From Political Violence to Social Instability

Dominik Karos¹*

¹School of Business and Economics, Maastricht University,
P.O. Box 616, 6200LM Maastricht

*To whom correspondence should be addressed; E-mail: d.karos@maastrichtuniversity.nl.

If protesters can coordinate, the probability that an anti-government protest turns into a successful revolution is higher under more repressive regimes. This is true for arbitrary social networks with heterogeneous agents. The implications of the provided model are illustrated using data on protests, revolutions, and political terror worldwide between 1976 and 2014.

Introduction

The spread of political activism in a society can be modeled as a diffusion process in a network (1–3), using models from epidemiology (4), physics (5), or computer science (6), most of which focus on the link between network properties and diffusion dynamics (7,8). A crucial difference between these disciplines and the social sciences is, however, that in the latter an individual, i.e. a vertex in the underlying network, makes a decision on whether or not to become active based on her information and preferences (9–11), whereas in the former they simply become active if a threshold in their neighborhood is crossed. So, results in the social sciences that are derived from these models should be treated with caution: factoring in human behavior requires heterogeneous agents with potentially incomplete information who can communicate
and observe each other. In particular, agents who are close – friends, families, or partners – may coordinate and take their decision together. Figure 1 illustrates this idea.

The aim of this article is to analyse how political violence (12) and social media (13) affect the dynamic and outcome of a protest that may turn into a revolution. While restricting the access to social media slows down a protest, repression has an ambiguous effect. If a successful revolution requires some powerful individuals to become active then the probability of a revolution (given a protest) is higher under more repressive regimes. This finding, relying on the human nature to communicate and coordinate, is illustrated in Figure 2: repression increases the number of revolutions per protest.

1 Transition Probabilities

Individuals of a (finite) society N have to decide between being *active* (that is to participate in a protest) or being *inactive*. The decision is based on the anticipated outcome of the protest, which in turn depends on the (private) belief on who else is active. The belief of individual i is
Figure 2: left: the distribution of protests and revolutions between 1976 and 2014 over the five levels of the Political Terror Scale (The PTS has five levels, level 1 countries being under a secure rule of law and level 5 countries with terror expanded to the whole population). – right: the probability that an anti-government protest turns into a revolution is 0 in PTS-1-countries and gradually increases to its maximum of about 1% in PTS-5-countries. (Data are explained in the Supplementary Material, Appendix A.)

captured by a collection S_i of subsets of $N \setminus \{i\}$ of whom i thinks that they may contain exactly the active individuals. A state consists of a set S of active individuals and a vector $\mathcal{S} = (S_i)_{i \in N}$ of people’s beliefs. An individual’s expected future utility depends on her expectation about who will become active, how likely it is that the revolution will be successful, or what the consequences of a successful or failed attempt of a revolution are. All these considerations shall be contained in the (ordinal) utility function u_i, where $u_i(S')$ shall be interpreted as i’s expected future utility if exactly the members of S' were active. Given the context it seems fair to assume that u_i is monotonic, i.e. the more individuals are active, the more attractive it is to become active as well. As i has only incomplete information, she must derive her utility from her belief S_i. Individuals are assumed to be very risk adverse, so given belief S_i, individual i becomes active if $u_i (S_i \cup \{i\}) \geq u_i (S_i)$ for all $S_i \in S_i$.

Over time people randomly observe or meet others: observations are unilateral, whereas meetings (either physical or in social media) enable people to communicate (recall Figure 1b).
Given the interpretation of meetings, it shall be assumed that if any two people meet the same person, they meet each other as well. So, an observation is a directed link in a graph G, whereas a meeting is a clique in an undirected subgraph H of G. Henceforth such a pair (G,H) of two graphs shall simply be called an observation.

