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Abstract

This paper considers the multilateral matching market, where two or more agents
can make a contract on a joint venture multilaterally. The possible joint ventures
are exogenously given, and the preference relation of each agent is represented by
a quasilinear utility function consisting of the valuation on the joint venture and
the monetary transfer. We investigate three stability concepts: the weak setwise
stable outcome, the stable outcome, and the strongly group stable outcome. We
show that if the structure of the possible joint ventures satisfies a condition called
the acyclicity, then these three stability concepts are equivalent with each other,
are efficient, and exist for any continuous valuation functions. We also show that
the acyclicity is necessary to guarantee the equivalence and the efficiency of the
stability concepts for any continuous and concave valuation functions. For the
existence, the acyclicity is is a necessary condition for the stable and the strongly
group stable outcomes. On the other hand, we need an additional condition to
obtain a necessary condition for the existence of the weakly setwise stable outcome.
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1 Introduction

Multilateral agreements are made in many economic environments: Joint ventures are

formed between two or more firms to produce new products or services by pooling re-

sources; Clubs are associated with two or more agents; International agreements involves

two or more countries. To analyze equilibrium agreements in such situations, Hatfield

and Kominars (2015) introduced a model of multilateral matching. In their model, a

joint project (or activity) of two or more agents is called a venture. The possible ventures

are exogenously given. Agents are allowed to participate in multiple ventures with mon-

etary transfers. Each agent has quasilinear utility function consisting of the valuation

on the ventures that involve him/her and the monetary transfer. An agreement on a

venture is represented by a multilateral contract that specifies the venture’s participa-

tion (or output) level and monetary transfers. A feasible outcome can be represented as

a set of multilateral contracts.

As an equilibrium notion, Hatfield and Kominars (2015) defined two stability con-

cepts which are from matching theory originated with Gale and Shapley (1962).1 The

stronger stability concept is called strongly group stability.2 An outcome is a strongly

group stable if it is individually rational: no agent can be made strictly better off by

dropping some of current contracts and it is not strongly blocked: no group of agents can

be made strictly better off by signing new contracts possibly dropping some of current

contracts. The weaker stability concept is simply called stability.3 The only difference

with the strong stability is that the blocking concept underlying the stability imposes

an additional requirement into the strong blocking: The new contracts associated with

the strong blocking should be contained in any optimal choice from the new and current

contracts by the agents involved in the strong blocking. In general, every strongly group

stable outcome is efficient while a stable outcome may be inefficient.4

1Their model does not subsume Gale and Shapley (1962)’s. However, their modeling enables us to
use the matching theoretic stability concepts.

2The strongly group stability is originally introduced by Konishi and Ünver (2006) in the context of
a many-to-many matching problem.

3This stability concept is used in Hatfield and Kominars (2012) and Hatfield et al. (2013) in the
context of the model of trading networks with bilateral contracts.

4It is well recognized that the stability is incompatible with the efficiency in many-to-many matching
models or more complex matching models. For example, Blair (1988) showed that a stable outcome may
be inefficient in a many-to-many matching model. See also Sotomayor (1999), Echenique and Oviedo
(2006), Konishi and Ünver (2006), Klaus and Walzl (2009), and Westkamp (2010) for related studies.
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Hatfield and Kominars (2015) also defined the notion of competitive equilibrium.

They showed that any competitive equilibrium outcome is strongly group stable and a

competitive equilibrium outcome exists when agents have concave valuation functions.

Therefore, a strongly group stable outcome and a stable outcome exist under the con-

cavity assumption while they may not exist in general. Moreover, they claimed that any

stable outcome is efficient when agents have concave valuation functions. Although the

concavity assumption is crucial to guarantee the efficiency and existence of stable out-

comes, it is not suitable in some situations. A typical example of violating the concavity

assumption is increasing return to scale of the production function.

The purpose of this paper is to further investigate properties of stable outcomes

under general valuation functions.5 Specifically, we consider three stability concepts;

the strong group stability, the stability and the weakly setwise stability. The last one

is newly introduced in this paper. As Hatfield and Kominars (2015) pointed out, the

blocking concept underlying the stability (or strongly group stability) allows somewhat

unrealistic deviations: The deviating agents may disagree with the outcome after the

deviation. The blocking concept underlying the weakly setwise stability excludes such a

deviation. In general, the weakly setwise stability is a weaker notion than the stability.

We impose restrictions on the structure of possible ventures and allow general valua-

tion functions, in contrast to Hatfield and Kominars (2015) who allowed general structure

of possible ventures and restricted valuation functions to concave one. The key notion

is an acyclicity of the venture structure. The acyclicity notion here is quite straightfor-

ward: For example, when agents i1 and i2 are involved in a certain venture and agents

i2 and i3 are in another venture, there do not exist any ventures that involve i1 and i3.

We show that the acyclicity is a necessary and sufficient condition for the equivalence of

three stability concepts and efficiency of stable outcomes. More specifically, the venture

structure is acyclic if and only if (1) the three stability concepts are mutually equivalent

for all valuation functions, (2) any stable outcome is efficient for all concave valuation

functions. Note that this result implies that without acyclicity, some stable outcomes

may be inefficient even under the concavity assumption. Therefore, it shows that one of

the statements of Hatfield and Kominers (2015) is incorrect.

5Hatfield and Kominars (2015) showed that without concavity, a competitive equilibrium may not
exist even if there exists only one venture. This is the main reason to use the stability concepts as
equilibrium notion instead of the competitive equilibrium.

3



We also show that the acyclicity is a necessary and sufficient condition for the ex-

istence of a strongly group stable outcome and stable outcome: The venture structure

is acyclic if and only if a strongly group stable outcome (or stable outcome) exists for

any valuation functions. It should be remarked that the existence of a strongly stable

outcome (or stable outcome) under the acyclicity does not follow from the results of

Hatfield and Kominers (2015) because we do not require the concavity assumption. The

acyclicity is not necessary for the existence of a weakly setwise stable outcome. We pro-

vide some additional results for the existence (or nonexistence) of weak setwise stable

outcomes.

Methodologically, there are some studies related to ours. Pápai (2004) analyzed a

coalition formation model which can be considered as our model such that each agent

can participate at most one venture without monetary transfers. In the setting of Pápai

(2004), the stability always implies efficiency in contrast to our model. It was shown

that an acyclicity of permissible coalitions is a necessary and sufficient condition for

a stable coalition structure to uniquely exist. The stability and acyclicity notions in

Pápai (2004) are essentially the same as in ours. However, the difference between the

models prevents us to directly apply the technique used in Pápai (2004) for obtaining

our results.

Our work is also related to Westkamp (2010). He showed that in a supply chain

model introduced by Ostrovsky (2008), an acyclicity for a market structure is a nec-

essary and sufficient condition for stable outcomes to be efficient.6 His model assumes

that agents preferences satisfy the condition called full substitutability. Moreover, the

acyclicity notion used in Westkamp (2010) differs from ours. Therefore, a straightfor-

ward comparison of our results with his is not possible.

The rest of this paper is organized as follows: In Section 2, the model of multilateral

matching is introduced and the stability concepts are also defined. In Section 3, our

main results are presented. Section 4 concludes our study. Some proofs are postponed

to the Appendices.

6More precisely, he considered the chain stability introduced by Ostrovsky (2008) instead of the
stability. The result of Hatfield and Kominars (2012) implies that the chain stability are equivalent to
the stability in the model of Westkamp (2010).
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2 Model

2.1 Multilateral matching

We basically follow the definitions and notations of Hatfield and Kominars (2015) with

some additional notations. Let I be the finite set of agents and Ω be the finite set of

ventures. Each ω ∈ Ω is associated with a(ω) ⊆ I where the cardinality of a(ω) is no

less than 2 for all ω ∈ Ω. We call (I,Ω, a) the venture structure.

For each ω ∈ Ω, agents in a(ω) choose the participation level rω ∈ [0, rmax
ω ] to ω.

For each venture ω, the participation level is bounded from rmax
ω > 0. The tuple of

the participation levels r = (rω)ω∈Ω is called the allocation. For any allocation r and

Ω′ ⊆ Ω, denote rΩ′ = (rω)ω∈Ω′ . Each agent i ∈ I is endowed with the valuation function

vi(r) on ×ω∈Ω[0, r
max
ω ]. It is assumed that the valuation of an agent depends only on

the participation levels to the ventures that are associated with that agent, i.e. for any

i ∈ I, ω ∈ Ω, allocation r, and r′ω ∈ [0, rmax
ω ], vi(r) = vi(r′ω, rΩ\{ω}) if i /∈ a(ω). It is also

assume that the valuation function is continuous on ×ω∈Ω[0, r
max
ω ] throughout the paper.

An allocation r̂ is efficient if r̂ ∈ argmaxr∈×ω∈Ω[0,rmax
ω ]

∑
i∈I vi(r). We say (I,Ω, a, rmax, v)

a multilateral matching market, where rmax = (rmax
ω )ω∈Ω and v = (vi)i∈I .

We say that a venture structure (I,Ω, a) admits a cycle if there exist distinct i1, ..., ik ∈
I and distinct ω1, ..., ωk ∈ Ω with k ≥ 2 such that {ih, ih+1} ⊆ a(ωh) for all h = 1, ..., k,

where k + 1 ≡ 1. We sometimes refer such a cycle as a k-cycle. We say that a venture

structure (I,Ω, a) is acyclic if it admits no cycle.

Hatfield and Kominars (2015) also gave a representation of a multilateral matching

matket (I,Ω, a, rmax, v) in terms of contracts. A contract x = (ω, rω, sω) is consisting of

a venture ω, the participation level rω to ω, and a transfer vector sω = (siω)i∈I such that∑
i∈I s

i
ω = 0 and siω = 0 for all ω ∈ Ω and i /∈ a(ω). Let

X =

(ω, rω, sω) ∈ Ω× R+ × RI

∣∣∣∣∣∣ rω ≤ rmax
ω ;

∑
i∈a(ω)

siω = 0; siω = 0, ∀i /∈ a(ω)


denote the set of all contracts. Given a contract x = (ω, rω, sω) denote τ(x) = ω and

a(x) = a(τ(x)).

A subset Y ⊆ X is said to be an outcome if for any x, y ∈ Y , x ̸= y implies

τ(x) ̸= τ(y). For an outcome Y and i ∈ I, denote Yi = {y ∈ Y |i ∈ a(y)}. For an

outcome Y , denote τ(Y ) =
∪

x∈Y {τ(x)}, a(Y ) =
∪

ω∈τ(Y ) a(ω), ρ(Y ) = (ρω(Y ))ω∈Ω
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where

ρω(Y ) =

{
rω if (ω, rω, sω) ∈ Y ;

0 otherwise,

and σ(Y ) = (σω(Y ))ω∈Ω where

σω(Y ) =

{
sω if (ω, rω, sω) ∈ Y ;

0 otherwise.

For each i ∈ I and an outcome Y , the utility of i from Y is defined by

ui(Y ) = vi(ρ(Y ))−
∑
ω∈Ω

σi
ω(Y ) = vi(ρ(Y ))−

∑
ω∈τ(Yi)

σi
ω(Y ).

An outcome A is said to be efficient if ρ(A) is efficient.

The choice correspondence of i ∈ I is defined by

Ci(Y ) = arg max
Z⊆Yi,Z is an outcome

{ui(Z)},

where Y ⊆ X may not be an outcome.

2.2 Stability concepts

We turn to defining the stability concepts in the multilateral matching models. We

begin with the definition of the individual rationality, which is a basis for any stability

concept. An outcome A is said to be individually rational for i ∈ I if Ai ∈ C i(A). An

outcome A is simply said to be individually rational if A is individually rational for all

i ∈ I.

Hatfield and Kominars (2015) introduced the following two solution concepts..7

Definition 1 • An outcome A is said to be blocked if there exists a nonempty Z ⊆
X \ A such that for all i ∈ a(Z) we have that Zi ⊆ Y i for all Y i ∈ Ci(Z ∪ A).

• An outcome A is said to be stable if it is individually rational and not blocked.

We sometimes say that Z is a blocking set to A if it satisfies the first bullet of this

definition.

Hatfield and Kominars (2015) also defined a stronger notion of stability

7Hatfield and Kominars (2015) further defined the core. However, we omit its definition because the
present paper does not consider the core.
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Definition 2 • An outcome A is said to be strongly blocked if there exists a nonempty

Z ⊆ X \ A such that for all i ∈ a(Z), there exists some Y i ⊆ Z ∪ A such that

Zi ⊆ Y i and ui(Y i) > ui(A).

• An outcome A is said to be strongly group stable if it is individually rational and

not strongly blocked.

We sometimes say that Z is a strong blocking set to A if it satisfies the first bullet of this

definition. Note that if Z is a blocking set to A, then it is a strong blocking set to A. To

see this, suppose that Z is a blocking set to A. Then, we have that ui(Y i) > ui(A) for

all Y i ∈ Ci(Z ∪A) and all i ∈ a(Z). Otherwise, for some i ∈ a(Z) and Y i ∈ C i(Z ∪A),

ui(Y i) ≤ ui(A) which implies that Ai ∈ Ci(Z∪A), where Ai∩Zi = ∅, contradicting that

Z is a blocking set. Therefore, if an outcome is blocked, then it is strongly blocked and

hence any strongly group stable outcome is a stable outcome. Note that they may be

different in a general case (See the example in pp. 187 in Hatfield and Kominars (2015)).

We also note that any strongly group stable outcome is efficient by the definition. See

also Theorem 6 of Hatfield and Kominars (2015).

As pointed out in Footnote 28 of Hatfield and Kominars (2015), the agents associated

with (strong blocking) set Z are not required to agree on maintaining the contracts in

the original outcome. The following example clearly describes this kind of disagreement.

Example 1 Let I = {i1, i2}, Ω = {ω1, ω2}, a(ω1) = a(ω2) = I, rmax
ω1

= rmax
ω2

= 1,

vi1(r) = 2(rω1 + rω2), and vi2(r) = −|1 − rω1 − rω2 |. The valuation function of agent

i1 is linearly separable and monotone increasing in the participation levels, while the

valuation function of agent i2 is maximized at the intermediate total participation level.

Let a1 = (ω1, 1/2, (1/2,−1/2)), a2 = (ω2, 1, (0, 0)), and A = {a1, a2}. It is easy to see

that A is individually rational.

Let ẑ1 = (ω1, 1, (1/2 + ε,−1/2 − ε)) and Ẑ = {ẑ1}, where ε > 0 is a sufficiently

small real number. From easy calculations, we have that Ci1(Ẑ ∪ A) = {{ẑ1, a2}} and

Ci2(Ẑ ∪A) = {Ẑ}. Therefore, A is blocked via Ẑ and is not stable, while players i1 and

i2 cannot agree on whether they maintain contract a2.

To avoid such a disagreement after the block, we introduce a weaker notion of the

blocking concept that the agents associated with the blocking set are required to agree

on some outcome and define the stability under this blocking concept.
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Definition 3 • An outcome A is said to be weakly setwise blocked if there exists a

nonempty Z ⊆ X \ A such that for all i ∈ a(Z) we have that Zi ⊆ Y i for all

Y i ∈ Ci(Z ∪ A) and there exists some outcome Y ∗ such that Y ∗
i ∈ Ci(Z ∪ A) for

all i ∈ a(Z).

• An outcome A is weakly setwise stable if it is individually rational and not weakly

setwise blocked.

We sometimes say that Z is a weakly setwise blocking set to A if it satisfies the first

bullet of this definition. Note that a blocking set, strong blocking set, or a weakly setwise

blocking set Z is itself an outcome.

Remark 1 The notion of the weak setwise stability concept stems from the similar

concept in many-to-many matching (with contracts) by Klaus and Walzl (2009). The

strong group stability also has the similar source in the sense that it is a stronger concept

than both the strong stability by Hatfield and Kominars (2016) and the group stability

by Konishi and Ünver (2006) in many-to-many matching, where the latter is originated

in Roth and Sotomayor (1990). See Hatfield et al. (2013) (Subsection IV.A.) or Hatfield

and Kominars (2015) (Footnote 29) for more detailed arguments.

From the definition, if Z is a weakly setwise blocking set to A, then it is a blocking set

to A. Therefore, any stable outcome is weakly setwise stable. The weakly setwise sta-

bility is essentially a weaker concept than the stability. Indeed, A appeared in Example

1 is weakly setwise stable although A was not stable.

Example 1. (Cont’d.) Recall the model and the outcome A in Example 1. Note

that we have ui1(A) = 5/2 and ui2(A) = 0. Here, we give an intuitive arguments for the

stability of A. A rigorous proof for a more general case will be given in Appendix A.

