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Abstract

A central notion for allocation problems when there are private endowments is core: no coalition

should be able to block the allocation. However, for an exchange economy of discrete resources,

core can be empty. An alternative core-type stability axiom is the bargaining set via Aumann and

Maschler (1964): a blocking by a coalition is justi�ed only if there is no counter-objection to it and

an allocation is in the bargaining set if there does not exist a justi�ed blocking. We prove that the

bargaining set characterizes a well-known class of trading mechanisms, the top trading cycles.
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1 Introduction

An exchange economy of discrete resources with private endowments is when each agent owns an

indivisible good and these goods are to be allocated among agents without monetary transfers via

direct mechanisms. The central notion when there are private endowments is individual rationality

which requires that the assignment should be such that no agent is worse o� than her endowment.

There is another trademark property of this problem, core: no coalition of agents should be able to

block the assignment; that is, they should not prefer reallocating their endowments among themselves

(by leaving the economy) over the assignment. However, core is in general empty. An alternative (and

weaker) notion is the bargaining set by Aumann and Maschler (1964): a blocking is justi�ed only if

there is no counter-objection to it and an allocation is in the bargaining set if there does not exist a

justi�ed blocking. We prove that, in the context of exchange economies of discrete resources, the well

known Top Trading Cycles class is characterized by the bargaining set.

If preferences are strict, core is a singleton and it is the only solution which satis�es individual ra-

tionality, Pareto e�ciency and strategy-proofness (Ma (1994), Sönmez (1999)). Also, core is equivalent

to the outcome of the Gale's well-known Top Trading Cycles (TTC) algorithm (Shapley and Scarf,

1974). The TTC algorithm works as follows: Each agent points at her most preferred available object

(all objects are available at the beginning) and each object points at its owner. Since all agents and ob-

jects point, there is at least one cycle where each agent owns the most preferred object of the previous

agent in the cycle. The algorithm assigns to each agent in the cycle her most preferred available object

(that is, the object she points at) and removes her with her assigned object. This continues until no

one is left. The resulting mechanism is group strategy-proof and Pareto e�cient (Roth, 1982). When

an agent may be endowed with multiple objects or no object, the top trading cycles rule is generalized

to the hierarchical change rule, which is characterized by Pareto e�ciency, group strategy-proofness

and reallocation-proofness (Pápai, 2000). A more general trading mechanism is trading-cycles and it

is characterized by group strategy-proofness and Pareto e�ciency (Pycia and Ünver, 2016).

While the extension of the TTC algorithm to the weak preferences domain is not trivial, such

extensions satisfying individual rationality, Pareto e�ciency and strategy-proofness are shown to exist

(Jaramillo and Manjunath (2012), Alcalde-Unzu and Molis (2011), Saban and Sethuraman (2013)).

Strategy-proofness characterizes a subclass of these generalized TTC class satisfying Pareto e�ciency
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(Saban and Sethuraman, 2013).

When the restrictive strict preferences assumption is removed, core can be empty (Shapley and

Scarf, 1974). Actually, core is non-empty only for a very special preference and endowment structure

(Quint and Wako, 2004). A weakening of core is weak core: blocking is allowed only if each agent in

the blocking coalition is strictly better o� than the assignment. The extensions of the TTC discussed

in the previous paragraph are in the weak core. Our focus is on another notion, the bargaining set,

which incorporates an important consideration into the process of blocking an assignment: when

blocking, coalitions should consider possible counter-blockings of other coalitions. More precisely, an

assignment is in the bargaining set if blocking by a coalition implies that there is another coalition

blocking the assignment resulting from the initial blocking (De�nition 1). This notion is formulated

by Aumann and Maschler (1964) and later analysed for di�erent economies. In the context of a

market game with a continuum of players, the bargaining set is equivalent to the set of Walrasian

allocations (Mas-Colell, 1989). For non-transferable utility games, the bargaining set is non-empty

under certain conditions (Vohra, 1991).1 For an exchange economy with di�erential information and

a continuum of traders, the bargaining set and the set of Radner competitive equilibrium allocations

are equivalent (Einy, Moreno, and Shitovitz, 2001). While the bargaining set takes into account only

one step of counter-objection to a blocking coalition, the consideration of a chain of counter-objections

implies a more re�ned axiom (Dutt, Ray, Sengupta, and Vohra, 1989).

The idea of bargaining set also inspires some works on allocation of discrete resources in school

choice context in terms of relaxing stability notion, which is central to matching theory: If a student

has an objection to an allocation because she claims an empty slot at a school, then there will be

a counter-objection once she is assigned to that school since the priority of some other student will

be violated at that school. Roughly speaking, an outcome is in the bargaining set if and only if for

each objection to the outcome, there exists a counter-objection (Ehlers, Hafalir, Yenmez, and Yildirim,

2014).2 Some other works refer to bargaining set in similar ways (see Ehlers (2010), Kesten (2010),

Alcade and Romero-Medina (2015)).

The paper is organized as follows: Section 2 introduces the model and the graph theoretical frame-

1There are slight di�erences in the formulation of the bargaining set de�ned by Aumann and Maschler (1964) and Mas-
Colell (1989). See Vohra (1991) for the di�erences between these two formulations and also other variants of the notion.

2Ehlers, Hafalir, Yenmez, and Yildirim (2014) refer to this property as constrained non-wastefulness in the school
choice context.
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work, on which the mechanisms and the proofs are built. Section 3 de�nes core and bargaining set

notions. Section 4 de�nes the extensions of the top trading cycles rule (de�ned on the strict preferences)

to the weak preferences domain. We introduce an alternative class of assignment rules in Section 5.