At each point in time such an observation is randomly drawn, and each individual i updates her belief: if she observes an individual j being active, she now believes that j is active; if she observes an individual k to be inactive, she now believes that k is inactive. Individuals might have (partial) information about each other’s utilities, so that they can infer the behavior of (some) unobserved individuals from their observation. Recall Figure 1c: if D knew that A would become active only if there were at least four active individuals besides A, then she would infer that there are at least five active individuals (the three she observes plus at least two unobserved for A to become active). In this case it would be optimal for D to become active as well. Nevertheless, people are not required to have full information about the others’ utility functions, so that in general they are not certain about who is active.

Besides the ability to extract additional information from observations, there is another mechanism that crucially affects the dynamics of social unrest, namely coordination. Suppose there is a couple, both inactive and knowing that the other is inactive as well, such that given their beliefs both prefer to be inactive, but they would prefer to be active if their partner were active as well. If coordination is impossible, they will not become active – which is highly unrealistic as they probably talk and make a joint decision à la “I go if you go”. More general, if C is a clique in a meeting graph H, the members of C play a coordination game in which they are allowed to communicate. Since they have monotonic utility functions, this game has a unique strong Nash equilibrium (14) with a maximal set of active individuals, say K. I shall assume that this Nash equilibrium is played, and that each $i \in C$ observes that each $j \in K$ is active (recall Figure 1c). These sets K shall be called coordination units. Every time a new ob-
ervation \((G, H)\) is drawn, a new game is played in each component of \(H\), and the set of active individuals as well as believes might change. The notation \((S, \mathcal{I}) \rightarrow_{u, G,H}^u (T, \mathcal{I})\) means that the observation \((G, H)\) causes a transition from state \((S, \mathcal{I})\) to state \((T, \mathcal{I})\) given the utility functions \(u = (u_i)_{i \in N}\).

Since observations are random events, so are these transitions; and the probability of a transition from \((S, \mathcal{I})\) to \((T, \mathcal{I})\) is simply the probability that an observation \((G, H)\) occurs with \((S, \mathcal{I}) \rightarrow_{u, G,H}^u (T, \mathcal{I})\). As these transition probabilities are static, they define a Markov process which starts in the state where nobody is active and everybody believes that nobody is active. The monotonicity of the utility functions imply that the process is monotonic: over time more individuals become active. (In particular, the model allows active individuals could become inactive again, but they prefer not to.) If observations are drawn according to probability distributions \(\beta\) or \(\gamma\) such that under \(\beta\) it is more likely that “large” groups of people observe each other or meet, then the process resulting from \(\beta\) will be faster than the one resulting from \(\gamma\). This emphasizes the role of social media which foster the coordination of large groups.

The steady states of the Markov process that can be reached with positive probability are those states in which no possible observation can cause any group of individuals to change their decisions or beliefs. So, these steady states are stronger than Nash equilibria, but weaker than strong Nash equilibria: it might be profitable for some coalition to defect, but such a coalition will not meet with positive probability.

2 Political Repression and Its Implications

Political repression is used to keep people from protesting. Under repression active individuals shall receive lower utility, whereas the utility of inactive individuals shall not be affected. This is a strong assumption but can be considered the worst case for the arguments that follow. It shall also be assumed that the government cannot affect the utility function after it has been
Figure 3: The numbers of protests (left) and revolutions (right) per country-year observation increase with political violence until a PTS value of 4.

Although this form of repression seems to affect activists only, its effect on protest dynamics is ambiguous. For any fixed belief an individual’s decision to become active may be reversed, causing a negative *direct* effect. Meanwhile from observing a protester with a lower utility from being active one can infer that many more (unobserved) people are active, causing a positive *indirect* effect. If there are, however, no people who would initiate a protest, there will be no indirect effect. So, if repression is very severe, we can expect a clear detrimental effect. This is in line with the data in Figure 3 where the number of protests increases with political repression up until PTS-level 4, and then decreases again.