Suppose that A is weakly setwise blocked via some Z. Let Y ∗ such that Y ∗
i1
∈ Ci1(Z∪A)

and Y ∗
i2
∈ Ci2(Z ∪A) be the resulting outcome at which agents i1 and i2 agree. Since Z

is a weakly setwise blocking set to A, ui1(Y ∗) + ui2(Y ∗) > 5/2 = ui1(A) + ui2(A). Then,

it must be ρω1(Y
∗)+ ρω2(Y

∗) > 3/2 because ui1(Y ∗)+ui2(Y ∗) = vi1(ρ(Y ∗))+ vi2(ρ(Y ∗))

and

vi1(rω1 , rω2) + vi2(rω1 , rω2) = 2(rω1 + rω2)− |1− rω1 − rω2 |

=

{
3(rω1 + rω2)− 1 if rω1 + rω2 ≤ 1

rω1 + rω2 + 1 if rω1 + rω2 > 1.
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Note that this also yields that τ(Y ∗) = Ω by rmax
ω1

= rmax
ω2

= 1. Let Y ∗ = {y∗1, y∗2}.
We claim that ω2 /∈ τ(Z). Suppose that ω2 ∈ τ(Z). It follows that y∗2 ̸= a2 from

Z ⊂ Y ∗ and Z ∩A = ∅, in particular ρω2(Y
∗) ≤ 1. Then, vi1(ρ({y∗1, a2}))− vi1(ρ(Y ∗)) =

2(1− ρω2(Y
∗)) by the linearity of vi1 . We also have

vi2(ρ({y∗1, a2}))− vi2(ρ(Y ∗)) = −ρω1(Y
∗) + |1− ρω1(Y

∗)− ρω2(Y
∗)| ≥ 1− ρω2(Y

∗)

by the property of the absolute value. Summing up these (in)equalities, we have

(vi1(ρ({y∗1, a2})) + vi2(ρ({y∗1, a2))) − (vi1(ρ(Y ∗)) + vi2(ρ(Y ∗))) ≥ 1 − ρω2(Y
∗) ≥ 0. This

yields either ui1({y∗1, a2}) ≥ ui1(Y ∗) or ui2({y∗, a2}) ≥ ui2(Y ∗), violating Zi ⊂ Y i for all

Y i ∈ C i(Z ∪ A) for i = i1, i2. Hence τ(Z) = {ω1}. Note that ρω1(Z) > 1/2 since we

need to have ρω1(Y
∗) + ρω2(Y

∗) > 3/2.

However, this kind of block cannot make agents i1 and i2 agree whether they maintain

a2 or not, like Ẑ appeared in the former part of this example. Indeed, a2 ∈ Y i1 for any

Y i1 ∈ Ci1(Z ∪A) by the linearity of vi1 and τ(Z) = {ω1}. In order to make a2 ∈ Y i2 for

any Y i2 ∈ Ci2(Z ∪ A) with Z ⊂ Y i2 , we need

−ρω1(Z)− σi1
ω1
(Z) = ui2(Z ∪ {a2}) > ui2(Z) = ρω1(Z)− 1− σi1

ω1
(Z).

It follows that ρω1(Z) < 1/2, contradicting that ρω1(Z) > 1/2. Hence, there is no weakly

setwise blocking set to A.

3 Results

3.1 Relationship between stability concepts and efficiency

In the previous section, we observe that the three stability concepts are generally different

with each other, and the efficiency of the stable and weakly setwise stable outcomes do

not follow from the definitions. In this sebsection, we show that the acyclicity of the

venture structure is not only the sufficient condition but also the necessary condition for

guaranteeing the equivalence and efficiency of the stability concepts.

Theorem 1 Let a venture structure (I,Ω, a) and a maximum participation vector rmax

are given. The following statements are equivalent:

(a) (I,Ω, a) is acyclic.
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(b) Any weakly setwise stable outcome is strongly stable for any tuple of valuation func-

tions v.

(c) Any weakly setwise stable outcome is stable for any tuple of valuation functions v.

(c’) Any weakly setwise stable outcome is stable for any tuple of concave valuation func-

tions v.

(d) Any stable outcome is strongly group stable for any tuple of valuation functions v.

(e) Any stable outcome is efficient for any tuple of valuation functions v.

(e’) Any stable outcome is efficient for any tuple of concave valuation functions v.

Theorem 1 is summarized in Figure 1, where WSS, S, SGS, and EFF stand for the

weakly setwise stable outcomes, the stable outcomes, the strongly group stable outcomes,

and the efficient outcomes, respectively.

Figure 1: Relationship between the stability concepts.

SGS = S = WSS

EFF

WSS

S

SGS

EFF

Acyclic venture structure General venture structure

The proof of Theorem 1 is done as Figure 2. Among those implications, (b)⇒(c),

(b)⇒(d), and (d)⇒(e) follow from the definitions of the stability concepts; (c)⇒(c’) and

(e)⇒(e’) are obvious. Among the remaining nontrivial implications, we prove implication

(a)⇒(b) here, while the proofs of implications (c’)⇒(a) and (e’)⇒(a) are postponed to

the Appendix. Indeed, the essence of implication (c’)⇒(a) has been shown by Example

1 appeared in the previous section. We also show the essence of implication (e’)⇒(a)

Example 2 at the end of this subsection for the intuitive explanation.
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Figure 2: An outline for the proof of Theorem 1.
(c’) ⇒ (a) ⇐ (e’)

v

⇑ ⇓ (e)
t

(c) ⇐ (b) ⇒ (d)

Proof of Theorem 1(a)⇒(b). Let (I,Ω, a) be an acyclic venture structure and rmax

be a maximum participation vector. Fix an arbitrary tuple of valuation functions v.

Before proving this statement, we introduce a property related to the acyclicity. We say

that (I,Ω, a) admits a weak cycle if there exist distinct i1, ..., ik ∈ I with k ≥ 2 and

ω1, ..., ωk ∈ Ω such that (i) {ih, ih+1} ⊆ a(ωh) for all h = 1, ..., k, where k + 1 ≡ 1 and

(ii) ω1 ̸= ωk. We refer such a cycle as k-weak cycle.

Claim 1 (I,Ω, a) admits a cycle if and only if it admits a weak cycle.

Proof. The “only if” part is clear from the definition. To show the “if part”, suppose

that (I,Ω, a) admits a weak cycle. Consider a minimal weak cycle consisting of i1, ..., ik ∈
I with k ≥ 2 and ω1, ..., ωk ∈ Ω, i.e., there exists no k′-weak cycle with k′ < k. We show

that i1, ..., ik and ω1, ..., ωk consistute a cycle. Suppose not. Then, either (a) ω1 = ωh

for some h with 1 < h < k, (b) ωh = ωk for some h with 1 < h < k, or (c) ωh = ωh′ for

some h, h′ with 1 < h < h′ < k holds. In the case (a), i1, ih+1..., ik and ωh, ωh+1, ..., ωk

constitute a weak cycle. In the case (b), i1, ..., ih and ω1, ..., ωh constitute a weak cycle.

In the case (c), i1, ., ih, ih′+1, ..., ik and ω1, ., ωh, ωh′+1, ..., ωk constitute a weak cycle. All

cases contradict the minimality of i1, ..., ik and ω1, ..., ωk. ■

Let A be an individually rational outcome. We will show that if A is strongly

blocked, then it is weakly setwise blocked. Therefore, we assume that there exists a

strong blocking set Z to A. Note that Z is an outcome. We also note that for each

i ∈ a(Z) and each Y i ∈ Ci(Z ∪ A), Y i \ Ai ̸= ∅. To see this, suppose that for some

i ∈ a(Z) and some Y i ∈ Ci(Z∪A), Y i\Ai = ∅ holds. This implies that Y i ⊆ Ai. By the

individual rationality of A, we have that ui(A) ≥ ui(Y i). Because Z is a strong blocking

set to A, there exists Ȳ i ⊆ Zi ∪ Ai with ui(Ȳ i) > ui(A) and hence ui(Ȳ i) > ui(Y i).

However, this contradicts Y i ∈ Ci(Z ∪ A).
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For each i ∈ a(Z), let X i be an element of C i(Z ∪ A) such that there exists no

Y i ∈ Ci(Z∪A) with Y i\Ai ⊊ Xi\Ai. Then, for each i ∈ a(Z), we have X̃i := X i\Ai ̸= ∅
and X̃i ⊆ Zi. Moreover, we have that for each i ∈ a(Z),

X̃i ⊆ Y i for all Y i ∈ Ci(X̃i ∪ Ai). (1)

To see this, suppose that X̃i ⊈ Y i for some Y i ∈ Ci(X̃i ∪ Ai). By X i ⊆ X̃i ∪ Ai,

we have ui(Y i) ≥ ui(X i) from the definition of the choice. By Y i ⊆ X̃i ∪ Ai, we have

Y i ⊆ Zi ∪ Xi. From the definition of the choice, we have ui(X i) ≥ ui(Y i) and hence

ui(Y i) = ui(X i) holds. This implies that Y i ∈ C i(Z ∪ A). By Y i ⊆ X̃i ∪ Ai, we have

Yi \ Ai ⊆ X̃i. By X̃i ⊈ Y i, there exists x̃ ∈ X̃i such that x̃ /∈ Y i, which implies that

Yi \ Ai ⊊ X̃i. However, this contradicts the definition of X i. Therefore, we obtain (1).

For every i, j ∈ a(Z) with i ̸= j, we write i → j if and only if there exists x ∈ X̃i

such that j ∈ a(x). For each i ∈ a(Z), let ϵ(i) := {j ∈ a(Z)|i → j}. We next state and

prove the following claim.

Claim 2 Let S ⊆ a(Z) with S ̸= ∅. If S satisfies the following two-conditions:

(i) for all i ∈ S, ϵ(i) ⊆ S, and

(ii) for all i, j ∈ S, i → j implies j → i,

then
∪

i∈S X̃i is a blocking set to A.

Proof of Claim 2. Suppose that S is a nonempty subset of a(Z) that satisfies conditions

(i) and (ii). Let Z̃ :=
∪

i∈S X̃i. Note that Z̃ ̸= ∅ because S ̸= ∅ and X̃i ̸= ∅ for all i ∈ S.

We begin with proving a(Z̃) = S. We have S ⊆ a(Z̃) by the fact that i ∈ a(X̃i) for

all i ∈ S. To show a(Z̃) ⊆ S, pick any i ∈ a(Z̃). This implies that for some k ∈ S and

some x̃ ∈ X̃k, i ∈ a(x̃). If k = i, we obtain i ∈ S. Suppose that k ̸= i. This implies that

k → i and hence i ∈ ϵ(k). By (i), i ∈ ϵ(k) ⊆ S. Therefore, we obtain a(Z̃) ⊆ S.

Then, we turn to proving Z̃i = X̃i for all i ∈ S. Let i ∈ S. Clearly, X̃i ⊆ Z̃i holds.

Suppose that X̃i ⊊ Z̃i. Then, there exists x /∈ X̃i but x ∈ Z̃i. From the definition of Z̃,

x ∈ X̃j for some j ∈ S with j ̸= i. This implies that j → i. By (ii), we have i → j and

hence there exists x̃ ∈ X̃i such that j ∈ a(x̃). By x /∈ X̃i, we have x ̸= x̃. Because Z

is an outcome, we have that τ(x) ̸= τ(x̃) by x, x̃ ∈ Z. However, this means that there

exists a 2-cycle, which contradicts the acyclicity.
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To complete the proof of this claim, we show Z̃ is a blocking set to A. By Z ∩A = ∅
and Z̃ ⊆ Z, we have Z̃ ∩A = ∅. Moreover, by (1) together with the fact that a(Z̃) = S

and Z̃i = X̃i for all i ∈ S, we have that for all i ∈ a(Z̃), Z̃i ⊆ Y i for all Y i ∈ C i(Z̃ ∪A).

□

We next construct nonempty S ⊆ a(Z) that satisfies (i) and (ii) of Claim 2 as below.

Define

S := {S ⊆ a(Z)|S ̸= ∅ and ϵ(i) ⊆ S for all i ∈ S}.

Note that a(Z) itself is an element of S and hence S is nonempty. Let S∗ be a minimal

element of S. Then, S∗ is nonempty and satisfies that for all i ∈ S∗, ϵ(i) ⊆ S∗. Take

any i ∈ S∗. Define

Si =

{
i′ ∈ S∗

∣∣∣∣ ∃ distinct i1, ..., ik(k ≥ 2) such that i = i1, i
′ = ik,

i1 → i2 → · · · → ik.

}∪
{i}.

By i ∈ Si and i ∈ S∗, we have that Si ̸= ∅ and Si ⊆ S∗. We claim that ϵ(i′) ⊆ Si

for all i′ ∈ Si. Pick any i′ ∈ Si and any j′ ∈ ϵ(i′). When i′ = i, we have j′ ∈ Si by

i → j′. So, we assume that i′ ̸= i. Then, there exist distinct i1, ..., ik(k ≥ 2) such that

i = i1, i
′ = ik, and i1 → i2 → · · · → ik. Note that j

′ ∈ S∗ by i′ ∈ S∗ and j′ ∈ ϵ(i′). When

j′ ∈ {i1, ..., ik}, j′ ∈ Si clearly holds. When j′ /∈ {i1, ..., ik}, i1, ..., ik, j′ are distinct agents
with i1 → i2 → · · · → ik → j′, which implies j′ ∈ Si. Therefore, we have ϵ(i′) ⊆ Si for

all i′ ∈ Si and hence Si ∈ S. By the minimality of S∗, we have that

Si = S∗ for all i ∈ S∗. (2)

We next show that for every i, j ∈ S∗, i → j implies j → i. Let i, j ∈ S∗ with i → j.

Suppose that j → i does not hold. From (2), i ∈ Sj holds. By i → j, we have i ̸= j.

So, there exist distinct i1, ..., ik with k ≥ 2 such that i1 = j → i2 → · · · → ik = i. This

implies that for each h = 1, 2, · · · , k − 1, there exists x̃h ∈ X̃ih such that {ih, ih+1} ⊆
a(x̃h). By i → j, there exists x̃k ∈ X̃i such that {i, j} ⊆ a(x̃k). Because j → i does

not hold, we have that i /∈ a(x̃1) and hence τ(x̃1) ̸= τ(x̃k). Therefore, i1, ..., ik and

τ(x̃1), ..., τ(x̃k) constitute a weak cycle. This contradicts the acyclicity. Therefore, S∗

satisfies conditions (i) and (ii) of Claim 2 and hence Z∗ :=
∪

i∈S∗ X̃i is a blocking set to

A. Note that the proof of Claim 2 implies that a(Z∗) = S∗ and Z∗
i = X̃i for all i ∈ S∗.

We finally show that Z∗ is a weakly setwise blocking set to A. For each i ∈ S∗, fix

any Y i ∈ Ci(Z∗ ∪ A) and let Y ∗ :=
∪

i∈S∗ Y i. Because Z∗ is a blocking set to A, it

13



is sufficient to show that Y ∗ is an outcome and Y ∗
i = Y i for all i ∈ S∗. Suppose that

Y ∗ is not an outcome. Then, there exist two different contracts x, y ∈ Y ∗ such that

τ(x) = τ(y). Since both A and Z∗ are outcomes, one of these two contracts is in Z∗

and the other is in Y ∗ \ Z∗ ⊆ A; say x ∈ Z∗ and y ∈ Y ∗ \ Z∗. By y ∈ Y ∗, there exists

i ∈ a(Z∗) such that y ∈ Y i. By x ∈ Z∗, we have x ∈ Y i. However, this contradicts Y i

is an outcome. Hence, Y ∗ is an outcome.

To complete the proof, it remains to show that Y ∗
i = Y i for all i ∈ S∗. Suppose that

Y ∗
i ̸= Y i for some i ∈ S∗. Then, we have that Y i ⊊ Y ∗

i because Y i ⊆ Y ∗
i holds from

the definiton. Therefore, there exists x ∈ Y ∗
i such that x /∈ Y i. Note that x ∈ Y ∗

i and

x /∈ Y i imply τ(x) /∈ τ(Z∗). To see this, suppose that τ(x) ∈ τ(Z∗). Then, there exists

z ∈ Z∗ such that τ(z) = τ(x). Because Z∗ is a blocking set to A, we have z ∈ Y i and

hence z ∈ Y ∗
i . By z ∈ Y i, we have x ̸= z. However, this contradicts the fact that Y ∗ is

an outcome. Therefore, τ(x) /∈ τ(Z∗). By x ∈ Y ∗, there exists j ∈ S∗ with j ̸= i such

that x ∈ Y j. From (2), i ∈ Sj holds. By i ̸= j, there exist distinct i1, ..., ik with k ≥ 2

such that i1 = j → i2 → · · · → ik = i. This implies that for each h = 1, 2, · · · , k − 1,

there exists x̃h ∈ X̃ih such that {ih, ih+1} ⊆ a(x̃h). By x ∈ Y ∗
i and x ∈ Y j, we have

that {i, j} ⊆ a(x). By τ(x) /∈ τ(Z∗), we have that τ(x) ̸= τ(x1). Therefore, i1, ..., ik and

τ(x̃1), ..., τ(x̃k−1), τ(x) constitue a weak cycle. However, this contradicts the acyclicity,

which completes the proof. ■

Here, we show a simple case of implication (c’)⇒(a) of Theorem 1.

