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Abstract

In a Bayes-Nash Equilibrium of a private information game players engage
in an iterative beliefs formation process of the form "I believe that you believe
that I believe...", and so on, ad in�nitum. However, in reality beliefs might
extend only a few steps. We propose a non-equilibrium concept in which a
player is Lk (i.e., her depth of reasoning is k) if she correctly forms up to
kth-order belief. Thus, an L0 does not process the reciprocal belief formation
process of the game at all, in that she simplistically believes that her rival is
of her same type.
We propose a simple game to test our level-k concept, and we show its

prediction in standard games. In some games there is a sharp discontinuity
between the in�nite unraveling of reciprocal beliefs formation process and the
Bayes-Nash Equilibrium.

Keywords: k-level reasoning, private information.
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1 Introduction

Consider a game with two players, Anne and Betty, each having private information
about her own type (i.e., some payo¤-relevant parameters), with types distributed
according to the distribution F . The conventional game theoretic approach dic-
tates that Anne�s strategy depends on her expectation on Betty�s type (�rst-order
expectation), but also on her expectation on Betty�s �rst-order expectation about
Anne�s type (second-order expectation), and so on ad in�nitum. The in�nite iter-
ation of such reciprocal expectations which lies behind the de�nition of a Bayesian
Nash equilibrium is inherently di¢ cult to be fully accounted in a player�s mental
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process.1 Based on this, we propose a model to capture the idea that players only
engage in a limited number of iterations of reciprocal expectations. In particular,
we de�ne the "depth of reasoning" k of a player as the number of iterated expec-
tations that the player computes; if Anne�s depth of reasoning is k = 1 � shortly,
Anne is an "L1" � , then Anne 1) understands that Betty�s type follows F , but 2)
does not understand that Betty forms beliefs on Anne�s types according to F , and
rather believes that Betty acts as an L0. Similarly, if instead Anne is L2, she 1)
understands that Betty�s type follows F , 2) believes that Betty understands that
Anne�s type follows F , but 3) believes that Betty believes that Anne acts as an L0.
In other words, an Lk-player forms correctly up to the kth-order beliefs, and when
her belief formation process stops after k steps, the L0 behavior is assumed. Thus,
it is crucial to carefully specify as anchoring point the expectation of an L0 � as
is standard in models of level-k reasoning. Since an Lk iterates "I understand that
my rival�s type follows F" exactly k times, it is natural for an L0 to completely
neglect the prior F , and simply believe that her rival is of her same type. More
formally, an L0 of a certain type �� (drawn from F ) acts as if playing against another
��-player with certainty.2 Thus, in a compact logic sentence, we propose the following
non-equilibrium concept:

An Lk-player {believes that her rival�s type does follow F , and that her rival in
turn}k believes that her rival is of type which does not follow F , and rather is of
her same type.3

The closest literature is the one of level-k reasoning (e.g. Stahl and Wilson, 1994;
Nagel, 1995; Costa-Gomes, Crawford,and Broseta, 2001), which mostly focused on
games with complete information. Two key-ingredients characterize a level-k model:
(i) the role of k in a¤ecting actions, and (ii) the anchoring strategy of an L0. In
the standard complete information setting an Lk iterates k times the best reply,4

and the usual assumption on the anchoring strategy of an L0 is behavioral ; an L0
randomly chooses among all the possible actions, thus neglecting payo¤s and best
reply functions.5 In a private information setting, the best reply itself requires some

1Harsanyi (1967) provided groundbreaking tools to simplify the analytical tractability of models
under incomplete information.

2Throughout the paper we assume type-symmetry; that is, identical types choose identical
strategies. This assumption avoids multiplicity issues in the strategy of L0-players in some partic-
ular games. Also, this assumption is natural in the light of the fact that an L0 believes that her
rival is identical to herself.
One could alternatively consider that an L0 believes that her rival chooses the same action,

rather than is of the same type, as she does. Then L0 behavior can be justi�ed by means of the
concept of self-similarity, as introduced by Rubinstein and Salant (2016): self-similarity means
that a player who chooses some action X tends to believe, to a greater extent than a player who
chooses a di¤erent action, that other players will also choose action X.

3The part in the curly brackets is to be repeated exactly k times, so that an Lk computes
correctly up to kth-order of beliefs. Throughout the paper, the extension from 2-player to n-player
is often trivial, and thus it will be omitted unless di¤erently stated.

4Despite the vast majority of the level-k models assume that an Lk best replies to all other
being L(k � 1), a remarkable alternative is that of cognitive hierarchy theory (Camerer, Ho and
Chong, 2004) where an Lk best replies to a mix of L(k � 1),L(k � 2),...L0-players.

5An alternative L0, proposed by Crawford and Iriberri (2007) in private-value auctions, is that
the bidders simply bid the value suggested by their own private information. We model L0 as
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assumption on beliefs (I react di¤erently if I am more likely to be up against a high
type), and thus we model the depth of reasoning k as the order of beliefs up to which
an Lk correctly reasons. This way, k captures the player�s depth of understanding
of the role of information in the game, which is embodied in the distribution F .
In line with this, an L0 neglects the role of F already when computing her �rst-
order beliefs, which are thus wrong. In particular, we argue that a natural belief
for an "instinctive" L0 who does not understand the role of F is to have the most
simplistic beliefs possible; "my rival is like me".6 In Subsection 1.2 we argue that
these simplistic beliefs of an L0 can be interpreted as a cognitive bias, which is
supported by a well-established literature in psychology.
In what follows, we introduce a game suitable to capture the "depth of reasoning"

of players in private information games. We present here its simplest version, for
the sake of the argument, and we generalize and formally analyze it in Section 2.

1.1 The Up-or-Down game

Each of two identical decks contain cards from 1 to M .7 Each player draws and
privately observes a random card, of value �i 2 f1; ::;Mg, from her deck. Players
simultaneously put on the table their cards either face Down (action D) or face Up
(action U). The payo¤ matrix for player i is as follows,

j�s action

i�s action
D U

D 0 1
U " "+ �i

where " > 0 is arbitrarily small, and

playing against an identical type with certainty, and thus in private-value �rst-price auctions our
L0 who privately observes that her valuation is V believes that her rival�s valuation is also V and
that there is complete information. This yields a common-value complete-information �rst-price
auction, where it is known that in equilibrium bidders simply bid their own valuation. Thus, in
this sense, our assumption on L0 rationalizes Crawford and Iriberri�s behavioral L0 assumption.
See Subsection 4.5 for further discussions.