Most revolutions succeeded when some very powerful players became active: the Iranian Revolution ended with the Supreme Military Council’s declaration to be neutral on February 11, 1979; the Tunisian Revolution ended with the ouster of President Ben Ali by the military on January 14, 2011 (15); and the Ukrainian Revolution succeeded when the Parliament ousted President Yanukovych on February 22, 2014. These players shall be introduced in the model as well: an individual i is an *opportunist* if i participates in a protest only if she believes that it will immediately reach a critical mass, and if i’s utility function is publicly known. That is i
becomes active only if for any $S_i \in \mathcal{S}_i$ it holds that $S_i \cup \{i\}$ is large enough to overthrow the government; and if i becomes active, everybody who observes i infers that the revolution will be successful. Reflecting the power of opportunists it shall be assumed that a revolution can only be successful if at least one opportunist is active. Note that repression cannot reverse an opportunists decision to become active as $u_i (S_i \cup \{i\}) = v_i (S_i \cup \{i\})$ whenever it is optimal to be active for i under u_i. Hence, repression has no direct effect, but only positive indirect effects on opportunists.

Result In any state of the Markov process that is reached with positive probability the probability of a transition into a successful revolution is at least the same under a more repressive regime.

This result applies when a government does not change its expected behavior in the course of a protest. In particular, if a government is expected to violently intervene in the course of a protest (reflected by a high PTS value), the actual intervention will not have an effect on people’s utility functions. Concessions are an alternative way to dissolve a protest (16). They could be interpreted as a sign of weakness causing even more people to protest (17), but here another effect is more important: opportunists may prefer to remain inactive when they are accommodated, whereas political violence will not affect their decision. Hence, the loyalty of powerful individuals seems to be a more effective instrument for securing power than political violence (18).

3 Conclusion

One would expect to see rare but large jumps in the size of anti-government protests rather than a smooth gradual increase under a repressive regime. This is in line with the observations
of (12), namely that revolutions under repressive regimes are quick and unanticipated. The model also underlines the importance of social media for the process dynamics: they are the devices that allow for the coordination of large groups and, together with the opportunists, are key to explain the instability that is caused by political violence.

References

Table 1: Revolutions and Mass Protests 1976 - 2014

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revolutions</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Protests</td>
<td>625</td>
<td>742</td>
<td>1339</td>
<td>1195</td>
<td>390</td>
</tr>
<tr>
<td>Country-Year Observations</td>
<td>1707</td>
<td>1821</td>
<td>1671</td>
<td>754</td>
<td>319</td>
</tr>
<tr>
<td>Protests per Observation</td>
<td>.366</td>
<td>.407</td>
<td>.801</td>
<td>1.585</td>
<td>1.223</td>
</tr>
<tr>
<td>Revolutions per Protest</td>
<td>0</td>
<td>.0027</td>
<td>.0090</td>
<td>.0092</td>
<td>.0103</td>
</tr>
</tbody>
</table>

Supplementary Material

A Data Selection

Table 1 contains the data that are depicted in Figures 2 and 3. The time frame from 1976 to 2014 is chosen, since PTS data from (19) are available since 1976 and data on protests from (20) are available until 2014.\(^1\) Note that not for all countries these data exist for all years; each country-year combination for which both data are available is counted in Table 1. During this period (21) lists 39 events that are categorized as *Resignation of Executive due to Poor Performance or Loss of Authority*. In seven cases the political change was due to military intervention or rebel movements rather than protests,\(^2\) in two cases the political leader was impeached,\(^3\) and in one case the government stepped back after a lost war.\(^4\) The remaining 29 events are contained in Table 1. Since these events can have a huge impact on the PTS in the year of occurrence,\(^5\) the latter is calculated as \(PTS^* = \frac{m}{12}PTS_0 + \frac{12-m}{12}PTS_{-1}\) rounded to the closest integer. Hereby, \(PTS_0\) is the PTS value in the year of the event, \(PTS_{-1}\) is the value in the previous year, and \(m\) is the month of the event.\(^6\)

\(^1\) (20) distinguishes between *Germany* and *East Germany*, while (19) distinguishes between *Germany* (from 1990), *East Germany*, and *West Germany* (until 1989). PTS data from *West Germany* in the latter data set are used for protests in *Germany* in the former.

