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Abstract

We consider a Ramsey model with possible increasing returns to scale and a government.

The government balances its budget at each point in time and issues (i) a tax on

income in order to �nance unavoidable public expenditures, and (ii) further uses a tax

rate rule with the purpose of stabilizing the economy. We show that insulating this

economy from belief driven �uctuations is not possible if the government needs to raise

a �xed amount of tax revenues to �nance incompressible public expenditures. In this

case, we always have steady state multiplicity (exactly two steady states) and global

indeterminacy, while local indeterminacy is also possible. More precisely, even if a

su�ciently procyclical tax rate is still able to eliminate local indeterminacy, two saddle

steady states prevail, so that, depending on expectations, the economy may either

converge to the low steady state or to the high steady state. This implies that a regime

switching rational expectation equilibrium, where the economy switches between paths

converging to the two di�erent steady states, easily arises. As expectations are able

to in�uence long run outcomes, our model is able to generate large and sudden boom

and boost cycles in response to expectation shocks. Therefore, incompressible public

expenditures may also be responsible for the sharp and sudden recession observed in

the last decade.



1 Introduction

In recent years we have observed a revival of interest of macroeconomics in �scal policy.

For example, Feldstein (2009) discusses the recent rise of �scal activism and Taylor

(2011) asesses the size of the �cal multipliers associated with the US stimulus packages

of the period 2001-2009. While �scal multipliers measure the impact of discretionary

�scal policy on output levels, another related strand of the literature studies instead the

stabilization role of �scal policy. Among those see Moldovan (2010) and Mckay and Reis

(2016) who revisit the role of macroeconomic stabilizers using modern macrodynamic

models. They consider a model with a unique determinate equilibrium and focus on the

impact of stabilizers on the volatility of endogenous variables, due to exogenous shocks

in fundamentals.

In this paper, we consider a non-monetary general equilibrium dynamic model where

the government balances its budget. Each period the government must raise a �xed

minimum amount of tax revenues in order to �nance unavoidable public expenditures,

which should remain constant along business cycles.1 This implies a countercyclical

income tax, which creates steady state multiplicity and may lead to the emergence

of indeterminacy. We then discuss whether, in this context of incompressible public

expenditures, procyclical tax rates are able to stabilize endogeneous business cycle

�uctuations driven by volatile self ful�lling expectations.

Conventional wisdom states that procyclical/progressive tax rates have stabilizing

e�ects, which help smooth out business cycle �uctuations due either to exogenous shocks

to fundamentals or to volatile expectations (sunspots).2 Friedman (1948) was one of

the �rst to advocate a progressive tax system, which places primary reliance on the

income tax, in order to attain both long run goals and short run stability.3 Here, we

show that in the presence of a minimum level of tax revenues, the stabilization ability

of a procyclical tax rate rule is lost.

But is the presence of incompressible public expenditures an empirically relevant

issue? The answer is a resounding yes. They correspond to expenditures associated with

the basic functions of government (public safety, defense and general public services)

1They re�ect the views of society on the appropriate size of expenditures associated with the basic

functions of government.
2See, for example, Kletzer (2006) and Moldovan (2010) for the case with exogenous shocks to funda-

mentals and Guo and Lansing (1998), Dromel and Pintus (2008) for the case of shocks to expectations.
3Friedman (1948) also defended that government spending should be stable and determined by

the needs of society, which already suggests incompressible public expenditures. Moreover in his

proposal the budget should on average be balanced and the government should not issue interest-

bearing securities to the public. Note that in our non monetary setup this implies that the government

should balance its budget at all periods.
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and have been remarkably constant for most developed countries, for very long time

horizons.

Figure 1: minimum government spending (blue) vs total government spending per

capita in the U.S. (in thousands of dollars)

In �gure 1 we present the evolution of these public expenditures and total public

expenditures for the USA, in per capita terms, from 1959 to 2015 in constant prices of

2015. We can see that while total per capita government spending increased steadily

in time, the level of per capita expenditures associated with the basic functions of

government did not change much over such a long period, which implies that they do

not follow business cycles. Also the relative standard deviation of these expenditures

with respect to GDP is 10%, representing only 23% of the standard deviation of total

public expenditures (see Appendix 1).

Note that the per capita level of these expenditures may vary across countries,

re�ecting the views of each society on how much should be spent on the basic functions

of government. However, we expect them to be relatively stable in time for each country,

regardless of the time evolution of total government spending. This is indeed the pattern

we �nd across European countries from 2002 to 2014, a particularly turbulent period

in macroeconomic terms. See �gure 2. In Appendix 1 we also provide the standard
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Figure 2: Minimum government spending (blue) vs total government spending per

capita in others countries (in thousands of euros)

deviation of these incompressible government expenditures relative to that of GDP,

together with the relative standard deviation of total government spending. Again, we

obtain small relative standard deviations of incompressible public expenditures that

represent, in most cases, less than 1/6 of the volatility of total government spending.

Until now the literature considered either fully �exible government expenditures or

a totally constant public spending. In this paper, in line with empirical evidence, we ad-

dress simultaneously the existence of a fully �exible total government spending which

includes one �xed, incompressible, component. We �nd that, when the government

needs to raise a minimum �xed amount of tax revenues in order to �nance incompress-

ible public expenditures, two steady states always emerge, one being always a saddle.

Focusing on local dynamics is therefore not enough for stabilization purposes. Indeed,

in contrast to standard previous results4 we �nd that, although a procyclical tax rate

policy is able to stabilize locally the indeterminate steady state, it will not eliminate

steady state multiplicity and global indeterminacy as the economy may switch from

4Guo and Lansing (1998) �nd that a procyclical tax policy removes both local indeterminacy and

steady state multiplicity.
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one equilibrium path to the other. Therefore, in the presence of incompressible public

expenditures a procyclical tax rate rule is no longer able to insulate the economy from

belief driven �uctuations. In this context the management of expectations is crucial

to guarantee that the economy remains on the path converging to the high output

equilibrium.

However, if the government is not able to control expectations, the existence of mul-

tiple equilibria, associated with di�erent expectations about the state of the economy,

implies that a regime switching rational expectation equilibrium easily arises. In this

equilibrium the economy switches between paths converging to the two di�erent steady

states, according to a sunspot variable. This implies that in our framework expectations

are able to in�uence the long run outcomes of the economy, and not just the choice

of the convergence path to one steady state. Therefore, in addition to small �uctu-

ations around a locally indeterminate steady state, we are able to account for large

�uctuations generated by a regime switching sunspot process. Indeed we show that

our model is able to generate large and sudden boom and boost cycles in response to

expectation shocks. We conclude that the widespread existence of incompressible pub-

lic expenditures in developped countries, not only implies the failure of traditional tax

stabilization policies, but may also be responsible for the sharp and sudden recession

observed in the last decade.

The rest of the paper is organized as follows. In the next section, we present the

model considered and obtain the perfect foresight equilibria. In section 3, we study

steady state existence and multiplicity. Section 4 is devoted to the study of local

dynamics, while section 5 examines global dynamics, emphasizing in both sections the

consequence of using the income tax as a stabilizing tool. In section 6 we develop an

augmented version of the model in which agent's expectations about future economic

activity (output) follow a Markov switching process and provide a numerical illustration

of the e�ects of expectation shocks. In section 7 we consider more general tax rules,

and show that our results are robust. Finally, in section 8 we provide some concluding

remarks. Mathematical proofs are relegated to the Appendix.

2 The model

We consider an in�nite-horizon Ramsey model where a government balances the budget

at each point in time and issues (i) a tax on income with the purpose of raising a �xed

amount of tax revenues needed to �nance uncompressible public expenditures, and

(ii) further uses a tax rate rule (that may be constant, procyclical or countercyclical)

with the purpose of stabilizing the economy. Households are in�nitely-lived and have a

4



logarithmic utility function in consumption and a perfectly elastic labor supply. Firms

have access to a Cobb-Douglas technology, which may exhibit increasing returns to

scale, and use labor and capital to produce a single good which is consumed or invested.

This section describes such an economy.