6As mentioned, the main reason behind our assumption on L0 is that we want the depth of
reasoning k to capture the depth of understanding of the role of information in the game. However,
there are other advantages of it as opposed to the standard randomization over the action space.
In fact, our L0 behavior, as opposed to the standard randomization,
i) is not a¤ected by topologic features of the strategy space (e.g., the L0�s action is unambiguously

de�ned in our setting when the game has an unbounded strategy space)
ii) is not a¤ected by non-linear qualitatively-invariant changes in the action variables (e.g., is

the players�action translate non-linearly into an impact which a¤ects payo¤s, our L0 behavior can
be equivalently speci�ed in action or impact)
iii) is likely to pin down a pure-strategy equilibrium (an exception is the all-pay auction, as

discussed below), which are easier to identify in the lab than mixed strategies
iv) allows to identify, when moving from L0 to L1, the impact of the formation of �rst-order

beliefs on actions, rather than the role of belief formation and best reply computation if we assumed
that L0 randomize uniformly.
v) it does not presume on the game speci�cs, and thus it is in some sense more portable across

games than behavioral assumptions such as the most "attractive" action in a speci�c game.
7Formally, in this introductory example, we need M > 4, and the reason (rather technical) will

be clear in Section 2 and called (A3). See also "Remark on M" in Section 2.
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�i =

8<:
4
2
0

if �i > �j
if �i = �j
if �i < �j

Notice that only if both cards are face up then the value of the cards matters,
and the player with the highest card obtains a prize of 10, which is shared equally
if the two cards are equal.

In the unique BNE players play D for every but a few of the very highest cards.8

This may sound surprising at �rst sight, and this surprise is what drove our choice
of the game, in that we aks how a player with limited depth of reasoning � as we
de�ned it � would play this game.

Discussion of the game. This game is suitable to test our proposal of k-level
reasoning under private information because the choice between D and U depends
on the subjective belief over a single key-parameter, namely �i.9 At �rst sight,
action U might seem very tempting because it is a fair split of a prize of 4 rather
than 1.10 In particular, the higher is your card, the greater is your expected payo¤
when actions are fU;Ug. But if you are cautious enough, you know that your
rival also understand this, she plays U only with su¢ ciently high cards, and thus
your probability of winning the prize 4 for any given card you draw decreases. The
iteration of this reasoning yields to the unique BNE being that D is played with
every but possibly the very highest card.
An L0 � according to our de�nition � has the most simplistic beliefs, which in

this game make her believe that Ei[�i] = 2.11 This belief implies that an L0 plays

8Amore formal way to see that this is a BNE is as follows. A player�s action does not signi�cantly
a¤ect her payo¤ if her rival plays D, and thus we can focus on the right column of the payo¤matrix.
Additionally, a player�s belief over her � increases in her �, and thus any equilibrium must be of the
form "U if my card is above a threshold value" (the threshold might of course be 1 orM too). Thus,
say that your rival plays U for all the best x 2 N++ cards; that is, for cardsM;M�1; :::;M�x+1.
Then, if your card is �i = M � x + 1, by playing U at best you tie; that is, your expected payo¤
of playing U is "+ 2=x, and since a deviation to D gives a payo¤ of 1, such devation is pro�table
8x > 2=(1� "), and thus in a BNE you play D with every but the three very highest cards.
The above is true unless players are too risk-loving, but we neglect this possibility.
9According to the players�subjective expectations of �1 and �2 (i.e., players�con�dent of having

a high/low chance of winning with their cards), the game boils down to well-known games:
1) a chicken game if �1; �2 2 [0; 1). In its standard terminology, U corresponds to Swerve, D

corresponds to go Straight.
2) an Active Samaritan�s Dilemma (see Buchanan, 1975) if �i 2 [0; 1) and �j > 1. In its standard

terminology, the con�dent player (in Buchanan�s story, the donor) has a dominant strategy U (to
help the recipient), and since the non-con�dent player (the recipient) knows this, she will choose
the action D (low e¤ort) which is not what the con�dent player would like the non-con�dent player
to choose.
3) if �1; �2 > 1, then the game is a variation of a prisoner�s dilemma, where defection by both

players (fU;Ug) yields a greater payo¤ than cooperation by both players (fD;Dg). To the best of
our knowledge, this game format has not been named yet, in that it is not interesting per se: there
is a strictly dominant strategy which maximizes individual and overall payo¤s. Thus, virtually
every game theoretic prediction would trivially predict fU;Ug.
10This is true for risk neutral or not too risk-averse players. We will extensively talk about risk

attitude throughout the paper.
11A similar but tecnhically more complicated case to analyse is that �i = �i � �j . This case
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U regardless of the card she draws; we call this strategy blind-U .12 Action U is
arguably an instinctive "�rst-sight reaction" to the game.13

An L1 is one step deeper in her reasoning, in that she computes correctly �rst-
order (and no more) beliefs. Her incapability of correctly computing second-order
beliefs makes her regard her rival as an L0, who thus plays blind-U . Therefore, an
L1 plays U only if her card is any of the top-75% of the cards of the deck (so that
Ei[�i] � 1), and D otherwise.14 We call this threshold strategy U top75%.
An L2 is one further step deeper in her reasoning, in that she computes correctly

up to the second-order (and no more) beliefs. Equivalently, an L2 best replies to an
L1 whose card is uniformly distributed in f1;Mg. Now that the rival plays U only
with a top-75% card (rather than blind-U), an L1 plays U only if her card is any
of the top-75% of the top-75% of the cards of the deck (so that Ei[�i] � 1), and D
otherwise.15 Thus, an L2 plays U if her card is any of the top-56%.
Thus, as the depth of reasoning k increases, the above iteration of reasoning,

anchored at the L0 level, monotonically decreases the threshold above which a player
plays U , all the way down to the BNE, which dictates that players play D with any
but (possibly) with the very highest card (i.e., ��BNE = M).16 This monotonicity

needs the matrix of payo¤s to be normalized by M . We take the simpler path of assuming that �i
is a step function.
12The role of " is as a shortcut to rule out that the fD;Dg is an equilibrium of the game played

by an L0. In fact, we consider fD;Dg as an implausible equilibrium of the L0 game; several
alternative approaches would equivalently rule out fD;Dg as an L0�s equilibrium, such as: (i) the
assumption that in case of indi¤erence between U and D a player chooses U , (ii) any of the most
common equilibrium re�nements, such as trembling hand, strict, payo¤-dominance, (iii) it is hard
to argue that when we observe action D in reality it is the outcome of indi¤erence between D and
U when taking the rival action D as given, and we rather interpret D to be driven by the player�s
low card, (iv) we believe that a treatment which replace �1 = �2 = 2 would have virtually all
subjects playing U .
Additionally, an L0 with su¢ ciently high risk-aversion, �nds D more pro�table. In the lab

experiment, this will play a crucial role, but we can easily control for it. In this preliminary
discussion, we consider risk-neurality for the sake of the reasoning.
Both these assumptions will be discussed later into details, but dropping them now would con-

fund the main point we want to make.
13Action U can alternatively be seen as the "salient action", see Schelling (1960). Finally, a

player�s limited depth of reasoning could be understood as the outcome of a cost-bene�t analysis,
where the costs are purely cognitive, see Alaoui and Penta (2016a,b).
14Note that this reasoning considers for simplicity the probability of ties to be negligible, or

equivalently assumes that M is su¢ ciently big. In Section 2 we compute the exact threshold,
which is ��L1 =