Example 2 Let I = {i1, i2}, Ω = {ω1, ω2}, a(ω1) = a(ω2) = I, rmax
ω1

= rmax
ω2

= 1,

vi1(r) = 3min {rω1 , rω2}, and vi2(r) = −max {0, rω1 + rω2 − 1}. Let a1 = (ω1, 1/2, (0, 0)),

a2 = (ω2, 1/2, (0, 0)), and A = {a1, a2}. It is easy to see that A is individually ra-

tional. Note that A is not efficient since vi1(1/2, 1/2) + vi2(1/2, 1/2) = 3/2, while

vi1(1, 1) + vi2(1, 1) = 2. Indeed, (1, 1) is the efficient allocation since

vi1(rω1 , rω2) + vi2(rω1 , rω2) =


3min{rω1 , rω2} (≤ 3/2) if rω1 + rω2 ≤ 1;

3min{rω1 , rω2} − (rω1 + rω2 − 1) if rω1 + rω2 > 1.

(≤ min{rω1 , rω2}+ 1 ≤ 2)

We show that A is stable. Here, we only give an intuitive argument because the

rigorous proof will be included in Appendix A. Suppose that Z ⊆ X \ A is a blocking

set to A. Then, there exists a pair of Y i1 ∈ Ci1(Z ∪ A) and Y i2 ∈ Ci2(Z ∪ A) such
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that ui1(Y i1) + ui2(Y i2) > ui1(A) + ui2(A). To guarantee that this inequality holds,

ui1(Y i1) + ui2(Y i2) = vi1(ρ(Y i1)) + vi2(ρ(Y i2)) > 3/2. Since vi2(r) ≤ 0 for any r,

vi1(ρ(Y i1) > 3/2. Then, we have ρω1(Y
i1) > 1/2 and ρω2(Y

i1) > 1/2. It is also necessary

that τ(Z) = Ω since ρω1(A) = ρω2(A) = 1/2. Since Z is a blocking set, {Z} = Ci1(Z∪A)
and {Z} = C i2(Z ∪ A). Note that ρω1(Z) > 1/2 and ρω2(Z) > 1/2 by the choice of Y i1

and Y i2 in the above arguments.

Therefore, vi1(ρω1(Z), ρω2(Z)) > 3/2 = vi1(1/2, 1/2) and vi2(ρω1(Z), ρω2(Z)) < 0 =

vi2(1/2, 1/2). Then, agent i1 must transfer a positive amount to agent i2 in Z so that i2

chooses Z from Z ∪A and the utility of i1 himself is increased from A. However, this is

impossible. We confirm it for the case where ρω1(Z) = ρω2(Z) = 1/2 + t (0 < t ≤ 1/2).8

By vi1(1/2 + t, 1/2 + t)− vi1(1/2, 1/2) = 3t, σi1
ω1
(Z) + σi1

ω2
(Z) < 3t. Without loss of

generality, we may assume that σi1
ω1
(Z) ≤ σi1

ω2
(Z). Then, σi1

ω1
(Z) ≤ 3t/2. Then,

ui2(Z)− ui2({(ω2, ρω2(Z), sω2(Z))}) = (−2t− σi2
ω1
(Z)− σi2

ω2
(Z))− (−σi2

ω2
(Z))

= −2t− σi2
ω1
(Z)

≤ −t/2

by −σi2
ω1
(Z) = σi1

ω1
(Z) ≤ 3t/2, contradicting that Z ∈ Ci2(Z ∪ A).

In Appendix A, we will extend this kind of argument in a rigorous way for general

cases where the venture structures have any k-cycle. Note that Theorem 1(e’)⇒(a)

corrects Theorem 8 of Hatfield and Kominars (2015), which stated that any stable

outcome is efficient for any venture structure if the valuation functions are concave.

Nevertheless, if the valuation functions are concave, then there exists at least one efficient

stable outcome as the competitive equilibrium is shown to exist, be efficient, and be the

stable outcome. (See Theorem 1,3, and 7 of Hatfield and Kominars (2015).)

3.2 Existence results

In this subsection, we consider the existence conditions for the strongly group stable,

stable, and weakly setwise stable outcomes. Hatfield and Kominars (2015) proved the

existence of the strongly group stable outcome under the concave valuation functions.

8In the range of the participation levels under consideration, the presence of the difference between
the participation levels strictly decreases the payoff of i2, while it does not increase the payoff of i1.
Therefore, taking the different participation levels in Z will make it more difficult for Z to be a blocking
set to A.
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We examine the existence conditions on the venture structures rather than the conditions

on the valuation functions. Therefore, we do not require the concavity of the valuation

functions at all.

First, we state that the acyclicity of the venture structure is also a necessary and

sufficient condition for the stable outcome to exist.

Theorem 2 Let a venture structure (I,Ω, a) and a maximum participation vector rmax

are given. The following statements are equivalent:

(a) (I,Ω, a) is acyclic.

(b) A strong group stable outcome exists for any tuple of valuation functions v.

(c) A stable outcome exists for any tuple of valuation functions v.

Theorem 2 is proved by three implications (a)⇒(b), (b)⇒(c), and (c)⇒(a). Implica-

tion (b)⇒(c) follows from the definitions of strongly group stable and stable outcomes.

To show implications (a)⇒(b) and (c)⇒(a), we state two lemmas, the proofs of which

are postponed to Appendix B.

Lemma 1 Let (I,Ω, a, rmax, v) be a multilateral matching market. If (I,Ω, a) is acyclic,

then the strongly group stable outcome exists.

Lemma 2 Let (I,Ω, a, rmax, v) be a multilateral matching market. If (I,Ω, a) admits a

2-cycle, then a stable outcome does not exist for some tuple of valuation functions v.

Implication (a)⇒(b) follows from Lemma 1, while implication (c)⇒(a) is shown by

Lemma 2 and Proposition 2, which will be stated at the end of this subsection. Lemma

1 will be proved by means of the mathematical induction. Here, we show the induction

step for explaining the intuition of the proof.

The existnece of the strongly group stable outcome in the multilateral matching

market M = (I,Ω, a, rmax, v) with k ventures will be proved by assuming that the

multilateral matching market with k − 1 ventures possesses the strongly group stable

outcome for any tuple of valuation functions. To this end, we construct a multilateral

matching market with k−1 ventures from that with k ventures by excluding one extreme

venture, say ω0, and agents who are not associating any venture in Ω \ {ω0}. We often

write vi(rΩ\{ω0}; rω0) instead of vi(r) for each i ∈ I and each r ∈ ×ω∈Ω[0, r
max
ω ].
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Since ω0 is extreme, there exists at most one agent, say i0, who is associating a venture

ω ̸= ω0.
9 Let Mk−1 be a multilateral matching market (Ī , Ω̄, a, (rmax

ω )ω∈Ω̄}, (v̄
i)i∈Ī) con-

structed fromMk by excluding ω0 and the agents in a(ω0)\{i0} where Ī = (I\a(ω0))∪{i0}
and Ω̄ = Ω \ {ω0}. The components except for v̄ = (v̄)i∈Ī are constructed in a quite

natural way. We need an additional explanation for the construction of v̄.

Because each agent i in Ī except for i0 is irrelevant to ω0, i’s function v̄i can be defined

as the essentially same as in the original problem. Formally, for any r ∈ ×ω∈Ω̄[0, r
max
ω ],

v̄i(r) = vi(r; 0) for all i ∈ Ī \ {i0}.

On the other hand, the valuation function of i0 is defined as follows. For any r ∈
×ω∈Ω̄[0, r

max
ω ],

v̄i0(r) = max
r′∈[0,rmax

ω0
]

vi0(r; r′)−
∑

j∈a(ω0)\{i0}

(vj(0Ω̄; r
′)− vj(0; 0))

 . (3)

In the function v̄i0 , the information of the excluded agents’ valuation functions are

integrated in an appropriate way. More specifically, i0 evaluates rΩ̄ as the maximal

value of the original function vi0 so that the excluded agents in a(ω0) \ {i0} can satisfy

the individually rational constraints in Mk by taking rω0 appropriately.

Let A be a strongly group stable outcome in Mk−1, which is assumed to exist by the

induction hypothesis. Let A∗ be an outcome obtained by adding a contract (ω0, r
∗
ω0
, s∗ω0

)

Figure 3: Construction of Mk−1 from Mk: an example when k = 4.

ω0

i0 ω1 ω3

Mk

ω2

ω0

i0 ω1 ω3

Mk−1

ω2

9If there exists no agent like i0, we can divide the market into one consisting of agents in a(ω0) and
venture {ω0} and one consisting of agents in I \ a(ω0) and ventures Ω \ {ω0}, and show the existence
of the strong group stable outcome independently.
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to A, where r∗ω0
maximizes (3) when r = ρΩ̄(A), s

∗i
ω0

= vi(0; r∗ω0
)−vi(0; 0) for all i ∈ a(ω0),

and s∗i0ω0
= −

∑
i∈a(ω0)\{i0}(v

i(0; r∗ω0
) − vi(0; 0)). Note that in this contract, the payoffs

obtained by the agents in a(ω0) \ {i0} are integrated to i0 through the transfer so that

the agents can satisfy the individually rational constraint, just like (3).

The strong group stability of A∗ will be formally proved in Appendix B (Claim

9) as we mentioned above. Intuitively, suppose that there exists a strongly blocking

set Z to A∗ in Mk. Here, we only consider the case where Z includes a contract for

venture ω0, say z0. Consider the set of contracts Z̄ that is obtained by excluding the

contract for venture ω0 from Z. Then, any agent in a(Z̄) \ {i0} can take Y i again so

that Z̄i ⊆ Y i ⊆ Z̄i ∪ Ai and be made better off in Mk−1 since her valuation function is

essentially same as that in Mk. For i
0, he also can be made better of by taking Y i \{z0}

since valuation v̄i0(ρ(Y i \ {z0})) is no less than vi0(Y i) −
∑

i∈a(ω0)\{i0} σ
i
ω0
(Y i) by the

construction of v̄i0 . Therefore, Z̄ becomes a strongly blocking set to A in Mk−1, which

yields a contradiction.

The following corollary is immediate from Theorem 2, which states only the sufficient

condition for the existence of the weakly setwise stable outcome.

Corollary 1 Let (I,Ω, a, rmax, v) be a multilateral matching market. A weakly setwise

stable outcome exists for any tuple of valuation functions v if (I,Ω, a) is acyclic.

Indeed, the acyclicity of the venture structure is no longer a necessary condition for

the existence of the weakly setwise stable outcome. To see this, we first show a special

case where the weakly setwise stable outcome exists for any tuple of valuation functions

though the venture structure admits a cycle.

Proposition 1 Let (I,Ω, a, rmax, v) be a multilateral matching market. If a(ω) = I for

all ω ∈ Ω, then a weakly setwise stable outcome exists.

The proof of Proposition 1 is postponed to Appendix B. By this proposition, we can

easily see that there is a venture structure with a cycle where the weakly setwise stable

outcome exists for any tuple of valuation functions. For example, let I = {i1, i2, i3},
Ω = {ω1, ω2, ω3}, and a(ω1) = a(ω2) = a(ω3) = I. In this example, the condition in

Proposition 1 is satisfied and thus the weakly setwise stable outcome exists. However,

it admits a cycle consisting of (i1, i2, i3) and (ω1, ω2, ω3). Note that the condition in
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Proposition 1 neither guarantee the efficiency of the weakly setwise stable outcome nor

existence of the strongly group and stable outcome since Example 1 and 2 satisfies the

condition.

We need an additional assumption to specify the venture structure where the weakly

setwise stable outcome fails to exist for some tuple of valuation functions. Below, we

show a contraposition of the necessary condition for the existence of the weakly setwise

stable outcome.

Proposition 2 Let (I,Ω, a, rmax, v) be a multilateral matching market. If (I,Ω, a) ad-

mits a ℓ-cycle with ℓ ≥ 3 and admits no 2-cycle, then no weakly setwise stable outcome

exists for some tuple of valuation functions.

The proof is postponed to Appendix B. Note that the above example admits both 2-cycle

and 3-cycle. Therefore, the example does not satisfy the condition in Proposition 2.

4 Concluding remarks

This paper considered three stability concepts, the weakly setwise stable outcome, the

stable outcome, and the strongly group stable outcome, in the multilateral matching

market. The first one is introduced in this paper and the latter two were introduced by

Hatfield and Kominars (2015). The acyclicity of the venture structure played the central

role in our analysis. We showed that the acyclicity of the venture structure is sufficient

for the equivalence, the efficiency, and the existence of the three stability concepts for

any tuple of valuation functions. We also showed that the acyclicity of the venture

structure is also the necessary condition for those results except for the existence of the

weakly setwise stable outcome. Moreover, the acyclicity of the venture structure is still

a necessary condition for the equivalence and the efficiency though we restrict to the

concave valuation functions.

The analyses in the present paper and Hatfield and Kominars (2015) are two ex-

tremes: we allowed general valuation functions by restricting the venture structures to

acyclic, while Hatfield and Kominars (2015) allowed general venture structure by re-

stricting the valuation functions concave. The concavity of the valuation function may

seem rather general, but it excludes some valuation function where the choice among

the multilateral contracts is substitutable, which is a quite popular assumption in the
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standard matching theory. Investigating the multilateral matching market under a more

general venture structures by excluding less plausible valuation functions may make the

analysis more applicable to at least some specific market. We remain such investigations

for future research.

Appendix A. Remaining proofs of Theorem 1.

We prove implications (c’)⇒(a) and (e’)⇒(a) of Theorem 1 stated in Subsection 3.1.

We begin with proving some fundamental facts and claims that are commonly used in

the both proofs. Since (I,Ω, a) is not acyclic, it admits a cycle consisting of distinct

i1, ..., ik ∈ I with k ≥ 2 and distinct ω1, ..., ωk ∈ Ω. Without loss of generality, we may

assume that this cycle is minimal, i.e. there is no cycle i1, ..., ik′ ∈ I and ω1, ..., ωk′ ∈ Ω

with k′ < k. Throughout this appendix, this cycle plays an important role. As a

convention, we will frequently use the following notations: ωk+1 ≡ ω1, ω0 ≡ ωk, ik+1 ≡ i1,

and i0 ≡ ik.

Claim 3 For any h = 1, ..., k, a(ωh) ∩ {i1, ..., ik} = {ih, ih+1}.

Proof of Claim 3. Suppose that there exists some h = 1, ..., k and ℓ ̸= h, h + 1 such

that iℓ ∈ a(ωh). Assume that ℓ < h. Consider the sequence of players iℓ, ..., ih and the

sequence of ventures ωℓ, ..., ωh. By the choice of these sequences, the players are distinct

with each other, and the ventures are distinct with each other. Further, {iℓ′ , iℓ′+1} ⊂
a(ω′

ℓ) for each ℓ′ = ℓ, ..., h − 1, and {ih, iℓ} ⊂ a(ωh). Thus, {iℓ, ..., ih} and {ωℓ, ..., ωh}
consist a (h− ℓ+1)-cycle. If h = k, then ℓ ̸= 1, and we have h− ℓ+1 ≤ k− 1. If h ̸= k,

then h− ℓ+1 < k− ℓ+1 ≤ k. Either case contradicts the minimality of {i1, ..., ik} and

{ω1, ..., ωk}. The case where ℓ > h+1 can be proved in a similar manner by considering

the sequence of agents {ih+1, ..., iℓ} and the sequence of ventures {ωh, ..., ωℓ−1}, which is

omitted. Hence, a(ωh) ∩ {i1, ..., ik} = {ih, ih+1} for any h = 1, ..., k. □
By Claim 3, {ih, ih+1} ⊆ a(ωh) and ih′ /∈ a(ωh) for all h = 1, ..., k and h′ ̸= h, h + 1.

For each h = 1, ..., k, let vih(r) be any valuation function that depends only on rωh−1

and rωh
, that is, for any r, r′ with rωh−1

= r′ωh−1
and rωh

= r′ωh
, we have vih(r) = vih(r′).

For each i /∈ {i1, ..., ik}, let vi is a constant function such that vi(r) = 0 for any r.

Let A be an individually rational outcome such that τ(A) = {ω1, ..., ωk}. Denote

ah ∈ A a contract such that τ(ah) = ωh. Suppose that A is blocked. Then, there
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exists a nonempty Z ⊆ X \ A such that for all i ∈ a(Z) we have that Zi ⊆ Y i for all

Y i ∈ Ci(Z ∪ A). Note that ui(Y i) > ui(A) for all Y i ∈ Ci(Z ∪ A) and all i ∈ a(Z);

otherwise, Ai ∈ C i(Z ∪ A), where Ai \ Zi ̸= ∅, contradicting that Z is a blocking set.

We begin with proving two claims.

Claim 4 For any h = 1, ..., k, if ωh ∈ τ(Z), then σih
ωh
(Z) + σ

ih+1
ωh (Z) ≥ 0.

