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Abstract

We study the optimal nonlinear income tax problem with unobservable multidimen-
sional heterogeneity. The obtained optimal tax formula generalizes the standard one by
taking means of sufficient statistics among the distinct individuals who earn the same in-
come. The fact that these individuals differ along several characteristics brings a new source
of endogeneity to the tax model that we call composition effects. We emphasize that com-
position effects may substantially affect optimal marginal tax rates, especially for very high
income levels. We provide a sufficient condition for optimal marginal tax rates to be posi-
tive. Finally, we highlight the equivalence between the assumptions required to use the tax
perturbation approach and the assumptions subjacent to the first-order mechanism design
approach, both being used in the literature.

Keywords: Optimal taxation, multidimensional screening problems, tax perturbation, allo-
cation perturbation, sufficient statistics.

I Introduction

Since the seminal paper of Mirrlees (1971), the optimal income tax literature provides for-

mulas describing the optimal tax schedule. The most recent formulas express the optimal tax

rates in terms of empirically meaningful “sufficient statistics”(Saez, 2001, 2002, Chetty, 2009).

These sufficient statistics are behavioral responses to tax reforms, the income distribution and

the social welfare weights which summarize the social preferences for redistribution (See e.g.

Diamond (1998) and Saez and Stantcheva (2016)). Most of the papers in the literature restrict

the unobserved heterogeneity to be one dimensional, typically skill (See e.g. Mirrlees (1971),

Diamond (1998), Saez (2001)). This limitation is empirically counterfactual as individuals differ

in many other dimensions. For instance, they differ also in their ability to change their income
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after a tax reform (their behavioral responses). In this paper, we explore the case where the

unobserved heterogeneity is multidimensional.

For this purpose, we consider an economy where individuals are endowed with different

characteristics, one of them being the skill level. Individuals that differ only in terms of skill

belong to what we call a “group”. For instance, a group may be characterized by the same

behavioral elasticities. We impose the single-crossing assumption with respect to skill within

each group. Thanks to this assumption, we derive an optimal tax formula in terms of suffi-

cient statistics. We therefore confirm in Proposition 1 the conjecture of Saez (2001) that his tax

formula is also valid in the multidimensional context if one averages sufficient statistics across

individuals who belong to distinct groups but earn the same income.

One important limitation of sufficient statistics is their dependence to the tax schedule.

While this is true in the one dimensional case, considering different groups implies a new

source of endogeneity that we call “composition effects”. For instance, if the economy is made

of a low-elasticity group and a high-elasticity group and if the marginal tax rate is higher in

the optimal economy than in the actual economy, the shift from the actual economy to the

optimal one induces a lower reduction of earnings in the high-elasticity group than in the low-

elasticity group. Therefore, the share of people, at a given income level, who belong to the

low-elasticity group depends on the tax schedule. We argue that these composition effects

may lead to substantial changes in the optimal tax schedule. We provide several examples

of drastic changes that the optimal top marginal tax rate undergoes when one modifies the

threshold from which one determines top incomes. Strikingly, our examples are consistent

with the empirical finding of rather stable Pareto parameters for top income earners. Given the

available empirical evidence, we cannot rule out that optimal top tax rate may lie between 46%

and 77%.

Besides deriving the optimal tax formula, we also rewrite it in terms of policy-invariant

functions instead of endogenous sufficient statistics. Under the additional assumption that

individual preferences are additively separable, we obtain a “structural”formula in which op-

timal marginal tax rates are expressed as a function of the skill density and the derivatives of

the individual and social utility functions (Proposition 2). This formula is not closed-form be-

cause it depends on the allocation where these functions are evaluated, but it is much more

convenient to implement numerically. Moreover, we use it to extend the result of Mirrlees

(1971) that optimal marginal tax rates are positive when social preferences are Utilitarian or

Maximin (Proposition 3).

In the one-dimensional case, there exist two strategies to derive the optimal tax formula.

On the one hand, Mirrlees (1971) considers the problem of finding the incentive-compatible al-

location that maximizes the social objective subject to a resource constraint. In this “mechanism

design”approach, the optimal allocation is obtained by verifying that any incentive-compatible

perturbation of the optimal allocation does not lead to first-order improvements.1 Describing

1Such a condition is generally obtained using an Hamiltonian or a Lagrangian technics.
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how to decentralize the optimal allocation provides the optimal tax formula à la Diamond

(1998). For technical convenience, it is frequently assumed that income is continuous and in-

creasing in skill, which enables one to consider only the first-order incentive constraint.2 This is

the so-called “first-order approach”. On the other hand, one can consider the tax schedule that

maximizes the social objective given a budget constraint. In this case, the optimal tax sched-

ule is obtained by verifying that any marginal tax reform to the optimal tax schedule does not

lead to first-order improvements. This is the tax perturbation approach introduced in the op-

timal income tax literature by Piketty (1997) and Saez (2001). The tax perturbation approach

requires that individuals behaviors responds smoothly to a tax reform (Golosov et al., 2014,

Hendren, 2014), a rather ad-hoc assumption with nonlinear income tax schedules. We clar-

ify the conditions under which the tax perturbation approach is valid. Intuitively, the income

tax schedule should not be too concave so that indifference curves are more convex than the

function relating pre-tax income to after-tax income. A tax schedule respecting this assump-

tion and a regularity condition is said to be smooth. Saez (2001) shows the two approaches

leads to the same formula only in the case where the heterogeneity is one-dimensional. We

show in Proposition 4 that the assumptions required in the first-order approach and in the tax

perturbation approaches are equivalent. More specifically, any smooth tax function induces an

allocation where in each group income is continuous and increasing in skill; reciprocally, any

allocation where in each group income is continuous and increasing in skill can be decentral-

ized by a smooth income tax schedule. Therefore, the differences between the two approaches

rely only in their exposition: while the first-order approach focuses on an incentive-compatible

perturbation of the optimal allocation, the tax perturbation approach looks at the tax reform

that decentralizes this perturbation. Therefore, both approaches are two faces of the same coin.

Related literature

There have been optimal income tax papers where heterogeneity is multidimensional. How-

ever, these models rely on the assumption that the action only depends on a one-dimensional

aggregation of the multidimensional unobserved heterogeneity. This is the case, for instance,

in models of optimal income taxation such as those proposed in Brett and Weymark (2003),

Boadway et al. (2002), Choné and Laroque (2010), Lockwood and Weinzierl (2015), Rothschild

and Scheuer (2013, 2016, 2014), Scheuer (2013) and Scheuer (2014a). By contrast, we relax this

assumption.Since we do no rely on an aggregator, we are able to simultaneously consider, in an

optimal income tax model, heterogeneity in income and heterogeneity in behavioral elasticities.

In Brett and Weymark (2003), Boadway et al. (2002), Choné and Laroque (2010), Lockwood

and Weinzierl (2015), the additional source of heterogeneity is relevant only for the compu-

tation of the social welfare weights, but behaviors depends only on a single dimension. This

additional source of heterogeneity rationalize the idea that some low-income individuals may

not deserve redistribution, while some high-income individuals may deserve not to be taxed

2Noticeable exceptions are Lollivier and Rochet (1983) and Ebert (1992).
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too heavily. Therefore, social welfare weights may be less decreasing in income and may even

become increasing, open the possibility for optimal marginal tax rates to be negative.

Random participation models make up another strand of the literature where multidimen-

sional heterogeneity is taken into account, although in a very specific way. In these models,

individuals differ in skill and in a cost of participation (Rochet and Stole, 2002, Kleven et al.,

2009, Jacquet et al., 2013) or of migration (Lehmann et al., 2014, Blumkin et al., 2014) and this

latter dimension of heterogeneity matters only for the participation/migration margin. In these

papers, the one-dimensional aggregation implies that individuals who earn the same income

are characterized by the same level of skill and are therefore constrained to react identically to

any tax reform. While departing from this restriction, we show (in an appendix available upon

request) that our model can readily be extended to include a random participation constraint.

Finally, Scheuer (2013, 2014b), Rothschild (2013), Gomes et al. (2014b) consider optimal in-

come tax models with different sectors and agents can migrate from one sector to the other.3

This is a form of random participation across sectors. Again, once individuals choose in which

sectors to work (or which combination), income depends only on single variable.

The remainder of the paper is organized as follows. In Section II, we present the model.

Section III derives the optimal tax formula using the tax perturbation method. Section IV uses

the latter formula for computing optimal top tax rates for top income earners and provides

some plausible examples that illustrate that composition effects may have a serious effect on

the optimal top tax rates. Section V provides the structural optimal tax formula and a sufficient

condition for optimal marginal tax rates to be positive. Section VI discusses the connection

between the first-order and the tax perturbation approaches and the last section concludes.

II Model

Every worker derives utility from consumption c ∈ R+ and disutility from effort.4 More

effort implies higher pre-tax income y ∈ R+ (for short, income hereafter). Following Mirrlees

(1971), the government levies a non-linear tax T(.) which depends on income y only. Con-

sumption c is related to income y through the tax function T(y) according to c = y − T(y).

Individuals differ along their skill level w ∈ R∗+ and along a vector of characteristics denoted

θ ∈ Θ. We call a group a subset of individuals with the same θ. We assume that the set of

groups Θ is measurable with a cumulative distribution function (CDF) denoted µ(·). The set Θ

can be finite or infinite and may be of any dimension. The distribution µ(.) of the population

across the different groups may be continuous, but it may also exhibit mass points. Among

individuals of the same group θ, skills are distributed according to the conditional skill den-

sity f (·|θ) which is positive and differentiable over the support R∗+. The conditional CDF is

denoted F(w|θ) def≡
∫ w

0 f (x|θ)dx. We do not make any restriction on the correlation between w

3In Gomes et al. (2014a), types that derive the same utility across different sectors while supplying different labor
are pooled together, whereas, in this paper, we will pool together individuals that generate the same income.

4Effort captures the quantity as well as the intensity of labor supply.
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or θ. We normalize to unity the total size of the population.