M
4 +

1
2 . That is, for su¢ ciently high M , an L1 plays U when drawing any of the

top-75% of the card.
15When your rival plays D, your action does not signi�cantly a¤ect your payo¤, and thus this

contingency may be neglected. When your card is say the top 74%, against a rival who plays action
U top75% you lose almost certainly, and thus deviations to D su¢ ciently close to the threshold of
the Lk � 1 player are pro�table for an Lk player.
16The parameter choice makes D never a dominant strategy for all �i, and thus the threshold

of the BNE is interior. Further discussion, analysis and a generalization are in Section 2, but an
easy way to see the BNE is that at ��BNE the payo¤ of U and D are equal, i.e. 1 = ��BNE

M 2, so that
��BNE =M=2. However, this computation assumes that in case of indi¤erence between D and U a
player chooses D, so that a player who draws the very lowest card of the set for which U is better,
being indi¤erent between D and U , chooses D, and thus knows that if she was to deviate to U her
expectation of �i is 0. This assumption is not wlog when �

�
BNE happen to be an integer, which

could well be the case, but it simpli�es the analysis. See Section 2 for further discussions.
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makes the game suitable to identify the depth of reasoning, as de�ned by our non-
equilibrium de�nition, in a laboratory experiment.17

Robustness of L0. In this particular game, plenty of di¤erent assumptions
on the L0�s action or beliefs would yield blind-U as the L0�s action. For instance,
L0 plays blind-U for any belief such that Ei[�i] � 1, and such belief could be
behaviorally motivated in several di¤erent ways, since �i is the oucome of a fair
mechanism splitting an overall prize of 4; e.g., taking the simple average of the three
possible payo¤s values of �i. Additionally, blind-U is the unique strategy under
maximin choice, that is, it secures the highest certain prize. Finally, blind-U is the
best reply against a rival who plays any randomization between D and U which
does not depend on the value of the card (as commonly assumed by the standard
level-k literature; an L0 uniformly mixes over the whole action space). Thus, upon
controlling for risk-aversion, we are con�dent that blind-U is a suitable behavior for
the instinctive L0 players. Notice that among the goals of the paper there is not to
propose a better L0 or to test which L0 �ts best the data. Our L0 comes naturally
with our de�nition of k as the depth of reasoning concerning the strategic role of
information in the game.

Best replying. Admittedly, best responding in our game is less straightforward
than in other games which have been used to test level-k (such as the 11-20 money
request game of Arad and Rubinstein, 2012), and the reason is inherent of private
information game, which, as opposed to complete information games, make players
bear the extra cognitive burden of understanding the role of information in a¤ecting
actions and beliefs. This is why we obviously do not expect subjects to act according
to a precise threshold strategy as our non-equilibrium computations predict. We
rather built the game so as to have the properties that the threshold monotonically
decreases with the player�s depth of reasoning. Thus, it is perhaps more cautious
to interpret our "k" in an ordinal, rather than cardinal, fashion. In fact, comparing
our k with the standard complete information k would be a structural mistake, since
they measure things for which the cognitive burden to push one�s own reasoning to
a certain level k might greatly change.

Risk. Behaviors naturally depend on the players�attitude towards risk. How-
ever, we do not regard this as an issue to solve for at least three reasons. First, it is
easy to elicit risk and control for it in the laboratory, for example making subjects
choose between 1e and an even lottery between 0e and 4e. Second, at any depth
of reasoning k, the same amount of risk is involved, because � at any depth �
the subject compares 1e and the 0-2-4e lottery where the weights are exclusively
determined by the expected ranking between my card and my rival�s one; in other
words, for any threshold-strategy of my rival (and thus for any k), I always best re-
ply by trimming "from the bottom" the same share of the cards from which I play U
(this share is 25% in our numerical), and this share depends on my risk propensity,

If one were to assume that in case of indi¤erence between D and U a player chooses U , then
1 +

M���BNE

M
1

M���BNE
2 =

��BNE

M 2, so that ��BNE = 1 +M=2.
17Likewise, in a p-beauty contest, the chosen number monotonically decreases with the player�s

depth of reasoning.
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Figure 1: Evolution of Lk strategy in the Up-or-Down game from L0 to the BNE.
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but not on k. Third, payo¤ uncertainty is an inherent feature of game of private
information on types (i.e., some payo¤-relevant parameters) where, on the contrary
of complete information games, the action depends on beliefs over types which are
inherently distributions over the type-space.

1.2 L0�s behavior as a cognitive bias

"perch�elli �ncontra che più volte piega // l�oppinïon corrente in falsa
parte, // e poi l�a¤etto l�intelletto lega. " Dante Alighieri, Divina Com-
media, Paradiso 13, 118-121.
English translation: "opinion� hasty� often can incline to the wrong

side, and then a¤ection for one�s own opinion binds, con�nes the mind."

Our assumption is that L0-players ignore the possibility of heterogeneity of types
and believe that their rival is simply of her same type. The discussion of such
assumption changes according to the interpretation that one gives to players�types.
All the points made below in some sense rely on people�s cognitive misperceptions or
heuristics. The most direct available heuristic - measured as how readily a particular
idea comes to mind - is one own observation, which itself motivates our choice of
L0-players�behavior.
According to the representativeness heuristic, the estimates of subjects are

insensitive to prior probabilities when subjects are given some piece of information,
as shown originally by Kahneman and Tversky (1973). In their experiment, subjects
are given a description of a person named Jack18, and they are told that Jack was
randomly chosen from population with a given proportion of lawyers and engineers.
In one treatment, the proportion of engineers was 0.3, while in the other treatment
the proportion of engineer was 0.7. When asked to assess the probability that
Jack is an engineer, subjects of the two treatments estimated essentially the same
probability. They relied on whether the description they read is representative of
the stereotype of the engineer, rather than on the prior probability. This is what
Kahneman and Tversky call the representativeness heuristic. Completely neglecting
the prior probability is, to the extreme, what the L0-players do in our proposal of
non-equilibrium concept.19

The hindsight bias is the subjects�inability to accurately remember their prior
expectations after observing some new piece of information. In particular, sub-
jects tend to ex-post overestimate the ex-ante probability of the observed piece of
information. This phenomenon was initially found by Fischho¤ (1975), and the
subsequent literature proved its robustness.20 For instance, in Loewenstein, Moore