2.1 Government

The government levies a �xed amount of tax revenues T̄ ≥ 0 according to an income

tax τy(yt) ∈ [0, 1), such that:

τy(yt) =
T̄

yt
(1)

where yt is aggregate output,

According to (1), the tax rate τy is countercyclical, i.e. it decreases when output

increases. Remark that T̄ can also be viewed as the minimum size of government

spending. The government also uses, with stabilization purposes, another income tax

τ(yt) ∈ [0, 1) which is variable with respect to aggregate income à la Lloyd-Braga et al.

(2008):

τ(yt) = µyφt (2)

The parameters µ ≥ 0 and φ ∈ <, govern respectively the level of the tax rate and

the response of the tax rate to output. When φ < 0, the tax rate decreases when output

expands, i.e. the tax rate is countercyclical. The case φ > 0 corresponds to the case

where the tax rate increases with output, i.e., a procyclical tax rate. A constant tax µ

is considered when φ = 0.

The total tax rate on income is then given by (τy(yt) + τ(yt)). Tax revenues �nance

wasteful5 public expenditures Gt and the government budget is balanced at each point

in time, i.e. we have that:

Gt = τ(yt)yt + T̄ . (3)

2.2 Households' behavior

We consider an economy populated by a large number of identical in�nitely-lived agents.

We assume without loss of generality that the total population is constant and normal-

ized to one. At each period an agent has a perfectly elastic labor supply lt with lt ∈ [0, l̄]

and l̄ > 1 his time endowment. She derives utility from consumption, ct, and disutility

from labor, lt, according to the instantaneous utility function U(ct, lt):

U(ct, lt) = ln(ct)−
lt
B

(4)

5Externalities of �xed public spending do not play any role.
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where B > 0 is a scaling parameter.

Households, when choosing ct and lt, face the following budget constraint:

k̇t + ct = z(yt)[wtlt + rtkt]− δkt, (5)

where kt is the capital stock at time t, wt the wage rate, rt the rental rate of capital

and δ > 0 the depreciation rate of capital. The �scal wedge, z(yt) ∈ (0, 1], is given as

follows:6

z(yt) ≡ 1− τ(yt)− τy(yt) = 1− µyφt −
T̄

yt
. (6)

The intertemporal maximization problem of the representative household is given

below:

max
ct,kt,lt

∫ +∞

t=0

e−ρtU (ct, lt) dt

s.t. (5)

(7)

where ρ > 0 is the discount factor. Note that households take as given the total tax

rate i.e. 1− z(yt) when maximizing intertemporal utility.

Denoting by λ(t) the shadow price of capital, the current-value Hamiltonian writes:

U(ct, lt) + λt [z(yt)[wtlt + rtkt]− δkt − ct] (8)

The �rst-order conditions are:

c−1
t = λt (9)

1 = Bλtz(yt)wt (10)

λ̇t
λt

= −[z(yt)rt − (ρ+ δ)] (11)

Any solution needs also to satisfy the transversality condition:

lim
t→+∞

e−ρtλtkt = 0 (12)

2.3 The production structure

We consider a competitive environment in which a continuum of measure one of identical

�rms produce a single good yt using capital kt and labor lt. The �rms' technology

displays constant returns to scale at the private level according to a Cobb-Douglas

speci�cation yt = F (kt, lt, k̄t, l̄t) = e(k̄t, l̄t)k
s
t l

1−s
t with e(k̄t, l̄t) ≡ (k̄st l̄

1−s
t )γ, γ ≥ 0, a

learning-by-doing externality, k̄t, l̄t being respectively the average-wide stock of capital

and hours worked, which are taken as given by individual �rms. Since at the aggregate

6The �scal wedge is the ratio between net (of taxes) and gross income.
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level we have k̄t = kt and l̄t = lt, the technology displays increasing returns to scale

such that yt = kαt l
β
t with α = s(1 + γ), β = (1− s)(1 + γ).

From the pro�t maximisation of the �rm, we obtain the real wage rate wt and the

real rental rate of capital rt as:

rt = se(k̄tl̄t)

(
kt
lt

)s−1

=
syt
kt
≡ r(kt, yt) (13)

wt = (1− s)e(k̄t, l̄t)
(
kt
lt

)s
≡ (1− s)yt

lt
≡ w(lt, yt) (14)

Hence, pro�ts are zero and yt = wtlt + rtkt.

In what follows, we assume that s is small, i.e., s < 0.5, as usually done in the

literature. Moreover, in order to avoid endogenous growth, we consider not too strong

productive externalities, i.e. we assume that γ < 1−s
s
, so that α < 1. Together these

two assumptions imply that β > max {α, γ} . All these assumptions are summarized

below in Assumption 1 and we consider them satis�ed in the rest of the paper.

Assumption 1. s < 0.5 and γ < 1−s
s

so that α < 1 and β > max {α, γ}.

2.4 Intertemporal equilibrium

In this section, we de�ne the intertemporal perfect foresight equilibrium of this economy.

From the aggregate production function we can write lt = l(kt, yt) ≡ y
1/β
t k

−α/β
t which

implies that, using (14), we can express the wage as a function of kt and l(kt, yt) so

that:

wt = w(kt, yt) ≡ (1− s) kα/βt y
(β−1)/β
t (15)

Substituting (9) and (15) in (10), we solve this equation with respect to ct and obtain:

ct = c(kt, yt) ≡ B(1− s)z(yt)k
α/β
t y

(β−1)/β
t (16)

Below, we provide the elasticities of the latter expression:

εcy = [β(1+εz(yt)−1]
β

εck = α
β

(17)

where εz(yt) ≡
z′(yt)yt
z(yt)

=
T̄ − φµy1+φ

t

yt − T̄ − µy1+φ
t

(18)

Di�erentiating equation (16) with respect to time, we obtain:

·
ct
ct

=
α

β

·
kt
kt

+
β(1 + εz(yt))− 1

β

ẏt
yt
. (19)
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Subtituting (9) and (13) in (11) we have

·
ct
ct

=
sz(yt)yt
kt

− (ρ+ δ). (20)

Equating now (19) and (20) and rearranging terms we �nally obtain:

ẏt
yt

=
sβz(yt)yt − (ρ+ δ)βkt − αk̇t

kt [β(1 + εz(yt))− 1]
(21)

with z(yt) > 0 given in (6), and εz(yt) given in (18).

Substituting now (16) in the the households' budget constraint (5), we obtain the

law of motion of the capital stock:

k̇t = z(yt)yt − δkt − c(kt, yt) (22)

De�nition 1. An intertemporal perfect foresight equilibrium is a path {kt, yt}t≥0 satis-

�ying equations (21)-(22) and the transversality condition (12), with z(yt) ∈ (0, 1] given

in (6), εz(yt) given in (18) and c(kt, yt) given in (16).

Note that if β(1 + εz(yt)) − 1 = 0, at some point in time t we say that we have

a singularity, and equation (21) is not properly de�ned. We will discuss later the

implications of the existence of singularities on the study of the dynamics of the model.

3 Steady state analysis

A steady state is a 4-tuple (k, l, c, y), satisfying:

y = kαlβ (23)

cl = B(1− s)z(y)y (24)

sz(y)y = (ρ+ δ)k (25)

c = z(y)y − δk (26)

z(y) > 0 (27)

Using this system of equations leads to:

k = sz(y)y
(ρ+δ)

c = [ρ+(1−s)δ]z(y)y
(ρ+δ)

l =
[

[B(1−s)(ρ+δ)]
[ρ+(1−s)δ]

]
(z(y)y)α y−1︸ ︷︷ ︸

≡H(y)

=

(
s

(ρ+ δ)

)−α(
(1− s)(ρ+ δ)B

ρ+ (1− s)δ)

)−β
︸ ︷︷ ︸

≡H̄
z(y) > 0

(28)
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3.1 Existence and Multiplicity

Steady state existence and multiplicity are determined by the solutions of H(y) = H̄.