Individuals of type (w, θ) have a twice continuously differentiable utility function with re-

spect to c and y which is specified as: U (c, y; w, θ) with U ′
c > 0 > U ′

y . We also assume that for

each type (w, θ), indifference curves associated to U (·, ·; w, θ) are strictly convex in the income-

consumption space. Earning a given income requires less effort to a more productive worker,

so U ′
w > 0. A worker of type (w, θ), facing y 7→ T(y), solves:

U(w, θ)
def≡ max

y
U (y− T(y), y; w, θ) (1)

We call Y(w, θ) the solution to program (1),5 C(w, θ) = Y(w, θ)− T(Y(w, θ)) the consumption

of a worker of type (w, θ) and U(w, θ) her utility. When the tax function is differentiable, the

first-order condition associated to (1) implies that:

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (2)

where:

M (c, y; w, θ)
def≡ −

Uy(c, y; w, θ)

Uc(c, y; w, θ)
(3)

denotes the marginal rate of substitution between (pre-tax) income and consumption (after-tax

income). For a worker of a given type, the left-hand side of Equation (2) corresponds to the

marginal gain of income after taxation while the right-hand side corresponds to the marginal

cost of income in monetary terms.

We impose the single-crossing (Spence-Mirrlees) condition within each group of workers

endowed with the same θ that the marginal rate of substitution function is a decreasing function

of the skill level, i.e. more skilled workers find it less costly to earn y:

Assumption 1 (Within-group single-crossing condition). For each θ ∈ Θ, and each (c, y) ∈ R+ ×
R+, function w 7→M (c, y; w, θ) is differentiable with ∀w ∈ R∗+, Mw < 0, lim

w 7→0
M (c, y; w, θ) = +∞

and lim
w 7→∞

M (c, y; w, θ) = 0.

Assuming that the marginal rate of substitution decreases from plus infinity to zero is a kind

of Inada condition. It implies that for a given differentiable tax schedule T(·), a given income

y and a given group θ, there is a unique skill level w such that within group θ, only individuals

endowed with this skill level earn income y. Assumption 1 is automatically verified in the case

where U (c, y; w, θ) can be rewritten as:

U (c, y; w, θ) = u(c)− θ

1 + θ

( y
w

)1+ 1
θ

with θ > 0 and u′(·) > 0 ≥ u′′(·). (4)

We henceforth refer to this specification of preferences as the isoelastic ones. There θ stands for

the individual Frisch labor supply elasticity, hereafter, “labor supply elasticity”. The marginal

5If the maximization program (1) admits multiple solutions, we make the tie-breaking assumption that individ-
uals choose among their best options the income level preferred by the government, i.e. the one with the largest tax
liability.
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rate of substitution equals M (c, y; w, θ) = y
1
θ /[u′(c) w1+ 1

θ ] and is decreasing in w from infinity

to zero.

The government’s budget constraint takes the form:∫∫
θ∈Θ,w∈R∗+

T (Y(w, θ)) f (w|θ)dw dµ(θ) = E (5)

where E ≥ 0 is an exogenous amount of public expenditures. The objective of the planner is to

maximize a general social welfare function that sums over all types of individuals an increasing

and weakly concave transformation Φ(U; w, θ, χ) of individuals’ utility levels U:∫∫
θ∈Θ,w∈R∗+

Φ (U(w, θ); w, θ) f (w|θ)dw dµ(θ) (6)

Preferences for redistribution are induced by the concavity of Φ, Φ′′UU < 0.6

This welfarist specification allows Φ to vary with type (w, θ) which makes it very general.

Weighted utilitarian preferences are obtained with Φ(U; w, θ) ≡ ϕ(w, θ) ·U with weights ϕ(w, θ)

depending on individual characteristics. The objective is utilitarist if ϕ(w, θ) is constant and

Φ(U; w, θ) ≡ U and it turns out to be maximin (or Rawlsian) if ϕ(0, θ) > 0 while ϕ(w, θ) = 0

∀w > 0. When Φ(U; w, θ) does not vary with its two last arguments and ϕ(w, θ) = 1, we

obtain a Bergson-Samuelson criterion which is a concave transformation of utility and does not

depend on individual characteristics.

The government’s problem consists in finding the tax schedule T(·) that maximizes social

welfare function (6) subject to the budget constraint (5). Let λ > 0 be the Lagrange multiplier

associated with the budget constraint (5). To solve the government maximization problem, we

proceed in two steps. First, for a given value of the Lagrangian multiplier λ, one maximizes

the Lagrangian:

L
def≡

∫∫
θ∈Θ,w∈R∗+

[
T(Y(w, θ) +

Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ) (7)

Second, one finds the value of λ which ensures that the solution found at the first step makes

the budget constraint (5) binding. We define the social marginal welfare weights associated

with workers of type (w, θ) expressed in terms of public funds by:

g (w, θ)
def≡ ΦU (U (w, θ) ; w, θ)U ′

c (C(w, θ), Y(w, θ); w, θ)

λ
(8)

The government values giving one extra dollar to a worker (w, θ) as a gain of g(w, θ) dollar(s)

of public funds.7

6Our specification also encompasses the case where function Φ equals a type-specific exogenous weight times
the individuals’ level of utility with Φ′′UU = 0.

7We can easily extend our analysis to non-welfarist social criteria following the method of generalized marginal
social welfare weights developed in Saez and Stantcheva (2016) to reflect non-welfarist views of justice which can be
particularly relevant with heterogeneous preferences. Complementary to their approach, Fleurbaey and Maniquet
(2011, 2015) connect the axioms of fair income tax theory and optimal income taxation and emphasize that it is not
always straightforward to derive generalized marginal social welfare weights by income level.
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III From tax reform responses to optimal tax formulas

A reform of a tax schedule y 7→ T(y) is defined thanks to its direction, which is a differen-

tiable function R(y) defined on R+, and its (algebric) magnitude m ∈ R. After the reform, the

tax schedule becomes y 7→ T(y)−mR(y) and the utility of an individuals of type (w, θ) is:

UR(m; w, θ)
def≡ max

y
U (y− T(y) + m R(y), y; w, θ) (9)

We denote YR(m; w, θ) the income of workers of types (w, θ) after the reform and we have

CR(m; w, θ) = YR(m; w, θ)−T(YR(m; w, θ))+m R(YR(m; w, θ)). When m = 0, we have YR(0; w, θ) =

Y(w, θ) and CR(0; w, θ) = C(w, θ). Applying the envelope theorem to (9), we get:

∂UR

∂m
(m; w, θ) = Uc

(
CR(m; w, θ), YR(m; w, θ); w, θ

)
(10)

Using (3), we write the first-order condition associated to (9) which equalizes to zero the fol-

lowing expression:

Y R(y, m; w, θ)
def≡ 1− T′(y) + m R′(y)−M (y− T(y) + m R(y), y; w, θ) . (11)

To compute the responses to a tax reform, one needs to apply the implicit function theorem

to Y R(YR(m; w, θ), m; w, θ) = 0. At m = 0, Y R
y does no longer depend on the direction R of

the tax reform. To ease the notation, from now on, we then drop the superscript R and write

Yy(Y(w, θ); w, θ) for Y R
y (Y(w, θ), 0; w, θ). To use the widespread tax perturbation method, one

needs the following assumptions:

Assumption 2.

i) The tax function T(·) is twice differentiable.

ii) For all (w, θ) ∈ R∗+ ×Θ, the second-order condition holds strictly: Yy (Y(w, θ); w, θ) < 0.

iii) For all (w, θ) ∈ R∗+ ×Θ, the function y 7→ U (y− T(y), y; w, θ) admits a unique global maxi-

mum over R+.

Part i) of Assumption 2 ensures that first-order condition (11) is differentiable. Part ii) guar-

antees it is invertible in income y. Under i) and ii), one can apply the implicit function theorem

to (11) to describe how a local maximum of Program (9) changes after a tax reform. Part iii) is

also crucial since it implies that the optimal allocation does smoothly respond to an infinitesi-

mal tax perturbation. Without this, the tax perturbation approach would not be valid. Since the

tax function is nonlinear, the function y 7→ U (y− T(y) + mR(y), y; w, θ) may in general admit

several global maxima among which individuals of type (w, θ) are indifferent. Any small tax

reform may then lead to a distinct unique global maximum. Moving from a global maximum

to another one in the wake of a tax reform is associated with a jump in the chosen income (i.e.

a jump in the supply of effort). Part iii) prevents this situation and ensures that the first-order

condition corresponds to a unique global maximum.
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We now describe circumstances under which the tax perturbation approach can be used

because Assumption 2 is automatically satisfied. This is the case when the tax function T(y)

is restricted to be linear as the indifference curves associated to U (., .; w, θ) are strictly convex.

Similarly, Assumption 2 is also satisfied when the tax function T(y) is convex (y 7→ y− T(y)

being concave, Parts ii) and iii) are then verified).8 By continuity, Assumption 2 is also verified

when y 7→ T(y) is “not too concave”, more precisely when y 7→ y− T(y) is less convex than

the indifference curve with which it has a tangency point in the (y, x)-plane (so that Part ii) of

Assumption 2 is satisfied) and that this indifference curve is strictly above y 7→ y− T(y) for all

other y (so that Part iii) of Assumption 2 is satisfied).

To study any tax reform, one simply applies the implicit function theorem to Y R(y, m; w, θ) =

0 at (y = Y(w, θ), m = 0; w, θ) which yields:

∂YR

∂m
= −Y R

m
Y R

y

with:

Y R
y (y, m; w, θ) = −T′′(y)−My(y− T(y) + m R(y), y; w, θ) (12a)

− M (y− T(y) + m R(y), y; w, θ) Mc(y− T(y) + m R(y), y; w, θ)

Y R
m (y, m; w, θ) = R′(y)− R(y) Mc(y− T(y) + m R(y), y; w, θ). (12b)

To define the sufficient statistics that play a role in the tax formula, we study two specific

reforms: one to capture substitution effects and another one to isolate income effects. To cap-

ture substitution effects, modify the marginal tax rate by a constant amount m around income

Y(w, θ) and leave unchanged the level of tax at this income level so that we label this reform as

compensated. Formally, this compensated reform has for direction R(y) = y− Y(w, θ); it does

not modify the tax level in y = Y(w, θ) (i.e. R(Y(w, θ)) = 0) and it uniformly modifies the

marginal tax rate as can be seen from R′(Y(w, θ)) = 1. The compensated elasticity of income with

respect to the marginal retention rate 1− T′(.) is:

ε(w; θ)
def≡ 1− T′ (Y(w, θ))

Y(w, θ)

∂Y
∂m

c
=

M (C(w, θ), Y(w, θ); w, θ)

−Y(w, θ) Yy(Y(w, θ); w, θ)
> 0 (13a)

where the superscript ”c” emphasizes that the change of Y(w, θ) is due to the compensated tax

reform. The compensated elasticity is positive from Assumption 2.