18Namely, "Jack is a 45-year-old man. He is married and has four children. He is generally
conservative, careful, and ambitious. He shows no interest in political and social issues and spends
most of his free time on his many hobbies which include home carpentry, sailing, and mathematical
puzzles."
19For numerous other examples and applications of the representativeness heuristic see Kahne-

man et al. (1982), chapters 2-6.
20See Blank et al. (2007) for an excellent survey of the hindsight bias research. A theoretical

model on the e¤ect of hindsight bias voters on political elections is Schuett and Wagner (2011). Bi-
ais and Weber (2009) characterize the e¤ect of hindsight bias in the �nancial market on investment
and trading.
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and Weber (2006) subjects are shown two pictures and they have to spot the one
di¤erence. Some subjects are informed and some others are not about the di¤er-
ence. When informed subjects are incentivized to guess the fraction of uninformed
subjects who would be able to spot the di¤erence, they guessed 58%, while the true
fraction was 20%. Another example is that before George W. Bush had initiated
military action in response to the Iraqi invasion of Kuwait, opinions about the right-
ness of military action was about equally distributed between in favor and against,
but after observing the success of such mission, 4 to 1 recalled that they were in
favor of military action even before observing its outcome (see Mueller, 1994). Such
subjects�overestimation with hindsight of the ex-ante probability of the observed
piece of information can be stretched in its extreme to perceiving the prior as a
degenerate distribution giving all the weight to one�s own observation, and thus to
the L0-players�behavior.
The fact of placing too much weight on one�s own type can be the outcome of

what psycologists call the con�rmation bias; that is, the tendency to notice and
actively look for what con�rms one�s preexisting ideas, and to neglect and not look
for alternative possibilities. For instance, say that a person�s type is whether she
believes or not in a correlation between the department where a journal is edited and
the editors�leniency toward papers submitted by authors from that same deparment.
Then, according to the con�rmation bias, subjects tend to place greater importance
to evidences that upholds their type and to ignore evidences that challenge their
type; subjects "notice more" when a paper is published by authors a¢ liated at
the journal�s editorial headquarter than when a paper�s authors have a di¤erent
a¢ liation. As a result, people tend to overestimate the number of people who share
their same type.21

Also closely related to the hindsight bias is the information projection. While
the hindsight bias is the overweighting of one�s own information in the prior, the
information projection is the direct projection of one�s own information onto others.
As reported by Madarasz (2012), "people too often think as if others knew what they
did, and too often act as if others could guess their private information correctly".
In his paper, Madarasz proposes a model where players systematically overestimate
the access of other players to their own private information. This idea has the �avor
of the behavior of L0-players, who entirely project their private information to the
other players.
When "type" is interpreted as norms, preferences, habits, or opinions, then over-

estimating the degree to which one�s own information is shared by other people
takes the name of false consensus e¤ect. Because you think that A is better
than B, you assume that the vast majority of other people also feel the same way
you do. This cognitive bias tends to lead to the perception of a consensus that
does not exist, a "false consensus". An american going to Australia for the �rst
time will tend to incorrectly believe that "up" of a toggle switch turns on the light,
rather than o¤. The experiment carried out in Ross et al. (1977) reports that col-
lege students who preferred brown bread over white bread estimated that 52.5% of
all college students preferred brown bread, whereas college students who preferred
white bread estimated that only 37.4% of all college students preferred brown bread.

21For an excellent review of con�rmation biases, see Nickerson (1998).
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This suggests that some people who observe that brown bread is better for them-
selves, tend to believe that others also think the same way that they do. A more
economical example of false consensus e¤ect is as follows. Say that a person�s type
is her elasticity of relocating to another country to the tax burden, and say that
the tax burden increases by 3%. A person with su¢ ciently low elasticity will not
relocate to another country as a result of such a tax increase, and will also tend to
erroneously believe that such a tax increase does not have an e¤ect on emigration
because it does not have an e¤ect on her own emigration choice.22

The above de�nitions span antropology, sociology and psycology, and are highly
intertwined, and often overlap. Other branches of economics have recently high-
lighted the importance of agents� limited capacity of processing information. For
instance, a sound branch of dynamic programming started with the seminal contri-
bution of Sims (2003), who shows that accounting for limited information-processing
capacity of agents can explain several observed macroeconomic behaviors. One way
to intrepret the instinctive behavior of our L0-players is that they have limited
capacity to process the information contained in the prior distribution of types.

2 The generalized Up-or-Down-game

In this section we generalize the payo¤ matrix of the Up-or-Down game so as to
build a better understanding and hence to choose carefully the payo¤s in the lab
experiment treatments. Two players privately observe their types �i with i = 1; 2,
which is drawn from a commonly known �i � Uf1;Mg with M "big".23 I call u
(i.e., " in the Introduction) the certain payo¤ of action U , and I call d the payo¤
a player obtains if her action is D and her opponent�s one is U . Thus, the payo¤
matrix is

D U
D (0; 0) (d; u)
U (u; d) (u+ �1; u+ �2)

where,

�i =

8<:
2�
�
0

if �i > �j
if �i = �j
if �i < �j

In what follows we will make three assumptions (A1)-(A3) on the quadruple
(u; d; �;M), which are clearly satis�ed by the numerical example in the Introduction.
The �rst assumption we make is

(A1): 0 < u < d

otherwise, regardless of �, action U would be strictly dominant regardless of
beliefs and depth of reasoning.

22See Mullen et al. (1985) for a meta-analysis of the false consensus e¤ect.
23The reader would have to wait till "Remark on M" below for the meaning of "big".
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Symmetrically, in order to avoid D to be too tempting (dominant) we assume
that

(A2): d < minfu+ �; 2�g
Condition d < u + � is necessary to guarantee that the complete information

game that an L0 plays (i.e., �1 = �2 = �) has the unique equilibrium fU;Ug,
instead of two equilibria; namely, fU;Dg and fD;Ug. Thus, under (A2), U is
tempting enough so as to unambiguously make an L0 play blind-U .
Condition d < 2� guarantees that D is not the dominant action 8k when u is

arbitrarily small (like in the example of the Introduction).

Analysis of L1. An L1 of a certain type �i best replies to a rival whose: i) type
is �j � Uf1;Mg, and ii) action is U . Then, the L1 plays U rather than D i¤

u+ Ei[�i j �i; ki = 1] � d

() u+ �
1

M|{z}
Prf�i=�jg

+ 2�

�
�i � 1
M

�
| {z }
Prf�i>�jg

� d

() �i �
M (d� u)

2�
+
1

2
(1)

And if we de�ne ��L1 =
l
M(d�u)
2�

+ 1
2

m
, where dxe is the smallest integer greater

than or equal to x, then an L1 plays24�
U if �i � ��L1
D if �i � ��L1 � 1

(2)

Notice that in the argument given in the Introduction, we neglected for simplicity
the probability of ties, which yield term "+1

2
" in (1). Thus, if we did not neglect this

probability, the threshold card for an L1 would be shifted by one card as opposed
to U top75% if term "+1

2
" does not a¤ect the L1�s strategy (i.e., mapping from

�i to fU;Dg), or equivalently if M 6= 4n + 2 with n 2 N+.25 In other words, if
M 2 f6; 10; 14; 18; :::g then the true ��L1 (i.e., the one which does not neglect the
probability of ties) shifts the threshold by one card as opposed to strategy U top75%.

