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Abstract. One of the most famous network centrality measures is the degree measure which as-
signs to every position in a weighted network the sum of the weights of all links with its neighbours.
We show that this degree measure can be seen as a von Neumann-Morgenstern utility function.
We do this in three steps. First, we characterize the degree measure as a centrality measure for
weighted networks using four natural axioms (anonymity, the isolated node property, scale invari-
ance and additivity). Second, we relate these network centrality axioms to properties of preference
relations over positions in networks. In particular, we consider the property of neutrality to ordi-
nary risk. Third, we prove that the utility function is equal to a multiple of the degree measure if
and only if it represents a preference relation that is neutral to ordinary risk. In this way we build
a bridge between the social network literature on network centrality, and the economic literature
on preferences and utility.
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1 Introduction

The study of network centrality originates from the social network literature where differ-
ent types of network centrality are distinguished, such as degree, closeness, betweenness,
etc.; see e.g. Bavelas (1948, 1950); Beauchamp (1965); Sabidussi (1966); Freeman (1977,
1979). Various centrality measures are developed measuring these types of centrality; for
surveys see e.g. Borgatti (2005); Goyal (2007); Jackson (2008); Newman (2010). More
recently, these centrality measures are used to measure centrality in economic networks.
However, there is no utility foundation of network centrality. Since economic decision
making is based on preferences of economic decision makers, a utility foundation is fun-
damental for the application of centrality measures in economic models. Our aim is to
develop such a utility foundation for network centrality by considering network centrality
measures as von Neumann-Morgenstern utility functions (von Neumann and Morgenstern
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(1944)) reflecting preferences over positions in networks. In this way, we can evaluate dif-
ferent positions in different networks. Questions that can be addressed in this context
are, for example, does an agent prefer to be the top of a small organization or a middle
manager in a large organization?

The present work is inspired by Roth (1977a) who motivates the Shapley value (Shap-
ley (1953)) as a von Neumann-Morgenstern utility function over being particular players
in different games. He distinguishes between two kinds of risk: ordinary risk and strate-
gic risk. While ordinary risk involves the uncertainty that arises from lotteries, strategic
risk involves the uncertainty that arises from the strategic interaction of the players in
a game. Roth (1977a) shows that the Shapley value of a game is equal to the utility of
playing the game if and only if the underlying preferences are neutral to both ordinary
and strategic risk. We find that adding neutrality to ordinary risk to standard axioms of
preferences, essentially characterizes the degree measure as a von Neumann-Morgenstern
utility function. This is one of the most natural centrality concepts which can be seen as
an index of the node’s communication ability and is based on the degree, i.e., the number
of links formed by a node. Inspired by some experimental studies, Shaw (1954) presents
the degree centrality as a measure to be used for predicting the behavior of individuals in
small groups, and Nieminen (1974) and van den Brink and Gilles (2000) analyze it from
an axiomatic point of view. Weighted networks where each link has a nonnegative weight
can appear more suitable if one wishes to analyze different strengths of interaction or
relation between two individuals. The degree of a node is then extended in a natural way
to weighted networks, where it is defined as the sum of the weights of all links formed by
the given node.

In the present paper, we show that the degree measures are utility functions for
positions in weighted networks. More precisely, first, we characterize the degree measure
as a centrality measure for weighted networks using the following four axioms. Anonymity
imposes that the labeling of the nodes has no effect on the measure. The isolated node
property states that the value assigned to an isolated node (i.e., a node with degree zero) is
equal to zero. Scale invariance says that if a weighted network is rescaled, i.e., the weights
of all its links are multiplied by a common factor, then the measure is also multiplied
by the same factor. Additivity states that if we add two weighted networks, then the
measure of the obtained ‘sum’ network is equal to the sum of the measures of the two
weighted networks. Next, we provide the interpretation of the degree measure as a utility
function for positions in weighted networks. We show that the utility function is equal to
a multiple of the degree measure if and only if it represents a regular preference relation
that is neutral to ordinary risk, the last property meaning that an agent is indifferent
between taking a position in a convex combination of two networks and playing a lottery
over the two networks with the corresponding probabilities.