To capture income effects, we consider a uniform transfer of money to all workers and call

this reform a lump-sum one. This reform is obtained thanks to R(y) ≡ 1 and the income effect

can then be written as:

η(w; θ)
def≡ ∂Y

∂m

L
=

Mc(C(w, θ), Y(w, θ); w, θ)

Yy(Y(w, θ); w, θ)
(13b)

8From (3), we can write −My −MMc = (Uc)−3
(
UyyU 2

c − 2UcyUcUy +UccU 2
y

)
, which is negative due to the

concavity of U (·, ·; w, θ). Therefore, from (1) and the associated first-order condition Y (y; w, θ)
def≡ 1 − T′(y) −

M (y− T(y), y; w, θ) = 0, we have the second-order condition Yy = −T′′(y)−My −M Mc < 0 whenever T′′ ≥ 0.
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where the superscript ”L” stresses that the change of Y(w, θ) is due to the lump-sum reform. If

leisure is a normal good, one has Mc > 0, in which case η(w, θ) < 0.

Another relevant elasticity, the elasticity of earnings with respect to skill w, can be built up

under Assumption 2. Apply the implicit function theorem to (11) with respect to skill w. Note

that this ensures that income Y(·, θ) is a continuously differentiable function in skill. Using

Y R
w = −Mw, the elasticity of earnings with respect to skill w is:

α(w; θ)
def≡ w

Y(w, θ)
Ẏ(w, θ) =

w Mw(C(w, θ), Y(w, θ); w, θ)

Y(w, θ) Yy(Y(w, θ); w, θ)
> 0 (13c)

which is positive from Assumption 1. Notice that Assumptions 1 and 2 rule out bunching.9

This is because, under Assumption 1, bunching can only be decentralized by a kink in the tax

function with increasing marginal tax rates (Saez, 2010). However, a tax function with such a

kink violates Part i) of Assumption 2.

Combining (13a) (13b) with (12b), the way income of individuals (w, θ) reacts to any (gen-

eral) tax reform R(·) is given by:

∂Y
∂m

R
(0; w, θ) = ε(w, θ)

Y(w, θ)

1− T′(Y(w, θ))
R′(Y(w, θ)) + η(w, θ) R(Y(w, θ)) (14)

Our definitions of elasticities and income response (13a)-(13c) account for the nonlinearity

of the income tax schedule. In the denominators of these definitions, the term T′′ (Y(w, θ))

(which is incorporated in YY (see Equation (12a))) emphasizes the role played by the local cur-

vature of the tax schedule. We refer to these elasticities and income response as representing

total responses i.e., including the circular process induced by the endogeneity of marginal tax

rates. Recent papers in the literature e.g. Jacquet et al. (2013) and Scheuer and Werning (2017)

use total elasticities and income responses which help streamline tax formulas. In contrast, pre-

vious papers (Saez, 2001, Golosov et al., 2014, Hendren, 2014) expressed optimal tax formulas

in terms of responses that do not take into account the local curvature of the tax function, which

we refer to direct responses. Let ε?(w; θ), η?(w; θ) and α?(w; θ) denote these direct responses, i.e.

the compensated elasticity of earnings with respect to the marginal retention rate, the income

effect and the elasticity of earnings with respect to skill, when T′′ = 0 in (13a)-(13c). These

would be the relevant concepts if the tax function were linear. An exogenous change in w, or a

tax reform induces a direct change in earnings ∆1y proportional to the direct response ε?(w; θ),

η?(w; θ) and α?(w; θ). However, when the tax schedule is nonlinear, the direct response in earn-

ings Y modifies the marginal tax rate by ∆1T′ = T′′ (Y(w, θ))× ∆1y, thereby inducing a further

change in earnings ∆2y = −Y(w, θ) T′′(Y(w,θ))
1−T′(Y(w,θ)) ε?(w, θ)∆1y. This second change in earnings, in

turn, induces a further modification in the marginal tax rate T′′ (Y(w, θ))× ∆2y which induces

an additional change in earnings. Therefore, a circular process takes place. The income level

9In our context of multidimensional characteristics, bunching refers to the specific situation where individuals
who earn the same income belong to the same group θ but have distinct skills. In contrast, pooling refers to a situ-
ation where individuals who earn the same income belong to distinct groups. Since we address multidimensional
problems, we can study pooling and neglect bunching without any loss in generality.
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determines the marginal tax rate through the tax function, and the marginal tax rate affects the

income level through the substitution effects. Using the identity 1+ x + x2 + x3 + ... = 1
1−x , the

total effect is given by:

∆y =
∞

∑
i=1

∆iy = ∆1y
∞

∑
i=1

(
−Y(w, θ)

T′′(Y(w, θ))

1− T′(Y(w, θ))
ε?(w, θ)

)i−1

= ∆1y
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)

where the ratio in the last equality is positive whenever −Y(w, θ) T′′(Y(w,θ))
1−T′(Y(w,θ)) ε?(w, θ) is lower

than 1, i.e. whenever the second-order condition holds strictly. This ratio is the corrective term

by which direct responses must be timed to obtain total responses as made explicit by the

following equations:

ε(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
ε?(w, θ) (15a)

η(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
η?(w, θ) (15b)

α(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
α?(w, θ) (15c)

Equalities (15a)-(15c) are obtained from the definitions of elasticities, income responses and

from (2).10 Note that the responses that are estimated by the empirical literature, using various

methods, are the direct ones.11

Denote h(y|θ) the conditional income density within group θ at income y and H(y|θ) def≡∫ y
z=0 h(z|θ)dz the corresponding conditional income CDF. According to (13c) and Assumption

1, income Y(·, θ) is strictly increasing in skill within each group. We then have H (Y(w, θ)|θ) ≡
F(w|θ) for each skill level w. Differentiating both sides of this equality with respect to w and

using (13c) leads to:

h (Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h (Y(w, θ)|θ) = w f (w|θ)
α(w, θ)

(16)

We can now define the sufficient statistics that will play a role in the tax formula expressed

using the income distribution and that are functions of income y. Let W(·, θ) denote the recip-

rocal of Y(·, θ) so that, within each group θ, individuals of type (w = W(y, θ), θ) earn income
10From (11) and (13a) we can write:

ε(y, θ)

ε?(y, θ)
=

My +MMc

T′′ +My +MMc

Substituting (3) into (2) and using the definition of ε?(y, θ) yields (15a). The same goes for Equations (15b) and (15c).
11In the real world, most of income tax schedules are piecewise linear in which case the distinction between

direct and total responses are relevant only at the kinks of tax schedules. To estimate the behavioral responses to tax
reforms, there are two main methodologies. The first one uses actual tax reforms as a quasi-experimental design.
What identifies the causal effect of tax on behavior is the fact that, absent any behavioral responses, some tax payers
face a change in marginal tax rate while some other do not (Feldstein, 1995, Auten and Carroll, 1999, Gruber and
Saez, 2002), see Saez et al. (2012). Since this approach considers that marginal tax rates do locally not depend on
taxable income, it identifies direct behavioral responses. The second approach identifies behavioral responses from
discontinuities in the distribution of taxable income around kinks (Saez, 2010) or notches (Kleven and Waseem,
2013) observed in tax schedules. In particular, around a convex kink where T′′(·) = +∞, the total skill elasticity
α(w, θ) is nil from (15c) which triggers bunching around the kink. One then uses the relation between the magnitude
of this bunching and the direct compensated elasticity to identify the latter.
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y. According to Assumption 1, W(y, θ) is the unique skill level w such that the individual

first-order condition 1− T′(y) = M (y− T(y), y; w, θ) is verified at income y. The unconditional

income density is given by:

ĥ(y)
def≡
∫

θ∈Θ
h(y|θ) dµ(θ) (17a)

The mean total compensated elasticity at income level y is:

ε̂(y) =

∫
θ∈Θ ε (W(y, θ), θ) h(y|θ) dµ(θ)∫

θ∈Θ h(y|θ) dµ(θ)
(17b)

The mean total income effect at income level y is:

η̂(y) =

∫
θ∈Θ η (W(y, θ), θ) h(y|θ) dµ(θ)∫

θ∈Θ h(y|θ) dµ(θ)
(17c)

Finally, the mean social welfare weight at income level y is:

ĝ(y) =

∫
θ∈Θ g (W(y, θ), θ) h(y|θ) dµ(θ)∫

θ∈Θ h(y|θ) dµ(θ)
(17d)

Having defined the general tax reforms and described their impact on individual income,

we now study when a given tax reform is desirable. To do so, we locally perturb the tax system

(which can be optimal or suboptimal) in the direction R(y) with magnitude m. If the initial

tax schedule T(·) is optimal, such a perturbation should not yield any first-order effect on the

Lagrangian (7).

Lemma 1. Reforming the tax schedule in the direction R(·) triggers first-order effects on the Lagrangian

(7) equal to:

∂L R

∂m
=

∫ ∞

y=0

{[
ĝ(y)− 1 + T′(y) η̂(y)

]
ĥ(y)− d

dy

[
T′(y)

1− T′(y)
ε̂(y) y ĥ(y)

]}
R(y) dy (18)

+ lim
y 7→∞

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) R(y)− lim
y 7→0

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) R(y)

The proof which is relegated to Appendix A.1 is in the vein of Golosov et al. (2014). It

is based on studying perturbations of a given non-linear tax system taking into account the

partial (Gateaux) differential of government tax revenue and social welfare with respect to tax

reforms in the direction R(.). However, in Golosov et al. (2014), individuals make the same

number of actions as they have individual characteristics so that their method is not applicable

in our framework. With our method, one can solve models with one action and many types.12

12Golosov et al. (2014) assume that the mapping between the vector of types and the vector of income choices
is injective. This assumption is necessary in their proof as they write the government’s Lagrangian using the en-
dogenous density of the vector of incomes. However, their assumption of injectivity is irrelevant in our context
with one income and many types. In contrast, our proof makes explicit the way the unconditional income den-
sity depends on the skill density in each group through Equations (16) and (17a). When deriving a formula for
inequality deflator, Hendren (2014) takes into account the consequences of the nonlinearity of the tax schedule but
his main expression (his Equation (6)) holds only when the marginal rate is locally income-invariant. Gerritsen
(2016) assumes that incomes are differentiable in tax reform but does not explicit the conditions under which this
differentiability is ensured and instead quotes a previous version of our paper. However, he considers a tax reform
that is not differentiable in income to derive his Equation (15) so that the tax perturbation he considers does not
verify the conditions we present in Assumption 2 to validate the tax perturbation.