Analysis of Lk. Since from L2 onwards the player best responds to a threshold
strategy (mixture of D and U), we can already provide the general analysis of Lk.
An Lk of type �i best replies to a rival whose: i) type is �j � Uf1;Mg, and ii)
24Leaving the threshold as a possibly non-integer number would also yield to an unambiguously

de�ned strategy, but we round the threshold in order to be able to use ��L1 to compute the exact
probability that an L1 plays D when computing the L2�s action.
25The fact that M = 4n+ 2 with n 2 N+ shifts the threshold can be seen in the table below.
M 1�"

4 M + 1
2 ��L1(U top75% )

3 1.249 1.5
4 1.499 1.75
5 1.749 2
6 1.999 2.25
7 2.249 2.5
8 2.499 2.75
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action is U i¤ �j � ��Lk�1. An Lk � 1 plays, as in (2), plays U with probability
(M � ��Lk�1 + 1)=M . Then the Lk plays U rather than D i¤

u+
M � ��Lk�1 + 1

M
Ei[�i j �i; ki = k] �

M � ��Lk�1
M

d

() u+
M � ��Lk�1 + 1

M

26664 1

M � ��Lk�1 + 1| {z }
Prf�i=�jg

� +
�i � ��Lk�1

M � ��Lk�1 + 1| {z }
Prf�i>�jg

2�

37775 � M � ��Lk�1
M

d

() u+
�

M
+
2�

M

�
�i � ��Lk�1

�
�
M � ��Lk�1

M
d

() �i � ��Lk�1 �
M(d� u)� d��Lk�1 � �

2�
(3)

() �i � ��Lk�1 +
M(d� u)� d��Lk�1 � �

2�

And if we de�ne ��Lk =
l
��Lk�1 +

M(d�u)�d��Lk�1��
2�

m
, then an Lk plays�

U if �i � ��Lk
D if �i � ��Lk � 1

First, the �xed point at k !1 requires the right-hand side of (3) to equal 0, or
equivalently,

��L1 =
d� u
d
M � �

d
(4)

As M ! 1, the threshold converges to playing U only for the top
�
d�u
d

�
%

cards.26 Thus, in the numerical example of the Introduction where u is arbitrarily
small, a player playing according to the BNE plays U only if the card is the very
highest one of the deck.

Second, the process determining the thresholds is a linear �rst-order di¤erence
equation with constant coe¢ cient of the form xt = axt�1 + b with a = 2��d

2�
and

b = M(d�u)��
2�

, see (3). Under (A2), a 2 (0; 1) and thus the process convergece
monotonically.To further guarantee a well-behaved problem, we assume what is nec-
essary for ��L1 > �

�
L1, namely,

d� u
d
M � �

d
>

M (d� u)
2�

+
1

2
() (2� � d)(d� u)M > (d+ 2�)�

() (A3):
2� � d
2� + d

(d� u)M > �

So that (A3) guarantees ��L1 > �
�
L1. Notice that by (A2),

2��d
2�+d

2 (0; 1), and thus
(A3) implies (d�u)M > �, which guarantees ��L1 > 1 � see (1). Since ��L1 < M �

26Notice that d�ud 2 (0; 1) by (A1).
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see (4) � assumptions (A2)-(A3) guarantee 1 < ��L1 < ::: < �
�
Lk < ::: < �

�
L1 <

_M ,
and thus the game is "well-behaved". Notice that under (A1)-(A2), there is always
an M big enough so that (A3) holds.

Remark on M . In the Introduction we used u = " > 0 arbitrarily small, d = 1
and � = 2, but we also assumed that the deck is su¢ ciently "big" so as to neglect
in our reasoning for simplicity the probability of ties, which are rather crucial for
small decks. In fact, if M = 1 then �i = �j = � 8k and thus k does not a¤ect the
strategies. Additionally, while (A1) and (A2) do not depend on M , (A3) requires
the deck to be composed of at least 4 cards (in particular, M > 3:�3). In particular,
for any triple (u; d; �) satisfying (A1) and (A2) there is always an M big enough
so that (A3) hold. Finally, notice that the analysis for a continuous distribution of
types is equivalent to the limiting case M ! 1. However, the fact that M has to
be big enough is only needed in the generalized version of the game presented here,
and not in the Introduction, where M � 3 su¢ ces for (A3).

Notice that the entire analysis can be easily replicated for any distribution of
types (non-uniform) over a compact space, where all the thresholds of the strategies
would be speci�ed in quantiles.

3 Laboratory Experiment

Consider the generalized payo¤ matrix of the Up-or-Down game.

D U
D (0; 0) (d; u)
U (u; d) (u+ �1; u+ �2)

If we normalize � = 2 as in the Introduction, the degrees of freedom are on the
choice of two key-parameters, namely u and d. The only constraint in their choice is
to respect (A1)-(A3), where (A3) simply says that the number of cards is su¢ cient,
while (A1)-(A2) impose that: u < d < minfu + 2; 4g. We propose six treatments
which are informative on di¤erent players�behaviors:
T1: u = 0; d = 1
T2: u = 0; d = 0:3
T3: u = 0; d = 1:7
T4: u = " > 0; d = 1
T5: u = 0:5; d = 1
T6: u = 2; d = 3

Several tradeo¤s emerge in the choice of u and d, and these tradeo¤s motivate
our choice of treatments. In particular:

1. u = 0 makes best-responding very natural. In fact, think about best replying
to U top75% in T1. If the player�s card is at (or arbitrarily close to) the
top 75%, then E[�] � 0, and thus U gives u = 0, while D is 3 times more
likely to give d = 1 than 0, hence it gives in expectation 0:�6, and thus the
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threshold increases as k increases. Thus, T1-3 are our favorite treatments for
how natural it is to best reply. However, setting u = 0 has potentially two
drawbacks: i) a reasoning such as "joy of winning some positive prize" might
kick-in, and ii) indi¤erence between D and U formally yield an implausible
L0 equilibrium fD;Dg, which we already discussed in the Introduction. A
comparison between T1 and T4 will shed light on such implausibility.

2. however, the higher is u, the more natural is U to be L0. In fact, playing U
is a tempting instinctive reaction to the game for those players who do not
want to or are incapable of engaging in strategic thinking, in that it secures
the highest certain prize u. Thus, a comparison of how many subjects play
blind-U between T1 and T5 would shed light on this aspect.

3. increasing both u and d by the same amount anchors U as an L0 strategy
for higher risk-aversion levels. Thus, T6 is our favorite treatment to avoid
risk-aversion concerns, and its comparison with T1.

4. the lower is u, the more the threshold in the strategies of level k�s spans all
the way down to playing always D for players with high depth of reasoning,
(the BNE is ��BNE =

d�u
d
M for su¢ ciently high M), and thus low u�s provide

more variation of behavior and better identi�cation of k.