Related literature As already mentioned, we use a similar approach to that of Roth
(1977a), building on Herstein and Milnor (1953). Roth (1977a) develops a preference re-
lation which permits to compare positions in a game and in different games, by extending
the utility function for lotteries used to define the games, and shows that the Shapley
value is a utility function reflecting preferences neutral to both ordinary and strategic
risk; see also Roth (1977b,c, 1988) for related studies on this issue. Other attitudes to-
wards risk lead to different utility functions. This concerns, for instance, the Banzhaf
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index (Banzhaf (1965)) and the Shapley-Shubik index (Shapley and Shubik (1954)) pro-
posed in the context of simple games; see also Coleman (1971); Dubey (1975); Dubey
and Shapley (1979); Owen (1975). Roth (1977c, 1988) considers how the Shapley-Shubik
index can be uniquely characterized as a risk-neutral utility function defined on the class
of simple games. The Banzhaf index is an extended utility function reflecting preferences
averse to strategic risk and neutral to ordinary risk (Roth (1977d)). For an overview of
Roth’s approach to the Shapley value, see also Pintér (2014).

The paper is also related to the literature on social networks and centrality, in particu-
lar, to works using the axiomatic approach to centrality measures. This stream of literature
focusses mainly on specific centrality measures. For instance, Garg (2009) characterizes
axiomatically the degree, decay and closeness centralities. Some prestige and eigenvector-
related centrality measures are characterized in Palacios-Huerta and Volij (2004); Slutzki
and Volij (2006); Dequiedt and Zenou (2014); Kitti (2016). Bloch et al. (2016) charac-
terize the standard centrality measures within a unified framework and show that they
all are characterized by a common set of axioms. Although the present paper also uses
the axiomatic approach to centrality measures and characterizes the degree measure, our
main aim is to show that this measure can be interpreted as a utility function for positions
in weighted networks.

An issue closely related to centrality is the ranking of nodes which is treated by
using a ranking method. Formally, a ranking method assigns to every (weighted) network
a (complete) preorder on the set of nodes. This (pre)order is a ranking of the nodes
in order of ‘importance’ or ‘centrality’ in the network. Various ranking methods are
characterized in the literature, in particular, methods based on directed networks and
weighted directed networks, see e.g. Rubinstein (1980) for the ranking by outdegree on
the class of tournaments, also Henriet (1985) and Bouyssou (1992) for the ranking by
Copeland score (Copeland (1951)), Bouyssou and Perny (1992), van den Brink and Gilles
(2003) for the ranking by outdegree for arbitrary directed networks, and van den Brink
and Gilles (2009, 2000) for the outflow ranking method for weighted directed networks.
There exist recent studies that characterize ranking methods based on evaluations or
citations which consider one-sided settings (e.g. Demange (2014)) and ranking methods in
two-sided settings (e.g. Demange (2016)). An important difference between such ranking
methods and the topic of this paper, is that ranking methods only compare the positions
in one and the same network. This is useful if one wants to rank, for example, teams
in a sports competition, alternatives in a preference relation, web pages on the internet,
etc. Besides such comparisons within one network, we also want to compare positions in
different networks. For example, we want to know if an agent prefers a ‘central’ position
in a small network to a position in the fringe of a large network. In order to answer these
questions we need to be able to compare positions in different networks.

This paper is organized as follows. In Section 2 we discuss preliminaries on weighted
networks and Herstein and Milnor (1953)’s expected utility theory over mixture sets.
In Section 3 we present our main result, characterizing the degree measure as a von
Neumann-Morgenstern utility function, using as intermediary results an axiomatization
of the degree measure as a centrality measure, and relating properties of network centrality
measures to properties of preference relations over network positions. Section 4 contains
concluding remarks.
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2 Preliminaries

In this section we present basic concepts and notation that will be used in the paper.