Note that we restrict y ∈ (y, ȳ) with y > 0 and ȳ ∈ (y,+∞) to ensure that z(y) =

(1 − µyφ − T̄
y
) > 0. See Appendix 8.1. We use the scaling parameter B > 0 to ensure

the existence of a normalized steady state (NSS), y = 1. Hence,

Proposition 1. The solution (knss, lnss, cnss, 1) of system (28) where

knss =
sz(1)

(ρ+ δ)

lnss =

[
[B(1− s)(ρ+ δ)]

[ρ+ (1− s)δ]

]
cnss =

[ρ+ (1− s)δ] z(1)

(ρ+ δ)
ynss = 1

is a NSS if and only if B = B∗ with:

B∗ =

[ρ+(1−s)δ]
(ρ+δ)(

s
(ρ+δ)

)α
β

(1− s)z(1)

(29)

z(1) = 1− T̄ − µ > 0 (30)

Remark that, since B∗ does not depend on φ, existence of the normalized steady

state is persistent and always ensured as φ varies.

To study steady state multiplicity, we must characterize the sign of εH(y) ≡ H′(y)y
H(y)

.

Using (28) we have that

εH(y) = [α(1 + εz(y))− 1] (31)

where εz(y) is given in (18). We can easily show that, in the presence of any form of

countercyclical tax rates, H(y) > 0 is �rst increasing and then decreasing in y ∈ (y, ȳ),

i.e. εH(y) changes sign once. Indeed we have that:

Proposition 2. Under Assumption 1 and Proposition 1, for T̄ > 0, H(y) > 0 is always

single-peaked and there are exactly two steady states. Moreover, when T̄ = 0, H(y) > 0

is single peaked and there are exactly two steady states if and only if φ < 0. In contrast,

when T̄ = 0, and φ > 0 the steady state is unique.

Proof. See the Appendix.

Corollary 1. A strictly positive T̄ is su�cient for steady state multiplicity. Denoting

the low output steady state by yl and the high output steady state by yh, we have (1 +

εz(yl)) >
1
α
and (1 + εz(yh)) <

1
α
.
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Proposition 2 and Corollary 1 tell us that steady state multiplicity can not be

eliminated by the use of cyclical stabilization policy (φ 6= 0) if the government needs

to �nance a �xed minimum amount of spending (T̄ > 0). Hence, in contrast to Guo

and Lansing (1998), multiplicity of steady state remains, even in the presence of a

su�ciently procyclical tax rate, i.e., with a φ su�ciently positive, provided T̄ > 0.

Indeed, a necessary condition for steady state multiplicity is that εH(y) changes sign

at least once, which requires that εz(y), the elasticity of the tax wedge, varies with y.

See (31). From (18) we can see that this will happen if and only if we have T̄ > 0 and

or φ 6= 0. However this is not su�cient for steady state multiplicity since when T̄ = 0

and φ > 0 steady state uniqueness is always obtained.7

4 Local Analysis

We now characterize the local stability properties of our dynamic system around a

steady state. We start by linearizing system (21)-(22) around a steady state obtaining:(
dẏ(t)

dk̇(t)

)
= J

(
dy(t)

dk(t)

)
. (32)

The local stability properties of the model are determined by the eigenvalues of the

Jacobian matrix J (given in Appendix 8.2) or, equivalently, by its trace, Tr, and de-

terminant, D, which correspond respectively to the product and sum of the two roots

(eigenvalues) of the associated characteristic polynomial Q(λ) = λ2 − Trλ+Det with:

Tr = ρ+
(ρ+ δ) [1− (1 + εz)(α + β)]

{β(1 + εz)− 1}
(33)

D =
(ρ+ δ)2 [1− α(1 + εz)]

s {β(1 + εz)− 1}
(34)

with εz ≡ εz(y). Necessary and su�cient conditions to obtain local indeterminacy (a

sink) are D > 0 and Tr < 0, while the necessary and su�cient condition to get local

saddle-path stability is D < 0. Finally, the steady state is locally a source if and only

if D > 0 and Tr > 0.

Proposition 3. Under Assumption 1 and Proposition 1, the high output steady state

is locally indeterminate (a sink) if and only if (1 + εz(yh)) ∈ ( 1
β
, 1
α

) and is locally

determinate (a saddle) if and only if (1 + εz(yh)) <
1
β
. Furthermore, the low output

steady state is always locally determinate (a saddle).
7This is the case explored in Guo and Lansing (1998). In the light of our analysis it is easy to

understand their results since in their case T̄ = 0 and the speci�cation chosen for their tax rate is such

that εz(y) is constant.
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Proof. Note that the numerator of the determinant at the high output steady state yh

is positive as the condition 1+εz(yh) <
1
α
holds. Local indeterminacy requires therefore

a positive denominator of both trace and determinant which implies 1 + εz(yh) <
1
β
.

Since α < β under Assumption 1, the latter condition also leads to a negative trace, so

that the necessary and su�cient conditions to get local indeterminacy around the high

output steady state are 1 + εz(1) ∈ ( 1
β
, 1
α

). The rest of the proposition follows since at

the low output steady state (1 + εz(yl)) >
1
α
> 1

β
, so that the determinant is always

negative.

Our local indeterminacy mechanism is not new and, as in the seminal works of

Schmitt-Grohe and Uribe (1997) and Benhabib and Farmer (1994), is once again related

with the labor market "wrong slopes" condition. Noting that the slope of the MPL

(marginal productivity of labor) curve is −(1− β), while the slope of the inverse labor

supply curve is −βεz, 8 it is easy to see that our indeterminacy condition, β(1+εz(yh)) >

1, requires (i) either a negatively sloped inverse labor supply schedule (εz > 0) steeper

than the (also negatively sloped) MPL curve (β < 1), or (ii) a positively sloped MPL

curve (β > 1), steeper than the (also positively sloped) inverse labor supply schedule

(εz < 0), or (iii) a positively sloped MPL curve and a negatively sloped inverse labor

supply schedule.

Our work encompasses several related papers, which can be recovered as particular

cases of our framework. Indeed, in the absence of productive externalities and cyclical

taxation our indeterminacy condition collapses into the Schmitt-Grohe and Uribe�s

(1997) indeterminacy condition s < T̄
y
< 1 − s, whereas in the absence of government

we recover Benhabib and Farmer�s (1994) indeterminacy condition α < 1 < β.

4.1 Stabilizing locally

We consider now Proposition 1 satis�ed, so that the normalized steady state exists, and

choose a parameterization such that the NSS is locally indeterminate in the absence of

an active stabilization policy (φ = 0).9 In Proposition 4 below we state the necessary

and su�cient conditions for this to happen:

Proposition 4. Under Assumption 1 and Propositions 1 and 3, consider that the gov-

ernment does not pursue an active stabilization policy (φ = 0). Then the NSS is locally

indeterminate if and only if (1− β) (1− µ) < T̄ < (1− α) (1− µ).

8At the general equilibrium level where l = l we can rewrite the MPL shedule (1) as d logwt =

αd log kt− (1− β)d log lt. In what concerns the inverse of the labor supply schedule from (10), consid-

ering a constant λ, z(y) given by (6 ) with yt = kαt l
β
t , we obtain d logwt = −βεzd log lt − αεzd log kt.

9Under Proposition 3 this implies that the NSS is the high output steady-state.

11



Proof. Note that, since εz(1) = T̄−φµ
1−T̄−µ , when φ = 0, from Proposition 3, we obtain

immediately the condition above.

As α = (1 + γ)s and β = (1 + γ)(1 − s), we conclude that in the absence of

production externalities, γ = 0, indeterminacy requires a strictly positive T̄ . However,

with production externalities, since under Assumption 1 α < 1, this inequality can

only be veri�ed for T̄ = 0 if β > 1. We conclude that su�ciently strong production

externalities and/or a strictly positive T̄ are required for the NSS to be indeterminate

in the absence of cyclical taxation.10

Assume now that the government wants to insulate the economy from belief driven

�uctuations around the NSS. This is done by eliminating local indeterminacy. In Propo-

sition 5 below we state how the government can eliminate local indeterminacy using

cyclical taxation.

Proposition 5. Under Assumption 1 and Propositions 1 and 3, assume that

(1− β) (1− µ) < T̄ < (1− α) (1− µ) . Then, local indeterminacy of the NSS is elim-

inated, and local saddle path stability of the normalized steady state is achieved with a

su�ciently procyclical income tax rate such that φ > T̄−(1−β)(1−µ)
µβ

> 0.