We take an agnostic approach and run six treatments, in that this game has not
been tested before in the laboratory, and thus we do not know the comprehension
level of subjects of the game in general.27

The experiment is programmed using z-Tree (Fischbacher 2007) and run at the
Max Planck Institute laboratory in Munich, Germany. Subjects will be recruited
from the student body of Munich universities using ORSEE (Greiner 2004). We
will admit 24 subjects to each session. Each subject participated in exactly one of
the treatments outlined above. Subjects will play the game described in Section
2 repeatedly (20 independent rounds in total), but in each repetition subjects will
be randomly rematched. The subjects will not be given speci�c information about
the precise nature of matching mechanism other than that they would be randomly
rematched between rounds and that they will never play against the same opponent
more than once, so as to obtain a larger number of independent observations where
learning about rivals plays no role.
At the beginning of each session, we distribute and read out loud the instruc-

tions (see the Appendix), and subjects have to complete a quiz to make sure they
understood the Up-or-Down game. The numer of rounds is set to 20 so as to have
a su¢ cient number of observations to identify with con�dence the threshold below
(above) which the subject play U (D). At the end of each round, subjects are dis-
closed their rival�s action and their own payo¤. Subjects are not told their rival�s
card, otherwise this might trigger updating of their beliefs about their rival�s depth
of reasoning, and this might lead them to infer the average depth of reasoning of

27Another possible treatment is to compare small M with large M : increasing M makes the
probability of ties go to zero, and thus the L0 reasoning might be less likely to naturally kick-in.
Technically, M !1 is equivalent to a continuous type and action space.
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others, and thus they might react accordingly in subsequent periods. We do not
want this to a¤ect subjects�behavior. Additionally, at the end of each round (and
thus also at the end of the session) an explanation sheet is given to invite subjects
to explain the reasoning they followed. Subjects are paid one (or more) randomly
selected round. They are told which round has been randomly selected only at the
end of the experiment. At the end of the session, we elicit subject�s risk-aversion
by making them choose between lotteries and certain equivalents. In particular, the
certain equivalent is u (crucial in T6) and the lottery is between 0 and d. Subjects
will also be asked what they believe on others�choice in this lottery, so that their
choice is not a¤ected by beliefs of other�s risk aversion).
A strategy for a player is a mapping from f1;Mg to a binary action fD;Ug.

In each round we observe only one point of this strategy. Thus, we need several
rounds in order to have a better identi�cation of the strategy played by the players.
Observing D for a given card would give us a lower-bound in the depth of reasoning
of the player, whereas observing U for a given card would give us a upper-bound.
The smallest action space in order to guarantee perfect identi�cation of k for every
possible type is when the behavior changes for every pair fk;Mg with k !1, and
this means to have a strategy space of dimension jM j � 1, rather than the simple
binary space we used. Thus, there is a trade-o¤ between simplicity of the game and
identi�cation power.

4 Application of the non-equilibrium concept to
simple Bayesian games

The game proposed in this paper is intended only to provide a clear-cut, albeit rather
special, framework which is suitable to study our non-equilibrium proposal. It is
also of interest to see what are the predictions in "standard" games, which is what
we do in this Section. We �nd that several "anomalies" might happen. In Cournot
games, the in�nite iteration of reciprocal belief formation (k ! 1) does converge
to the BNE, but non-monotonically. In Contests, there is convergence, which is
monotone from k = 1 onwards. In the Market entry game, the convergence to the
BNE is lost. In the sealed-bid irst-price auction, convergence to the BNE already
occurs at L1. This highlight an important discontinuity. In particular, this shows
that, in general, the BNE is not a suitable tool to analyze equilibrium behaviors
under �nite depth of reasoning.28

4.1 Cournot

Two �rms indexed by i 2 f1; 2g compete a lá Cournot with linear demand and linear
cost of quantity,

ui(q1; q2) = qi(2� q1 � q2)� �iqi
28One of the �rst paper pointing out a discontinuity of the in�nite iteration of reciprocal expec-

tation was Rubinstein (1989).
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where the marginal cost �i is an iid draw from a U [0; 1]. Firm i privately observes
their �i but does not observe ��i.
An L0-�rm of certain type �i believes that her opponent is also of type �i with

identical beliefs (i.e., in complete information). Hence, an L0-�rm of certain type �i
chooses qL0�i which solves the following FOC

29

2� 2qL0�i � q
L0
�i
= �i

and thus

qL0�i =
2� �i
3

An L1-�rm of certain type �i correctly believes that her opponent�s type is uni-
formly distributed in [0; 1], but also believes that her opponent is L0. Thus, an
L1-�rm of certain type �i chooses qL1�i which solves the following FOC

2� 2qL1�i �
1Z
0

2� x
3
dx = �i

and thus

qL1�i =
3� 2�i
2

Subsequent iterations of this procedure yield

qL2�i =
1� �i
2

qL3�i =
14� 4�i
8

:::

More in general,

2� 2qLk�i �
1Z
0

qLk�1�i
dx = �i

where, taking the linear form qLk�i = ax+b, the �xed point is when q
Lk
�i
= qLk�1�i

=
ax+ b, and thus

2� 2(a�i + b)�
1Z
0

(ax+ b)dx = �i

() 2� 2a�i � 2b�
�a
2
+ b
�
= �i

() 2� 3b� a
2
= �i(1 + 2a)

29Throughout the paper we assume type-symmetry. That is, identical types choose identical
strategies.
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Since it has to hold 8�i, then a = �1
2
, and thus b = 3

4
. It is easy to calculate the

BNE of this game is indeed qBNE = 3�2�i
4
.30 Thus, in such Cournot game there is

convergence, but non-monotone, to the BNE as k !1.

4.2 Contest

Two contestants indexed by i 2 f1; 2g play a Tullock contest with linear cost of
e¤ort and a prize of value 1,

ui(e1; e2) =
ei

ei + e�i
� �iei

where �i could be �L = 2 or �H = 1 with equal probabilities. Contestant i
privately observes her �i but does not observe ��i.
An L0-player of certain type �i believes that her opponent is also of type �i

with identical beliefs (i.e., in complete information). Hence, an L0-player of type �i
chooses the following eL0�i

eL0�i =
1

4�i
)
�
eL0�L = 0:125
eL0�H = 0:25

(5)

An L1-player of certain type �i correctly believes that her opponent�s type is �L
or �H with equal probabilities, but also believes that her opponent is L0. Thus, an
L1-player of certain type �i chooses eL1�i solving the following FOC

1

2

eL0�L
(eL1�i + e

L0
�L
)2
+
1

2

eL0�H
(eL1�i + e

L0
�H
)2
= �i (6)

where eL0�L and e
L0
�H
are de�ned in (5). One could solve (6) and �nd that�

eL1�L � 0:11666
eL1�H � 0:237834

An L2-player of type �i correctly believes that her opponent�s type is an �L or an
�H type with equal probabilities, but also believes that her opponent is L1. Thus,
one could compute the equilibrium and �nd�

eL2�L � 0:11789
eL2�H � 0:235727

The BNE is �
eBNE�L

= 17
128
= 0:1328125

eBNE�H
= 17

64
= 0:265625

And one could verify that there is convergence to the BNE. However, this con-
vergence, except from L0 to L1, is monotone in this class of games.
30If the distribution of types was binary, with �H = 0 with probability p and �L = 1 with

probability 1� p , perfect convergence to the BNE occurs already at L1.
In fact, under such distribution of types, one would obtain

qL0�H =
2

3
and qL0�L =

1

3

qL1�H =
5� p
3

2
�
2

3
;
5

6

�
and qL1�L =

2� p
3

2
�
1

6
;
1

3

�
and these last quantities correspond to the BNE.
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4.3 All-pay auction

Two contestants indexed by i 2 f1; 2g play a standard all-pay auction with linear
cost of e¤ort, private values, and valuations vi are independently and uniformly
distributed on [0; 1].