11



An important point to notice is that, in general, implementing a reform in the direction

R implies a budget surplus or deficit. A first-order approximation of this budget surplus (or

deficit) can be computed by putting social welfare weights ĝ(·) equal to zero in (18). One can

then define a balanced-budget tax reform of magnitude m in the direction R by combining the

tax reform of magnitude m and the direction R with the lump-sum rebate required to bind the

budget constraint. Appendix A.1 shows that the first-order effect of this balanced-budget tax

reform on the social objective is positively proportional to the first-order effect of the tax re-

form of magnitude m and the direction R on the Lagrangian. Therefore, if Expression (18) is

positive, it is socially desirable to implement a tax reform in the direction R(·) (with a positive

magnitude m) and to combine this tax reform with a lump-sum rebate to keep the government’s

budget balanced. Symmetrically, if Expression (18) is negative, it is socially desirable to imple-

ment a tax reform with a positive magnitude m in the direction−R combined with a lump-sum

transfer. Equation (18) is therefore useful to determine which tax reforms are desirable.

We now characterize the optimal tax schedule in the model with multidimensional types.

The proof is in Appendix A.2.

Proposition 1. Under assumptions 1 and 2, the optimal tax schedule satisfies:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
1− Ĥ(y)

y ĥ(y)

(
1−

∫ ∞
y [ĝ(z) + η̂(z) T′(z)] ĥ(z)dz

1− Ĥ(y)

)
(19a)

1 =
∫ ∞

0

[
ĝ(z) + η̂(z) T′(z)

]
ĥ(z)dz. (19b)

If income effects were assumed away, Equation (19b) would imply that the weighted sum of

social welfare weights is equal to 1. In the presence of income effects, a uniform increase in tax

liability induces a change in tax revenue proportional to the marginal tax rate which explains

the presence of the term η̂(z) · T′(z).
The optimal tax rate given in Equation (19a) consists in three terms: i) the behavioral re-

sponses to taxes 1
ε̂(y) , which, in the vein of Ramsey (1927), is the inverse of the mean com-

pensated elasticity; ii) the shape of the income distribution measured by the local Pareto pa-

rameter 1−Ĥ(y)
y ĥ(y)

of the income distribution and iii) the social preferences and income effects

1−
∫ ∞

y [ĝ(z)+η̂(z)·T′(z)]ĥ(z)dz

1−Ĥ(y)
. Saez (2001) discusses how the optimal tax rate is affected by each of

these three terms in the one-dimensional case. Shifting from the model with one dimension

of heterogeneity to the model with multiple dimensions leads to replacing the marginal social

welfare weight, the compensated elasticity and the income effect by their means calculated at

a given income level. It is the mean of the total (rather than direct) compensated elasticity and

income effect that must be computed.13 Note that the averaging procedure is a far cry from

the simple extension of the unidimensional case that would consist in computing the simple

average of every estimated sufficient statistic and then multiplying each average by the same

13This is more intuitive than using the direct elasticity and income effect, which implies to encapsulate the circu-
larity (described by (15a)-(15c)) in a so-called “virtual density” as in Saez (2001), Equation (13).
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corrective term. Instead, every optimal sufficient statistic at any income level is a weighted av-

erage that requires as many corrective terms as there are groups in which individuals earn this

income level and group-specific densities as weights (as described in Equations (15a)-(15b) and

(17b)-(17d)). Remarkably, this procedure highlights the importance of composition effects which

stem, at every income level, from the prevalence of distinct groups of individuals in the actual

and optimal economies. This makes every weighted average of corrected sufficient statistic

distinct in the actual and optimal economies.

IV Optimal tax rates at the top

In this Section, we illustrate that composition effects may be crucial in determining optimal

marginal tax rates for top incomes. To do so, we adopt the usual simplifications. Income effects

are assumed away, so that η̂(y) = 0. The government does not value the welfare of top earners

so that ĝ(y) = 0, i.e. we are interested in optimal top tax rates that maximize tax revenue.

Equation (19a) can therefore be simplified to:

T′ (y)
1− T′ (y)

=
1− Ĥ(y)

ε̂(y) y ĥ(y)
(20)

For the purpose of our illustration, let us consider an example where the top 1 % of the

population is composed of two groups indexed with i = 1, 2. For the sake of simplicity, we

assume individual preferences are iso-elastic:

U (c, y; w, θ) = c− θ

1 + θ

( y
w

) 1+θ
θ

. (21)

with θ = θi in group i = 1, 2. Let τ0 denote the marginal tax rate within the top bracket of the

actual income tax schedule. We adopt the standard assumption that, in the actual economy, the

upper part of the income density within group i is Pareto:

h0(y|i) = ki pi y−(1+pi) ⇔ 1− H0(y|i) = ki y−pi (22)

where ki is the scale parameter and pi is the Pareto parameter, with pi =
y h0(y|i)

1−H0(y|i) for all income

levels. Appendix A.3 shows that the optimal tax rate at income y solves:

T′(y) =
1

1 + µ̂1(y, τ0, T′(y)) θ1 p1 + µ̂2(y, τ0, T′(y)) θ2 p2
where : (23)

µ̂i(y, τ0, τ∗)
def≡

µ(θi) ki

(
1− τ∗
1− τ0

)θi pi

y−pi

µ(θ1) k1

(
1− τ∗
1− τ0

)θ1 p1

y−p1 + µ(θ2) k2

(
1− τ∗
1− τ0

)θ2 p2

y−p2

This Equation generalizes the optimal tax rate formula of Saez (2001) and Piketty et al.

(2014) to the case with two groups.14 In their formula, the top tax rate is a decreasing function of

14The generalization to n > 2 groups is straightforward. We consider two groups to ease the presentation.
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the product of the compensated elasticity and the Pareto parameter.15 In our formula (Equation

(23)), the top tax rate depends on the products of the compensated elasticity and the Pareto

parameter within each group. More precisely, it is a decreasing function of a weighted average

of these products, the weights µ̂ being endogenous. They depend both on tax rates and on

income levels.

On the one hand, they depend on the tax rates in the actual and in the optimal economies

through the terms
(

1−T′(y)
1−τ0

)θi pi
. These terms capture the changes in income densities, within

each group, caused by the responses of taxpayers to the variation of marginal tax rate from

τ0 in the actual economy to T′(y) in the optimal economy. The magnitude of these changes is

higher for the high-elasticity group because its members react more strongly to tax reforms.

On the other hand, whenever the Pareto parameter pi varies across groups, the weights µ̂i

depend on income y. In particular, as income y tends to infinity, the very top earners come

only from the group whose Pareto distribution has the fatter Pareto tail, i.e. the group with the

lowest pi. Therefore, in the optimal tax formula (Equation (23)), lim
y→∞

µ̂i → 1 for the group with

the lowest pi and lim
y→∞

µ̂i → 0 for the group with the highest pi. The optimal asymptotic tax

rate is then given by a formula identical to the one in Saez (2001), except that its elasticity and

Pareto parameter have to be replaced by those of the group with the fatter Pareto tail (i.e. the

group where the lowest pi shows up).

Consider for instance the case where both groups have Pareto parameters close to 1.5 and

where θ1 = 0.2 and θ2 = 0.8. One can think of the low-elasticity group as made of high salary

workers who have few opportunities to adjust their income.16 The high-elasticity group is

made of capital owners and entrepeneurs. If the low-elasticity group has a Pareto parameter

p1 slightly above the one of the high-elasticity group then, the optimal asymptotic marginal tax

rate is 1/(1 + 1.5× 0.8) ' 46%. In the opposite case, the optimal asymptotic marginal tax rate

is 1/(1 + 1.5× 0.2) ' 77%. Now, if one instead implemented Equation (23) at an income level

onwards from which both groups are of equal size, then one would take the mean of θ1 and θ2

to implement the optimal top tax rate. In our example, this yields θ = (θ1 + θ2)/2 = 0.5. The

asymptotic tax rate is then equal to 1/(1 + 1.5× 0.5) ' 57%.

When the Pareto parameters are heterogeneous across groups, the previous examples em-

phasize the role played by the income level from which one determines the optimal top tax

rate. However, two out of our three examples are extreme as they require that income goes to

infinity. We therefore provide a more general example. Even though it is well established in the

literature that the top of the income distribution is extremely well approximated by a Pareto

distribution, as far as we know, there are no empirical studies estimating Pareto parameters for

distinct groups of population. Piketty and Saez (2013), who do not distinguish between several

15For comparison, note that Saez (2001) and Piketty et al. (2014) assume that the top tax rate above a fixed income
level is constant and, neglecting multidimensional heterogeneity, they find T′(∞) = 1/(1+ p · θ) where p and θ are
the Pareto parameter and elasticity.