Proof of Claim 4. Fix an arbitrary h = 1, ..., k. Assume that ωh ∈ τ(Z). If a(ωh) =

{ih, ih+1}, then σih
ωh
(Z) + σ

ih+1
ωh (Z) = 0 by the definition. Therefore, assume that a(ωh) \

{ih, ih+1} ̸= ∅. Fix an arbitrary i ∈ a(ωh) \ {ih, ih+1}. Note that i /∈ {i1, ..., ik} by Claim

3, and thus, vi(r) = 0 for any allocation r. Fix an arbitrary Y i ∈ Ci(Z ∪ A).

Suppose that σi
ωh
(Z) ≥ 0. Denote yh ∈ Y i such that yh = (ωh, ρωh

(Y i), σωh
(Y i)).

Since vi is constant to 0 and yh ∈ Z ⊆ Y i,

ui(Y i) = −
∑

ω∈τ(Y i)

σi
ω(Y

i) ≤ −
∑

ω∈τ(Y i)\{ωh}

σi
ω(Y

i) = ui(Y i \ {yh}).

Then, Y i \ {yh} ∈ Ci(Z ∪A), contradicting that Zi ⊆ Y i for all Y i ∈ Ci(Z ∪A). Thus,

σi
ωh
(Z) > 0. By

∑
j∈a(ωh)

σj
ωh
(Z) = 0, we have σih

ωh
(Z) + σ

ih+1
ωh (Z) > 0. □

Claim 5 τ(Z) ⊆ {ω1, ..., ωk}.

Proof of Claim 5. Fix an arbitrary ω′ ∈ Ω \ {ω1, ..., ωk}. Suppose that ω′ ∈ τ(Z). By

ω′ /∈ {ω1, ..., ωk}, vi is independent to rω′ . Then, σi
ω′(Z) < 0 for all i ∈ a(ω′) in order

to guarantee that Zi ⊆ Y i for all Y i ∈ Ci(Z ∪ A) for all i ∈ a(ω′). This contradicts the

definition of the transfer vector. Hence, ω′ /∈ τ(Z). □

Throughout this appendix, denote zh = (ωh, ρωh
(Z), σωh

(Z)) for each h = 1, ..., k

whenever ωh ∈ τ(Z).

Proof of Theorem 1(c’)⇒(a). We prove by constructing a tuple of concave valuation

functions at which there exists a weakly setwise stable outcome that is not stable. Let

vi1(r) = 2

(
rω1

rmax
ω1

+
rωk

rmax
ωk

)
;

vih(r) = −2

∣∣∣∣∣rωh−1

rmax
ωh−1

− rωh

rmax
ωh

∣∣∣∣∣ for any h = 2, ..., k − 1 if exist;

vik(r) = −

∣∣∣∣∣1− rωk−1

rmax
ωk−1

− rωk

rmax
ωk

∣∣∣∣∣ ;
vi(r) = 0 for any i ∈ I \ {i1, ...ik} if exist.
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We can easily confirm that all of these functions are concave. Note that each valuation

function depends only on the ratio of the venture participation levels to the maximum

participation levels. Hereafter, we normalize to rmax
ωh

= 1 for all h = 1, ..., k for the

simplicity, which does not change any feature of the model.

Consider an outcome A = {(ωh, 1/2, sωh
)|h = 1, ..., k−1}∪{(ωk, 1, (0, ..., 0))}, where

for each h = 1, ..., k − 1,

siωh
=


1
2

if i = ih;

−1
2

if i = ih+1;

0 otherwise.

Note that ui1(A) = 5/2 and ui(A) = 0 for all i ∈ I \ {i1}. It is easy to see that A is

inefficient since
∑

i∈I v
i(ρ(A)) = 5/2 < 3 =

∑
i∈I v

i(1, ..., 1). Outcome A is individually

rational since

ui1({a1}) = 1/2, ui1({ak}) = 2, ui1(∅) = 0;
uih({ah}) = −3/2, uih({ah−1}) = −1/2, uih(∅) = 0 for all h = 2, ..., k − 1;
uik({ak}) = 0, uik({ak−1}) = 0, uik(∅) = −1.

Claim 6 A is not stable.

Proof of Claim 6. Let ε1 > 0 be a sufficiently small positive real number so that

0 < ε1 < 1. For each h = 1, ..., k− 1, define εh+1 = εh/|a(ωh)|. Thus, εh+1 ≤ εh/2 for all

h = 1, ..., k − 1.

Let Z∗ = {(ωh, 1, sωh
)|h = 1, ..., k − 1}, where

σi
ωh
(Z∗) =


1
2
+ εh if i = ih;

−1
2
− 2εh+1 if i = ih+1;

−εh+1 if i ∈ a(ωh) \ {ih, ih+1}

for each h = 1, ..., k − 1. Note that
∑

i∈a(ωh)
σi
ωh
(Z∗) = 0 by the definition. For each

h = 1, ..., k−1, let z∗h = (ωh, ρωh
(Z∗), σωh

(Z∗)). For any i ∈ a(Z∗)\{i1, ..., ik} (if exists),

ui depends only on the transfers. Then, it is easy to see that {Z∗
i } = C i(Z∗∪A) for any

i ∈ a(Z∗) \ {i1, ..., ik} since σi
ω(Z

∗) > 0 for any ω ∈ τ(Z∗) with i ∈ a(ω) and σi
ω(A) = 0

for any ω ∈ τ(A) with i ∈ a(ω).

By the choice of ε1,

2ρω1(Z
∗)− σi1

ω1
(Z∗) =

3

2
− ε1 >

1

2
= 2ρω1(A)− σi1

ω1
(A).

Therefore, {{z∗1 , ak}} = C i1(Z∗ ∪ A) by the linearity of vi1 .
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We next show that {Z∗
ih
} = C ih(Z∗ ∪ A) for each h = 2, ..., k − 1. Fix an arbitrary

h = 2, ..., k − 1. It is easy to see that

uih(Z∗) = −2|1− 1| −
(
−1

2
− 2εh

)
−

(
1

2
+ εh

)
= εh.

Thus, uih(Z∗
ih
) > uih(A). Further, since we have εh < 1/2 by the choice of εh and h ≥ 2,

uih({z∗h−1}) = −2−
(
−1

2
− 2εh

)
= 2εh −

3

2
< 0;

uih({z∗h}) = −2−
(
1

2
+ εh

)
= −5

2
− εh < 0;

uih({z∗h−1, ah}) = −2

∣∣∣∣1− 1

2

∣∣∣∣− (
−1

2
− 2εh

)
− 1

2
= −1 + 2εh < 0

uih({ah−1, z
∗
h}) = −2

∣∣∣∣12 − 1

∣∣∣∣+ 1

2
−
(
1

2
+ εh

)
= −1− εh < 0.

Together with Aih ∈ Cih(A), uih(Z∗) > uih(Z ′) for any Z ′ ⊆ Z∗ ∪ A. Hence, {Z∗
ih
} =

Cih(Z∗ ∪ A).

We finally show that {Z∗
k} = {{z∗k−1}} = Cik(Z∗ ∪ A). We have

uik({z∗k−1}) = −|1− ρωk−1
(Z∗)| − σik

ωk−1
(Z∗) = −|1− 1| −

(
−1

2
− εk

)
=

1

2
+ εk > 0.

Thus, uik({z∗k−1}) > uik(A). Further,

uik({z∗k−1, ak}) = −|1− 1− 1| −
(
−1

2
− εk

)
= −1

2
+ εk <

1

2
+ εk.

Thus, uik({z∗k−1}) > uik({z∗k−1, ak}). Together with Aik ∈ Cik(A), {Z∗
k} = {{z∗k−1}} =

Cik(Z∗ ∪ A).

Since {{z∗1 , ak}} = C i1(Z∗ ∪ A) and {Z∗
ih
} = Cih(Z∗ ∪ A) for all h = 2, ..., k, Z∗ is a

blocking set on A. Note that players i1 and ik do not agree whether they maintain ak

or not since i1 chooses {z∗1 , ak} while ik chooses {z∗k−1} and drops ak. □

Now, we turn to proving that A is weakly setwise stable. Suppose that A is weakly

setwise blocked via Z ⊆ X \ A. Thus, for any i ∈ a(Z) we have that Zi ⊆ Y i for all

Y i ∈ Ci(Z ∪ A) and there exists some outcome Y ∗ such that Y ∗
i ∈ Ci(Z ∪ A) for all

i ∈ a(Z). Note that ui(Y i) > ui(A) for all Y i ∈ C i(Z ∪ A) and all i ∈ a(Z). Note that

Z is itself an outcome.

Since any weakly setwise blocking set is also a blocking set. Thus, we have τ(Z) ⊆
{ω1, ..., ωk} by Claim 5. We claim that ωk /∈ τ(Z). Suppose that there exists some
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zk ∈ Z. Then, 2ρωk
(Z)−σi1

ωk
(Z) > 2 is necessary in order to guarantee that zk ∈ Y i1 for

all Y i1 ∈ Ci1(Z ∪ A) by the linearity of vi1 . By Claim 4, σik
ωk
(Z) > 2 − 2ρωk

(Z). First,

consider the case where ωk−1 /∈ τ(Z). Then,

uik({ak−1, zk}) = −
∣∣∣∣12 − ρωk

(Z)

∣∣∣∣+ 1

2
− σik

ωk
(Z)

< −
∣∣∣∣12 − ρωk

(Z)

∣∣∣∣+ 1

2
− (2− 2ρωk

(Z))

=

{
3ρωk

(Z)− 2 if ρωk
(Z) ≤ 1

2
;

ρωk
(Z)− 1 if ρωk

(Z) > 1
2
.

Therefore, uik({ak−1, zk}) < 0 = uik({ak−1}) with irrespective to the choice of ρωk
(Z).

Thus, {ak−1, zk} /∈ Cik(Z ∪ A). Also, by

uik({zk}) = −|1− ρωk
(Z)| − σik

ωk
(Z)

< −(1− ρωk
(Z))− (2− 2ρωk

(Z))

= 3ρωk
(Z)− 3

≤ 0

= uik({ak−1}),

{zk} /∈ C ik(Z ∪ A). Thus, zk is never chosen by ik, contradicting the choice of Z.

Next, consider the case where ωk−1 ∈ τ(Z). Since Z is a weakly setwise blocking set

and ωk ∈ τ(Z) is also assumed, {Zik} = Cik(Z ∪ A). Then,

uik({zk−1, zk}) = −|1− ρωk−1
(Z)− ρωk

(Z)| − σik
ωk−1

(Z)− σik
ωk
(Z)

< −|1− ρωk−1
(Z)− ρωk

(Z)| − σik
ωk−1

(Z)− (2− 2ρωk
(Z)).

(4)

Consider the case where 1 ≥ ρωk−1
(Z) + ρωk

(Z). Then, by (4)

uik({zk−1, zk}) < −(1− ρωk
(Z)− ρωk−1

(Z))− σik
ωk−1

(Z)− (2− 2ρωk
(Z))

= ρωk−1
(Z) + 3ρωk

(Z)− σik
ωk−1

(Z)− 3

≤ 2ρωk
(Z)− σik

ωk−1
(Z)− 2.

By this inequality and uik({zk−1, ak}) = −ρωk−1
(Z)− σik

ωk−1
(Z),

uik({zk−1, ak})− uik({zk−1, zk})

> −ρωk−1
(Z)− σik

ωk−1
(Z)− (2ρωk

(Z)− σik
ωk−1

(Z)− 2)

= −ρωk−1
(Z)− 2ρωk

(Z) + 2

≥ −ρωk
(Z) + 1

≥ 0,
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contradicting that Zik ∈ C ik(Z ∪ A).

Consider the case where 1 < ρωk
(Z) + ρωk−1

(Z). Then by (4)

uik({zk−1, zk}) < −(ρωk−1
(Z) + ρωk

(Z)− 1)− σik
ωk−1

(Z)− (2− 2ρωk
(Z))

= −ρωk−1
(Z) + ρωk

(Z)− σik
ωk−1

(Z)− 1.

By this inequality and uik({zk−1, ak}) = −ρωk−1
(Z)− σik

ωk−1
(Z),

uik({zk−1, ak})− uik({zk−1, zk})

> −ρωk−1
(Z)− σik

ωk−1
(Z)− (−ρωk−1

(Z) + ρωk
(Z)− σik

ωk−1
(Z)− 1)

= −ρωk
(Z) + 1

≥ 0,

contradicting that Zik ∈ C ik(Z ∪ A). Hence, ωk /∈ τ(Z).

Let ĥ = 1, ..., k− 1 be the minimum integer such that ωĥ ∈ τ(Z), and ℓ̂ = ĥ, ..., k− 1

be the minimum integer no less than ĥ such that ωℓ̂+1 /∈ τ(Z). Therefore, note that

{ωĥ, ..., ωℓ̂} ⊆ τ(Z) and ωĥ−1, ωℓ+1 /∈ τ(Z). Note also that Ciĥ(Z∪A) ⊆ {{zĥ}, {aĥ−1, zĥ}},
Ciℓ̂+1(Z ∪ A) ⊆ {{zℓ̂}, {zℓ̂, aℓ̂+1}}, and C ih(Z ∪ A) = {Zih} for all h = ĥ+ 1, ..., ℓ.

Case 1. ĥ ̸= 1 and ℓ̂ ̸= k − 1.

Since Z is a weakly setwise blocking set and uih(A) = 0 for all h ̸= 1, for any

Ȳ iĥ ∈ C iĥ(Z ∪ A) and Ȳ iℓ̂+1 ∈ Ciℓ̂+1(Z ∪ A),

0 <
ℓ̂∑

h=ĥ+1

uih(Z) + uiĥ(Ȳ iĥ) + ui
ℓ̂+1(Ȳ i

ℓ̂+1)

=
ℓ̂∑

h=ĥ+1

(vih(ρ(Z))− σih
ωh−1

(Z)− σih
ωh
(Z)) + (viĥ(ρ(Ȳ i

ĥ))− σ
iĥ
ωĥ−1

(Ȳ i
ĥ)− σ

iĥ
ωĥ
(Z))

+ (viℓ̂+1(ρ(Ȳ iℓ̂+1))− σ
i
ℓ̂+1
ω
ℓ̂
(Z)− σ

i
ℓ̂+1
ω
ℓ̂+1

(Ȳ iℓ̂+1))

≤
ℓ̂∑

h=ĥ+1

vih(ρ(Z)) + viĥ(ρ(Ȳ i
ĥ))− σ

iĥ
ωĥ−1

(Ȳ i
ĥ) + viℓ̂+1(ρ(Ȳ iℓ̂+1))− σ

iℓ̂+1
ωℓ̂+1

(Ȳ iℓ̂+1).

(5)

Note that the first term is 0 when ĥ = ℓ̂. Note also that the last inequality follows from

Claim 4. There are four subcases.

Subcase 1(a). uiĥ({aĥ−1, zĥ}) ≥ uiĥ({zĥ}) and uiℓ̂+1({zℓ̂, aℓ̂+1}) ≥ uiℓ̂+1({zℓ̂}).
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In this subcase, {aĥ−1, zĥ} ∈ C iĥ(Z ∪ A) and {zℓ̂, aℓ̂+1} ∈ C iℓ̂+1(Z ∪ A). By (5),

0 <
ℓ̂∑

h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2

∣∣∣∣12 − ρωĥ
(Z)

∣∣∣∣− 2

∣∣∣∣ρωℓ̂
(Z)− 1

2

∣∣∣∣
≤

ℓ̂∑
h=ĥ+1

(−2(ρωh−1
(Z)− ρωh

(Z)))− 2

(
1

2
− ρωĥ

(Z)

)
− 2

(
ρωℓ̂

(Z)− 1

2

)
= 0,

a contradiction, where the second inequality follows from the property of the absolute

value.

Subcase 1(b). uiĥ({aĥ−1, zĥ}) ≥ uiĥ({zĥ}) and ui
ℓ̂+1({zℓ̂, aℓ̂+1}) < ui

ℓ̂+1({zℓ̂}).
In this subcase, {aĥ−1, zĥ} ∈ C iĥ(Z ∪ A) and {zℓ̂} ∈ C iℓ̂+1(Z ∪ A). By (5),

0 <
ℓ̂∑

h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2

∣∣∣∣12 − ρωĥ
(Z)

∣∣∣∣+ 1

2
− 2ρωℓ̂

(Z)

≤
ℓ̂∑

h=ĥ+1

(−2(ρωh−1
(Z)− ρωh

(Z)))− 2

(
1

2
− ρωĥ

(Z)

)
+

1

2
− 2ρωℓ̂

(Z)

= −1

2
,

a contradiction, where the second inequality follows from the property of the absolute

value.