\(^3\)Lithuania 2004, Madagascar 1996

\(^4\)Argentina 1982

\(^5\)For instance, after the Tunisian revolution the PTS value fell from 3 in 2010 to 1 in 2011.

\(^6\)Except for the Iranian Revolution 1979 where \(PTS_{-1}\) is not available. Here, \(PTS^* = PTS_0\).
B Mathematical Appendix

Let $i \in N$. The utility function u_i is monotonic if $u_i(S_i \cup \{i\}) \leq u_i(T_i \cup \{i\})$ for any two sets $S_i \subseteq T_i \subseteq N \setminus \{i\}$, and $u_i(T_i \cup K) \geq u_i(T_i)$ for all $K \subseteq N$ with $i \in K$ and all $T_i \subseteq N \setminus \{i\}$ whenever there is $S_i \subseteq T_i$ with $u_i(S_i \cup K) \geq u_i(S_i)$. Hence, if i is active her utility rises with the number of active individuals; and if a set $S_i \cup K$ is large enough for i to be active, so is each superset $T_i \cup K$. A set S is Nash-stable if $u_i(S) \geq u_i(S \setminus \{i\})$ for all $i \in S$. A set that is not Nash-stable cannot be sustained as at least one individual has a reason to leave it immediately. The collection of Nash-stable sets shall be denoted by \mathcal{S}^*.

An individual i may have (partial) information about the utilities of others (or information about the information about the utilities of others), allowing her to infer that some sets are not Nash-stable and therefore not sustainable. Denote by $\mathcal{S}_i^* \subseteq 2^{N \setminus \{i\}}$ the collection of sets (without i) that i considers Nash stable.\footnote{If i has no information at all then $\mathcal{S}_i^* = 2^{N \setminus \{i\}}$.} The only restriction shall be that $S \in \mathcal{S}_i^*$ for all $S \in \mathcal{S}^*$ with $i \notin S$. Hence, if $S \subseteq N \setminus \{i\}$ is Nash stable then i cannot assume it is not. Note that \mathcal{S}_i^* depends on the players’ utility functions, that is $\mathcal{S}_i^* = \mathcal{S}_{i,u}^*$.

A belief of player i is a collection of sets $\mathcal{S}_i \subseteq \mathcal{S}_i^*$. Two implicit assumptions made here are that i always knows whether she is active, and that (she thinks) she can change her status without being observed by others. As individuals do not exactly know who is active, their decisions must be based on their beliefs. Individuals are pessimistic with respect to the size of the protest, i.e. they become active if and only if $u_i(S_i \cup \{i\}) \geq u_i(S_i)$ for all $S_i \in \mathcal{S}_i$.

Individuals constantly observe their environment and update their beliefs. Suppose that individual i thinks that exactly the members of the set S_i are active, that she then observes the members of $C \subseteq N \setminus \{i\}$ becoming active, and those of $D \subseteq N \setminus (C \cup \{i\})$ inactive. Then i
must now believe that the set of active individuals is contained in the collection

\[\tilde{\Phi}^u_{S_i} (C, D) = \{ T_i \in \mathcal{S}^* : (S_i \setminus D) \cup C \subseteq T_i \subseteq N \setminus D \} . \]

Suppose that individual \(i \) with belief \(S_i \) discovers that the members of \(A \subseteq N \setminus \{ i \} \) have been active and those of \(B \subseteq N \setminus (A \cup \{ i \}) \) inactive. She then verifies which of her beliefs might have been true, namely of those \(S_i \in \mathcal{S} \) with \(A \subseteq S_i \subseteq N \setminus B \). The overall belief updating process after observing who was (not) active and who has become (in)active can, hence, be captured by the function

\[\Phi^u_{\mathcal{S}_i} (A, B, C, D) = \bigcup_{S_i \in \mathcal{S} : A \subseteq S_i \subseteq N \setminus B} \tilde{\Phi}^u_{S_i} (C, D) . \]

Note that, without suitable starting conditions, the updated belief might be an empty set; in this paper, however, the non-emptiness is guaranteed (see the Lemma below).