Proof. From Proposition 3, it is easy to see that the government can eliminate local

indeterminacy, obtaining saddle path stability of the NSS, by increasing φ, so that

εz(1) = T̄−φµ
yt−T̄−µ decreases, satisfying the inequality (1 + εz(1)) < 1

β
, that we can rewrite

as φ > T̄−(1−β)(1−µ)
µβ

> 0.

Guo and Lansing (1998) in a Ramsey model have also shown that su�ciently pro-

cyclical (or progressive) tax rates on income eliminate local indeterminacy caused by

productive externalities, whereas Guo (1999) considering only progressive labor income

taxation obtained a similar result. In our framework the same is true, and the NSS

becomes then a saddle, which eliminates the existence of local sunspot �uctuations.

However, we know from our previous analysis, that another steady state with a lower

level of output also exists. Both steady states are saddles and therefore locally determi-

nate. Nevertheless, as will be shown in the next section there is global indeterminacy.

Indeed, in the presence of multiple steady states, ensuring that all of them are locally

determinate does not eliminate global indeterminacy and sunspots. To adress these

issues we must analyse the global dynamics of the model

10Note that when γ = 0 and T̄ = 0 a su�ciently negative φ also guarantees local indeterminacy.
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5 Global Analysis

5.1 Phase diagram

Substituting (22) in (21) our dynamic sytem (21)-(22) can be rewritten in the following

way: [
k̇t

ẏt

]
=

[
f1(kt, yt)

(1+γ)f2(kt,yt)
g(yt)

yt
kt

]
(35)

where the vector in the RHS is the vector �eld of sytem (35) and:

f1(kt, yt) ≡ z(yt)yt − δkt − c(kt, yt)
f2(kt, yt) ≡ s [c(kt, yt)− sz(yt)yt]− [ρ(1− s) + δ(1− 2s)]kt

g(yt) ≡ β(1 + εz(yt))− 1

with c(kt, yt), z(yt) and εz(yt) given respectively by (16), (6) and (18).

In order to analyze global dynamics, in �gures 3 and 4, we depict in the space

(y, k) the k and the y nullclines and the arrows that represent the vector �eld. The

k−nullcline satis�es f1(kt, yt) = 0, and the y−nullcline satis�es f2(k, y) = 0. Of course

these two schedules cross twice, respectively at the low and high output steady states.

In the Appendix we show that along the k−nullcline we have dk/dy > 0, and that

the slope of the y−nullcline will change sign at most two times. Moreover, for k = 0,

i.e., at the intersection between the y−nullcline and the line k = 0, the slope of the

y−nullcline is positive and above unity.11 As both k and y increase, the slope of the

y−nullcline decreases, and the nullcline reaches a maximum when its slope becomes

zero. As y further increases its slope becomes negative, reaching −∞, so that the

y−nullcline becomes vertical. In the Appendix we show that for reasonable values of

the parameters we obtain a correspondence, i.e., after becoming vertical the nullcline

bends inwards, as depicted in �gures 3 and 4. It is also easy to show12 that when k = 0

the y−nullcline is located on the right of the k−nullcline, as represented in �gures 3

and 4.

In the Appendix we also show that above the k−nullcline we have k̇ < 0, i.e., above

(below) the k̇ = 0 line the vertical arrows that represent the vector �eld of k̇t point

downwards (upwards). Before determining the directions of the horizontal arrows that

represent the vector �eld of ẏt it is important to note that our model exibits a singularity

for y = ys such that g(ys) = β(1 + εz(y
s)) − 1 = 0. In the space (y, k), y = ys de�nes

a vertical line. This line partitions the space (y, k) into two subsets of regular points:

11It is equal to 1/α.
12See the Appendix.
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one set, which we denote by Ω+, where g(y) > 0, i.e., where the necessary condition

for indeterminacy is satis�ed, and another, denoted by Ω−, where this condition is

not satis�ed, i.e. g(y) < 0. Of course, on di�erent sides of the vertical line y = ys

horizontal arrows point in opposite directions. The full determination of the direction

of the horizontal arrows, depicted in Figures 3 and 4, is also provided in the Appendix.

In the following, we will restrict our analysis to equilibrium regular paths that

converge to a steady state.13

5.2 Global Dynamics when the NSS is a sink

We will start by addressing the situation where the NSS is a sink, that is depicted

in �gure 3. As explained above the NSS is the high output steady-state, which coex-

ists with a lower output steady state which is a saddle. Since at both steady states

g(y) = β(1+εz(y))−1 > 0, they are both located on the same side of the singularity so

that ys > 1. All deterministic trajectories starting on the left of the saddle path diverge

to either k = 0 or to y = y and cannot be equilibrium paths. Otherwise, all other deter-

ministic trajectories converge to the higher output sink steady state, with the exception

of those starting precisely on the stable arm of the saddle, which converge to the lower

output steady state. This means that, for the same initial given value of the prede-

termined variable, the capital stock, there are several di�erent equilibrium trajectories

that converge to di�erent steady states.14 The equilibrium trajectory obtained depends

on the value of the non predetermined variable chosen, which is expected output. This

means that we have global indeterminacy15. Also, since the NSS is a sink there exist

local stochastic endogenous �uctuations (sunspots) around it. See Grandmont et al

(1998). We can therefore state the following:

Proposition 6. Under Assumption 1 and Propositions 1 and 3, when (1 + εz(1)) ∈
( 1
β
, 1
α

) there are exactly two steady states: the NSS, which is the high output steady and

a sink, coexists with the low output steady state which is a saddle. In this case there is

global indeterminacy. Furthermore we have local indeterminacy of the NSS steady state

and there exist local stochastic endogenous �uctuations (sunspots) around it.

13 We de�ne equilibrium regular paths as solutions of (35) that do not collide with y = ys and

verify the initial and transversality conditions. For an analysis of singular dynamics paths see Brito et

al. (2016).
14Note however, that since all equilibrium trajectories, with the exception of the one that converges

to the low output steady state, end up at the high output steady state, the likelihood of reaching the

low output steady state is low.
15See Raurich (2000) for a de�nition and a clear cut discussion about global indeterminacy issues.
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Figure 3: Sink-saddle con�guration

5.3 Global Dynamics with two saddles

Now, if the government decides to stabilize locally the NSS, it can, as described above,

make it saddle-stable by increasing φ so that g(1) = β(1 + εz(1)) − 1 < 0. Both

steady states are now locally saddle-stable, but in the low-output steady state g(yl) =

β(1+εz(yl))−1 > 0. This means that we have yl < ys < 1 so that the situation depicted

in �gure 4 emerges. In this case, although local indeterminacy and sunspots no longer

exist, the problem of global indeterminacy remains. Again, for a given initial value of

the capital stock, the model admits equilibria that converge either to the lower steady

state or to the NSS.16 These equilibria di�er with respect to the agents' expectations

about future output. This implies that expectations about future output, determine

the long-run outcomes of the economy, i.e. we also have global indeterminacy.

Proposition 7. Under Assumption 1 and Propositions 1 and 3, when 1+εz(1) < 1
β
< 1

α

there are exactly two steady states: the NSS, which is the high output steady and a

saddle, coexists with the low output steady state which is a saddle. In this case there

exist two distinct saddle paths and hence there is global indeterminacy.

We conclude that in our model, and in contrast to previous results, procyclical tax

16For all other values of y we obtain divergent trajectories.
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Figure 4: Saddle-saddle con�guration

rates are not able to insulate the economy from belief driven �uctuations. Furthermore,

since these �uctuations are due to the existence of global (and not local) indeterminacy,

the current indeterminacy mechanism is able to generate (or account for) sharp �uc-

tuations in output as, if agents' expectations are revised downwards, the economy is

displaced from the upper to the lower stable arm, making the economy converge to

the lower output steady state.17 Hence, a tax policy that locally stabilizes, eliminating

small �uctuations,is not able to prevent (big) �uctuations caused by changes in agents'

expectations. In this context the management of expectations is crucial to guarantee

that the economy remains on the right path, avoiding sharp belief driven �uctuations.

It is clear from the above discussion that steady state multiplicity is responsible

for these results. Also, as explained above, in our model steady state multiplicity is

pervasive, due to the existence of a �xed amount of minimum government expenditures.