16E.g., because their income is reported by their employers and their earnings are predetermined by their labor
contracts.
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Figure 1: y 7→ ym(y)
ym(y)−y (solid lines) and y 7→ y ĥ0(y)

1−Ĥ0(y)
(dotted lines). The gray vertical line

correspond to the 99th percentile.

groups, estimate a single Pareto parameter using US tax return micro data. The right-hand side

graph of Figure 1 displays their findings. The solid line is, for each income level y, the ratio

ym(y)/(ym(y)− y) where ym(z) = E[z|z ≥ y] stands for the mean income above y. The dotted

line displays y ĥ0(y)/(1− Ĥ0(y)) in the US. If the income distribution were Pareto, both ratios

would be equal to the Pareto parameter. Piketty and Saez then argue that top incomes are well

approximated by a Pareto distribution with parameter 1.5 since both ratios are constant around

1.5 above the 99th percentile, that is above $350, 500. Based on these empirical findings, we cal-

ibrate our economy so that the implied ratios ym(y)/(ym(y)− y) and y ĥ0(y)/(1− Ĥ0(y)) are

also very close to 1.5, beyond $350, 500, as can be seen on the left-hand side graph of Figure 1.

To obtain this, we assume θ1 = 0.2 and θ2 = 0.8 as before and p1 = 1.3 and p2 = 2. We calibrate

the scale parameters k1 and k2 so that each group represents half of the top percentile of the in-

come distribution in the actual economy (see details in Appendix A.3). Being quite consistent

with the available empirical findings, we consider our calibration as valuable. Of course, this

is not the only possibility and we will propose another calibration exercise a bit further.

In Figure 2, we display the optimal top tax rates’ formula (20) at different income levels.

We represent the optimal tax rate as a function of income levels in the graph on the left and

in terms of percentiles in the graph on the right. The thick (blue) curves represent the optimal

top tax rates when one takes into account that the group composition of individuals who earn

a given income level may be different in the actual and in the optimal economy (See Appendix

A.3). Strikingly, optimal tax rates are far from being constant for very high income levels. The

optimal marginal tax rate increases from 55.7% for the top 1% of the population to 60.2% for

the top 0.5% and it reaches 70.2% for the top 0.1%. At the very top it rockets to 76%. The graph

on the right shows a different pattern because the top 1, 0.5 and 0.1 percentiles correspond

to substantially distinct income levels: $350, 050 , $537, 100 and $1, 528, 500, respectively. This

numerical example highlights the drastic change (up to 15 percentage points) that the optimal

top marginal tax rate undergoes when one modifies the threshold from which one determines
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top incomes.
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Figure 2: Optimal marginal tax rates for top incomes with (solid line) and without composition
effects (dashed lines) when p1 = 1.3 and p2 = 2. The gray vertical line correspond to the 99th

percentile.

In Figure 2, the dashed (red) curves provides the optimal top tax rates from Equation (20)

when one uses the actual densities (i.e. when one neglects composition effects) and when one

approximates total elasticities by the direct ones. In other words, the terms
(

1−τ∗
1−τ0

)θi pi
in the

weights µ̂i of (23) are mystakenly replaced by 1. Therefore, the difference between the solid

and the dashed curves shows the role played by composition effects, i.e. by the change in in-

come densities between the current and the optimal economy. Taxpayers respond to the rise

of marginal tax rates (between the actual and the optimal economy) by reducing their income.

Importantly, taxpayers in the high-elasticity group respond more to this tax reform than tax-

payers in the low-elasticity group. Since the income density is decreasing in income, at each

very high income level, the proportion of taxpayers with a high elasticity is reduced. Optimal

marginal tax rates that encapsulate composition effects are therefore larger than the ones de-

rived when neglecting these effects. In our numerical example, these composition effects lead

to a downward bias up to 8 percentage point around the 99.9 percentile.

Let us now consider another plausible scenario with Pareto parameters simply equal to 1.5

in both groups. From Equation (23), we know that in this case the weights µ̂i do not depend on

income y anymore. Therefore, top tax rates are now independent of the income threshold. As

illustrated in Figure 3, top tax rates are horizontal and, with our calibrations, τ∗ = 59.9%. We

now emphasize that composition effects also matter in this simple example. When increasing

the tax rate from the actual τ0 = 40% to the optimal τ∗, tax payers in the high-elasticity group

reduce their labor supply more than those in the low-elasticity group. As both within-group

income densities are decreasing in income, this difference in behavioral responses leads to a rel-

ative increase of the proportion of tax payers in the low-elastic group at each top income level,

thereby to a reduction of the mean income elasticity ε̂(y) according to (17b). The dashed line

corresponds to the implementation of the optimal tax formula when one ignores the composi-

tion effect. It is a horizontal line lying at 1/(1 + 1.5× 0.5) = 57.1%. Neglecting composition

effects leads to a 2, 8 percentage downwards bias in the optimal tax rate.

16



Out[180]=

500 1000 1500
Income (k$)

50

55

60

65

70

Top Tax Rate

92 94 96 98 100
Percentile

50

55

60

65

70

Top Tax Rate

Figure 3: Optimal marginal tax rates for top incomes when composition effects are considered
(solid lines) or not (dashed lines) and with p1 = p2 = 1.5. The gray vertical line correspond to
the 99th percentile.

These numerical results put the stress on the need for empirical studies on the description

of the heterogeneity of elasticities and on the description of the income distributions across

groups within the top percentile.

V Optimal structural tax formula

In this section, we derive additional results regarding optimal marginal tax rates by making

the model more specific. Following Mirrlees (1971), we assume individuals preferences are

additively separable:

Assumption 3. The utility function is additively separable and takes the form:

U (c, y; w, θ) = u(c)− υ(y; w, θ) with : u′, υy, υy,y > 0 > υw, υy,w , u′′ ≤ 0

with lim
w 7→0

υy(y; w) = +∞ and lim
w 7→+∞

υy(y; w) = 0

Assuming u′, υy > 0 > υw is necessary to retrieve Uc, Uw > 0 > Uy (our initial assumption).

The convexity of the indifference curve associated to U under additively separable preferences

is ensured by assuming that υy,y > 0 ≥ u′′. Under Assumption 3, the marginal rate of substitu-

tion between pre-tax and after tax income is given by M (c, y; w, θ) = υy(y; w)/u′(c). Assump-

tion 1 requires υy,w < 0, lim
w 7→0

υy(y; w) = +∞ and lim
w 7→+∞

υy(y; w) = 0. Therefore, Assumption 3 is

more restrictive than Assumption 1.

Under Assumption 3, we first derive an optimal tax formula expressed in terms of the skill

density and of direct (rather than total) behavioral elasticities. We also argue with this formula

is more convenient for the numerical analysis than (19a). This new formula is also useful to

show that optimal marginal tax rates are positive whenever the social objective is Utilitarian or

Maximin.
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Proposition 2. Under Assumptions 2 and 3, the optimal structural tax formula verifies:

T′ (y)
1− T′ (y))

∫
θ∈Θ

ε∗(W(y, θ), θ)

α∗(W(y, θ), θ)
W(y, θ) f (W(y, θ)|θ) dµ(θ) (24a)

= u′ (y− T(y))
∫∫

θ∈Θ,w≥W(y,θ)

(
1

u′(C(w, θ))
− ΦU(U(w, θ); w, θ)

λ

)
f (w|θ)dw dµ(θ)

for all income y and:∫∫
θ∈Θ,w∈R+

(
ΦU(U(w, θ); w, θ)

λ
− 1

u′(C(w, θ))

)
f (w|θ)dw dµ(θ) = 0. (24b)

We prove Proposition 2 in Appendix A.4. For this purpose, we rewrite the optimal tax for-

mula of Proposition 1 which is derived using the tax perturbation approach. In an appendix

available upon request, we also proof Proposition 2 directly using an allocation perturbation ap-

proach. Note that the left-hand side of the sufficient statistics tax formula (19a) and the left-hand

side of (24a) are equal even without assuming additive separability, as shown in Appendix A.4.

The optimal tax formula provided by Proposition 2 is much more convenient to implement

numerically than the tax formula in terms of sufficient statistics provided by Proposition 1 (in

Equation (19a)) and hence circumvents a significant limit of the latter. First, Equation (24a)

is expressed in terms of the conditional skill density f (·|θ) which is policy-invariant, while

Equation (19a) is expressed in terms of the conditional income density h(·|θ) which depends

on the tax schedule. Second, Equation (24a) makes use of direct elasticities, which are the

ones obtained in the empirical literature (see Footnote 11). Equation (24a) is a second-order

differential equation that depends simply on the tax function and on its first-order derivative

(i.e. the marginal tax rate). In contrast, the left-hand side of (19a) displays total elasticities

(hence the second-order derivative of the tax function).17 Therefore, to implement this equation

numerically, one has to deal not only with the first order derivative of tax function (i.e. with

the marginal tax rate) but also with the second-order derivative T′′ that appears in Equations

(17b) and (17c). Equation (19a) is thus a third-order differential equation. As such, it is much

less convenient to implement numerically than the second-order differential equation (24a).

Third, additive separability (Assumption 3) allows one to rewrite the income effects η̂(z) T′(z)

in Equation (19a) in terms of the derivatives of the individual utility of consumption, u′(·), and

of the derivative of welfare with respect to utility, Φu. Again, these two functions are policy-

invariant which is extremely convenient for the numerical implementation.18

17More precisely, what appears in Equation (24a) is the ratio of the direct compensated elasticity ε to the direct
skill density α. According to (16), the skill elasticity α shows up because the left-hand side is expressed in terms of
the (policy-invariant) conditional skill density f (·|θ) instead of the endogenous conditional income density h(·|θ)
found in Equation (19a). Note that, according to Equations (15a) and (15c), the total compensated ε and skill α
elasticities differ from their direct counterparts ε∗ and α∗ by the same corrective term. Hence, the ratio of ε/α is
equal to the ratio of the direct compensated elasticity ε∗ to the direct skill elasticity α∗.

18Of course, (24a) and (24b) are not a closed-form solution. It depends on the arguments of functions ε∗/α∗, u′(·)
and Φu, and are thus functions of the allocation (w, θ) 7→ (C(w, θ), Y(w, θ)). Therefore one needs to iterate when
implementing tax formula (24a). For given values of ε∗/α∗, u′(·) and Φu, Equations (24a) and (24b) provide an
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Thanks to Proposition 2, one can now provide a sufficient condition for positive marginal

tax rates.