Subcase 1(c). ui
ĥ({aĥ−1, zĥ}) < ui

ĥ({zĥ}) and ui
ℓ̂+1({zℓ̂, aℓ̂+1}) ≥ ui

ℓ̂+1({zℓ̂}).
In this subcase, {zĥ} ∈ Ciĥ(Z ∪ A) and {zℓ̂, aℓ̂+1} ∈ C iℓ̂+1(Z ∪ A). By (5),

0 <
ℓ̂∑

h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2ρω
ĥ
(Z)− 2

∣∣∣∣ρωℓ̂
(Z)− 1

2

∣∣∣∣− 1

2

≤
ℓ̂∑

h=ĥ+1

(−2(ρωh
(Z)− ρωh−1

(Z)))− 2ρωĥ
(Z)− 2

(
1

2
− ρωℓ̂

(Z)

)
− 1

2

= −3

2
,

a contradiction, where the second inequality follows from the property of the absolute

value.

Subcase 1(d). uiĥ({aĥ−1, zĥ}) < uiĥ({zĥ}) and uiℓ̂+1({zℓ̂, aℓ̂+1}) < uiℓ̂+1({zℓ̂}).
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In this subcase, {zĥ} ∈ Ciĥ(Z ∪ A) and {zℓ̂} ∈ Ciℓ̂+1(Z ∪ A). By (5),

0 <
ℓ̂∑

h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2ρω
ĥ
(Z)− 2ρω

ℓ̂
(Z)

≤
ℓ̂∑

h=ĥ+1

(−2(ρωh−1
(Z)− ρωh

(Z)))− 2ρωĥ
(Z)− 2ρωℓ̂

(Z)

= −4ρωĥ
(Z)

≤ 0,

a contradiction, where the second inequality follows from the property of the absolute

value.

Case 2. ĥ ̸= 1 and ℓ̂ = k − 1.

In this case, (5) is again necessary in order to guarantee that Z is a weakly setwise

blocking set. Further,

uik({zk−1, ak})− uik({zk−1}) = −ρωk−1
(Z) + (1− ρωk−1

(Z))

= 1− 2ρωk−1
(Z){

≥ 0 if ρωk−1
(Z) ≤ 1

2
;

< 0 if ρωk−1
(Z) > 1

2
.

(6)

There are four subcases.

Subcase 2(a). ui
ĥ({aĥ−1, zĥ}) ≥ ui

ĥ({zĥ}) and uik({zk−1, ak}) ≥ uik({zk−1}). In this

subcase, {aĥ−1, zĥ} ∈ Ciĥ(Z ∪ A) and {zk−1, ak} ∈ C ik(Z ∪ A). By (5),

0 <

k−1∑
h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2

∣∣∣∣12 − ρωĥ
(Z)

∣∣∣∣+ 1

2
− ρωk−1

(Z)

≤
k−1∑

h=ĥ+1

(−2(ρωh−1
(Z)− ρωh

(Z)))− 2

(
1

2
− ρωĥ

(Z)

)
+

1

2
− ρωk−1

(Z)

= ρωk−1
(Z)− 1

2
≤ 0,

a contradiction, where the second inequality follows from the property of the absolute

value, and the last line follows from (6).

Subcase 2(b). uiĥ({aĥ−1, zĥ}) ≥ uiĥ({zĥ}) and uik({zk−1, ak}) < uik({zk−1}).
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In this subcase, {aĥ−1, zĥ} ∈ C iĥ(Z ∪ A) and {zk−1} ∈ Cik(Z ∪ A). By (5),

0 <

k−1∑
h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2

∣∣∣∣12 − ρω
ĥ
(Z)

∣∣∣∣+ 1

2
− |1− ρωk−1

(Z)|

≤
k−1∑

h=ĥ+1

(−2(ρωh
(Z)− ρωh−1

(Z)))− 2

(
ρω

ĥ
(Z)− 1

2

)
+

1

2
− (1− ρωk−1

(Z))

= −ρωk−1
(Z) +

1

2
< 0,

a contradiction, where the second inequality follows from the property of the absolute

value, and the last line follows from (6).

Subcase 2(c). ui
ĥ({aĥ−1, zĥ}) < ui

ĥ({zĥ}) and uik({zk−1, ak}) ≥ uik({zk−1}).
In this subcase, {zĥ} ∈ Ciĥ(Z ∪ A) and {zk−1, ak} ∈ Cik(Z ∪ A). By (5),

0 <

k−1∑
h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2ρω
ĥ
(Z)− ρωk−1

(Z)

≤
k−1∑

h=ĥ+1

(−2(ρωh
(Z)− ρωh−1

(Z)))− 2ρω
ĥ
(Z)− ρωk−1

(Z)

= −3ρωk−1
(Z)

≤ 0,

a contradiction, where the second inequality follows from the property of the absolute

value, and the last line follows from the nonnegativity of the participation level.

Subcase 2(d). ui
ĥ({aĥ−1, zĥ}) < ui

ĥ({zĥ}) and uik({zk−1, ak}) < uik({zk−1}).
In this subcase, {zĥ} ∈ Ciĥ(Z ∪ A) and {zk−1} ∈ Cik(Z ∪ A). By (5),

0 <

k−1∑
h=ĥ+1

(−2|ρωh−1
(Z)− ρωh

(Z)|)− 2ρωĥ
(Z)− |1− ρωk−1

(Z)|

≤
k−1∑

h=ĥ+1

(−2(ρωh
(Z)− ρωh−1

(Z)))− 2ρω
ĥ
(Z)− (1− ρωk−1

(Z))

= −ρωk−1
(Z)− 1

< 0,

a contradiction, where the second inequality follows from the property of the absolute

value.
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Case 3. ĥ = 1.

In this case, {{z1, ak}} = Ci1(Z ∪A) since Z is a weakly setwise blocking set and the

linearity of vi1 . Since Z is a weakly setwise blocking set, for any Ȳ iℓ̂+1 ∈ C iℓ̂+1(Z ∪ A),

5

2
<

ℓ̂∑
h=2

uih(Z) + ui1({z1, ak}) + uiℓ̂+1(Ȳ iℓ̂+1)

=
ℓ̂∑

h=2

(vih(ρ(Z))− σih
ωh−1

(Z)− σih
ωh
(Z)) + (2 + 2ρω1(Z)− σi1

ω1
(Z))

+ (viℓ̂+1(ρ(Ȳ ℓ̂+1))− σ
iℓ̂+1
ωℓ̂

(Z)− σ
iℓ̂+1
ωℓ̂+1

(Ȳ ℓ̂+1))

≤
ℓ̂∑

h=2

vih(ρ(Z)) + 2 + 2ρω1(Z) + viℓ̂+1(ρ(Ȳ ℓ̂+1))− σ
iℓ̂+1
ωℓ̂+1

(Ȳ ℓ̂+1).

(7)

Note that the first term is 0 when ℓ = 1. Note also that the last inequality follows from

Claim 4. We distinguish three subcases.

Subcase 3(a). ℓ̂ ̸= k − 1 and uiℓ̂+1({zℓ̂, aℓ̂+1}) ≥ uiℓ̂+1({zℓ̂}).
In this subcase, {zℓ̂, aℓ̂+1} ∈ C ℓ̂+1(Z ∪ A). By (7),

5

2
<

ℓ̂∑
h=2

(−2|ρωh−1
(Z)− ρωh

(Z)|) + (2 + 2ρω1(Z))− 2

∣∣∣∣ρωℓ̂
(Z)− 1

2

∣∣∣∣− 1

2

≤
ℓ̂∑

h=2

(−2(ρωh−1
(Z)− ρωh

(Z))) + (2 + 2ρω1(Z))− 2

(
ρωℓ̂

(Z)− 1

2

)
− 1

2

=
5

2
,

a contradiction, where the second inequality follows from the property of the absolute

value.

Subcase 3(b). ℓ̂ ̸= k − 1 and uiℓ̂+1({zℓ̂, aℓ̂+1}) < uiℓ̂+1({zℓ̂}).
In this subcase, {zℓ̂} ∈ C iℓ̂(Z ∪ A). By (7),

5

2
<

ℓ̂∑
h=2

(−2|ρωh−1
(Z)− ρωh

(Z)|) + (2 + 2ρω1(Z))− 2ρωℓ̂
(Z)

≤
ℓ̂∑

h=2

(−2(ρωh−1
(Z)− ρωh

(Z))) + (2 + 2ρω1(Z))− 2ρωℓ̂
(Z)

= 2,

29



a contradiction, where the second inequality follows from the property of the absolute

value.

Subcase 3(c). ℓ̂ = k − 1.

In this subcase, {zk−1, ak} ∈ C ik(Z ∪A) since Z is a weakly setwise blocking set and

{{z1, ak}} = Ci1(Z ∪ A). By (6), ρωk−1
(Z) ≤ 1/2. Then, by (7),

5

2
<

k−1∑
h=2

(−2|ρωh−1
(Z)− ρωh

(Z)|) + (2 + 2ρω1(Z))− ρωk−1
(Z)

≤
k−1∑
h=2

(−2(ρωh−1
(Z)− ρωh

(Z))) + (2 + 2ρω1(Z))− ρωk−1
(Z)

= 2 + ρωk−1
(Z)

≤ 5

2
,

a contradiction, where the second inequality follows from the property of the absolute

value.

Any of the three cases leads a contradiction. Therefore, A is stable. □

Proof of Theorem 1(e’)⇒(a). We prove by constructing a tuple of valuation functions

at which there exists an inefficient stable outcome. Let

vi1(r) = 3min

{
rω1

rmax
ω1

,
rωk

rmax
ωk

}
;

vih(r) = −3

∣∣∣∣∣rωh−1

rmax
ωh−1

− rωh

rmax
ωh

∣∣∣∣∣ for all h = 2, ..., k − 1 if exist;

vik(r) = −max

{
0,

rωk−1

rmax
ωk−1

+
rωk

rmax
ωk

− 1

}
;

vi(r) = 0 for any i ∈ I \ {i1, ...ik} if exist.

We can easily confirm that all of these functions are concave. Note that each valuation

function depends only on the ratio of the venture participation levels relative to the

maximum participation levels. Hereafter, we normalize to rmax
ωh

= 1 for all h = 1, ..., k

for the simplicity, which does not change any feature of the model.

Consider an outcome A = {(ωi, 1/2, (0, ..., 0))|i = 1, ..., k}. Note that ui1(A) =

3/2 and ui(A) = 0 for all i ∈ I \ {i1}. It is easy to see that A is inefficient since
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∑
i∈I v

i(ρ(A)) = 3/2 < 2 =
∑

i∈I v
i(1, ..., 1). For any A′ ⊊ A,

ui1(A) = 3/2 > 0 = ui1(A′);

uih(A) = 0 ≥ uih(A′) for each h = 2, ..., k − 1;

uik(A) = 0 = uik(A′);

ui(A) = 0 = ui(A′) for all i ∈ I \ {i1, ..., ik}.

Thus, Ai ∈ Ci(A) for all i ∈ I. Hence, A is individually rational.

Suppose that A is blocked via Z ⊆ X \ A. Then, by Claim 5, τ(Z) ⊆ {ω1, ..., ωk}.
We claim that {ω1, ωk} ⊆ τ(Z) and both ρω1(Z) > 1/2 and ρωk

(Z) > 1/2. Suppose

not. Then, vi1(ρ(Y )) ≤ vi1(ρ(A)) = 3/2 for all Y ⊆ Z ∪A by the definition of vi1 . Also

by the definition of vi, vi(r) ≤ 0 = vi(ρ(A)) for all i ∈ I \ {i1} and any allocation r.

Thus,
∑

i∈a(Z) v
i(ρ(Y i)) ≤

∑
i∈a(Z) v

i(ρ(A)) for any Y i ∈ Ci(Z ∪ A) for each i ∈ a(Z).

Since σω(A) = 0 for any ω ∈ τ(A),
∑

i∈a(Z) u
i(A) =

∑
i∈a(Z) v

i(ρ(A)). Similarly, for any

Y i ∈ Ci(Z ∪ A) for each i ∈ a(Z), by Zi ⊂ Y i for any i ∈ a(Z),

∑
i∈a(Z)

ui(Y i) =
∑

i∈a(Z)

vi(ρ(Y i))−
∑

ω∈τ(Z)

σi
ω(Z)−

∑
ω∈τ(Y i)\τ(Z)

σi
ω(A)


=

∑
i∈a(Z)

vi(ρ(Y i))−
∑

ω∈τ(Z)

∑
i∈a(Z)

σi
ω(Z)

=
∑

i∈a(Z)

vi(ρ(Y i)).

Therefore,
∑

i∈a(Z) u
i(Y i) ≤

∑
i∈a(Z) u

i(A) for any Y i ∈ C i(Z ∪ A) for each i ∈ a(Z). It

follows that Aj ∈ Cj(Z ∪ A) for some j ∈ a(Z), contradicting that Z is a blocking set.

Hence, {ω1, ωk} ⊆ τ(Z) and both ρω1(Z) > 1/2 and ρωk
(Z) > 1/2. Since Zi1 ⊆ Y i1 for

all Y i1 ∈ Ci1(Z ∪ A) and {ω1, ωk} ⊆ τ(Z) ⊆ {ω1, ..., ωk} = τ(A), C i1(Z ∪ A) = {Zi1}.
We claim that σik

ωk
(Z) < 0. Suppose that σik

ωk
(Z) ≥ 0. Then, since

uik({zk}) = 0− σik
ωk
(Z) ≤ 0 = ui(∅);

uik({ak−1, zk}) ≤ 0− σik
ωk−1

(A)− σik
ωk
(Z) ≤ 0− σik

ωk−1
(A) = ui({ak−1});

uik({zk−1, zk}) ≤ 0− σik
ωk−1

(Z)− σik
ωk
(Z) ≤ 0− σik

ωk−1
(Z) = ui({zk−1}),

where the last inequality makes sense whenever ωk−1 ∈ τ(Z), there exists some Y ik ∈
Cik(Z ∪ A) such that zk /∈ Y ik , contradicting the choice of Z. Thus, σik

ωk
(Z) < 0. By

Claim 4, σi1
ωk
(Z) > 0.
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We claim that ωh ∈ τ(Z) for all h = 2, ..., k − 1. Suppose not. Let ĥ = 2, ..., k − 1

be the minimum integer such that ωĥ /∈ τ(Z). For each h = 2, ..., ĥ − 1, Zih ⊂ Y ih

for all Y ih ∈ Cih(Z ∪ A) since Z is a blocking set. By {ωk, ω1, ..., ωĥ−1}} ⊆ τ(Z) ⊆
{ω1, ..., ωk} = τ(A) = τ(Z ∪A) and Claim 3, {Zih} = {{zh−1, zh}} = C ih(Z ∪A) for any

h = 2, ..., ĥ− 1 and Ciĥ(Z ∪ A) ⊆ {{zĥ−1}, {zĥ−1, aĥ}}.
In order to guarantee that Z is a blocking set, we need

∑ĥ−1
h=1 u

ih(Zih) + uĥ(Y i
ĥ) >

3/2 =
∑ĥ

h=1 u
ih(A) for each Y iĥ ∈ {{zĥ−1}, {zĥ−1, aĥ}}. However, by σi1

ωk
(Z) > 0 and

Claim 4, if Y iĥ = {zĥ−1}, then we have that

ĥ−1∑
h=1

uih(Zih) + uĥ({zĥ−1})

=
ĥ−1∑
h=1

vih(ρ(Z)) + viĥ(ρ({zĥ−1}))− σi1
ωk
(Z)−

ĥ−1∑
h=1

(σih
ωh
(Z) + σih+1

ωh
(Z))

<

ĥ−1∑
h=1

vih(ρ(Z)) + viĥ(ρ({zĥ−1}))

≤ 3ρω1(Z)− 3
ĥ−1∑
h=2

|ρωh−1
(Z)− ρωh

(Z)| − 3ρωĥ−1
(Z)

≤ 3ρω1(Z)− 3
ĥ−1∑
h=2

(ρωh−1
(Z)− ρωh

(Z))− 3ρωĥ−1
(Z)

= 0,
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while if Y iĥ = {zĥ−1, aĥ}, then we have that

ĥ−1∑
h=1

uih(Zih) + uĥ({zĥ−1, aĥ})

=
ĥ−1∑
h=1

vih(ρ(Z)) + viĥ(ρ({zĥ−1, aĥ}))− σi1
ωk
(Z)−

ĥ−1∑
h=1

(σih
ωh
(Z) + σih+1

ωh
(Z))− σ

iĥ
ω
ĥ
(A)

<

ĥ−1∑
h=1

vih(ρ(Z)) + viĥ(ρ({zĥ−1, aĥ}))

≤ 3ρω1(Z)− 3
ĥ−1∑
h=2

|ρωh−1
(Z)− ρωh

(Z)| − 3

∣∣∣∣ρωĥ−1
(Z)− 1

2

∣∣∣∣
≤ 3ρω1(Z)− 3

ĥ−1∑
h=2

(ρωh−1
(Z)− ρωh

(Z))− 3

(
ρω

ĥ−1
(Z)− 1

2

)
=

3

2
.