It follows, that when the government is not able to manage private agents' expectations,

abandoning the view that government expenditures, even in recessions, can not fall

below a �xed minimum level, is the only way to avoid the perils of stabilization. Indeed,

making government spending fully �exible, i.e., eliminating T̄ , is the only way to obtain

17Furthermore, such major crisis is potentielly long lasting if the revision in agents' expectations is

persistent.
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simultaneously saddle path stability and steady state uniqueness, and hence global

determinacy, fully restoring the ability to stabilize of a procyclical tax rate policy.

However, if the government is not able to eliminate T̄ or to manage expectations we

obtain multiple equilibrium trajectories associated with di�erent expectations about

future output. Note however that in each equilibrium agent's expectations are cor-

rect. Indeed, when agents' con�dence falls and the economy lands on the low output

trajectory, the output that materializes is the one expected by the agents. Similarly,

when con�dence is restored and agents are optimistic, the economy switches to the high

output trajectory. Again the output that materializes is the one expected by agents.

6 Expectations Shocks

In this section, we discuss and illustrate the e�ects of expectations shocks. We start

by providing a version of the model in which the agents' expectations about long-

run output follow a simple two state Markov switching process, allowing yt to jump

between trajectories. We then use the augmented model to illustrate the e�ect of shocks

to the agents' expectations about long-run output. Finally, we discuss the economic

mechanism responsible for the emergence of global indeterminacy and regime switching

sunspots.

6.1 Modeling Expectation Shocks

In this section we follow closely Kaplan and Menzio (2016),18 borrowing their de�ni-

tion of a Markov switching rational expectation equilibrium. We introduce a sunspots

variable, St, which takes two values, 0 or 1. We assume that St = 1 is associated with

the belief that the economy is in a trajectory converging to the high output steady

state (conditional on remaining in the same optimistic state), whereas St = 0 is associ-

ated with the belief that the economy is on a trajectory converging to the low output

steady state (conditional on remaining in the same pessimistic state). Agents' expec-

tations switch from optimistic to pessimistic with probability p, i.e., the probability

that St changes from unity to zero in a short interval is p. In this case output falls by

D1,0(k, y). Similarly the agents' expectations switch from pessimistic to optimistic with

probabilty q, in which case output increases by D0,1(k, y).

In the optimistic state, the evolution of the economy is described by (22) and

ẏt
yt

= − α[
β(1 + εz(yht ))− 1

] k̇t
kt

+ β
z(yt)yt − (ρ+ δ)kt

kt
[
β(1 + εz(y

j
t ))− 1

] + pD1,0(kt, yt). (36)

18See also Benhabib et al. (2016).
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The term in the LHS represents the change in output conditional on the economy

remaining in the optimistic state. The �rst two terms on the RHS correspond to the

RHS of (21), while the last term is the probability that the economy switches to the

pessimistic state, p, times the resulting change in output conditional on the economy

switching states, D1,0(k, y). Similarly, in the pessimistic state the behavior of the

economy is described by (22) and

ẏt
yt

= − α[
β(1 + εz(ylt))− 1

] k̇t
kt

+ β
z(yt)yt − (ρ+ δ)kt
kt [β(1 + εz(yt))− 1]

+ qD0,1(kt, yt). (37)

The term in the LHS represents the change in output conditional on the economy

remaining in the pessimistic state. The �rst two terms on the RHS correspond, as

in the optimistic case, to the RHS of (21), while the last term is the probability that

the economy switches to the optimistic state, q, times the resulting change in output

conditional on the economy switching states, D0,1(k, y).

Since expectations must be rational we need to impose the following conditions.

First, when the economy switches from the optimistic to the pessimistic state, the

value of output must land on ySl , where y
S
l denotes the stable manifold associated with

the low-output steady state, yl0. This guarantees that, if the economy then remains in

the pessimistic state forever, it will converge to the low output steady state yl0. Second,

when the economy switches from the pessimistic to the optimistic state, the value of

output must fall on ySh the stable manifold associated with the high-output steady state

if this steady state is a saddle, or its basin of attraction if it is a sink. This guarantees

that, if the economy then remains in the optimistic state forever, it will converge to the

high output steady state yh1 . Finally, if the initial state of the economy is optimistic, the

initial value of output must be on the stable manifold associated with the high-output

steady state or in its bassin of traction, while if the initial state of the economy is

pessimistic, the initial value of output must be on the stable manifold associated with

the low output steady state.

Let S denote a history of realizations of St and tn(S) the nth time at which the

state of the process switches in history S. Then, following Kaplan and Menzio (2016)

we de�ne:

De�nition 2. A Markov switching rational expectation equilibrium is a history-

dependent path {kt(S), yt(S)} such that, for every S, the following conditions are sat-

is�ed: (i) For all t ∈ [tn, tn+1) with Stn = 1, {kt, yt} satis�es (22) and (36). (ii) For

all t ∈ [tn, tn+1) with Stn = 0, {kt, yt} satis�es (22) and (37). (iii) For any k and any

y ∈ ySh (k), y+D1,0(k, y) ∈ ySl (k). For any k and any y ∈ ySl (k), y+D0,1(k, y) ∈ ySh (k).

(iv) y0 ∈ ySh (k0) if S0 = 1, and y0 ∈ ySl (k0) if S0 = 0.
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Figure 5: Simulation of a path-switching sunspot process, ρ = 0.01, δ = 0.025, s =

0.3, γ = 0.35, µ = 0.25, φ = 0.75, T̄ = 0.15

Note that when p = q = 0 the solution of (36) and (22) is any equibrium path which

converges to the high output steady state yh, depicted in �gure 3, if this steady state is

a sink, or the saddle path towards the high output steady state yh depicted in �gure 4

if this steady state is a saddle. Similarly, when p = q = 0 the solution of (37) and (22)

is the saddle path towards the low output steady state yl, depicted in �gures and 3 and

4. By continuity these functions exist for small values of p and q and solve respectively

(36) and (22), and (37) and (22). In the Appendix we discuss the approximation used.

6.2 Illustrating the e�ects of an expectation shock

We now illustrate the behaviour of the model economy under global indeterminacy

and sunspot shocks. In order to better illustrate the limits and perils of stabilization

policy, we consider the case where the two steady states are both saddles and where

the economy starts in the optimistic state, being therefore described by equations (36)

and (22). However, our economy can be hit by a severe and persistent crisis triggered

by a sudden loss in con�dence, which brings it to the lower equilibrium trajectory. The

next �gure depicts such a numerical exercise where we assume p = 0.02 and q = 0.04.

These values imply that the model economy will remain in the optimistic state with

probability 0.666.

The economy starts in the optimistic state and remains there for 52 periods, reaching
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the high output steady-state. Then, in period 53, as St drops from 1 to 0, agents'

expectations about future output become pessimistic and the economy jumps to the

trajectory converging to the low output steady-state. We observe an immediate drop

in output and consumption. However, as expected, the fall in capital is slower, which

is a nice feature of our model. The model economy stays in recession for 17 periods,

reaching the low output steady state. Then, as St jumps from 0 to 1 in period 61, agents

become optimistic again, and the economy jumps to the saddle path converging to the

high output steady state. The same pattern repeats itself two more times with jumping

events at period 112 (recession), 168 (boom) and 243 (recession). Note that, since all

these movements are generated by switches between trajectories converging to quite

di�erent long run output levels, the ups and downs we observe are considerably larger

than �uctuations around one single trajectory, like the ones generated by exogenous

productivity shocks or local sunspots in the case of an indeterminate steady state.

Furthermore, output always overshoots when jumping from the lower to the upper

saddle-path, and the longer the time spent in the low regime the higher the overshoot.19

This is due to the relative slopes of the lower and the upper saddle-paths: the former

is positively slopped while the latter has a negative slope (see �gure 4).