Weighted undirected networks A weighted undirected network is a pair (N,ω) con-
sisting of a finite set of nodes N ⊂ IN that can represent individuals or agents, and a
weight function ω : Lc → R+, where Lc = {{i, j} | i, j ∈ N, i 6= j} denotes the complete
undirected network on N . An element {i, j} ∈ Lc is a subset of N of size 2 representing
a certain relationship between i and j, and is called a link . A weight function gives a
nonnegative weight ω({i, j}) to every link that can be interpreted as the ‘importance’
of that relationship. By WGN we denote the collection of all weight functions on N . A
weighted undirected network with ω({i, j}) ∈ {0, 1} for all {i, j} ∈ Lc, is usually called
a simple undirected network. Since N is assumed to be fixed, we represent a weighted
undirected network (N,ω) by the weight function ω. When there is no confusion, in this
paper we refer to a weighted undirected network simply as a network.

The degree of node i ∈ N in weighted network ω is defined by

di(ω) =
∑

j∈N\{i}

ω({i, j}) (1)

For a network ω ∈ WGN and a permutation π ∈ Π(N), the permuted network
πω ∈ WGN is given by πω({π(i), π(j)}) = ω({i, j}) for every {i, j} ∈ Lc.

We denote the set of networks where i ∈ N is an isolated node by

WGNi = {ω ∈ WGN | ω({i, j}) = 0 for all j ∈ N \ {i}}

and ω0 ∈ WGN denotes the ‘empty’ network given by ω0({i, j}) = 0 for all i, j ∈ N .
By ωi ∈ WGN we denote the standard star network with i as center given by

ωi({i, j}) = 1 for all j ∈ N \ {i} and ωi({h, j}) = 0 otherwise.

Expected utility We recapitulate the utility theory on mixture sets of Herstein and
Milnor (1953) (for some related works and literature on the linear utility representation
theorems, see e.g., Trockel (1989, 1992); Neuefeind and Trockel (1995)). A set M is a
mixture set if for any a, b ∈ M and any p ∈ [0, 1], we can associate another element of
M , called a lottery between a and b, and denoted by [pa; (1− p)b]. It is assumed that for
all a, b ∈M , p, q ∈ [0, 1] the following holds:

[1a; 0b] = a, [pa; (1−p)b] = [(1−p)b; pa], [q[pa; (1−p)b]; (1−q)b] = [pqa; (1−pq)b] (2)

A preference relation on M is a binary relation � with the interpretation that a � b
meaning that “a is at least as good as b”.

A function u : M → R is a utility function representing the preference relation � if
for all a, b ∈M and p ∈ [0, 1], it holds that

(i) u(a) > u(b) if and only if a � b, and

(ii) u([pa; (1− p)b]) = pu(a) + (1− p)u(b). (3)

We write [a � b] if and only if [a � b and b 6� a], and [a ∼ b] if and only if [a � b and
b � a].

The following axioms secure the existence of a utility function representing �.
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Axiom 1 The preference relation � on M is complete and transitive.1

Axiom 2 For any a, b, c ∈M , the sets {p | [pa; (1− p)b] � c} and {p | c � [pa; (1− p)b]}
are closed.

Axiom 3 If a, a′ ∈M and a ∼ a′ then for any b ∈M , [1
2
a; 1

2
b] ∼ [1

2
a′; 1

2
b].

The utility function that represents � is unique up to an affine transformation. For
any x ∈M , we can write

u(x) =
pab(x)− pab(r0)
pab(r1)− pab(r0)

where a, b, r0, r1 ∈ M with a � x � b and a � r1 � r0 � b, and for any y ∈ M such that
a � y � b, pab(y) is defined by

y ∼ [pab(y)a; (1− pab(y))b]. (4)

Note that the pab are well defined and u is independent of the choice of a and b. Moreover,
r1 and r0 determine the origin and scale of the utility function: u(r1) = 1 and u(r0) = 0.

3 Centrality and utility in networks

We assume that a preference relation � is defined on the set WGN × N of strategic
positions in weighted networks. We interpret (ω, i) � (ω′, j) as “it is at least as good to be
in position i in network ω as to be in position j in network ω′”. We extend this preference
relation to the mixture set M that also contains all lotteries [p(ω, i); (1 − p)(ω′, j)] with
(ω, i), (ω′, j) ∈ WGN × N and p ∈ [0, 1]. The lottery [p(ω, i); (1 − p)(ω′, j)] considers a
type of risk with respect to taking a position in a network. It means that with probability
p the agent takes position i in network ω, and with probability (1− p) he takes position
j in network ω′.