Note that terms 3
∑ĥ−1

h=2 |ρωh−1
(Z) − ρωh

(Z)| as well as 3
∑ĥ−1

h=2(ρωh−1
(Z) − ρωh

(Z)) in

both inequalities become 0 when ĥ = 2. Anyway, both inequalities contradict that∑ĥ−1
h=1 u

ih(Zih) + uĥ(Y iĥ) > 3/2 for each Y iĥ ∈ {{zĥ−1}, {zĥ−1, aĥ}. Hence, ωih ∈ τ(Z)

for all i = 2, ..., k− 1. Therefore, τ(Z) = {ω1, ..., ωk}. Note that Cih(Z ∪A) = {Zih} for

all h = 1, ..., k by τ(Z) = τ(A) = {ω1, ..., ωk} and Zih ⊆ Y ih for all Y ih ∈ C ih(Z ∪ A).

Further, recall that we have confirmed that both ρω1(Z) > 1/2 and ρωk
(Z) > 1/2.

Denote ρ∗ = min{ρω1(Z), ρωk
(Z)}. By ui1(A) = 3/2,

σi1
ω1
(Z) + σi1

ωk
(Z) < 3(ρ∗ − 1/2) (8)

in order to guarantee that ui1(Z) > ui1(A). For all h = 2, ..., k − 1, by uih(A) = 0, it is

necessary that

σih
ωh−1

(Z) + σih
ωh
(Z) < −3|ρωh−1

(Z)− ρωh
(Z)| ≤ 0 (9)

in order to guarantee that uih(Z) > uih(A). Then,

3

(
ρ∗ − 1

2

)
−3

k−1∑
h=2

|ρωh−1
(Zih)− ρωh

(Zih)|

> (σi1
ωk
(Z) + σi1

ω1
(Z)) +

k−1∑
h=2

(σih
ωh−1

(Z) + σih
ωh
(Z))

= σi1
ωk
(Z) + σik−1

ωk−1
(Z) +

k−2∑
h=1

(σih
ωh
(Z) + σih+1

ωh
(Z)).

(10)
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Note that each of terms 3
∑k−1

h=2 |ρωh−1
(Zih)− ρωh

(Zih)|,
∑k−1

h=2(σ
ih
ωh−1

(Z) + σih
ωh
(Z)), and∑k−2

h=1(σ
ih
ωh
(Z) + σ

ih+1
ωh (Z)) becomes 0 when k = 2.

By ρω1(Z) ≥ ρ∗ and |ρωh−1
(Z)−ρωh

(Z)| ≥ ρωh−1
(Z)−ρωh

(Z) for each h = 2, ..., k−1,

The most LHS of (10) ≤ 3

(
ρω1(Z)−

1

2

)
− 3

k−1∑
h=2

(ρωh−1
(Z)− ρωh

(Z))

= 3ρωk−1
(Z)− 3

2
.

(11)

For any h = 1, ..., k − 1, we have σih
ωh
(Z) + σ

ih+1
ωh (Z) ≥ 0 by Claim 4. Then,

The most RHS of (10) ≥ σi1
ωk
(Z) + σik−1

ωk−1
(Z). (12)

By combining (10)-(12), we obtain 3ρωk−1
(Z) − (3/2) − σi1

ωk
(Z) > σ

ik−1
ωk−1(Z). Then,

by Claim 4,

σik
ωk−1

(Z) > σi1
ωk
(Z) +

3

2
− 3ρωk−1

(Z). (13)

We distinguish two cases.

Case 1. ρωk−1
(Z) + ρωk

(Z) ≤ 1.

In this case,

uik(Zik) = −σik
ωk−1

(Z)− σik
ωk
(Z)

< −
(
σi1
ωk
(Z) +

3

2
− 3ρωk−1

(Z)

)
− σik

ωk
(Z)

≤ 3ρωk−1
(Z)− 3

2

≤ 3(1− ρωk
(Z))− 3

2

<
3

2
− 3

2
= 0,

where the first line follows from τ(Z) = {ω1, ..., ωk}, the second line follows from (13),

the third line follows from Claim 4, the fourth line follows from the assumption of Case 1,

and the last line follows from ρωk
(Z) > 1/2. This contradicts that uik(Zik) > uik(A) = 0.

Case 2. ρωk−1
(Z) + ρωk

(Z) > 1.

In this case, we need

1− ρωk−1
(Z)− ρωk

(Z)−
∑

ω∈τ(Z)

σik
ω (Z) = uik(Z) > uik(Z \ {zh}) = −

∑
ω∈τ(Z\{zh})

σik
ω (Z)
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for h = k − 1, k in order to guarantee that {Zik} = C ik(Z ∪ A). Therefore,

1− ρωk−1
(Z)− ρωk

(Z) > σik
ωh
(Z) for h = k − 1, k. (14)

Then,

0 ≤
k∑

h=1

(σih
ωh
(Z) + σih+1

ωh
(Z))

=
k∑

h=1

(σih
ωh−1

(Z) + σih
ωh
(Z))

=
k−1∑
h=2

(σih
ωh−1

(Z) + σih
ωh
(Z)) +

∑
h=1,k

(σih
ωh−1

(Z) + σih
ωh
(Z))

< −3
k−1∑
h=2

|ρωh−1
(Z)− ρωh

(Z)|+
(
3ρ∗ − 3

2

)
+ 2(1− ρωk−1

(Z)− ρωk
(Z))

(15)

where the first line follows from Claim 4, and last line follows from (8), (9), and (14).

We further distinguish two subcases.

Subcase 2(a). Either ρωk−1
(Z) ≤ ρω1(Z) or ρωk−1

(Z) ≤ ρωk
(Z).

In this subcase, by |ρωh−1
(Z)− ρωh

(Z)| ≥ ρωh−1
(Z)− ρωh

(Z) for all h = 2, ..., k − 1,

The most RHS of (15)

≤ −3
k−1∑
h=2

(ρωh−1
(Z)− ρωh

(Z)) +

(
3ρ∗ − 3

2

)
+ 2(1− ρωk−1

(Z)− ρωk
(Z))

= −3(ρω1(Z)− ρωk−1
(Z)) + 3ρ∗ +

1

2
− 2ρωk−1

(Z)− 2ρωk
(Z)

= −3ρω1(Z) + ρωk−1
(Z) + 3ρ∗ − 2ρωk

(Z) +
1

2
.

(16)

If ρ∗ = ρω1(Z), then either ρωk−1
(Z) ≤ ρω1(Z) ≤ ρωk

(Z) or ρωk−1
(Z) ≤ ρωk

(Z). Anyway,

ρωk−1
(Z) ≤ ρωk

(Z). Then, the most RHS of (16) turns out to be

ρωk−1
(Z)− 2ρωk

(Z) +
1

2
< 0

by ρωk
(Z) > 1/2. This contradicts that the most RHS of (15) is greater than 0.

If ρ∗ = ρωk
(Z), then either ρωk−1

(Z) ≤ ρω1(Z) or ρωk−1
(Z) ≤ ρωk

(Z) ≤ ρω1(Z).

Anyway, ρωk−1
(Z) ≤ ρω1(Z). Then, the most RHS of (16) turns out to be

−3ρω1(Z) + ρωk−1
(Z) + ρωk

(Z) +
1

2
< 0
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by ρωk
(Z) ≤ ρω1(Z), ρωk−1

(Z) ≤ ρω1(Z), and ρω1(Z) > 1/2. This contradicts that the

most RHS of (15) is greater than 0.

Subcase 2(b). Both ρωk−1
(Z) > ρω1(Z) and ρωk−1

(Z) > ρωk
(Z).

In this subcase, by |ρωh−1
(Z)− ρωh

(Z)| ≥ ρωh
(Z)− ρωh−1

(Z) for all h = 2, ..., k − 1,

The most RHS of (15)

≤ −3
k−1∑
h=2

(ρωh
(Z)− ρωh−1

(Z)) +

(
3ρ∗ − 3

2

)
+ 2(1− ρωk−1

(Z)− ρωk
(Z))

= −3(ρωk−1
(Z)− ρω1(Z)) + 3ρ∗ +

1

2
− 2ρωk−1

(Z)− 2ρωk
(Z)

= 3ρω1(Z)− 5ρωk−1
(Z) + 3ρ∗ − 2ρωk

(Z) +
1

2
.

(17)

If ρ∗ = ρω1(Z), then the most RHS of (17) turns out to be

6ρω1(Z)− 5ρωk−1
(Z)− 2ρωk

(Z) +
1

2
< 0

by ρωk−1
(Z) > ρω1(Z) and 1/2 < ρω1(Z) ≤ ρωk

(Z). This contradicts that the most RHS

of (15) is greater than 0.

If ρ∗ = ρωk
(Z), then the most RHS of (17) turns out to be

3ρω1(Z)− 5ρωk−1
(Z) + ρωk

(Z) +
1

2
< 0

by 1/2 < ρω1(Z) < ρωk−1
(Z) and ρωk

(Z) < ρωk−1
(Z). This contradicts that the most

RHS of (15) is greater than 0.

Each of Case 1 and 2 yields a contradiction. Hence, A is a stable outcome.

■

Appendix B. Proofs in Subsection 3.2

We give the proofs for the results in Subsection 3.2. The following table shows an

outline of the proofs, where “→” indicates “is used in”, and “↠” indicates “immediately

implies”.

Proposition 1 → Lemma 1 ↠ [Theorem 2(a) ⇒ (b)]

Lemma 2
Proposition 2

}
↠ [Theorem 2(c) ⇒ (a)]
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Therefore, we begin with the proof of Proposition 1.

Proof of Proposition 1.

We denote I = {i1, ..., ik} and Ω = {ω1, ..., ωm}. Assume that I = a(ω) for all ω ∈ Ω.

Define

X∗ =

{
((ρω1(Y ), σω1(Y )), ..., (ρωm(Y ), σωm(Y ))) ∈ R(k+1)m

∣∣∣∣ Y is an individually
rational outcome

}
.

The nonemptiness ofX∗ is straightforward since ((0, (0, ..., 0)), ..., (0, (0, ..., 0))) ∈ X∗.

The boundedness follows from the boundedness of rmax
ω ≥ 0 for each ω ∈ Ω and the indi-

vidual rationality of Y . To see thatX∗ is closed, let ((ρω1(Yt), σω1(Yt)), ..., (ρωm(Yt), σωm(Yt)))
∞
t=1

be a convergent sequence in X∗ that converges to ((rω1 , sω1), ..., (rωm , sωm)) where Yt is

an individually rational oucome for all t. Note that for all h = 1, ...,m, rωh
∈ [0, rmax

ωh
]

and
∑k

ℓ=1 s
iℓ
ωh

= 0 since ρωh
(Yt) ∈ [0, rmax

ωh
] and

∑k
ℓ=1 σ

iℓ
ωh
(Yt) = 0 for any t. Thus, there

exists an outcome Y such that ρωh
(Y ) = rωh

and σωh
(Y ) = sωh

for all h = 1, ...,m.

We show that Y is individually rational, which implies that ((rω1 , sω1), ..., (rωm , sωm)) ∈
X∗ and hence X∗ is closed. Pick any i ∈ I and any Ω′ ⊆ {ω ∈ Ω|i ∈ a(ω)}. For each

t, let rt = (ρω1(Yt), ..., ρωm(Yt)) ∈ Rm. We also denote (rω1 , ..., rm) by r ∈ Rm. By the

individulal rationality of (Yt)
∞
t=1, we have that

vi(r
t)−

∑
ω∈Ω

σi
ω(Yt) ≥ vi(0Ω′ , rtΩ\Ω′)−

∑
ω∈Ω\Ω′

σi
ω(Yt) for all t.

Since vi is continous, by rt → r and (σω1(Yt), ..., σωm(Yt)) → (sω1 , ..., sωm) (t → ∞), we

have that

vi(r)−
∑
ω∈Ω

siω ≥ vi(0Ω′ , rΩ\Ω′)−
∑

ω∈Ω\Ω′

siω.

Therefore, Y is individually rational. Hence X∗ is nonempty and compact.

Then, there exists ((r∗ω1
, s∗ω1

), ..., (r∗ωm
, s∗ωm

)) ∈ X∗ such that
∑k

ℓ=1 v
iℓ(r∗) ≥

∑k
ℓ=1 v

iℓ(r)

for any ((rω1 , sω1), ..., (rωm , sωm)) ∈ X∗ by the continuity of the valuation functions. Let

A∗ be the individually rational outcome such that ρωh
(A∗) = r∗ωh

and σωh
(A∗) = s∗ωh

for

all h = 1, ...,m.

Suppose that A∗ is not weakly setwise stable. Then, there exists a nonempty Z ⊆
X\A∗ such that for all i ∈ I we have that Zi ⊆ Y i for all Y i ∈ Ci(Z∪A∗) and there exists

some outcome Y ∗ such that Y ∗
i ∈ Ci(Z ∪ A∗) for all i ∈ I. Note that Y ∗

i ∈ Ci(Y ∗) for
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all i ∈ I from the definition of the choice and hence (ρ(Y ∗), σ(Y ∗)) ∈ X∗. We also have

that ui(Y ∗) > ui(A∗) for all i ∈ I, which implies that
∑

i∈I vi(ρ(Y
∗)) >

∑
i∈I vi(A

∗)).

This contradicts the choice of A∗. Hence, A∗ is stable.

Proof of Lemma 1. Let (I,Ω, a, rmax, v) be a multilateral matching market with

acyclic venture structure. The proof is done by a mathematical induction of the number

of ventures. We begin with the proof for the induction base.

Claim 7 Consider any venture structure (I,Ω, a) with |Ω| = 1. For any maximum

participation vector rmax and any tuple of valuation functions v = (vi)i∈I , a strongly

group stable outcome exists in (I,Ω, a, rmax, v).

Proof of Claim 7. Any venture structure with a single venture is obviously acyclic

and I = a(ω) for the unique ω ∈ Ω. Then, the existence of the strongly group stable

outcome immediately follows from Theorem 1(a)⇒(b) and Proposition 1. □

We assume that for any acyclic venture structure (I,Ω, a) with |Ω| = k − 1 (k ≥ 2),

any maximum participation vector rmax and any tuple of valuation functions v = (vi)i∈I ,

a strongly group stable outcome exists in (I,Ω, a, rmax, v) (Induction hypothesis). We

will show that this statement holds when the number of ventures is k. Consider any

acyclic venture structure (I,Ω, a) with |Ω| = k, any maximum participation vector rmax

and any tuple of valuation functions v = (vi)i∈I . We denote by Mk the multilateral

matching market (I,Ω, a, rmax, v).

For each i ∈ I, we denote {ω ∈ Ω|i ∈ a(ω)} by Ωi. We say that ω ∈ Ω is an extreme

venture if |{i ∈ a(ω)||Ωi| ≥ 2}| ≤ 1. By the acyclicity, there exists at least one extreme

venture. Fix an extreme venture ω0 arbitrary. We often write vi(r) by vi(rΩ\{ω0}; rω0)

for each i ∈ I and each r ∈ ×ω∈Ω[0, r
max
ω ].

We construct a multilateral matching market Mk−1 = (Ī ,Ω \ {ω0}, ā, r̄max, v̄), where

Ī =
∪

ω∈Ω\{ω0} a(ω), ā is a restriction of a to Ω \ {ω0}, and r̄max = (rmax
ω )ω∈Ω\{ω0}. The

tuple of valuation function v̄ will be specified later. The acyclicity of (I,Ω, a) implies

that (Ī ,Ω \ {ω0}, ā) is also acyclic. Suppose that |Ωi| = 1 for all i ∈ a(ω0) which implies

that a(ω0) ∩ a(Ω \ {ω0}) = ∅. Then, the induction hypothesis and the existence result

of a strongly group stable outcome for a market with one venture (Claim 7) implies

the existence of a strongly group stable outcome in Mk. Therefore, we assume that

there exists i0 ∈ a(ω0) such that |Ωi0 | ≥ 2. Note that such an agent uniquely exists
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since ω0 is extreme, and therefore, Ī = (I \ a(ω0)) ∪ {i0} holds. Note also that for each

j ∈ a(ω0) \ {i0}, Ωj = {ω0} holds.

We next define a tuple of valuation functions v̄ = (v̄i)i∈Ī which are defined on

×ω∈Ω\{ω0}[0, r
max
ω ] as follows. For each j ∈ a(ω0) \ {i0} and each x ∈ [0, rmax

ω0
], let

sj(x) := vj(0;x) − vj(0; 0) and si0(x) := −
∑

j∈a(ω0)\{i0} s
j(x). Then, v̄i0 is defined as

follows: for each r̃ ∈ ×ω∈Ω\{ω0}[0, r
max
ω ],

v̄i0(r̃) := max
r∈[0,rmax

ω0
]
vi0(r̃; r)− si0(r).

For each i ∈ Ī \ {i0} and each r̃ ∈ ×ω∈Ω\{ω0}[0, r
max
ω ],

v̄i(r̃) := vi(r̃; 0).