6.3 The economic mechanism behind regime switching sunspots

Below, we describe the economic mechanism behind the emergence of regime switching

sunspots in the case with two saddles. Note �rst that in the absence of distortions, i.e.,

without productive externalities (γ = 0) and without government (T̄ = 0 and φ = 0),

we recover the results of the classical Ramsey model: the steady state is unique and

saddle-stable. Neither local nor global indeterminacy are possible, so that endogenous

�uctuations are ruled out. Furthermore, consumption is a decreasing function of out-

put.20 When we introduce su�ciently strong productive externalities, but no taxes, the

steady state is still unique but indeterminate (a sink). Local sunspots �uctuations are

therefore possible. Also in this case consumption is increasing in income.21 When we

consider taxation (T̄ > 0 and φ 6= 0), and even without externalities, we always have

steady state multiplicity.22 A low output steady state, where [α(1 + εz(yl))− 1] > 0, ap-

19A similar pattern is obtained by Benhaib et al. (2016).
20Note that with an in�nitely elastic labor supply the income e�ect is constant and equal to 1 and

there is no substitution e�ect. Indeed using (9) and (10) we obtain ct = Bwt so that dct
ct

= dwt
wt
.

Substituting now (15) in the previous expression we have ct = c(kt, yt) ≡ B(1 − s)kα/βt y
(β−1)/β
t so

that equilibrium consumption is decreasing in y and increasing in k since β = (1− s) < 1.

21As before ∂Ct
∂yt

= (β−1)
β y

− 1
β

t , but now β = (1− s)(1 + γ) > 1.
22The function εH(y) = [α(1 + εz(y))− 1] , which without any form of countercyclical taxation is

always negative, now changes sign once. See Proposition 2.
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pears and coexists with a high output steady state where [α(1 + εz(yl))− 1] < 0.When

the two steady states are saddles, we have εz(yh) <
1−β
β
< 1−α

α
, while at the low output

steady state εz(yl) >
1−α
α

> 1−β
β
. This means that the function [β(1 + εz(y))− 1] = ∂Ct

∂yt

(see (17)) is positive for values of y < ys, is zero at y = ys and becomes negative when

y > ys. We conclude, that for a given value of capital, consumption is a single peaked

function of income. Therefore, for a given value of capital, there are two values of

output on di�erent sides of the singularity, y1 < ys and y2 > ys that sustain the same

level of consumption, i.e., from (16) we have z(y1)y
(β−1)/β
1 = z(y2)y

(β−1)/β
2 . We know

that when T̄ > 0, provided φ is not too positive, z(y) is increasing in y,23 so that tax

rates, 1 − z(y), are decreasing in income (countercyclical), i.e., lower values of output

are associated with higher tax rates.

Figure 6: Regime-Switching Expectations.From point A to B: pessimistic expectation.

From point C to D: optimistic expectation

Consider now the following. Departing from a situation where expectations are op-

timistic, so that the economy is on the saddle path converging to the high output steady

state, we observe a sudden drop in con�dence. Agents become pessimistic about the fu-

ture of the economy and expect a simultaneous fall in consumption, capital and output.

As along the saddle path converging to the high output steady state we have a negative

23Assuming β < 1, we have y
(β−1)/β
2 < y

(β−1)/β
1 .
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relation between capital and income, it is easy to see that for these expectations to be

self-ful�lling, the economy has to switch to the saddle path on the left of the singular-

ity, where the existing relation between capital and output is positive. Indeed, for the

same value of capital, the economy jumps from point A to point B and starts moving

downwards along the new saddle path, in the direction of the low output steady state.

We observe therefore a simultaneous decrease in output and capital. As consumption

increases with capital and, on this side of the singularity, increases with output, con-

sumption also falls unambiguously. Expectations are therefore self-ful�lling. Consider

now the situation where agents, while on the path converging to the low output steady

state, become optimistic, expecting an increase in output, capital and consumption.

Again, in order for the expectations to be self ful�lling, the economy must jump to the

saddle path converging to the high output steady state. For the same level of capital

the economy jumps from point C to point D, where consumption is identical. The

economy then starts moving upwards along the (negatively sloped) saddle path on the

right of the singularity, converging to the high output steady state. As discussed above,

the initial jump in output is such that, along the higher output saddle path, output

always exceeds its steady state value, i.e output overshoots. Moreover, as along the

high output saddle path, capital increases and income decreases, since on this side of

the singularity consumption decreases with y, we obtain an unambiguous increase in

consumption. Therfore again expectations are self ful�lling.

7 Robustness

In this section, we assess through numerical exercises the robustness of our conclusions

by relaxing the assumption of an identical tax rate for labor and capital income. We

maintain the assumption that the �xed minimum level of tax revenue is given by T̄ =

τy(y)y but now we assume that the government has two di�erent tools that can be

used to stabilize: a variable labor income tax τl and a variable capital income tax τk.

These two tax instruments may di�er in level and in their response to aggregate output,

according the previously considered functional form. We thus get:

τj(y) = µjy
φj , j = k, l (38)

The disposable income of households is therefore given now by zl(y)wl + zk(y)rk

with zj(y) = (1− τj(y)− T̄
y
), j = k, l.

It is obvious that our conclusions on the existence and the multiplicity of steady

states remain, since they rely only on the presence of T̄ in the after-tax labor and

capital income. We focus therefore on the local and global properties of the extended

model.
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We consider calibrated values of the parameters for a quarterly frequency. In par-

ticular, we set (ρ, δ, s) = (0.01, 0.025, 0.3). The �rst two values were chosen in order

to target a 0.035 steady-state interest rate, while the value considered for the share

of capital income in national income is standard in the macroeconomic literature. In

addition, we set the size of the learning-by-doing externality at γ = 0.35, which falls in

(0, 0.44), the interval of estimated values for increasing return to scale.24 With these

values, without countercyclical tax rates, we do not get local inderminacy around the

NSS. However, local indeterminacy around the NSS will emerge for any T̄ higher than

0.055. We set therefore T̄ = 0.15. Regarding the tax rates on labor and capital income,

we set (µk, µl) = (0.2, 0.35) according to the estimates provided by Trabandt and Uhlig

(2011) for countries in the European Union.25

In the following numerical exercises di�erent sets of values for φl and φk were chosen

to allow for di�erent choices of government �scal policy. We observe that the stabilizing

power of the two tools is dramatically di�erent. While the labor income tax rate can be

used to successfully stabilize locally the economy, the same is not true for the capital

income tax rate. Indeed, a value of φl > 0.345, fully prevents the economy from

stationary expectation-driven �uctuations, regardless of the value chosen for φk. Such

conclusions con�rm and complement the contribution of Guo (1999) that a progressive

labor income tax (only) is stabilizing. We also observe that the likelihood of local

indeterminacy increases as the capital income tax becomes more procyclical, since in

this case a wider range of tax rates leads to local ineterminacy.

We now study global dynamics by choosing values of φl and φk corresponding to

either a locally destabilizing or stabilizing �scal policy. Figure 7 illustrates a case

where the government sets φl = −0.75 and φk = −0.25, which leads to a sink-saddle

con�guration.

The �rst conclusion is that this �gure is quite similar to �gure 3, which supports the

robustness of our results. The solid lines represent the k−nullcline and the y−nullcline,
respectively in red and black. As in �gure 3, the upper steady state (NSS) is locally

indeterminate and therefore, for a given k0, there are an in�nite number of initial

values of output y that converge to this steady state. The dashed-dotted lines depict

this kind of trajectories. We can observe that these equilibrium paths converge in a

non-monotonic way, which implies therefore an endogenous propagation mechanism.

24See Basu and Fernald (1997) and Burnside et al. (1995) for a discussion about the size of increasing

returns
25According to Trabandt and Uhlig (2011) in most countries in the European Union a quite high

labor income tax rate coexists with a lower capital income tax rate. On the other hand, in North

America, evidence points to the opposite: a low labor income tax and a rather high capital income tax

rate.
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Figure 7: Sink-saddle con�guration

We also plot two trajectories, in dashed lines, surrounding the nonlinear saddle-path

that converges to the lower steady state. In contrast, this equilibrium path, for a given

k0, admits a unique initial value for y compatible to convergence to the lower steady

state. However, as in the case with just a unique income tax rate we have global

indeterminacy. For initial values of k there are di�erent values of y compatible with

convergence to the lower or to higher steady state.

In �gure 8, we illustrate the case where the government sets φl = 0.75 and φk = 0.25.