Let \((S, \mathcal{S})\) be a state and let \((G, H)\) be an observation. Denote by \(G_i, H_i \) the neighbors of \(i \) in the graphs \(G \) and \(H \), i.e. \(G_i \) the set of individuals that \(i \) observes, and \(H_i \subseteq G_i \) is the set of individuals that \(i \) meets. The players in \(H_i \) (who all meet) play a simultaneous move game with strategies being active or inactive. In order to find the payoffs in this game define for \(K \subseteq H_i \) and \(j \in H_i \)

\[\Psi_j (K) = \Phi^{G,H}_{S,S_j} (K) = \tilde{\Phi}^{S_j}_{G,j} (G_j \cap S, G_j \setminus S, K, \emptyset) \]

That is, \(R \in \Psi_j (K) \) if \(R \) is consistent with \(i \)'s observation that the members of \(G_i \cap S \) have been active, those of \(G_i \setminus S \) have been inactive, the members of \(K \) are becoming active, and nobody is becoming inactive.\(^8\) It is easy to see that \(\Psi (K) \subseteq \Psi (K') \) whenever \(K' \subseteq K \). Hence, if \(u_i (T'_i \cup \{ i \}) \geq u_i (T'_i \setminus R') \) for all \(R \subseteq H_i \) and all \(T'_i \in \Psi (K') \) then \(u_i (T_i \cup \{ i \}) \geq u_i (T_i \setminus R) \)

\(^8\)This belief is an ex ante belief: once the equilibrium is being played, further information might be revealed, namely that the members of \((H_i \cap S) \setminus K\) have become inactive. Whether or not individuals take that into account after the game has been played is not relevant for the results of this paper, as it will turn out that no active individual will become inactive again (see the Lemma below).
for all \(R \subseteq H_i \) and all \(T_i \in \Psi (K) \) by the monotonicity of \(u_i \). This implies that there is a unique largest strong Nash equilibrium \(K_i \) in the game that is played among \(H_i \). (If \(K_1 \) and \(K_2 \) are two strong Nash equilibria, so is \(K_1 \cup K_2 \).) The transition \((S, \mathcal{I}) \rightarrow_{G,H} (T, \mathcal{I})\) is, therefore, well-defined with \(T = \bigcup_{i \in N} K_i \) and \(\mathcal{I}_i = \Psi_i (K_i) \) for all \(i \in N \).

For two states \((S, \mathcal{I})\) and \((T, \mathcal{I})\) the probability of a transition from the former to the latter (given a vector of utility functions \(u \)) is given by

\[
\mu^{T,\mathcal{I}}_{S,\mathcal{I}} = \sum_{G,H : (S,\mathcal{I}) \rightarrow_{G,H} (T,\mathcal{I})} \gamma (G, H),
\]

(1)

where \(\gamma (G, H) \) is the probability that observation \((G, H)\) occurs. These transition probabilities define a Markov process over the set of states. One can define an order \(\succeq \) on that set with \((S, \mathcal{I}) \succeq (T, \mathcal{I})\) if and only if \(T \subseteq S \). The following lemma proves that the Markov process is monotonic with respect to that order if it starts in the state where nobody is active and everybody believes that nobody is active (this state satisfies the premise of the lemma).