Proposition 3. Under Assumptions 1, 4 and 3, and utilitarian or maximin social preferences, optimal

marginal tax rates are positive

With multidimensional heterogeneity, the literature has highlighted that negative marginal

tax rates can be optimal. In Boadway et al. (2002), Choné and Laroque (2010) and Lockwood

and Weinzierl (2015), individuals differ along their skills and preferences for effort, and the

social planner has weighted utilitarian preferences. In this context, individuals who pool at

the same income level are characterized by different social marginal welfare weights and the

mean social welfare weight may not be decreasing with income.19 This composition effect may

reduce marginal tax rates (Lockwood and Weinzierl, 2015) and may even induce them to be-

come negative (Boadway et al., 2002, Choné and Laroque, 2010).20 Proposition 3 shows that

optimal marginal tax rates are positive as soon as all individuals who earn the same income

y are characterized by the same marginal utility of consumption Uc, which is ensured by the

additive separability assumption, and by the same marginal social welfare Φu, which is en-

sured by utilitarian or maximin social objective. In such a case, all individuals who earn the

same income are characterized by the same welfare weights. Therefore, the cause of negative

marginal tax rates emphasized in Boadway et al. (2002), Choné and Laroque (2010) and Lock-

wood and Weinzierl (2015) does not apply. Proposition 3 generalizes, to the multidimensional

case, Mirrlees (1971)’s result of positive optimal tax rates (which was obtained under additively

separable preferences).

VI Tax perturbation method versus first-order mechanism design ap-
proach

Piketty (1997) and Saez (2001) were the first to derive the optimal income tax formula using

the tax perturbation approach. However, the tax perturbation is valid only under some circum-

stances (see our Assumption 2). In particular, because of the nonlinearity of the tax schedule,

a small tax reform may well induce a jump in the labor supply for taxpayers that were before

the reform indifferent between two labor supply choices. That was the reason why Saez (2001)

had to show that his formula was consistent with the one of Mirrlees (1971). In the latter, the

government optimizes over incentive-compatible allocations and the optimal tax schedule is

the one that decentralizes this schedule. However, Saez (2001) shows that both approaches

approximation for the tax schedule. This, in turn, provides an approximation of the optimal allocation by solving
maximization program (1). This allows one to update the evaluations of ε∗/α∗, u′(·) and Φu. However, because the
second-order derivatives of the tax function do not show up in (24a) and (24b), this iteration process is much easier
than the one that hinges on the sufficient statistics formula (Equations (19a) and (19b)).

19However, in these papers, individuals who pool at the same income are characterized by the same compensated
elasticity and income effects.

20For instance, this happens when some groups undervalued in the social objective are overrepresented at low
income levels. In this case, individuals at the bottom of the income distribution receive lower social welfare weights
than individuals with larger income levels. This yields negative marginal tax rates at the bottom of the distribution.
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lead to the same formulas assuming one-dimensional heterogeneity. In this section, we discuss

the connection between both approaches in the multidimensional context under Assumption

1. We show the equivalence between the tax perturbation approach under Assumption 2 and

the well-established first-order mechanism design approach.

The mechanism design approach relies on the taxation principle (Hammond, 1979, Gues-

nerie, 1995) according to which it is equivalent for the government to select a nonlinear tax

schedule taking into account the labor supply decisions as the ones described in (1), or to di-

rectly select an incentive-compatible allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies the self-

selection constraints,

∀w, θ, w′, θ′ ∈ (R∗+ ×Θ)2 U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
. (25)

According to (25), individuals of type (w, θ) are better of with the bundle (C(w, θ), Y(w, θ))

designed for them than with bundles (C(w′, θ′), Y(w′, θ′)) designed for individuals of any other

type (w′, θ′).

In the mechanism design approach, it is usual to assume that the government selects among

incentive compatible allocations that are continuously differentiable. Then, incentive con-

straints (25) imply the first-order incentive constraints, i.e.

∀(w, θ) ∈ R∗+ ×Θ U̇(w, θ) = Uw (C(w, θ), Y(w, θ); w, θ) (26)

The first-order incentive constraints (26) are necessary but not sufficient to verify the incentive

constraints (25). A sufficient condition is that the allocation also verify a monotonicity con-

straint according to which in each group, Y(·, θ) is nondecreasing in skill. We adopt a slightly

more restrictive assumption.

Assumption 4. The allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) is smooth if and only if it is continuously

differentiable, it verifies (25) and w 7→ Y(w, θ) admits a positive derivative for any group θ ∈ Θ and at

any skill level w ∈ R∗+ .

We get the following connection between Assumption 2 required for the tax perturbation

approach and Assumption 4 in the first-order mechanism design approach (see Appendix A.6).

Proposition 4. Under Assumption 1,

i) Any tax schedule y 7→ T(·) verifying Assumption 2 induces a smooth allocation that verifies

Assumption 4.

ii) Any smooth allocation verifying Assumption 4 can be decentralized by a tax schedule that verifies

Assumption 2.

Intuitively, under Assumption 1 (which states the single-crossing condition within group),

elements of Assumptions 2 and 4 are equivalent. The fact that, for each group θ, the second-

order condition of the individual program (1) holds strictly (Part ii of Assumption 2) is equiv-

alent to Y(·, θ) being strictly increasing in skill as required in Assumption 4. Moreover, the
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uniqueness of the global maximum from the individual maximization program (1) (Part iii of

Assumption 2) is equivalent to Y(·, θ) being continuous in skill as stated in Assumption 4.

Thanks to Proposition 4, the first-order mechanism design approach and the tax perturba-

tion one are analog. The first-order mechanism design approach, pioneered by Mirrlees (1971),

consists in choosing, among the allocations that verify Assumption 4, the one that maximizes

the social objective (6) subject to the budget constraint (5). For this purpose, it computes the

first-order effect, on the Lagrangian (7), of perturbing the optimal allocation. However, as the

perturbed allocation has to verify Assumption 4, it is decentralized by a perturbed tax schedule

that has to verify Assumption 2. Proposition 4 therefore assesses that it is equivalent to consider

the effects of a perturbation of the allocation that preserves Assumption 4 (i.e. the first-order

mechanism design approach), or to consider the responses of the allocation to a perturbation

of the tax function that preserves Assumption 2. In other words, the first-order mechanism

design approach focuses on the effects of an allocation perturbation while the tax perturbation

approach focuses on the effects of the tax reform that decentralizes this perturbation. This is the

reason why we claim that the first-order mechanism design approach and the tax perturbation

one are actually the two faces of the same coin.

In the literature where the unobserved heterogeneity is one dimensional, the mechanism

design approach can be developed under less restrictive assumptions than Assumption 4. In

particular, Lollivier and Rochet (1983), Guesnerie and Laffont (1984), Ebert (1992), Boadway

et al. (2000) study the case where individuals endowed with different skill levels choose the

same consumption-income bundle. To decentralize such an allocation where bunching occurs,

one would need a kink in the tax function. Therefore, bunching is never possible whenever a

tax schedule is twice-continuously differentiable (i.e when the marginal tax rate is a continu-

ously differentiable function of income) as required by Assumption 2. Note that the alterna-

tive “pathology” where individuals may be indifferent between two types of incomes appears

much more plausible under twice continuously differentiable tax schedule. Surprisingly, this

problem has attracted much less attention than bunching in the literature based on the mecha-

nism design approach, a noticeable exception being Hellwig (2010).

VII Concluding Comments

In this paper, we have proposed a new structural method, based on an allocation perturba-

tion, to derive optimal tax schedules and their optimal sufficient statistics, in the very general

case where agents are heterogeneous in many dimensions. After contrasting this method with

the usual tax perturbation approach, we have quantified the bias in marginal tax rates entailed

by using observed sufficient statistics rather than the optimal ones. Using US data, we have

shown that, even in a simple illustration, this bias can reach up to 10 percentage points. Our

structural tax formula allows us to avoid such a bias and is necessary to correct the observed

sufficient statistics.
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To illustrate the generality of our framework, we have provided four possible interpreta-

tions of our tax formulae: income taxation with heterogeneous skills and heterogeneous labor

supply elasticities, joint taxation of labor and non-labor income, joint income taxation of cou-

ples and income taxation with tax avoidance. More generally, our approach applies to any

taxation problem in which the tax function depends on as many different sources of income

as one wishes. It even extends beyond optimal taxation, e.g., to nonlinear pricing problems

where consumers differ along several unobserved dimensions. We intend to implement these

applications on real data in our future research.

A Theoretical Proofs

A.1 Proof of Lemma 1

Let L R be the Lagrangian resulting from applying a reform of magnitude m in the direction
R to the Lagrangian (7):

L R(m)
def≡

∫∫
θ∈Θ,w∈R+

[
T(YR(m; w, θ))−m R(YR(m; w, θ)) +

Φ
(
UR(m; w, θ); w, θ

)
λ

]
f (w|θ)dw dµ(θ)

Computing the Gateaux differential of the Lagrangian with respect to m at m = 0 yields:

∂L R

∂m
=

∫∫
θ∈Θ,w∈R+

{
T′(Y(w, θ))

1− T′(Y(w, θ))
Y(w, θ) ε(w, θ) R′(Y(w, θ))

+
[
T′(Y(w, θ)) η(w, θ)− 1 + g(w, θ)

]
R(Y(w, θ))

}
f (w|θ)dw dµ(θ)

=
∫∫

θ∈Θ,y∈R+

{
T′(y)

1− T′(y)
y ε (W(y, θ), θ) R′(y)

+
[
T′(y) η (W(y, θ), θ)− 1 + g (W(y, θ), θ)

]
R(y)

}
h(y|θ)dy dµ(θ)

=
∫

y∈R+

{
T′(y)

1− T′(y)
y ε̂(y) R′(y) +

[
T′(y) η̂(y)− 1 + ĝ(y)

]
R(y)

}
h(y)dy

We use (8), (10) and (14) to obtain the first equality. We use (16) for the change of variable from
skill w to income y in the second equality. We use (17a)-(17d) for the last equality. Integrating
by parts the integral of T′(y)

1−T′(y)y ε̂(y) ĥ(y) R′(y) leads to (18).