In this case, with su�ciently procyclical labor and capital income tax rates, and as in

�gure 4, both steady states are locally determinate (saddles). As above, the nullclines

are represented by the solid lines, while the location of the two nonlinear saddle-paths

is given by two surrounding divergent trajectories represented by a dashed line. We

also plot the two saddle paths of the linearized version of the modi�ed model in dotted

lines and the singularity that occurs at y = 0.768. One easily observes that, as in

the case with just a unique income tax rate depicted in �gure 4, for a given initial

value of the capital stock k0, there are two initial values of output y, each located

on a di�erent equilibrium trajectory on di�erent sides of the singularity, i.e. we have

global indeterminacy. It follows that, also in this case one may construct deterministic

cycles and/or regime switching sunspot equilibria between the two saddle paths, which

validates our previous results.
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Figure 8: Saddle-saddle con�guration

8 Concluding Comments

In this paper, we show that conventional stabilization policy recommendations are

no longer valid in the presence of incompressible public expenditures, such as public

safety, defense and general public services. Without such expenditures, procyclical tax

rates are able to guarantee both local and global uniqueness of equilibrium, preventing

expectation-driven �uctuations. In contrast, the need to raise a �xed amount of tax

revenues in order to �nance incompressible public expenditures, always generates global

indeterminacy, due to the emergence of two steady states. We show that the low activity

steady state is always saddle-path stable while the high activity one may be either a

sink (locally indeterminate) or a saddle (locally determinate). A government, willing

to eliminate local expectation-driven �uctuations around the high steady state, can

do so by setting a procyclical income tax rate. But, as global indeterminacy persists,

the economy remains exposed to large and persistent �uctuations based on a regime-

switching sunspots process.

In this context, a government faces several trade-o�s. The �rst is a "welfare vs.

stabilization" trade-o�. The only way to completely erradicate global indeterminacy

and regime-switching �uctuations is to eliminate the incompressible property of expen-

ditures associated with the basic functions of a State. In particular, these expenditures

will have to follow the business cycle: increasing in a boom and decreasing in a re-
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cession. Of course, this option has severe political and social costs, especially in a

recession, being therefore di�cult to implement. The second trade-o� has to do with

the magnitude of the �uctuations. A government who wishes to maintain incompress-

ible expenditures may chose to disregard and to endure "small" �uctuations around

the high output (sink) steady state. Note that in this context regime-switching �uctu-

ations are unlikely since this steady state acts as a global attractor. However, in the

simulations performed, the existing multiple trajectories converging to the high output

steady state were non-monotic and of long duration, which suggests non-negligible �uc-

tuaction costs. Finally, a potential solution to simultaneously keep the incompressible

expenditures while minimizing expectation-driven �uctuations is to successfully con-

vince economic agents that the economy will remain in the high activity state. This

requires a careful expectations' management which is uncertain and very di�cult to

implement.

We conclude that the existence of incompressible expenditures severely undermines

the stabilization role of �scal policy. However, our results were obtained using a styl-

ized model, where the government balances its budget at each point in time. The

consideration of public debt, breaking the link between incompressible expenditures

and countercyclical tax rates, may attenuate some of the implications of incompressible

public spending. Nevertheless, we conjecture that this problem remains in the long run,

when considering a non-exploding public debt.

9 Appendix

9.1 Relative standard deviation of public spending for selected

countries

country

relative standard deviations US Ger Spa Fra Ita Net

σḠ/σY 0.0964 0.1111 0.0483 0.1489 0.1134 0.0994

σG/σY 0.4027 0.3664 0.4436 1.1139 0.2655 0.6860

σḠ/σG 0.2393 0.3032 0.1089 0.1337 0.4269 0.1449

country Aus Pol Fin Swe UK Nor

σḠ/σY 0.0885 0.0873 0.1526 0.0961 0.0571 0.0455

σG/σY 0.5786 0.4129 0.8607 0.4388 0.2490 0.3876

σḠ/σG 0.1530 0.2115 0.1774 0.2191 0.2293 0.1174
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9.2 Steady State Existence and Multiplicity

Existence and multiplicity are determined by the solutions of H(y) = H̄. Note that we

restrict y ∈ (y, ȳ) with y > 0 and ȳ ∈ (y,+∞) to ensure that z(y) = (1−µyφ− T̄
y
) > 0.

In particular, due to the existence of the income tax τy = T̄
y
, and independently of

wether τ(y) is procyclical or countercyclical, there exists a y > 0, such that z(y) = 0.

Similarly, with a procyclical τ(y), output must be bounded above so that a �nite ȳ

such that z(ȳ) = 0 exists.26 Note that when τ(y) is countercyclical, we have ȳ = +∞.

Below we consider separately the cases φ > 0 and φ < 0.

a) The case where φ > 0 Rewrite H(y) = H̄ as:

(z(y)y)α = H̄y (39)

The left-hand side of (39) is lower than the right-hand side when y = y since

z(y) = 0. Similarly, z(ȳ) = 0 < H̄ȳ. Hence, and since we already prove that a NSS

exists, we have at least two stationary solutions when φ > 0. Let us now show that there

are exactly two solutions. While the right-hand side is linear in y, the �rst derivative

of the left-hand side is given by:

α(z(y)y)α−1
(
1− µ(1 + φ)yφ

)
Notice that the �rst derivative may change sign only once. The second derivative is

given by:

−α(z(y)y)α−2
[
(1− α)(1− µ(1 + φ)yφ)2 + (1 + φ)µφyφz(y)

]
(40)

which is strictly negative so that the left-hand side of equation (39) is a concave function.

Given that the right-hand side of this equation is linear in y, the two functions cross

at most twice. Since we proved above that they also cross at least twice, it follows

that there are exactly two solutions to this equation, and hence exactly two solutions

to H(y) = H̄, with φ > 0.

Remark that when T̄ = 0, y = 0 so that we obtain steady state uniqueness.

b) The case where φ < 0 Rewrite now H(y) = H̄ as:

z(y)α = H̄y1−α (41)

When y = y, the left-hand side of this equation is zero while it tends to unity when

y tends to +∞. In contrast, the right-hand side is positive and �nite when y = y and

26For example for T̄ = 0 we have ȳ =
(

1
µ

) 1
φ

.
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goes in in�nity when y tends to in�nity. As above, since we already prove that a NSS

exists, we conclude that we have at least two solutions. The �rst derivative of the LHS

is:

αz(y)α−1

[
T̄

y2
− φµyφ−1

]
(42)

which is strictly positive with φ < 0. The second derivative is given by:

−αz(y)α−1

(1− α)

(
T̄
y2
− φµyφ−1

)2

1− τ(y)− T
y

+

(
2
T̄

y3
+ µφ(φ− 1)yφ−2

) (43)

This expression is negative for φ < 0. It is trivial to show that the right-hand side of

(41) is also an increasing and concave function of y. Hence, equation (41) admits at

most two solutions. Given that we also concluded that it has at least two solutions, it

has exactly two solutions, and so has H(y) = H̄ with φ < 0.

In this case when T̄ = 0 a y > 0, such that z(y) = 0 always exists, so that we still

have two steady states.

All these arguments imply that H(y) = H̄ has exactly two solutions. As H(y) =

H(ȳ) = 0 < H̄, we conclude that H(y) is single-peaked. Furthermore, di�erentiating

H(y), one can show that the lowest solution (i.e. the low output steady state yL) is

characterized by 1 + εz(yL) > 1
α
while the high output steady state yH = 1 satis�es

1 + εz(yH) < 1
α
.

9.3 Matrix J

J =


(ρ+δ)β(1+εz) k

y
−α[(1+εz)z− ∂c(k,y)

∂y ]
β(1+εz)−1

−(ρ+δ)β+α[δ+ ∂c(k,y)
∂k ]

β(1+εz)−1

(1 + εz)z − ∂c(k,y)
∂y

−(δ + ∂c(k,y)
∂k

)


9.4 Derivation of the phase diagram

Consider equations (35). The k−nullcline satis�es f1(kt, yt) = 0 or equivalently:

δkt = z(yt)yt − c(kt, yt) (44)

The implicit solution k = k1(y) of the above relationship also satis�es the following

relation (along the nullcline):

dk1/k1

dy/y
=

[β(1 + εz(y))δk + c(k, y)]

[βδk + α]
> 0 (45)
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Furthermore, we �nd that f1(0, y) > 0, f1(+∞, y) < 0. It follows that for a �xed y,

any given k ∈ (0, k1) implies k̇ = f1(k, y) > 0. See �gures 1 and 2 where the we depict

the k− nullcline and the arrows that represent the vector �eld.

