classes of games. Moreover,
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through remarks and examples, we have further analyzed how the set of Nash equilibria
is refined by our notion.

Organizational refinements can lead to many interesting and fruitful questions.
First, one can study the robustness of equilibrium. More precisely, some of Nash
equilibria may remain to be an equilibrium for any given organization, whereas some
of them may fail to be an equilibrium as soon as some organization is formed. Then
one can consider the former to be the most robust Nash equilibrium, whereas the latter
to be the least robust. In that sense, any two Nash equilibria can be compared in terms
of robustness to organizational deviations. Such an analysis may also provide general
insights for certain classes of games.

Second, one can study the endogenous formation of organizations. There can be
several methods for this exercise. Either (i) players may have pre-defined preferences
over the set of coalitions/organizations which somehow induce organizational struc-
tures; or (ii) as the set of equilibria is now known for any given organization, players
may strategically form coalitions/organizations under the condition that each player
would prefer the organizational structure that would yield the best set of equilibria. As
an example, recall the game given in Table 4: Either of the three Nash equilibria can
be captured by a certain organization. Among the three Nash equilibria, (x1, z2, y3) is
Pareto optimal for the coalition {1, 2}. And Players 1 and 2 are able to reach there by
forming the two-player coalition, thereby blocking the formation of {1, 3} and {2, 3}.

Third, one can analyze policy implications. Notice that the formation of coali-
tional/organizational structures does not have to be strategic (as described above).
For instance, a social planner may be interested in forming a socially optimal orga-
nization. As an example, recall the game given in Table 1: Since there exist such an
organization for which the unique ONE strictly Pareto dominates the unique CPNE,
a social planner would prefer to forbid the formation of {1, 2}.
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Appendix

We first note that for a player i ∈ N , a strategy xi ∈ Xi is strictly dominated if there
exists another strategy x′i ∈ Xi such that for every x−i ∈ X−i:

ui(x
′
i, x−i) > ui(xi, x−i).

The following lemma is used in the proof of Proposition 4.1.

Lemma 5.1. In a normal form game Γ, assume that x∗ is a Nash equilibrium which
is the largest serially undominated strategy profile. Then for any coalition S ⊂ N , x∗S
turns out to be the largest serially undominated strategy profile of the reduced game
ΓS|x∗−S

.

Proof. First note that x∗S is a Nash equilibrium of the reduced game ΓS|x∗−S
. Therefore,

it is a serially undominated strategy profile.
We now describe a particular procedure of iterated elimination of strictly dominated

strategies: We start with Γ0 ≡ Γ. At stage 1, only Player 1’s dominated strategies are
eliminated and we obtain Γ1. At stage 2, only Player 2’s dominated strategies are
eliminated and we obtain Γ2. Following in a similar manner, we reach stage n. At this
stage, only Player n’s dominated strategies are eliminated and we obtain Γn. At stage
n + 1, only Player 1’s dominated strategies are eliminated and we obtain Γn+1. More
generally, for any k ∈ N ∪ {0}, only Player i’s dominated strategies are eliminated in
stage i+ kn. The procedure continues until we reach Γ∞.

Without loss of generality, assume that Player 1 is a member of S and that x1 ∈ X1

is strictly dominated by some x′1 ∈ X1. In the reduced game ΓS|x∗−S
, we have

ui(x
′
i, xS\{i}, x

∗
−i) > ui(xi, xS\{i}, x

∗
−i).

for every xS\{i} ∈ XS\{i}. Hence, xi remains to be strictly dominated in the reduced
game.

Now, we start with Γ0
S = ΓS|x∗−S

. At stage 1, only Player 1’s dominated strategies in

Γ0 are eliminated and we obtain Γ1
S. Note that Player 1 may have additional dominated

strategies in the reduced game; but we do not eliminate those at this stage. Also notice
that Γ1

S is a reduced game of Γ1. At stage 2, if Player 2 is a member of S, then only
Player 2’s dominated strategies in Γ1 are eliminated and we obtain Γ2

S. Otherwise, we
set Γ2

S = Γ1
S. In either case, Γ2

S is a reduced game of Γ2. Following in a similar manner,
we eventually obtain a reduced game of Γ∞ above.

Given a player i ∈ S, we know that each strategy yi � x∗i is eliminated in some
stage of the iterated elimination of strictly dominated strategies for Γ. Following the
procedure above, the same should happen in the corresponding stage of the iterated
elimination for ΓS|x∗−S

. Accordingly, x∗S turns out to be the largest serially undominated
strategy profile.
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