Lemma Let \((S, \mathcal{I})\) be a state with \(S \in \mathcal{I}_j \subseteq \mathcal{I}_j^* \) for all \(j \in N \), and suppose that for all \(\emptyset \neq R \subseteq N \) there is \(j \in R \cap S \) with \(u_j (S_j \cup \{j\}) \geq u_j (S_j \setminus R) \) for all \(S_j \in \mathcal{I}_j \). Then for each observation \((G, H)\) and any state \((T, \mathcal{I})\) with \((S, \mathcal{I}) \rightarrow_{G,H}^{u} (T, \mathcal{I})\) it holds that \(S \subseteq T \) and \(T \in \mathcal{I}_j \subseteq \mathcal{I}_j^* \) for all \(j \in N \). Moreover, for each \(\emptyset \neq R \subseteq N \) there is \(j \in R \cap T \) with \(u_j (T_j) \geq u_j (T_j \setminus R) \) for all \(T_j \in \mathcal{I}_j \).

Proof. Let \((S, \mathcal{I})\) have the required properties, let \((G, H)\) be an observation and let \((T, \mathcal{I})\) satisfy \((S, \mathcal{I}) \rightarrow_{G,H}^{u} (T, \mathcal{I})\). Let \(i \in N \) and let \(K_i \) be the set of players who choose being active in the largest strong equilibrium of the game played within \(H_i \). By construction \(\mathcal{I}_i \subseteq \mathcal{I}_i^* \), and for each \(T_i \in \mathcal{I}_i \) there is \(S_i \in \mathcal{I}_i \) with \(S_i \subseteq T_i \). If \(i \in S \) then for each \(S_i \in \mathcal{I}_i \) it holds that \(u_i (S_i \cup \{i\}) \geq u_i (S_i) \). Hence, for each \(T_i \in \mathcal{I}_i \) it holds
that \(u_i(T_i \cup \{i\}) \geq u_i(T_i) \) by the monotonicity of \(u_i \). Therefore, again by the monotonicity of \(u_i \), \(i \in K_i \subseteq T \), so that \(S \subseteq T \). Since \(S \cup K_i \subseteq T \) and \(T \in \mathcal{S}_i^* \), it holds that \(T \in \tilde{\Phi}_S(K_i, \emptyset) \), and since \(G_i \cap S \subseteq S \subseteq N \setminus (G_i \setminus S) \) and \(S \in \mathcal{S}_i^* \) it holds that \(T \in \Psi_i(K_i) = \mathcal{T}_i \). Let \(R \subseteq N \) and assume that for all \(j \in R \cap T \) there is \(T_j \in \mathcal{T}_j \) with \(u_j((T_j \setminus R) \cup ((T_j \cup \{j\}) \cap R)) = u_j(T_j \cup \{j\}) < u_j(T_j \setminus R) \). Then the monotonicity of \(u_j \) implies \(u_j(S_j \cup \{j\}) \leq u_j((S_j \setminus R) \cup ((T_j \cup \{j\}) \cap R)) < u_j(S_j \setminus R) \) for all \(S_j \in \mathcal{T}_j \) with \(S_j \setminus R \subseteq T_j \setminus R \). Since such an \(S_j \) exists for each \(j \in R \cap N \) by construction, this is a contradiction to the premise of the Lemma. \(\text{Q.E.D.} \)

One can define a partial order \(\succeq \) on the set of observations by setting \((G^1, H^1) \succeq (G^2, H^2) \) for two observations \((G^1, H^1) \) and \((G^2, H^2) \) with \(G_2 \) being a subgraph of \(G_1 \) and \(H_2 \) being a subgraph of \(H_1 \). Let \(\beta \) and \(\gamma \) are distributions over the set of observations such that \(\beta \) first order stochastically dominates \(\gamma \) with respect to the order \(\succeq \), and let \(\mu \) and \(\nu \) be the respective transition probabilities as defined in Equation (1). Then \(\mu_{\tilde{\mathcal{S}}, \mathcal{T}} \) first order stochastically dominates \(\nu_{\tilde{\mathcal{S}}, \mathcal{T}} \) with respect to \(\succeq \) for any \((S, \mathcal{T}) \) that is reached with positive probability. Let the corresponding processes be denoted by \(X \) and \(Y \). Since they are monotonic, Theorem 3.4 in (22) implies that \(X(t) \) first order stochastically dominates \(Y(t) \) for all \(t \geq 0 \).