BNE. It is well known that the unique symmetric BNE is the bidding function
b(vi) =

v2i
2
(see e.g. Wolfstetter, 1999, Chapter 8.2).31

L0-player. An L0-player with type vi plays as in a complete-information symmetric-
type all-pay auction. It is well known that the only equilibrium is in mixed-strategies,
where the L0-player bids uniformly in [0; vi] (see Baye, Kovenock and de Vries, 1996).

Remark: at �rst sight, one might think that the L0 is more di¢ cult than the
BNE, but this is true only ex-post. That is, the di¢ culty to compute an equilibrium
and how di¢ cult the equilibrium turns out to look like are very di¤erent concepts,
and our k captures the former.

L1-player. Let us see what is the BR of an L1-player, called player i, to an L0-
player, called player j. Suppose that player L1 bids bi(vi) where vi is his valuation.
Then his probability of victory is the probability that bi(vi) is greater than a U [0; vj]
where vj � U [0; 1]. Thus, his probability of victory equals

bi(vi) + [1� bi(vi)]
Z 1

bi(vi)

bi(vi)

vj
dvj

The �rst term bi(vi) accounts for the cases when the extraction of vj � U [0; 1] is
below the bid bi(vi) so that i wins for sure, and the second term is the probability of
victory of i when the extraction of vj � U [0; 1] is above the bid bi(vi) so that i does
not win for sure. The integral is the probability that player i wins for all possible
vj > bi(vi). Thus, the expected utility of the L1-player i who bids bi(vi) is,

vi fbi(vi)� [1� bi(vi)] bi(vi)Log[bi(vi)]g � bi(vi)

Mathematica shows its quasi-concavity, thus we focus here on the FOCs with respect

to bi(vi), shortly called b below,

vi

�
b0 � [1� 2b]Log[b]b0 � b� b

2

b
b0
�

= b0

b� (1� 2b)Log[b] = 1=vi (7)

which implies that bi(vi) = 0 when vi = 0, and bi(vi) ! �bL1 �= 0:235611 when
vi ! 1. Also, �bL1 is the maximum bid of an L1-player.

L2-player. Computing the strategy of an L2-player is signi�cantly harder, be-
cause it is the BR to an L1-player, whose bid is implicitely de�ned by (7) where
vi � U [0; 1]. If she bids bi(vi), any bid greater than �bL1 is strictly dominated, because
it does not increase the probability of winning, but it costs more than �bL1.
31https://www2.wiwi.hu-berlin.de/institute/wt1/sta¤/wolfstetter/chap-08-new.pdf
formula (8.26)
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Figure 2: The orange line is the BNE and the blue line is the L1-player�s bidding
function.
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4.4 Market entry

Consider a two-player market entry game, where a player who does not enter obtains
a payo¤ of 0, when both players enter each obtains a payo¤ of �1, and when only
player i enters, she obtains a payo¤ of �i, which is her private information. Thus,
the payo¤ matrix is as follows.

Enter Don�t enter
Enter (-1,-1) (�1,0)
Don�t enter (0,�2) (0,0)

Types �i are distributed as follows.

�i =

�
�H
�L

w. prob. 1
2

w. prob. 1
2

where �H > �L > 1.
An L0-player of certain type �i believes that her opponent is also of type �i with

identical beliefs (i.e., in complete information). Hence, an L0-player of type �i enters
with probability �i

�i+1
.32

An L1-player of certain type �i correctly believes that her opponent�s type is �L
or �H with equal probabilities, but also believes that her opponent is L0. Thus, an
L1-player expects her opponent to enter with probability �p = 1

2
�H
�H+1

+ 1
2

�L
�L+1

. If the
L1-player is of type �i, she enters if �p(�1) + (1 � �p)�i > 0, which holds (does not
hold) when �i = �H (�i = �L). Thus, high-L1-players enter and low-L1-players do
not enter.
An L2-player of type �i correctly believes that her opponent�s type is an �L

or an �H type with equal probabilities, but also believes that her opponent is L1.
Thus, an L2-player expects her opponent to enter with probability 1

2
, and since

1
2
(�1) + 1

2
�i > 0 8�i 2 f�H ; �Lg, an L2-player enters regardless of her type. From

Lk with k � 3 players do not enter if k is odd and enter if k is even. Therefore,
Lk�s action alternate between the two pure-strategy equilibria of the original game.
Note that the original game has also a BNE where types �H enter with certainty
and types �L enter with probability �L�1

�L+1
.

4.5 First price auction

Two bidders indexed by i 2 f1; 2g simultaneously bid in a standard �rst-price sealed-
bid auction (FPA) for an item whose value is �i to bidder i. Values �i�s are iid draw
from a distribution U [0; 1]. Bidder i privately observes her �i but does not observe
��i.
It is well-known that the BNE is to bid �i=2, that is, half of the own privately

observed valuation.33

32In fact, the indi¤erence condition reads

p(�1) + (1� p)�i = 0

33E.g., see Wolfstetter E (1999), Chapter 8, or even easier: https://en.wikipedia.org/wiki/First-
price_sealed-bid_auction
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An L0-bidder of certain type �i believes that her opponent is also of type �i with
identical beliefs (i.e., in complete information). This makes an L0-bidder behaves
as in a common-value full-information FPAs, it is well-known that in equilibrium
bidders bid their own valuation.34 Thus, all the subsequent Lk with k > 0 will
presumably monotonically move from bidding one�s own valuation �i to bid �i=2,
but it still has to be computed.
Actually, from back-of-the-envelope calculations it seems that the best reply

against a bidder who bids in U [0; 1] or against a bidder who bids in U [0; 1=2] is
always to bid �i=2:

argmax
x��i

x(�i � x) = argmax
x�minf�i;1=2g

2x(�i � x) =
�i
2

Therefore, L1 already coincides with the BNE. The same is true in case of n
bidders, where the L0 strategy is to bid �i, and the L1 strategy coincides with the
BNE, namely, to bid n�1

n
�i.