Then, for all i ∈ Ī, v̄i is continuous on ×ω∈Ω\{ω0}[0, r
max
ω ] from the continuity of vi. For

each i ∈ Ī, we denote by ūi(A) the utility from an outcome A in Mk−1. It should be

remarked that (i) for any outcome A in Mk−1, A is an outcome in Mk and ūi(A) = ui(A)

for all i ∈ Ī \ {i0}, and (ii) for any i ∈ I \ a(ω0) and any outcome A in Mk, Ai is an

outcome in Mk−1 and ūi(Ai) = ui(A) because i ∈ I \ a(ω0) implies ω0 /∈ Ωi.

By the induction hypothesis, there exists a strongly group stable outcome A in Mk−1.

We denote (ρω(A))ω∈Ω\{ω0} by rA, and σω(A) by sω for each ω ∈ τ(A). Fix an arbitrary

rω0(r
A) ∈ arg max

x∈[0,rmax
ω0

]
vi0(rA; x)− si0(x).

Define a transfer vector sω0 by siω0
:= si(rω0(r

A)) if i ∈ a(ω0), and siω0
:= 0 if i /∈ a(ω0).

Note that
∑

i∈a(ω0)
siω0

= 0 holds from the definition. Let A∗ := A∪ {(ω0, rω0(r
A), sω0)}.

We will show that A∗ is a strongly group stable outcome in Mk. Note that

uj(A∗) = vj(0; rω0(r
A))− sj(rω(r

A)) = vj(0; 0) for all j ∈ a(ω0) \ {i0},

ui(A∗) = ūi(A) for all i ∈ I \ a(ω0),

ui0(A∗) = ūi0(A),

where the first equation follows from Ωj = {ω0} for all j ∈ a(ω0) and the last equation
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follows from

ui0(A∗) = vi0(rA; rω0(r
A))−

∑
ω∈τ(A∗

i0
)

siω

= vi0(rA; rω0(r
A))− si0(rω0(r

A))−
∑

ω∈τ(Ai0
)

si0ω

= v̄i0(rA)−
∑

ω∈τ(Ai0
)

si0ω = ūi0(Ai0).

Claim 8 A∗ is individually rational.

Proof of Claim 8. Clearly, A∗ is individually rational for all j ∈ a(ω0) \ {i0}. The

individual rationality of A in Mk−1 directly implies that A∗ is individual rational for all

i ∈ I \ a(ω0). Therefore, it remains to show that letting r∗ := (rA; rω0(r
A)), for each

Ω′ ⊆ τ(A∗
i ),

ui0(A∗) = vi0(r∗)−
∑

ω∈τ(A∗
i0
)

si0ω ≥ vi0(0Ω′ , r∗−Ω′)−
∑

ω∈τ(A∗
i0
)\Ω′

si0ω .

Pick any Ω′ ⊆ τ(A∗
i ). We have two cases to consider.

Case 1: ω0 ∈ Ω′.

Let Ω′′ := Ω′ \ {ω0}(⊆ τ(Ai)). Then, we have that

ui0(A∗) = ūi0(A) = v̄i0(rA)−
∑

ω∈τ(Ai0
)

si0ω

≥ v̄i0(0Ω′′ , rA−Ω′′)−
∑

ω∈τ(Ai0
)\Ω′′

si0ω

= v̄i0(0Ω′′ , rA−Ω′′)−
∑

ω∈τ(A∗
i0
)\Ω′

si0ω

≥ vi0(0Ω′′ , rA−Ω′′ ; 0)− si0(0)−
∑

ω∈τ(A∗
i0
)\Ω′

si0ω

= vi0(0Ω′ , r∗−Ω′)−
∑

ω∈τ(A∗
i0
)\Ω′

si0ω ,

where the first line follows from the individual rationality of A in Mk−1, the third line

follows from ω0 ∈ Ω′, the fourth line follows from the definition of v̄i0 , and the last line

follows from si0(0) = 0. Therefore, we obtain ui0(A∗) ≥ vi0(0Ω′ , r∗−Ω′)−
∑

ω∈τ(A∗
i0
)\Ω′ si0ω .

Case 2: ω0 /∈ Ω′.
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In this case, Ω′ ⊆ τ(Ai0) holds. Then, we have that

ui0(A∗) = ūi0(A) = v̄i0(rA)−
∑

ω∈τ(Ai0
)

si0ω

≥ v̄i0(0Ω′ , rA−Ω′)−
∑

ω∈τ(Ai0
)\Ω′

si0ω

≥ vi0(0Ω′ , rA−Ω′ ; rω0(r
A))− si0(rω0(r

A))−
∑

ω∈τ(Ai0
)\Ω′

si0ω

= vi0(0Ω′ , r∗−Ω′)− si0ω0
−

∑
ω∈τ(Ai0

)\Ω′

si0ω

= vi0(0Ω′ , r∗−Ω′)−
∑

ω∈τ(A∗
i0
)\Ω′

si0ω ,

where the second line follows from the individual rationality of A in Mk−1, the third line

follows from the definition of v̄i0 , and the last line follows from ω0 /∈ Ω′. Therefore, we

obtain ui0(A∗) ≥ vi0(0Ω′ , r∗−Ω′)−
∑

ω∈τ(A∗
i0
)\Ω′ si0ω . Hence, A

∗ is individually rational. □

Claim 9 A∗ is not strongly blocked in Mk.

Proof of Claim 9. Suppose that there exists a strong blocking set Z to A∗. By the

strong group stability of A in Mk−1, a(Z) must contain i0. For all i ∈ a(Z), fix any

Y i ⊆ A∗
i ∪ Zi such that ui(Y i) > ui(A∗) and Zi ⊆ Y i. Then, we have two cases to

consider.

Case 1: ω0 /∈ τ(Z).

This assumption guarantees that Z is an outcome in Mk−1. We will show that Z is

a strong blocking set to A in Mk−1, which contradicts the strong group stability of A

in Mk−1. Because A ∩ Z = ∅ holds by A∗ ∩ Z = ∅, it is sufficient to show that for all

i ∈ a(Z), there exists Ȳ i ⊆ Ai ∪ Zi such that ūi(Ȳ i) > ūi(A∗) and Zi ⊆ Ȳ i. Consider

any i ∈ a(Z) with i ̸= i0. By ω0 /∈ τ(Z) and i ̸= i0, we have that i /∈ a(ω0) and hence Y i

satisfies that Y i ⊆ Ai ∪ Zi, ū
i(Y i) > ūi(A) and Zi ⊆ Y i. Therefore, it remains to show

that there exists Ȳ i0 ⊆ Ai0 ∪Zi0 such that ūi0(Ȳ i0) > ūi0(A) and Zi0 ⊆ Ȳ i0 . We further

distinguish two cases.

Subcase 1(a): ω0 ∈ τ(Y i0)

In this case, there exists y0 ∈ Y i0 with τ(y0) = ω0. Let Ȳ
i0 := Y i0 \ {y0}. Then, we

have that Ȳ i0 ⊆ Ai0 ∪ Zi0 and Zi0 ⊆ Ȳ i0 by Y i0 ⊆ A∗
i0
∪ Zi0 and ω0 /∈ τ(Z). Note that
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ω0 /∈ τ(Z) implies y0 ∈ A∗
i0
and hence y0 = (ω0, ρω0(Y

i0), σω0(Y
i0)) = (ω0, rω0(r

A), sω0)

holds. Then, we have that

ūi0(Ȳ i0) = v̄i0((ρω(Y
i0))ω∈Ω\{ω0})−

∑
ω∈τ(Ȳ i0 )

σi0
ω (Ȳ

i0)

≥ vi0((ρω(Y
i0))ω∈Ω\{ω0}; ρω0(Y

i0))− si0(ρω0(Y
i0))−

∑
ω∈τ(Ȳ i0 )

σi0
ω (Ȳ

i0)

= vi0((ρω(Y
i0))ω∈Ω\{ω0}; ρω0(Y

i0))− si0(rω0(r
A))−

∑
ω∈τ(Ȳ i0 )

σi0
ω (Ȳ

i0)

= vi0((ρω(Y
i0))ω∈Ω\{ω0}; ρω0(Y

i0))− σi0
ω0
(Y i0)−

∑
ω∈τ(Ȳ i0)

σi0
ω (Ȳ

i0)

= vi0((ρ(Y i0))−
∑

ω∈τ(Y i0 )

σi0
ω (Y

i0)

= ui0(Y i0),

where the second line follows from the definition of v̄i0 . By the choice of Y i0 , ūi0(Ȳ i0) ≥
ui0(Y i0) > ui0(A∗) which implies that ūi0(Ȳ i0) > ūi0(A) by ui0(A∗) = ūi0(A), contra-

dicting that A is strongly group stable in Mk−1.

Subcase 1(b): ω0 /∈ τ(Y i0)

In this case, Y i0 ⊆ Ai0 ∪ Zi0 and Zi0 ⊆ Y i0 hold. We also have that

ūi0(Y i0) = v̄i0(ρω(Y
i0)ω∈Ω\{ω0})−

∑
ω∈τ(Y i0)

σi0
ω (Y

i0)

≥ vi0(ρω(Y
i0)ω∈Ω\{ω0}; 0)− si0(0)−

∑
ω∈τ(Y i0 )

σi0
ω (Y

i0)

= vi0(ρ(Y i0))−
∑

ω∈τ(Y i0)

σi0
ω (Y

i0)

= ui0(Y i0),

where the second line follows from the definition of v̄i0 and the third line follows from

ω0 /∈ τ(Y i0) and si0(0) = 0. By the choice of Y i0 , ūi0(Ȳ i0) ≥ ui0(Y i0) > ui0(A∗) which

implies that ūi0(Y i0) > ūi0(A) by ui0(A∗) = ūi0(A), contradicting that A is strongly

group stable in Mk−1.

Case 2: ω0 ∈ τ(Z).

In this case, there exists z0 ∈ Z such that τ(z0) = ω0 which we denote by z0 =

(ω0, γω0 , ŝω0). Note that for any j ∈ a(ω0) \ {i0}, Y j = {z0} and hence

vj(0; γω0)− ŝjω0
= uj(Y j) > uj(A∗) = vj(0; 0) = vj(0; γω0)− sj(γω0).
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Therefore, sj(γω0) > ŝjω0
for all j ∈ a(ω0) \ {i0}. By si0(γω0) = −

∑
j∈a(ω0)\{i0} s

j(γω0)

and ŝi0ω0
= −

∑
j∈a(ω0)\{i0} ŝ

j
ω0
, we have ŝi0ω0

> si0(γω0) which implies that

vi0(ρ(Y i0))− si0(γω0)−
∑

ω∈τ(Y i0 )\{ω0}

σi0
ω (Y

i0) > vi0(ρ(Y i0))− ŝi0ω0
−

∑
ω∈τ(Y i0)\{ω0}

σi0
ω (Y

i0)

= ui0(Y i0),

where the equality follows from z0 ∈ Y i0 . Therefore, by ui0(Y i0) > ui0(A∗),

vi0(ρ(Y i0))− si0(γω0)−
∑

ω∈τ(Y i0 )\{ω0}

σi0
ω (Y

i0) > ui0(A∗). (18)

We next show that Z \ {z0} ̸= ∅. Suppose that Z = {z0}. This implies that

Y i0 \ {z} ⊆ Ai0 and σi0
ω (Y

i0) = si0ω for all ω ∈ τ(Y i0) \ {ω0}. Therefore, by (18),

vi0(ρ(Y i0))− si0(γω0)−
∑

ω∈τ(Y i0 )\{ω0}

si0ω

> ui0(A∗)

= vi0(rA; rω0(r
A))− si0(rω0(r

A))−
∑

ω∈τ(A∗
i0
)\{ω0}

si0ω .

(19)

Suppose that Y i0 \ {z} = Ai0 . Then, we have that vi0(ρ(Y i0)) = vi0(rA; γω0) and

τ(Y i0) \ {ω0} = τ(A∗
i0
) \ {ω0}. Therefore, from the above inequality, we have that

vi0(rA; γω0)− si0(γω0) > vi0(rA; rω0(r
A))− si0(rω0(r

A)),

which contradicts the definition of rω0(r
A). Therefore, Y i0 \ {z} ⊊ Ai0 holds. This

implies that Ω′ := {ω ∈ τ(Ai0)|ω /∈ τ(Y i0)} ̸= ∅. Then, vi0(ρ(Y
i0)) = vi0(0Ω′ , rA−Ω′ ; γω0)

and τ(Y i0) \ {ω0} = τ(Ai0) \ Ω′ hold. By (19), we have that

vi0(0Ω′ , rA−Ω′ ; γω0)− si0(γω0)−
∑

ω∈τ(Ai0
)\Ω′

si0ω > ui0(A∗).

From the definition of v̄i0 and ui0(A∗) = ūi0(A),

v̄i0(0Ω′ , rA−Ω′)−
∑

ω∈τ(Ai0
)\Ω′

si0ω > ūi0(A).

However, this contradicts the individual rationality of A in Mk−1. Therefore, Z \ {z0} ̸=
∅.

Note that Z̄ := Z \ {z0} is an outcome in Mk−1 and Z̄ ∩A = ∅ holds by Z ∩A∗ = ∅.
We will show that Z̄ is a strong blocking set to A in Mk−1 i.e, for any i ∈ a(Z̄), there
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exists Ȳ i ⊆ Ai∪Z̄i such that ūi(Ȳ i) > ūi(A), which contradicts the strong group stability

of A in Mk−1. Consider any i ∈ a(Z̄) with i ̸= i0. Then, we have i /∈ a(ω0). Therefore,

Y i satisfies that Y i ⊆ Ai ∪ Z̄i, ū
i(Y i) > ūi(A). For i0, consider Ȳ

i0 := Y i0 \ {z0}. Then,
Ȳ i0 ⊆ Ai ∪ Z̄i holds. Moreover, we have

ūi0(Ȳ i) = v̄i0((ρω(Y
i0))ω∈Ω\{ω0})−

∑
ω∈τ(Ȳi0

)

σi0
ω (Ȳ

i0)

≥ vi0((ρω(Y
i0))ω∈Ω\{ω0}; γω0)− si0(γω0)−

∑
ω∈τ(Ȳi0

)

σi0
ω (Ȳ

i0)

= vi0(ρ(Y i0))− si0(γω0)−
∑

ω∈τ(Ȳi0
)

σi0
ω (Ȳ

i0)

= vi0(ρ(Y i0))− si0(γω0)−
∑

ω∈τ(Yi0
)\{ω0}

σi0
ω (Y

i0)

> ui0(A∗),

where the second line follows from the definition of v̄i0 , the third line follows from

γω0 = ρω0(Y
i0) (by definition), and the strict inequality follows from (18). Therefore,

by ui0(A∗) = ūi0(A), we have that ūi0(Ȳ i0) > ūi0(A), contradicting that A is strongly

group stable in Mk−1. □

Claim 8 and 9 complete the proof of Lemma 1. ■

Proof of Lemma 2. Let (I,Ω, a, rmax, v) be a multilateral matching market such that

(I,Ω, a) admits a 2-cycle. Without loss of generality, we may assume that {i1, i2} and

{ω1, ω2} consists the cycle. For any r ∈ ×ω∈Ω[0, r
max
ω ], let

vi1(r) = max

{
rω1

rmax
ω1

,
rω2

rmax
ω2

}
− 2min

{
rω1

rmax
ω1

,
rω2

rmax
ω2

}
;

vi2(r) = min

{
rω1

rmax
ω1

,
rω2

rmax
ω2

}
;

vi(r) = 0 for any i ∈ I \ {i1, i2} if exist.

We normalize rmax
ωh

= 1 for h = 1, 2 as is the case for the proofs in Appendix A.

Let Y be an individually rational outcome. We assume that ρω1(Y ) ≤ ρω2(Y ). The

case where ρω1(Y ) > ρω2(Y ) can be proved in a similar way as the following proof.

Suppose that ρω1(Y ) > 0. By the individual rationality of Y and ρω1(Y ) ≤ ρω2(Y ),

σi1
ω1
(Y ) ≤ −2ρω1(Y ). By the individual rationality of Y , σi

ω1
(Y ) ≤ 0 for all i ∈
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a(ω1) \ {i1, i2}. Thus, σi2
ω1
(Y ) ≥ 2ρω1(Y ). Then, ui2(Y ) ≤ −ρω1(Y ) − σi2

ω2
(Y ) <

−σi2
ω2
(Y ) = ui2({(ω2, ρω2(Y ), σω2(Y )}), contradicting the individual rationality of Y .

Hence, ρω1(Y ) = 0.

By the individual rationality of Y , σi
ω1
(Y ) = 0 for all i ∈ a(ω1). Hereafter, we

consider the case where τ(Y ) = {ω2}. Thus, ui1(Y ) = ρω2(Y ) − σi1
ω2
(Y ) and ui2(Y ) =

−σi2
ω2
(Y ). By the individual rationality of Y , σi

ω2
(Y ) ≤ 0 for all i ∈ a(ω2) \ {i1}. Hence,

σi1
ω2
(Y ) ≥ 0.