The y−nullcline satis�es f2(k, y) = 0 or:

s [c(k, y)− sz(y)y]− [ρ(1− s) + δ(1− 2s)]k(t) = 0. (46)

Let us �rst show that the relation between k and y derived from this expression, k =

k2(y) , may be multi-valued, i.e. for a �xed y ∈ (y, ȳ)), we may have zero, one or two

values of k satisfying (46). Note that for a �xed y ∈ (y, ȳ), we have f̃2(0) = f2(0, y) < 0

and f̃2(+∞) = f2(+∞, y) < 0, since c(k, y) is a concave function in k while the last

term is linear in k. We also have:

∂f2(k, y)

∂k
=

s2

(1− s)
c(k, y)

k
− [(1− s)ρ+ δ(1− 2s)]

Moreover, for s < 0.5, as assumed along the paper, c(k,y)
k

= (1 − s)Bz(yt)y
β−1
β

t k
α−1
β

t is

strictly decreasing in k. Then, for a �xed y ∈ (y, ȳ), there is a critical value k̃(y) such

that ∂f2(k,y)
∂k

> (<)0 if k < (>)k̃(y), i.e. the function f̃2(k) is �rst increasing and them

decreasing in k. This implies that, for a given value of y, f̃2(k) = 0 or equivalently

equation (46) may have zero, one or two solutions in k satisfying f2(k, y) = 0. It

follows that k2(y) is a two-valued function with an upper (lower) solution satisfying
∂f2(k,y)
∂k

< (> 0). Notice now that, as c
k
evaluated at any steady state is independent of

y, see (28), the sign of this derivative is identical for both steady states and is given by:

s[ρ+ δ(1− s)]− (1− s)[(1− s)ρ+ δ(1− 2s)] (47)

This means that both steady state are either on the upper or the lower solution k2(y).

To simplify the exposition and without loss of generality, we will assume for the rest of

this section that this expression is negative27 which implies that both steady states are

on the upper branch of k2(y).

We can now study the shape of the y−nullcline. We have that:

dk2/k2

dy/y
=

sc(k, y)− β(1 + εz(y))[ρ(1− s) + δ(1− 2s)]k

α
[
sc(k, y)− (1−s)

s
[ρ(1− s) + δ(1− 2s)]k

] (48)

=
s2z(y)y − [β(1 + εz(y))− 1][ρ(1− s) + δ(1− 2s)]k

α
{
s2z(y)y − (1−2s)

s
[ρ(1− s) + δ(1− 2s)]k

}
where the last equality has been derived using (46). It is easy to see that for k = 0,

i.e., at the intersection between the y−nullcline and the horizontal axis, the slope of

27For a standard parametrization (ρ, δ) = (0.01, 0.025), this is satis�ed for s ∈ (0, 0.39).

29



the y−nullcline is equal to 1
α
> 1. Also, from (??), we can see that the slope of the

y−nullcline will change sign at most two times and that the numerator is positive on

the right-hand side of the singularity point ys. Furthermore, when evaluated at the

steady state, the slope of the nullcline is given by:

[s [ρ+ δ(1− s)]− (1− s) [(1− s)ρ+ δ(1− 2s)]α(1 + εz(yj))]

α [s [ρ+ δ(1− s)]− (1− s) [(1− s)ρ+ δ(1− 2s)]]
, j = h, l (49)

where by assumption the denominator is negative, see (47), so that the two steady states

are located on the upper branch of the nullcline. Therefore, when the NSS is a saddle,

i.e. located at the RHS of ys, the slope of the y−nullcline is negative. This implies that

the y−nullcline admits a maximum at a point y∗ < ys. We still need to characterize

the slope around the lower steady state and around the upper steady state when it is

a sink. Around the lower (upper) steady state, we have (1 + εz(yl)) > (<) 1
α
. Since by

assumption we consider s[ρ+δ(1−s]
(1−s)[(1−s)ρ+δ(1−2s)]

< 1, it follows that dk
dy
> 0 around the lower

steady state. In contrast, the sign of the numerator is left undetermined for the upper

steady state when it is a sink i.e. it can be located on the increasing or decreasing part

of the upper-solution of k2(y). Obviously, on the lower branch of the y-nullcline, the

derivative has an oppositive sign. As a result, the y-nullcline is �rst increasing in y and

then decreases until s2

(1−s)c(k, y) = (1 − s)ρ + δ(1 − 2s)]k. It is therefore bended and

goes back to the origin (without attaining it).

We now determine the directions of the arrows that represent the vector �eld of ẏt.

Remember that our model exibits a singularity when g(ys) = β(1 + εz(y
s)) − 1 = 0,

which in the space (y, k), de�nes a vertical line y = ys. Of course, on di�erent sides of

the vertical line y = ys horizontal arrows point in opposite directions. Now consider a

point (y1, k1) on the LHS of ys and above the y− nullcline. As we know that ∂f2(k,y)
∂k

=

(1+γ) {s3z(y)y − [ρ(1− s) + δ(1− 2s)](1− 2s)k} we know that moving from y1 on the

zero motion line, i.e. on f2(y1, k) = 0, vertically to (y1, k1), f2(y, k) is decreasing. Hence

ẏ > 0 at (y1, k1), changing sign whenever, for the same k1, we cross the y−nullcline
or the y = ys line. The same reasoning applies to any �xed k on the LHS of ys and

above the y−nullcline. It follows that for any k on the LHS of ys but below the the y−
nullcline f2(y, k) is decreasing, i.e., ẏ < 0, changing again sign whenever, for the same

k, we cross the y−nullcline or the y = ys line. See �gures 1 and 2.

It is also easy to show that when k = 0 the y−nullcline is located on the right of

the k−nullcline as depicted in �gures 1 and 2. Indeed, although limk→0 c(k, y) = 0, it is

easy to see that k will tend to zero faster than C(k, y). Therefore, rewriting (44) and

(46) respectively as:

z(yt)yt = c(kt, yt) + δkt

z(yt)yt =
c(kt, yt)

s
− [ρ(1− s) + δ(1− 2s)]k(t)

s2
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when k → 0, on the k̇ = 0 nullcline we have that z(y)y = limk→0 c(k, y), while on

the ẏ = 0 nullcline z(y)y = limk→0
c(k,y)
s

> limk→0 c(k, y). As z(y)y is an increasing

function of y, on the horizontal axis, the y−nullcline starts on the right hand side of

the k−nullcline.

9.5 Obtaining the stable manifolds in the Markov switching ra-

tional expectation equilibrium with two saddles

We started by assuming p and q arbitrarily small (i.e. p = q = 0) and obtained the two

saddle paths converging respectively to the high and the low output steady states. For

simplicity we considered the saddle-path solutions of the linear approximations around

the two steady-states of the dynamic system (21)-(22)28

yjt = yjss + (kt − kjss)ηj j = h, l

kjt+1 = kjss + eλ
j
(kt − kjss) j = h, l

(50)

where yjt , k
j
t are respectively the output and the capital stock on the saddle-path j = h, l,

yjss, k
j
ss the steady states, λj the stable eigenvalue associated to the saddle-path j and

ηj the ratio of the elements of the eigenvector associated to the stable eigenvalue of the

saddle-path j.

Given that the capital stock is predetermined and that for a given kt two equilib-

rium values of output, yh(kt, y
h
ss, k

h
ss) and y

l(kt, y
l
ss, k

l
ss), are feasible, observed output is

obtained by randomizing across both saddle-paths using the sunspot variables St:

yt = Sty
h(kt, y

h
ss, k

h
ss) + (1− St)yl(kt−1, y

l
ss, k

l
ss) (51)

where St = (1− p)St−1 + q(1−St−1). The realization of observed output in turn deter-

mines which saddle-path we are in. Hence, the capital stock kt(kt−1, k
s
ss) is determined

accordingly using (50).
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