Besides the standard axioms on mixture sets stated in the preliminaries (Axioms 1 -
3), we consider the following axioms on mixtures of network positions.

The first three axioms are similar to those of Roth (1977a) (specifically Conditions 6,
7 and 8), but in terms of network positions instead of being a player in a game. The first
requires that relabeling the nodes in a network yields a corresponding reordering in the
preference relation.

Axiom 4 For all ω ∈ WGN , i ∈ N and π ∈ Π(N), it holds that (ω, i) ∼ (πω, π(i)).

The second axiom compares different network positions, expressing preference with
respect to connectedness. More specifically, an agent (i) is indifferent between being iso-
lated in any network, and being in the empty network, (ii) weakly prefers any position
in any network above being in the empty network, and (iii) strictly prefers to to be the
center of the star than being in the empty network. 2

1 A preference relation � on M is complete if for any a, b ∈M either a � b or b � a. A preference relation � on
M is transitive if for any a, b, c ∈M such that a � b and b � c it holds that a � c.

2 This axiom is inspired by Condition 7 of Roth (1977a) but (i) the role of null player replaced by being isolated,
(ii) the role of the null game replaced by the empty network, and (iii) the role of a dictator replaced by being
the centre of the star.
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Axiom 5 For all i ∈ N , ω ∈ WGN and ω′ ∈ WGNi , it holds that (i) (ω′, i) ∼ (ω0, i), (ii)
(ω, i) � (ω0, i), and (iii) (ωi, i) � (ω0, i), where ωi is the standard star network with i as
center.

Conditions (i) and (ii) express the importance of being connected in the sense that
the worst that can happen is to be isolated. Note that condition (iii) does not imply that
it is best to be the centre of a star, but only that it is better to be the centre of a start
than to be in the empty network.3

The third axiom requires that an agent is indifferent between a position in a network
and a lotery between a multiple of that network and the empty network, where the
probabilities are determined by the multiplication factor.

Axiom 6 For all ω ∈ WGN , i ∈ N and c > 1, it holds that (ω, i) ∼ [(1
c
(cω, i); (1 −

1
c
)(ω0, i)].

From now on, we refer to preference relations that satisfy Axioms 1 - 6 as regular
preference relations.

To axiomatize the Shapley value for TU-games as a von Neumann-Morgenstern utility
function, Roth (1977a) introduces two types of risk neutrality: neutrality to ordinary risk
and neutrality to strategic risk. In this paper we need to consider only the first type
of risk. Consider position i in a convex combination pω + (1 − p)ω′ of two networks.
Neutrality to ordinary risk requires that an agent is indifferent between taking a position
in network pω + (1 − p)ω′ and playing a lottery over the networks ω and ω′ with the
corresponding probabilities.

Axiom 7 (Neutrality to ordinary risk) For all ω, ω′ ∈ WGN and i ∈ N , it holds
that ((pω + (1− p)ω′), i) ∼ [p(ω, i); (1− p)(ω′, i)].

Next, we state the main result of this section characterizing the class of utility func-
tions that represent a regular preference relation that is neutral to ordinary risk as those

that correspond to a multiple of the degree measure. Let WGN be the mixture set of all
network positions (ω, i) ∈ WGN × N . Then a utility function for network positions is a

function φ : WGN → IR assigning a utility value to every mixture of network positions.

Theorem 1 The utility function φ represents a regular preference relation that is neutral
to ordinary risk if and only if there exists an α > 0 such that φ(ω, i) = αdi(ω) for all
(ω, i) ∈ WGN ×N .

This theorem gives the degree measure, which is a well-known centrality measure in
social network theory, an interpretation as a von Neumann-Morgenstern utility function.
We prove this theorem by (i) characterizing the (class of multiples of the) degree measure
as those centrality measures f : WGN → IR that satisfy the following four properties of
centrality measures for networks, and (ii) relating those four network centrality properties
to properties of preference relations.

First, anonymity says that the labeling of the nodes in a network has no effect on the
centrality of positions in a network.