Suppose that ρω2(Y ) = 0. Then, σi
ω2
(Y ) = 0 for all i ∈ a(ω2) by the individual

rationality of Y . Thus, ui1(Y ) = ui2(Y ) = 0. Let Z = {(ω1, 1, sω1)}, where

siω1
=

{
1/2 if i = i1;

− 1
2(|a(ω1)|−1)

if i ∈ a(ω1) \ {i1}.

Then, {Z} = Ci(Z ∪ Y ) for all i ∈ a(ω1), and thus, Y is blocked via Z.

Assume, therefore, that ρω2(Y ) > 0. Note that σi
ω2
(Y ) ≤ 0 for all i ∈ a(ω2) \ {i1, i2}

by the individual rationality of Y . Also, σi2
ω2
(Y ) ≤ 0 by ρω1(Y ) = 0, and hence σi1

ω2
≥ 0.

Define Ẑ = {(ω1, 1, ŝω1)} such that

ŝiω1
=


σi
ω2
(Y )− ε

|a(ω1)|−1
if i = i1;∑

ℓ∈a(ω2)\{i1} σ
ℓ
ω2
(Y ) + ε if i = i2;

− ε
|a(ω1)|−1

if i ∈ a(ω1) \ {i1, i2},

where ε > 0 is sufficiently small so that ε < ρω2(Y ).

We show that Y is blocked via Ẑ. For any player i ∈ a(ω1) \ {i1, i2}, Ẑ ⊆ Y i for all

Y i ∈ Ci(Ẑ ∪Y ) since the payoff of i increases by choosing (ω1, 1, ŝω1) regardless of other

chosen contracts. Also, we have {Ẑ} = C i1(Ẑ ∪ Y ) since

ui1(Ẑ) = 1− σi1
ω2
(Y ) +

ε

|a(ω1)| − 1
> ρω2(Y )− σi1

ω2
(Y ) = ui1(Y ) ≥ ui1(∅);

ui1(Ẑ) = 1− σi1
ω2
(Y ) +

ε

|a(ω1)| − 1
> 1− 2ρω2(Y )− 2σi1

ω2
(Y ) +

ε

|a(ω1)| − 1
= ui1(Ẑ ∪ Y )

by 0 < ρω2(Y ) ≤ 1, the individual rationality of Y , and σi1
ω2
(Y ) ≥ 0. Further, we have

{Ẑ ∪ Y } = Ci2(Ẑ ∪ Y ) since

ui2(Ẑ ∪ Y ) = ρω2(Y )−
∑

ℓ∈a(ω2)\{i1}

σℓ
ω2
(Y )− ε− σi2

ω2
(Y ) > −σi2

ω2
(Y ) = ui2(Y ) ≥ ui2(∅);

ui2(Ẑ ∪ Y ) = ρω2(Y )−
∑

ℓ∈a(ω2)\{i1}

σℓ
ω2
(Y )− ε− σi2

ω2
(Y ) > −

∑
ℓ∈a(ω2)\{i1}

σℓ
ω2
(Y )− ε = ui2(Ẑ)
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by σi
ω2
(Y ) ≤ 0 for all i ∈ a(ω2) \ {i1}, individual rationality of Y , and ρω2(Y ) > ε > 0.

Hence, Y is blocked via Ẑ. □

Proof of Proposition 2. Let (I,Ω, a, rmax, v) be a multilateral matching market, where

(I,Ω, a) admits a cycle consisting of {i1, ..., ik} ⊂ I and {ω1, ..., ωk} ⊂ Ω with k ≥ 3.

Without loss of generality, we may assume that this cycle is irreducible since we are

assuming that (I,Ω, a) admits no 2-cycle. For any r ∈ ×ω∈Ω[0, r
max
ω ], let

vi1(r) = max

{
rω1

rmax
ω1

,
rωk

rmax
ωk

}
− 2min

{
rω1

rmax
ω1

,
rωk

rmax
ωk

}
;

viℓ(r) = −

∣∣∣∣∣1− rωℓ−1

rmax
ωℓ−1

− rωℓ

rmax
ωℓ

∣∣∣∣∣ for ℓ = 2, k;

vih(r) = −2

∣∣∣∣∣rωh−1

rmax
ωh−1

− rωh

rmax
ωh

∣∣∣∣∣ for all h = 3, ..., k − 1 whenever k > 3;

vi(r) = 0 for any i ∈ I \ {i1, ...ik} if exist.

We normalize rmax
ω = 1 for all ω ∈ Ω as is the case for the proofs in Appendix A.

Let Y be an individually rational outcome.

Claim 10
∑

i∈I u
i(Y ) ≤ 0. Moreover, the equality holds only if (i) either ρω1(Y ) = 0

or ρωk
(Y ) = 0; and (ii) ρωh−1

(Y ) = ρωh
(Y ) for all h = 3, ..., k − 1.

Proof of Claim 10. It suffices to show that
∑k

ℓ=1 v
iℓ(r) ≤ 0 for any r. Fix an arbitrary

r. Then,

k∑
ℓ=2

viℓ(r) = −|1− rω1 − rω2| − 2
k−1∑
h=3

|rωh−1
− rωh

| − |1− rk−1 − rk|

≤ −|1− rω1 − rω2 | −
k−1∑
h=3

|rωh−1
− rωh

| − |1− rk−1 − rk|

≤ −(1− rω1 − rω2)−
k−1∑
h=3

(rωh−1
− rωh

)− (rωk−1
+ rωk

− 1)

= rω1 − rωk

(20)
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by the property of the absolute value. Similarly,

k∑
ℓ=2

viℓ(r) = −|1− rω1 − rω2| − 2
k−1∑
h=3

|rωh−1
− rωh

| − |1− rk−1 − rk|

≤ −|1− rω1 − rω2 | −
k−1∑
h=3

|rωh−1
− rωh

| − |1− rk−1 − rk|

≤ −(rω1 + rω2 − 1)−
k−1∑
h=3

(rωh
− rωh−1

)− (1− rωk−1
− rωk

)

= rωk
− rω1 .

(21)

By (20) and (21),

k∑
ℓ=1

viℓ(r) ≤

{
(rω1 − 2rωk

) + (rωk
− rω1) = −rωk

if rω1 ≥ rωk
;

(rωk
− 2rω1) + (rω1 − rωk

) = −rω1 if rω1 < rωk
.

(22)

Thus,
∑k

ℓ=1 v
iℓ(r) ≤ 0.

For the latter part, (i) follows from (22), and (ii) follows from the first inequality in

each of (20) and (21). □

By the individual rationality of Y , ui1(Y ) ≥ 0, uih(Y ) ≥ −1 for h = 2, k, and

uih(Y ) ≥ 0 for all h = 3, ..., k − 1. First, suppose that
∑

i∈a(ω1)
ui(Y ) < 1. Let Z =

{(ω1, 1, sω1)} such that si1ω1
= 1 − ui1(Y ) − ε/|a(ω1)|, si2ω1

= −ui2(Y ) − ε/|a(ω1)|, and
siω1

= −ui(Y ) − ε/|a(ω1)| for all i ∈ a(ω1) \ {i1, i2}, where ε = 1 −
∑

i∈a(ω1)
ui(Y ) > 0.

Note that
∑

i∈a(ω1)
siω1

= 0. Note also that ui(Z) − ui(Y ) = ε/|a(ω1)| > 0 for all

i ∈ a(ω1). Then, since Z is a singleton, Z ⊆ Y i for any Y i ∈ Ci(Z ∪Y ) for all i ∈ a(ω1).

Let Ẑ =
∪

i∈a(ω1)
Ŷ i, where Ŷ i ∈ C i(Z ∪ Y ) is arbitrary chosen for all i ∈ a(ω1).

Since (I,Ω, a) admits no 2-cycle, there is no ω′ ∈ Ω\{ω1} such that |a(ω1)∩a(ω′)| > 1.

Then, τ(Ŷ i) ∩ τ(Ŷ j) = {ω1} for any distinguished i, j ∈ a(ω1). Thus, Ẑ is an outcome

and Ẑi = Ŷ i for all i ∈ a(ω1). Therefore, Y is weakly setwise blocked via Z. Similarly,

we can prove that Y is weakly setwise blocked if
∑

i∈a(ωk)
ui(Y ) < 1. Therefore, assume

that both
∑

i∈a(ω1)
ui(Y ) ≥ 1 and

∑
i∈a(ωk)

ui(Y ) ≥ 1.

Second, suppose that ui2(Y ) > −1. Then, by
∑

i∈a(ωk)
ui(Y ) ≥ 1 and ui(Y ) ≥ 0

for all i ∈ a(ω1) \ ({i2} ∪ a(ωk)),
∑

i∈a(ω1)∪a(ωk)
ui(Y ) > 0. Since ui(Y ) ≥ 0 for all

i ∈ I \ (a(ω1) ∪ a(ωk)) by the individual rationality of Y ,
∑

i∈I u
i(Y ) > 0, contradicting

Claim 10. Thus, ui2(Y ) = −1 by the individual rationality of Y . Similarly, we can

prove that uik(Y ) = −1. Thus,
∑

i∈a(ω1)\{i2} u
i(Y ) ≥ 2 and

∑
i∈a(ωk)\{ik} u

i(Y ) ≥ 2. If
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∑
i∈a(ω1)\{i2} u

i(Y ) > 2, then
∑

i∈(I\a(ω1))∪{i2} u
i(Y ) < −2 by Claim 10. By ui2(Y ) =

uik(Y ) = −1,
∑

i∈I\(a(ω1)∪{ik}) < 0. It follows that some i ∈ I \ (a(ω1) ∪ {ik}) exists and
ui(Y ) < 0, contradicting the individual rationality of Y . Thus,

∑
i∈a(ω1)\{i2} u

i(Y ) = 2.

We can prove show
∑

i∈a(ωk)\{ik} u
i(Y ) = 2 in a similar way. Therefore,∑

i∈a(ω1)\{i2}

ui(Y ) =
∑

i∈a(ωk)\{ik}

ui(Y ) = 2. (23)

Third, suppose that ui1(Y ) ̸= 2. Note that {i1, i2} ⊊ a(ω1) and {i1, ik} ⊊ a(ωk)

by (23). Then, ui1(Y ) < 2 by the individual rationality of Y and (23). By (23),∑
i∈a(ω1)\{i1,i2} u

i(Y ) =
∑

i∈a(ωk)\{i1,ik} u
i(Y ) = 2− ui1(Y ). By ui1(Y ) < 2,

ui1(Y ) +
∑

i∈a(ω1)\{i1,i2}

ui(Y ) +
∑

i∈a(ωk)\{i1,ik}

ui(Y ) = 4− ui1(Y ) > 2.

Since ui2(Y ) = uik(Y ) = −1 and ui(Y ) ≥ 0 for all i ∈ I\(a(ω1)∪a(ωk)),
∑

i∈I u
i(Y ) > 0,

contradicting Claim 10. Hence ui1(Y ) = 2. Then, by Claim 10 and the individual

rationality of Y , ui(Y ) = 0 for all i ∈ I \ {i1, i2, ik}.
To summarize,

(ui1(Y ), ui2(Y ), ui3(Y )..., uik−1(Y ), uik(Y )) = (2,−1, 0, ..., 0,−1)

and ui(Y ) = 0 for all i ∈ I \ {i1, ..., ik}. Note that σi
ω(Y ) = 0 for all i ∈ I \ {i1, ..., ik}

and all ω ∈ Ω together with the individual rationality of Y .

By (ii) of the latter part of Claim 10,
∑k

ℓ=1 u
iℓ(Y ) = 0 implies ρω2(Y ) = · · · =

ρωk−1
(Y ). Since uiℓ(Y ) = 0 for all ℓ = 3, ..., k − 1, σiℓ

ωℓ−1
(Y ) + σiℓ

ωℓ
= 0. Since σi

ω(Y ) = 0

for all i ∈ I \ {i1, ..., ik} and all ω ∈ Ω, σiℓ
ωℓ
(Y ) + σ

iℓ+1
ωℓ (Y ) = 0 for all ℓ = 2, ..., k − 1.

These imply

σiℓ−1
ωℓ−1

(Y ) = −σiℓ
ωℓ−1

(Y ) = σiℓ
ωℓ
(Y ) = −σiℓ+1

ωℓ
(Y ) for all ℓ = 3, ..., k − 1; (24)

By (i) of the latter part of Claim 10,
∑k

ℓ=1 u
iℓ(Y ) = 0 implies either ρω1(Y ) = 0

or ρωk
(Y ) = 0. Hereafter, assume that ρωk

(Y ) = 0. The case where ρω1(Y ) = 0 can

be proved in a similar way as the following proof. By the individual rationality of Y ,

σi
ωk
(Y ) = 0 for all i ∈ a(ωk). By uik(Y ) = −1, ρωk−1

(Y ) = σik
ωk−1

(Y ). Then,

ρω2(Y ) = ρωk−1
(Y ) = σik

ωk−1
(Y ) = σi3

ω2
(Y ) = −σi2

ω2
(Y )
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by (24). Then, ui2({ω2, ρω2(Y ), σω2(Y )}) = −|1− ρω2(Y )|+ ρω2(Y ) = −1+ 2ρω2(Y ). By

the individual rationality of Y and ui2(Y ) = −1, ρω2(Y ) = 0. Therefore, ρωh
(Y ) = 0

for all h = 2, ..., k − 1. Then,
∑k

h=3 v
ih(ρ(Y )) = −1. By

∑k
h=1 v

ih(ρ(Y )) = 0, we have

vi1(ρ(Y )) + vi2(ρ(Y )) = 1. It follows that ρω1(Y ) − (1 − ρω1(Y )) = 1 from ρω2(Y ) =

ρωk
(Y ) = 0. Thus, ρω1(Y ) = 1. By ui1(Y ) = 2 and ui2(Y ) = −1, σi1

ω1
(Y ) = −1 and

σi2
ω2
(Y ) = 1.

To summarize,

(ρω1(Y ), ρω2(Y ), ..., ρωk
(Y )) = (1, 0, ..., 0);

(σi1
ω1
(Y ), σi1

ωk
(Y )) = (−1, 0);

(σi2
ω1
(Y ), σi2

ω2
(Y )) = (1, 0);

(σih
ωh−1

(Y ), σih
ωh
(Y ))) = (0, 0) for all h = 3, ..., k.

Then, we may consider that Y = {y1} = {(ω1, 1, σω1(Y ))}, where σω1(Y ) is described

above.

Now, we construct a weakly setwise blocking set Z. Let Z be an outcome such

that τ(Z) = {ω2, ..., ωk−1}. Let ρωh
(Z) = 1 for all h = 2, ..., k − 1. Let ε2 > 0 be a

sufficiently small real number. For each h = 3, ..., k − 1, define εh = εh−1/|a(ωh)|. For

each h = 2, ..., k − 1, define

σi
ωh
(Z) =


εh if i = ih;

−2εh+1 if i = ih+1;

−εh+1 if i ∈ a(ωh) \ {ih, ih+1}.

The proof completes if we prove Zi ∈ C i(Z ∪ Y ) and Zi ⊆ Y i for all Y i ∈ C i(Z ∪ Y )

for all i ∈ a(Z) since Z is an outcome. It is straightforward that {Zi ∪ Y ′
i | Y ′

i ⊆ Yi} =

Ci(Z ∪ Y ) for all i ∈ a(Z) \ {i2, ..., ik} since σi
ω(Z) < 0 for all ω ∈ τ(Z) and σi

ω(Y ) = 0

for all ω ∈ Ω.

We turn to the proof for players i2, ..., ik. For all h = 2, ..., k − 1, let zh ∈ Z be a

contract such that τ(zh) = ωh for the notational simplicity. We have

ui2({z2}) = −ε2;

ui2({y1, z2}) = −2− ε2;

ui2(Y ′) ≤ −1 for any Y ′ ⊆ Y.
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Hence, {Zi2} = {{z2}} = Ci2(Z ∪ Y ). For each h = 3, ..., k − 1, Yih = ∅. Then, for each
h = 3, ..., k − 1, we have {Zih} = {{zh−1, zh}} = Cih(Z) = Cih(Z ∪ Y ) by

uih({zh−1, zh}) = εh;

uih({zh}) = −2− εh;

uih({zh−1}) = −2 + 2εh;

uih(∅) = 0.

Finally, we have {Zik} = {{zk−1}} = C ik(Z) = C ik(Z ∪ Y ) by

uik({zk−1}) = uik({zk−1, yk}) = 2εk−1;

uik(∅) = −1.

Hence, Y is weakly setwise blocked via Z. □
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Konishi, H., Ünver, M. U.(2006) “Credible group stability in many-to-many matching
problems,” Journal of Economic Theory 129, 966-1005.

50



Klaus, B., Walzl, M. (2009) “Stable many-to-many matchings with contracts,” Journal
of Mathematical Economics 45, 422-434.

Ostrovsky, M. (2008) “Stability in Supply Chain Networks” American Economic Review
98, 897-923.
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