We now show that the first-order effect on the Lagragian (7) of a reform of magnitude m in
the direction R(·) is positively proportional to the first-order effect on the social objective (6) of
the reform denoted R̃(m) which consists in implementing the tax reform in the direction R(·)
with magnitude m and to rebate in a lump-sum way the induced net budget surplus. Let `(m)
denote this budget surplus. Under the balanced-budget tax reform R̃(m) individuals solves:

UR̃(m; w, θ)
def≡ max

y
U (y− T(y) + m R(y) + `(m), y; w, θ) (27)

Applying the envelope theorem to (27) at m = 0 leads to:

∂UR̃

∂m
(0; w, θ) =

(
R(y) + `′(0)

)
Uc (C(w, θ), Y(w, θ); w, θ) (28)
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Applying the implicit function theorem on the first-order condition

1− T′ (y) + m R′ (y) = M (y− T (y) + m R (y) + `(m), y; w, θ)

at y = YR̃(m; w, θ) and using (12b), (13b) and (14) leads to:

∂YR̃

∂m
(0; w, θ) =

∂YR

∂m
(0; w, θ) + η(w, θ) `′(m) (29)

We now denote respectively BR(m), S R(m) and L R(m) the budget surplus, the social
objective and the Lagrangian when the tax function is perturbed in the direction R as a function
of the magnitude m with L R(m) = BR(m) + (1/λ)S R(m) . We symmetrically denote BR̃(m),
SWFR̃(m) and L R̃(m) the budget surplus, the social objective and the Lagrangian when the
tax function is perturbed by the balanced-budget tax reform in the direction R and magnitude
m. We get L R̃(m) = BR̃(m) + (1/λ)S R̃(m). We also get that

0 = BR̃(m) =
∫

(w,θ)∈R∗+×Θ

{
T
(

YR̃(m; w, θ)
)
−m R

(
YR̃(m; w, θ)

)}
f (w|θ)dw dµ(θ)− `(m)

We thus get

`′(0) =
∫

(w,θ)∈R∗+×Θ

{
T′ (Y(w, θ))

∂YR̃

∂m
(0; w, θ)− R (Y(w, θ))

}
f (w|θ)dw dµ(θ)

Using (29), we thus get:

`′(0) =
∂BR

∂m
(0) + `′(0)

∫
(w,θ)∈R∗+×Θ

T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

so that:

`′(0) =
1

1−
∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

∂BR

∂m
(0) (30)

Finally, using (28), we get:

∂S R̃

∂m
(0) =

∂S R

∂m
(0) + `′(0)

∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

=
∂S R

∂m
(0) +

∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

1−
∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

∂BR

∂m
(0)

= λ
∂L R

∂m
(0) (31)

where the last equality holds if and only if

λ =

∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

1−
∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

(32)
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A.2 Proof of Proposition 1

An optimal tax system implies that any tax reform R(.) does yield zero first-order effect
on the Lagrangian (7), i.e. (18) is nil at m = 0 for all directions R(·). This implies that
lim
y 7→0

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = lim

y 7→∞
T′(y)

1−T′(y) ε̂(y) y ĥ(y) = 0 and, for all income y:

d
dy

[
T′(y)

1− T′(y)
ε̂(y) y ĥ(y)

]
=
[
ĝ(y)− 1 + T′(y) η̂(y)

]
ĥ(y)

Integrating the latter equality for all income z above y and using lim
y 7→∞

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = 0

yields (19a). Making y tends to 0 in (19a) and using lim
y 7→0

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = 0 leads to (19b).

A.3 Numerical implementation of the Top Tax Rates formula

We now describe how the income density of each group varies between the actual and
optimal economy. Variables in the actual economy are labeled with a subscript zero and with
an asterisk at the optimum. In the actual economy, the top tax rate is a constant τ0.

From the first-order condition (2), an individual belonging to group θ earning income y in

the optimal economy is endowed with a skill level equal to W(y, θ) = y
1

1+θ (1− T′(y))−
θ

1+θ and
earns income

Ỹ0(y, θ) =

(
1− τ0

1− T′(y)

)θ

y.

in the actual economy. From this equation, we can write

H∗(y|i) = H0(Ỹ0(y, θi)|i) = H0

((
1− τ0

1− T′(y)

)θi

y

∣∣∣∣∣ i

)
(33)

Differentiating both sides of (33) in y, we get:

y h(y|i) =

(
1− τ0

1− T′(y)

)θi

y h0

((
1− τ0

1− T′(y)

)θi

y

∣∣∣∣∣ i

)[
1 +

θi y T′′(y)
1− T′(y)

]
Using Equation (15a) and the fact that θi is the direct compensated elasticity within group i, we
get:

ε(W(y, θi), i) y h(y|i) = θi

(
1− τ0

1− T′(y)

)θi

y h0

((
1− τ0

1− T′(y)

)θi

y

∣∣∣∣∣ i

)
Using (22) we obtain:

ε(W(y, θ), i) y h(y|i) = θi pi ki

(
1− T′(y)

1− τ0

)θi pi

y−pi

The denominator of the Right-Hand side of (20) is thus equal to:

ε̂(y) y ĥ(y) = µ(θ1) k1

(
1− T′(y)

1− τ0

)θ1 p1

y−p1 θ1 p1 + µ(θ2) k2

(
1− T′(y)

1− τ0

)θ2 p2

y−p2 θ2 p2 (34)

Using (33), the numerator of the Right-Hand side of (20) is thus equal to:

1− Ĥ(y) = µ(θ1) k1

(
1− T′(y)

1− τ0

)θ1 p1

y−p1 + µ(θ2) k2

(
1− T′(y)

1− τ0

)θ2 p2

y−p2 (35)
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Plugging (34) and (35) into (20) and solving for T′(y) leads to (23).
In Figure 2, we plot the solution of this equation, for different values of income y and τ0 =

40%. Parameters µ(θ1) and µ(θ2) are set such that at the income threshold y = $1, 053, 398,
which corresponds to the top 1% in the actual economy, both groups are equally large so that:

µ(θ1) k1 y−p1 = µ(θ2) k2 y−p2 .

A.4 Proof of Proposition 2

Let

X(y)
def≡

∫ ∞

y

{
1− ĝ(z)− η̂(z) T′(z)

}
ĥ(z)dz (36)

denote the right-hand side of (19a). Equation (19a) can be rewritten as:

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) = X(y) (37)

Combine (17a) and (17b) to write:

ε̂(y) y ĥ(y) =
∫

θ∈Θ

ε (W(y, θ), θ) y h(y|θ) dµ(θ) =
∫

θ∈Θ

ε (W(y, θ), θ)

α (W(y, θ), θ)
W(y, θ) f (W(y, θ)|θ) dµ(θ)

where (16) is used to obtain the second equality. Plug this equality in the left-hand side of (37)
leads to:

T′ (y)
1− T′ (y)

∫
θ∈Θ

ε∗(W(y, θ), θ)

α∗(W(y, θ), θ)
W(y, θ) f (W(y, θ)|θ) dµ(θ) = X(y) (38)

From Assumption 3, one has M (c, y; w, θ) = υy(y; w, θ)/u′(c), so we get that Mc(c, y; w, θ)/M (c, y; w, θ)
simplifies to −u′′(c)/u′(c). Therefore, according to Equations (13a) and (13b), we get:

η(w, θ) = ε(w, θ) Y(w, θ)
u′′(C(w, θ))

u′(C(w, θ))

Using (17b) and (17c) and the fact that individuals of different types (w, θ) who earn the same
income y have to consume the same amount c, we get:

η̂(y) = ε̂(y) y
u′′(y− T(y))
u′(y− T(y))

(39)

We now define J(y) by the equality X(y)
def≡ J(y) u′(y− T(y)). We get:

X′(y) = J′(y) u′(y− T(y)) + X(y)
u′′(y− T(y))
u′(y− T(y))

(1− T′(y))

= J′(y) u′(y− T(y)) + T′(y) ε̂(y) y ĥ(y)
u′′(y− T(y))
u′(y− T(y))

= J′(y) u′(y− T(y)) + T′(y) η̂(y) ĥ(y)

where the second equality uses (37) and the last uses (39). Differentiating in income both sides
of (36) leads to:

J′(y) u′(y− T(y)) + T′(y) η̂(y) ĥ(y) =
{
−1 + ĝ(y) + T′(y)η̂(y)

}
ĥ(y)

J′(y) u′(y− T(y)) = {−1 + ĝ(y)} ĥ(y)

J′(y) =
∫

θ∈Θ

{
− 1

u′(y− T(y))
+

Φu〈W(y, θ), θ〉
λ

}
h(y|θ) dµ(θ)
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where the last equality uses (17a) and (17d). Integrating the last equality for all incomes z above
y leads to:

J(y) =
∫∫

z≥y,θ∈Θ

{
1

u′(z− T(z))
− Φu〈W(z, θ), θ〉

λ

}
h(z|θ)dz dµ(θ)

=
∫∫

w≥W(y,θ),θ∈Θ

{
1

u′(C(w, θ))
− Φu〈w, θ〉

λ

}
f (w|θ)dw dµ(θ) (40)

where the second equality uses (16) to change variables from income to skill. Plugging (40) in
(38) leads to (24a). Using (36), Equation (19b) can be rewritten as X(0) = 0, thereby J(0) = 0.
Using (40) leads to (24b).

A.5 Proof of Proposition 3

Under utilitarian preferences, Φu = 1 and we get:

J(y)
def≡
∫

z≥y

(
1

u′(z− T(z))
− 1

λ

) (∫
θ

f (W(z, θ)|θ) dµ (θ)

)
dz

The derivative of J(z) has the sign of 1/λ− 1/u′(z− T(z)), which is decreasing in w because
of the concavity of u(·). Moreover, lim

y 7→∞
J(y) = 0 and Equation (24b) imply that J(0) = 0.

Therefore, J(·) first increases and then decreases. It is thus positive for all (interior) skill levels.
Since vyw < 0 from (1), optimal marginal tax rates are positive.

Under Maximin, one has U(x, θ) > U(0, θ) for all x > 0 from (26). Therefore, within each
group, the most deserving individuals are those whose skill w = 0. The Maximin objective
implies ΦU 〈x, θ〉 = 0 for all x > 0. Thereby,

J(y)
def≡
∫

z≥y

1
u′(z− T(z))

(∫
θ

f (W(z, θ)|θ) dµ (θ)

)
dz

for all x > 0, which leads to positive marginal tax

A.6 Proof of Proposition 4

Part i) of Proposition 4.