3 Our results are also valid if this axiom is strengthened by requiring that being the centre of the connected
star is strictly better than any position in any network on a fixed set of positions. This is often required when
measuring centrality in the social network literature, see e.g. Gómez et al. (2003).
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Property 1 (Anonymity) For every ω ∈ WGN and permutation π ∈ Π(N), it holds
that fi(ω) = fπ(i)(π(ω)).

Second, the isolated node property states that the centrality of an isolated node (i.e.,
a node with degree zero) is zero. Almost all centrality measures from the literature satisfy
this property.

Property 2 (Isolated node property) For every ω ∈ WGNi , it holds that fi(ω) = 0.

Third, scale invariance states that if the weights of all links in a network are multiplied
by a common factor, then the centralities of the positions in that network are multiplied
by the same factor.

Property 3 (Scale invariance) Let ω, ω′ ∈ WGN be such that there exists an α ∈ IR
with ω′({i, j}) = α ω({i, j}) for all {i, j} ∈ Lc. Then f(ω′) = αf(ω).

Finally, additivity means that the centralities in the network obtained by adding two
networks is equal to the sum of the centralities of these two networks.

Property 4 (Additivity) For ω, ω′ ∈ WGN it holds that f(ω + ω′) = f(ω) + f(ω′),
where (ω + ω′)({i, j}) = ω({i, j}) + ω′({i, j}) for all {i, j} ∈ Lc.

It turns out that the class of centrality measures that is characterized by these four
properties is exactly the class of multiples of the degree measure.

Proposition 1 A centrality measure f satisfies anonymity, scale invariance, additivity
and the isolated node property if and only if there exists an α ∈ IR such that

fi(ω) = αdi(ω) for all (ω, i) ∈ WGN ×N. (5)

Proof
It is straightforward to verify that centrality measures as given by (5) satisfy the four
properties. To show uniqueness, suppose that centrality measure f satisfies the four ax-
ioms, and consider ω ∈ WGN .
First, consider the empty network ω0. Additivity implies that fi(ω

0+ω0) = fi(ω
0)+fi(ω

0).
Since ω0 + ω0 = ω0, this implies that fi(ω

0) = fi(ω
0) + fi(ω

0), and thus fi(ω
0) = 0. By

the isolated node property, fi(ω) = 0 for all ω ∈ WGNi .
Next, take a pair i, j ∈ N , i 6= j, and define WGNij = {ω ∈ WGN | ω({i, j}) 6= 0 and
ω({h, g}) = 0 for all {h, g} 6= {i, j}}, being the class of networks where only link {i, j}
has a nonzero weight.
Consider any ω ∈ WGNij . Anonymity implies that fi(ω) = fj(ω).
By scale invariance, there exists an α ∈ IR such that fi(ω) = fj(ω) = αω({i, j}) for any
ω ∈ WGNij .
Now take any {h, g} ⊂ N, h 6= g, {h, g} 6= {i, j}, and ω′ ∈ WGNhg. By anonymity and the

class WGNij discussed above, we have fh(ω
′) = fg(ω

′) = αω′({h, g}).
Finally, consider any ω ∈ WGN . For every i, j ∈ N , i 6= j, define ωij({i, j}) = ω({i, j})
and ωij({h, g}) = 0 for all {h, g} 6= {i, j}. Then additivity implies that for all i ∈ N
fi(ω) =

∑
h,g∈N

h6=g
fi(ω

hg) =
∑

j∈N\{i} αω({i, j}) = α
∑

j∈N\{i} ω({i, j}) = αdi(ω).

ut
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This proposition characterizes a social network centrality measure. Our main result (The-
orem 1) is an economic result interpreting such centrality measures as vNM utility func-
tions. To prove Theorem 1 from Proposition 1, we need a result that ‘bridges’ social
network theory with economic utility theory. This is done by the following lemma which
shows how the four properties for network centrality measures are implied by the regu-
larity Axioms 4 - 6 and neutrality to ordinary risk (Axiom 7) on preferences introduced
before.

Lemma 1 Consider a utility function φ : WGN ×N → IR for positions in a network that
is determined by a centrality measure f as follows: φ(ω, i) = fi(ω).

(i) If utility function φ represents a preference relation � satisfying Axiom 4 then cen-
trality measure f satisfies anonymity.