4.6 Di¤erent information partitions across players

So far we only considered cases when the distribution F is partitioned equally across
player. How about the case in which information is partitioned di¤erently across
players?35 Our non-equilibrium concept can cope with this case too, in a simple
way that is readily understood if we just apply our non-equilibrium to the game
proposed in Brocas et al. (2014).
There are three equally likely states of the nature: A, B, and C. Player 1 privately

observes whether the state of nature is A or {B,C}. Player 2 privately observes
whether the state of nature is C or {A,B}. Thus, the information is partitioned
di¤erently across players. Players choose to either bet on the state of nature, or
not to bet and secure the sure payo¤ S (see the picture below, which is Figure 1 in
Brocas et al., 2014). Payo¤s are S unless both players decide to bet, in which case
the payo¤s are represented in the 2x3 matrix below, according to player and true
state of nature.

Consider the behavior of player 1 who observes information {A,B}.36 Then:

� If she is L0, she will ignore the true distribution of types, and she believes
that her rival also observed state {A,B}. Thus, her rival (player 2) will bet

34More formally, when the valuation is � for both bidders, every pair (x; �) with x � � is a NE
of the complete information game. Otherwise, any winning bid greater than � is irrational, and a
winning bid lower than � would yield incentives to overbid.
35We thank Vincent Crawford for suggesting to analyze how our non-equilibrium concept copes

with this possibility.
36Notice that we slightly modify the original Brocas et al. game in order to avoid dominant

strategy that implies a constant action at all levels of sophistication (like action S in their Figure
1 for a player 2 who observes state {A}).
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because (0 + 30)=2 > 10, and this implies that player 1 will also bet because
(25 + 5)=2 > 10.

� If she is L1, she correctly believes that her rival observes state {A} with prob-
ability 0.5 and observe state {B,C} with the remaining probability.37 Also,
she believes that her rival is L0, so that if her rival observes {A}, she does not
bid, because 0 < 10, while if her rival observes {B,C}, she does bid, because
(30 + 5)=2 > 10. Therefore, back to the L1 player 1, upon observing {A,B},
she believes that if the true state is A, she will get 10, and if the true state is
B, she will get 5. Thus, not bidding and securing 10 is the L1 choice.

� If she is Lk with k� 2, the following reasoning holds. She will never receive
the payo¤ 25 because in state {A} her rival, whatever her sophistication is,
will play her dominant strategy S. Therefore, since any convex combination
between 10 and 5 is lower than the payo¤ by choosing S (i.e., 10), any Lk with
k � 2 will not bet. Note that not betting is the NE of the game, which is
already achieved with one step of reasoning, in this case.

5 Formal de�nition of the non-equilibrium con-
cept

In this section we adapt the standard de�nition of BNE to incorporate our level-k
reasoning.
A Bayesian game consists of:

1. A set of players N

2. A set of actions (pure strategies) for each player i 2 N : Si

3. A set of types for each player i: �i 2 �i

4. A payo¤ function for each player i: ui(s1; :::; sn, �1; :::; �n)

5. A (joint) probability distribution p(�1; :::; �n) over types (or P (�1; :::; �n) when
types are not �nite).

More generally, one could allow for a signal for each player, which is correlated
with underlying vector of types. We do not consider this for the time being.
A pure strategy is a mapping si: �i ! Si, selecting an action for each possible

type of player i. Player i knows her own type and evaluates her expected payo¤
according to the conditional distribution p(��i j �i), computed by Bayes rule. In
Bayesian games everything is common-knowledge. This is a strong but convenient
assumption, since in a private information setting it allows players to form beliefs

37Notice that by de�nition of L1, she knows that the true state is either A or B. Thus, the
probabilities of each state that her rival might be observing are computed by Bayes rule.
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about types, and to understand others�beliefs about her own type, and so on. Thus,
we can compute expected payo¤s of player i of type �i as

U(s0i; s�i(�); �i) =
X
��i

p(��i j �i)ui(s0i; s�i(��i); �i; ��i)

then a Bayes equilibrium s(�) is de�ned as

si(�i) 2 argmax
s0i2Si

X
��i

p(��i j �i)ui(s0i; s�i(��i); �i; ��i)

If the Bayesian game is �nite, then a mixed strategy exists. Existence of a pure
strategy is guaranteed by continuous strategy spaces and continuous types, compact
strategy sets and compact type sets, payo¤ functions continuous and concave in own
strategies.
A (type-symmetric) L0 strategy solves

sL0i (�i) 2 argmax
s0i2Si

ui(s
0
i; s�i(�i); �i; :::; �i)

in words, an L0-player of a certain type �i believes that all other players are of
the same type �i and that this is commonly known.
Recursively, an Lk strategy with k � 1 solves

sLki (�i) 2 argmax
s0i2Si

X
��i

p(��i j �i)ui(s0i; sLk�1�i (�i); �i; ��i)

so that an L1-player best replies to the correct distribution of types, but believes
that the other players are L0, and so on.

We conjecture that the existence of an Lk action 8k 2 N+ in "well-behaved
games" should follow from the existence of an equilibrium in the symmetric complete
information version of the game (i.e., L0 action), which seems a mild assumption to
impose.

6 Conclusions

The literature on limited depth of reasoning in games with complete information is
burgeoning, and yet considerably less is studied when the game has some private
information. This paper provides a step forward in this direction, proposing an ex-
tension of the standard level-k reasoning to private information games. Information
processing is at the heart of private information games. We propose to disentangle
the in�nite iteration of reciprocal expectations of players that lies behind the concept
of a Bayes Nash equilibrium and propose a non-equilibrium concept where a player
is characterized by her depth of reasoning k, which speci�es the order of reciprocal
expectation that she correctly computes. The anchoring behavior of players who
do not compute any correct reciprocal expectation is to believe that their rival is of
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their same type. This "gut reaction" thus comes before the cognitive understand-
ing of how to process the implications of the role of information in the game, and
subsequently include such reasoning in the action�s choice.
We propose a simple game to capture in the lab the level k that our non-

equilibrium concept dictates, and we apply our non-equilibrium concept to standard
games.
At least one key question is still open. In a standard p-beauty contest it is hard

to disentangle when we observe that a subject picks a high number whether it is
the result of a low depth of reasoning or of a belief of high depth of reasoning of
others. Likewise, our Up-or-Down game su¤ers from the same identi�cation problem.
This problem triggered several strands of literature based on di¤erent approaches.
One approach is to elicit subjects�beliefs; however, in theory one would have to
elicit all orders of beliefs in order to correctly solve the issue; e.g., Costa-Gomes
and Weizsäcker (2008) and Healy (2011) elicits �rst-order beliefs. An alternative
approach is to design an experiment for which beliefs on others can be recovered
directly from subjects�choices, such as the ring-network game proposed by Kneeland
(2012). We hope to trigger e¤orts to solve this identi�cation issue in a private-
information setting too.
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