Let T(·) be an income tax schedule satisfying Assumption 2. We already know that under
Assumptions 1 and 2, one can apply the implicit function theorem to the first-order condition
associated to (1). This implies that Y(·, θ), thereby C(·, θ) is continuously differentiable in w
within each group θ. Moreover, Y(·, θ) admits a positive derivative according to (13c). Finally,
from (1) we get that:

∀w, θ, y′ ∈ R∗+ ×Θ×R+ U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
y′ − T(y′), y′; w, θ

)
Taking y′ = Y(w′, θ′) leads to C(w′, θ′) = y′ − T(y′), so that the last inequality leads to (25).
Therefore the allocation w 7→ (C(·, θ), Y(·, θ)) induced by T(·) verifies (25), thereby Assump-
tion 4.

Part ii) of Proposition 4

Let (w, θ) 7→ (C(w, θ), Y(w, θ)) be a mapping defined over R∗+ ×Θ which verifies Assump-
tion 4. Let Y denote the set of incomes that are assigned to some individuals along this allo-
cation. To define the tax schedule that decentralizes this allocation, we first show that if two
types (w, θ) and (w′, θ′) of individuals earn the same income y = Y(w, θ) = Y(w′, θ′), then they
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have to be assigned the same consumption C(w, θ) = C(w′, θ′). Otherwise, if by contradiction
one has: C(w, θ) < C(w′, θ′), then one would get that individuals of type (w, θ) would be better
of with the bundle (C(w′), Y(w′)) designed for individuals of type (w′, θ′), which would be in
contradiction with (25). A symmetric argument applies if C(w, θ) < C(w′, θ′) by inverting the
role of (w, θ) and of (w′, θ′). We can then unambiguously define the tax schedule denoted T(·)
that decentralizes this allocation by:

∀y ∈ Y T(y)
def≡ Y(w, θ)− C(w, θ) where (w, θ) are such that: y = Y(w, θ) (41)

Given this tax schedule, Program (1) of individuals of type (w, θ) is equivalent to solving :
max

(w′,θ′)∈R∗+×Θ
U (C(w′, θ′), Y(w′, θ′); w, θ), whose solution is (w, θ) as (w, θ) 7→ (C(w, θ), Y(w, θ))

verifies the incentive constraints (25). Therefore, the tax schedule T(·) defined by (41) decen-
tralizes the given allocation.21

We then need to show a mathematical result. For each group θ ∈ Θ, as Y(·, θ) is con-
tinuously differentiable, it admits a reciprocal denoted Y−1(·, θ) which is also continuously
differentiable. Therefore the image of the (open) skill set R∗+ by Y(·, θ) is an open set denoted
Y(θ) ⊂ R+. Equation (41) can be rewritten on Y(θ) by:

T(y) = y− C
(

Y−1(y, θ), θ
)

(42)

Moreover, we get that Y = ∪θ∈ΘY(θ) and is therefore an open set. Therefore, for each income
y ∈ Y, there exists a group θ such that T(·) verifies (42) in the neighborhood of y.

To show that T(·) verifies Part i) of Assumption 2, we first notice that from (42), T(·) is
continuously differentiable as Y−1(·, θ) and C(·, θ) are continuously differentiable. Moreover,
we have from (2) that:

T′(y) = 1−M (y− T(y), y; Y−1(w, θ), θ)

As T(·) and Y−1(·, θ) are continuously differentiable in y, and M (·, ·; ·, θ) is continuously dif-
ferentiable in (c, y, w), y 7→M (y− T(y), y; Y−1(w, θ), θ) is continuously differentiable, so T′(·)
is continuously differentiable and T(·) verifies Part i) of Assumption 2..

To show that T(·) verifies Part ii) of Assumption 2,22 we notice that the first-order con-
dition (11) can be rewritten as Y (Y(w, θ); w, θ) ≡ 0 for all skill levels. Differentiating this
equality with respect to skill leads to: Yy (Y(w, θ); w, θ) Ẏ(w, θ) + Yw (Y(w, θ); w, θ) = 0. As
Yw (Y(w, θ); w, θ) = −Mw (C(w, θ), Y(w, θ); w, θ) which is positive from Assumption 1 and
Ẏ(w, θ) > 0 from Assumption 4, then one must have Yy (Y(w, θ); w, θ) < 0, which is Part ii) of
Assumption 2.

To show that T(·) verifies Part iii) of Assumption 2, we assume by contradiction that indi-
viduals of type (w∗, θ) are indifferent between earning income Y(w∗, θ) and earning an income
level denoted y′ ∈ Y. We show that in such a case, some individuals with skill w close to w∗

are better of with the bundle (y′ − T(y′), y′) than with the bundle (C(w, θ), Y(w, θ)) designed
for them, a contradiction. For this purpose we denote C (u, y; w, θ) the after-tax income an indi-
vidual of type (w, θ) should get to enjoy utility u while earning an pre-tax income y. Function
C (·, y; w, θ) is the reciprocal of function U (·, y; w, θ) We get: Cu = 1/Uc, Cy = −Uy/Uc = M
and Cw = −Uw/Uc. We then denote:

Q(w)
def≡ C

(
U(w, θ), y′; w, θ

)
− y′ + T(y′)

To be indifferent between earning income Y(w, θ) and income y′, individuals of type (w, θ) have
to receive after-tax income C (U(w, θ), y′; w, θ) when earnings income y′. Therefore, Q(w) is a

21We have here followed Hammond (1979) very closely.
22We are grateful to Kevin Spiritus for encouraging us to emphasize this result.
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measure in monetary units of the difference in well being for individuals of type (w, θ) between
the bundle (C(w, θ), Y(w, θ)) designed for them (which leads them with utility U(w, θ)) and the
utility they would get by earning income y′ and consuming y′− T(y′). We have by assumption
Q(w∗) = 0. Moreover, we get:

Q′(w) =
V (U(w, θ), Y(w, θ), w, θ)− V (U(w, θ), y′, w, θ)

Uc (C (U(w, θ), Y(w, θ); w, θ), Y(w, θ); w, θ)

where V (u, y; w, θ)
def≡ Uw (C (u, y; w, θ), y; w, θ) describes how Uw varies with income y along

the indifference curve of individuals of type (w, θ) at utility u. We get that Vy = −Uc Mw which
is strictly positive from Assumption 1. Therefore:

• If y′ > Y(w, θ), then Q′(w∗) > 0, which implies that for some skills w > w∗ above w∗

and sufficiently close to w∗, Q(w) > 0, i.e. U(w, θ) > U (y′ − T(y′), y′; w, θ). Therefore,
individuals of type (w, θ) strictly prefers the bundle (y′− T(y′), y′) rather than the bundle
(C(w, θ), Y(w, θ) designed for them, a contradiction.

• If y′ < Y(w, θ), then Q′(w∗) < 0, which implies that for some skills w < w∗ below w∗

and sufficiently close to w∗, Q(w) > 0, i.e. U(w, θ) > U (y′ − T(y′), y′; w, θ). Therefore,
individuals of type (w, θ) strictly prefers the bundle (y′− T(y′), y′) rather than the bundle
(C(w, θ), Y(w, θ) designed for them, a contradiction.
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157–201.

Piketty, T. and E. Saez (2013). Optimal labor income taxation. In M. F. Alan J. Auerbach,
Raj Chetty and E. Saez (Eds.), Handbook of public economics, vol. 5, Volume 5 of Handbook of
Public Economics, Chapter 7, pp. 391 – 474. Elsevier.

Piketty, T., E. Saez, and S. Stantcheva (2014, February). Optimal taxation of top labor incomes:
A tale of three elasticities. American Economic Journal: Economic Policy 6(1), 230–71.

Ramsey, F. P. (1927). A contribution to the theory of taxation. Economic Journal 37, 47–61.
Rochet, J.-C. and A. Stole, Lars (2002). Nonlinear pricing with random participation. The Review

of Economic Studies 69(1), pp. 277–311.
Rothschild, C. (2013). Redistributive taxation in the roy model. The Quarterly Journal of Eco-

nomics 128(2), 623–668.

29



Rothschild, C. and F. Scheuer (2013). Redistributive taxation in the Roy model. The Quarterly
Journal of Economics 128(2), 623–668.

Rothschild, C. and F. Scheuer (2014). A theory of income taxation under multidimensional skill
heterogeneity. NBER Working Papers 19822.

Rothschild, C. and F. Scheuer (2016). Optimal taxation with rent-seeking. The Review of Economic
Studies 83(3), 1225–1262.

Saez, E. (2001). Using elasticities to derive optimal income tax rates. Review of Economic Stud-
ies 68, 205–229.

Saez, E. (2002). Optimal income transfer programs: Intensive versus extensive labor supply
responses. Quarterly Journal of Economics 117, 1039–1073.

Saez, E. (2010). Do taxpayers bunch at kink points? American Economic Journal: Economic
Policy 2(1), 180–212.

Saez, E., J. Slemrod, and S. H. Giertz (2012). The elasticity of taxable income with respect to
marginal tax rates: A critical review. Journal of Economic Literature 50(1), 3–50.

Saez, E. and S. Stantcheva (2016). Generalized social marginal welfare weights for optimal tax
theory. American Economic Review 106(1), 24–45.

Scheuer, F. (2013). Adverse selection in credit markets and regressive profit taxation. Journal of
Economic Theory 148(4), 1333–1360.

Scheuer, F. (2014a). Entrepreneurial taxation with endogenous entry. American Economic Journal:
Economic Policy 6(2), 126–63.

Scheuer, F. (2014b). Entrepreneurial taxation with endogenous entry. American Economic Journal:
Economic Policy 6(2), 126–63.

Scheuer, F. and I. Werning (2017). The taxation of superstars. Quarterly Journal of Economics,
forth.

30


	Introduction
	Model
	From tax reform responses to optimal tax formulas
	Optimal tax rates at the top
	Optimal structural tax formula
	Tax perturbation method versus first-order mechanism design approach
	Concluding Comments
	Theoretical Proofs
	Proof of Lemma 1
	Proof of Proposition 1
	Numerical implementation of the Top Tax Rates formula
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4