(ii) If utility function φ represents a preference relation % satisfying Axiom 5 then cen-
trality measure f satisfies the isolated node property.

(iii) If utility function φ represents a preference relation � satisfying Axioms 4-6 then
centrality measure f satisfies scale invariance.

(iv) If utility function φ represents a preference relation � satisfying Axioms 4-6 and is
neutral to ordinary risk (Axiom 7) then centrality measure f satisfies additivity.

Proof
The proof of parts (i)-(iii) of this lemma is similar to the proofs of corresponding lemma’s
in Roth (1977a)).

(i) This follows immediately from Axiom 4.
(ii) If utility function φ represents a preference relation % satisfying Axiom 5 then

(ω, i) ∼ (ω′, i), and thus φi(ω) = φi(ω
′) for all ω, ω′ ∈ WGNi .

(iii) We can derive from Herstein and Milnor (1953) (see preliminaries), that a utility
function φ over the positions in a weighted network ω can be written as

φ(ω, i) =
pab((ω, i))− pab(r0)
pab(r1)− pab(r0)

(6)

for some a, b, r0, r1 ∈ WGN × N with a � (ω, i) � b and a � r1 � r0 � b with
probabilities pab((ω, i)) defined such that for all (ω, i) ∈ WGN ×N with a � y � b, we
have y ∼ [pab(y)a; (1− pab(y)b]. By Axiom 5, we can take b = r0 such that pab(r0) = 0
for all a ∈ WGN ×N . We distinguish the following two cases.
Case 1: Suppose that (cω, i) � r1.

4

Take a = (cω, i) and b = r0 = (ω0, i). Then by (6), φi(cω) = pab((cω,i))
pab(r1)

= 1
pab(r1)

.

By Axiom 6, we have (ω, i) ∼ [1
c
(cω, i); (1 − 1

c
)(ω0, i)], so pab((ω, i)) = 1

c
. But then

φi(ω) = pab((ω,i))
pab(r1)

= 1
c

1
pab(r1)

= 1
c
φi(cω).

Case 2: Suppose that r1 � (cω, i).

4 Although Roth takes specifically that r1 is the unanimity game with player i as only nonnull player, we do not
specify r1. It is sufficient that there exists a weighted network that is strictly preferred to the empty network,
as is guaranteed by Axiom 5 with the star network (ωi, i).
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Take a = r1 and b = r0 = (ω0, i). Then pab(r1) = 1, and so φi(cω) = pab((cω, i)).
But by Axiom 6, we have (ω, i) ∼ [1

c
(cω, i); (1 − 1

c
)(ω0, i)] ∼ [1

c
[pab((cω, i))a; 1 −

pab((cω, i))b]; (1− 1
c
)(ω0, i)]. So φi(ω) = pab((ω, i)) = 1

c
pab((cω, i)) = 1

c
φi(cω).

(iv) For every i ∈ N , it holds φi(ω + ω′) = φi(2(1
2
ω + 1

2
ω′)) = 2φi(

1
2
ω + 1

2
ω′), where

the second equality follows from part (iii). But then φi(
1
2
ω + 1

2
ω′) = 1

2
φi(ω + ω′) =

1
2
φi(ω) + 1

2
φi(ω

′), where the second equality follows from neutrality to ordinary risk.
Hence, we have φi(ω + ω′) = φi(ω) + φi(ω

′).

ut

Now we can give the proof of the main theorem of this section.

Proof of Theorem 1

To prove the ‘only if’ part, note that it follows from Lemma 1 and Proposition 1 that,
if utility function φ represents a regular preference relation that is neutral to ordinary
risk then φ(ω, i) = αdi(ω) for some α ∈ IR. By Axiom 5 it must hold that φ(ωi, i) =
α(|N | − 1) > 0 = φ(ω0, i), and thus α > 0.