Henceforth, the set of coalitions that are sufficiently large to overthrow the government shall be denoted by \(\mathcal{W} \); clearly if \(S \in \mathcal{W} \) then \(S' \in \mathcal{W} \) for each \(S' \) with \(S \subseteq S' \). Under repression \(i \)'s utility function will be \(v_i \) with \(v_i(S_i) \leq u_i(S_i) \) for all \(S_i \subseteq N \) with \(i \in S_i \) and \(v_i(S'^i) = u_i(S'^i) \) for \(S'^i \subseteq N \setminus \{i\} \). Moreover, \(v_i(S''_i) = u_i(S''_i) \) for all \(S''_i \in \mathcal{W} \).

Proof of the Result Let \(u \) and \(v \) be two vectors of utility functions as above, and let the respective transition probabilities (as defined in Equation (1)) be denoted by \(\mu \) and \(\lambda \), respectively. Since the process starts at a state \((\emptyset, \mathcal{S})\) with \(\emptyset \in \mathcal{S}_i \) for all \(i \in N \), all states that are reached
with positive probability satisfy the premise of the Lemma. It must be proven that

\[\sum_{(T,\mathcal{F}) : T \in \mathcal{W}} \mu_{S,\mathcal{F}}^{T,\mathcal{F}} \leq \sum_{(T,\mathcal{F}) : T \in \mathcal{W}} \lambda_{S,\mathcal{F}}^{T,\mathcal{F}} \]

for any such state \((S, \mathcal{F})\). For this purpose let \((T, \mathcal{F})\) be a state with \(T \in \mathcal{W}\), and let \((G, H)\) be such that \((S, \mathcal{F}) \rightarrow_{v_{G,H}} (T, \mathcal{F})\). If such \((G, H)\) does not exist then \(\mu_{S,\mathcal{F}}^{T,\mathcal{F}} = 0 = \lambda_{S,\mathcal{F}}^{T,\mathcal{F}}\). Otherwise, \(T = \bigcup_{i \in N} K_i\), where \(K_i\) are defined as before. Let \(i \in T\) be an opportunist. Since the identity and utility function of \(i\) are publicly known, it must hold that \(\mathcal{F}_j \subseteq \mathcal{W}\) for all \(j \in K_i\). Hence, for any \(T_j \in \mathcal{F}_j\) and any \(K' \subseteq K\) there is \(j \in K'\) such that

\[v_j(T_j \cup \{j\}) = u_j(T_j \cup \{j\}) \geq u_j(T_j \setminus K') = v_j(T_j \setminus K') \]

where the first and the last equation come from the definition of \(v_j\). This means that the largest strong Nash Equilibrium in \(H_i\) with utility functions \(v\) must contain \(K_i\) as active individuals. Hence, if \((T', \mathcal{F}')\) is such that \((S, \mathcal{F}) \rightarrow_{v_{G,H}} (T', \mathcal{F}')\) then \(\mathcal{F}_i' \in \mathcal{W}\) as before and \(T' \in \mathcal{F}_i' \subseteq \mathcal{W}\) by the Lemma. So, if \((G, H)\) causes a transition from \((S, \mathcal{F})\) to a state \((T, \mathcal{F})\) with \(T \in \mathcal{W}\) under \(u\), it causes a transition from \((S, \mathcal{F})\) to a state \((T', \mathcal{F}')\) with \(T' \in \mathcal{W}\) under \(v\). This proves the claim. \(Q.E.D.\)