To prove the ‘if’ part, let � be the preference relation based on φ(ω, i) = αdi(ω): (ω, i) �
(ω′, j) if and only if αdi(ω) ≥ αdj(ω

′). It is straightforward to check that� satisfies Axiom
4. Axiom 5 follows since di(ω

′) = 0 for all ω′ ∈ WGNi , di(ωi) > 0 and di(ω) ≥ 0 for all
ω ∈ WGN . Axiom 6 follows since, by (3), φ([(1

c
(cω, i); (1− 1

c
)(ω0, i)]) = 1

c
φ(cω, i) + (1−

1
c
)φ(ω0, i) = 1

c
αdi(cω)+0 = αdi(ω) = φ(ω, i). Finally, to prove neutrality to ordinary risk,

consider ω, ω′ ∈ WGN and i ∈ N . Then, for p ∈ [0, 1] we have φ(pω+(1−p)ω′, i) = di(pω+
(1−p)ω′) = pdi(ω)+(1−p)di(ω′) = pφ(ω, i)+(1−p)φ(ω′, i) = φ([p(ω, i); (1−p)(ω′, i)], i),
where the last equality follows from (3). ut

Note that compared to Roth’s Theorem on the Shapley value for TU-games (Roth
(1977a)), which equals its utility if and only if the underlying preferences are neutral
to both ordinary and strategic risk, we do not use neutrality to strategic risk for the
degree measure as a utility function for networks.

4 Concluding remarks

In this paper we showed that (multiples of) the degree measure in weighted (undirected)
networks are von Neumann-Morgenstern utility functions. The approach is of crucial im-
portance, since the interpretation of the degree measures as utility functions for positions
permits to compare different positions in networks. Despite its simplicity, the degree mea-
sure is sufficient for measuring involvement or communication ability of an agent in the
network. Moreover, the simplicity of the degree measure is an advantage, since only the
local structure around a node must be known for calculations, for instance, when using
social survey data.

Summarizing, we showed that

(i) (Theorem 1) a utility function φ represents a regular preference relation that is neutral
to ordinary risk if and only if it is a multiple of the degree measure
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(ii) (Proposition 1) a centrality measure f satisfies anonymity, scale invariance, additivity
and the isolated node property if and only if it is a multiple of the degree measure

(iii) (Lemma 1) relating properties of preference relations to properties of centrality
measures.

These three steps make clear the connection that we make between economics and social
networks. Our main result is Theorem 1 which is an economic result which character-
izes the degree measures as von Neuman-Morgenstern utility functions. Proposition 1
is a social network result which gives an axiomatic characterization of the degree mea-
sures. Finally, Lemma 1 bridges economics with social networks by relating properties of
economic preference relations to properties of social networks.

We plan a number of follow-up research projects. While in the paper the set of
nodes is assumed to be fixed, we could consider utility functions over nodes in networks of
different size. Another interesting extension would be to analyze processes on a network
and to combine utility of positions in a network with utility generation from processes
on a network. Different centrality measures usually capture complementary aspects of an
agent’s position and ability, and therefore can give different agents as the most central
ones in the network. We intend to relax the assumption of risk neutrality to find utility
foundations of other centrality measures.

Another theoretical question that we want to address is how to incorporate exter-
nalities in measuring network centrality. For example, does your utility depend on the
way how agents in other components of the network (i.e. agents with whom you are not
connected, not directly nor indirectly) are linked? In almost all centrality measures the
centrality of a position does not depend on the structure of other components. For ex-
ample, isolated nodes usually have zero centrality irrespective of the rest of the network.
But when, for example, you are isolated (i.e. have no neighbors), it might still make a
difference whether other agents are linked to each other or not. We plan to incorporate
this type of externality in measuring network centrality, in particular when interpreting
these measures as utility functions. Besides this theoretical study, we plan to do an exper-
imental study, both testing measures of centrality without externalities, as well as taking
account of externalities.

Finally, we mention an extension to directed networks. This brings around new
questions. For example, under the regularity axioms of this paper, the utility function
assigns zero to every isolated position in any network. For undirected networks being
isolated is also the worst position (as reflected by Axiom 5). However, for directed net-
works it is not obvious whether it is worse to be isolated or be connected but connected
only by having ‘predecessors’ and no ‘successors’, i.e. having a positive indegree and zero
outdegree. Which position is more preferred depends on the application of the network.
In some cases it might be better to be connected, even with only ingoing arcs. But in
other cases it might be better to be isolated and independent than to be connected with
only ingoing arcs.
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