We state and prove our main result in Section 6.

2 Model

2.1 Assignment Problem

A non-empty �nite set of objects O has to be allocated to a non-empty �nite set of agents N with

|N | = |O| in such a way that each agent receives exactly one object; monetary transfers between agents

are not permitted.

An assignment is a bijection µ : N → O. An endowment pro�le is a bijection ω : N → O.

Each agent i has a complete and transitive preference relation Ri on O; that is, we allow for indif-

ferences. Let bi(O′) be the set of agent i's best objects in O′ ⊆ O. Let αi1 = bi(O) and for each k,

αik = bi(O \ ∪
l=1,...,k−1

αil) (note that for each k, αik is an indi�erence set). Let ki be the number of

agent i's indi�erence sets. Whenever convenient, agent i's preferences are represented as a sequence of

her indi�erence sets in the associated rank order; that is, Ri = αi1, αi2, . . . , αiki . Let R = (Ri)i∈N be

a preference pro�le. We �x O and N throughout the paper and denote an assignment problem by a

pair (ω,R). An assignment µ is individually rational if for each i, µ(i) Ri ω(i).

An entitlement is a pair: a set of agents N ′ ⊂ N and a correspondence ε : N ′ 7−→ O such

that for each i ∈ N ′, ε(i) ⊆ αik for some k. An entitlement essentially maps each agent (in a given

subset of agents) to a welfare level via an indi�erence class, rather than via a particular object. An

entitlement (N ′, ε) is feasible under µ if µ is individually rational and for each i ∈ N ′, µ(i) ∈ ε(i).

An entitlement (N ′, ε) is feasible if there exists an assignment µ such that it is feasible under µ.

2.2 Preliminaries on Graphs

Let G = (V,E) be a directed graph, where V is the set of vertices and E is the set of directed

edges, that is a family of ordered pairs from V . For each U ⊂ V , let δin(U) be the set of edges

(u, v) ∈ E such that u ∈ V \ U and v ∈ U (i.e. the set of edges entering U) and δout(U) be the

set of edges (u, v) ∈ E such that u ∈ U and v ∈ V \ U (i.e. the set of edges leaving U). If U
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is a singleton, say U = {v}, then we use δin(v) (and δout(v)) instead of δin(U) (and δout(U)). A

subgraph of G is any directed graph G′ = (V ′, E′) with ∅ 6= V ′ ⊆ V and E′ ⊆ E and each edge

in E′ consisting of vertices in V ′. For a set of vertices T ⊆ V , the subgraph of G induced by T

is the subgraph (T,E′) such that E′ = {(u, v) ∈ E : u, v ∈ T}. A sequence of vertices {v1, . . . vm}

is a path from v1 to vm if (i) m ≥ 1, (ii) v1, . . . , vm are distinct (except for possibly v1 = vm), and

(iii) for each k = 1, . . . , m − 1, (vk, vk+1) ∈ E. A cycle is a path {v1, . . . vm} is a cycle if m ≥ 2

and v1 = vm.

A set of vertices T ⊆ V is strongly connected if the subgraph induced by T is such that for

any u, v ∈ T , there is a path from u to v. A minimal self-mapped set is a set of vertices S ⊆ V that

satis�es two conditions: (i) S = ∪
v∈S

δout(v)3 and (ii) @S′ with ∅ 6= S′ ⊂ S such that S′ = ∪
v∈S′

δout(v).

The following follows from Proposition 2.2 by Quint and Wako (2004).

Remark 1 Let G = (V,E) be a directed graph. A set of vertices S ⊆ V is non-empty and strongly

connected such that δout(S) = ∅ if and only if S is a minimal self-mapped set.

Whenever convenient, we refer to this equivalence result and say that a set of vertices S is a minimal

self-mapped set if (i) for any two vertices in S, there is a path from one to the other, and (ii) there is

no path from any vertex u ∈ S to any vertex v 6∈ S. The following follows directly from Remark 1 and

theMSMS algorithm introduced by Quint and Wako (2004).

Remark 2 Let G = (V,E) be a directed graph. If for each v ∈ V , δout(v) 6= ∅, then a minimal

self-mapped set exists.

Let w : E → < be a function. We denote
∑

e∈F⊆E
w(e) by w(F ). A function f : E → < is called a

circulation if for each v ∈ V , f(δin(v)) = f(δout(v)). Let d, c : E → < with d ≤ c. A circulation f

respects d and c if for each edge e, c(e) ≥ f(e) ≥ d(e). A minimal self-mapped set S is covered

if there exists an integer-valued circulation f such that for each v ∈ S, f(e) = 1 for some edge e

entering v.

3Note that ∪
v∈S

δout(v) and δout(S) are di�erent sets in general.
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3 The bargaining set

Let S be a group of agents. When we say agents in S allocate (or reallocate) their endowments,

we imply that they do it in a best possible way; that is, there does not exist another allocation (or

reallocation) of these endowments such that no agent is worse o� and at least one agent is better

o� than the original allocation (or reallocation). An assignment µ is strictly blocked by S if the

agents in S can reallocate their endowments in a way that makes each of them better o� than at µ;

that is, there exists µ′ such that µ′(S) = ω(S) and for each i ∈ S, µ′(i) Pi µ(i). An assignment µ is

blocked by S if the agents in S can reallocate their endowments in a way that makes no agent worse

o� and at least one agent better o� than at µ; that is, there exists µ′ such that µ′(S) = ω(S) and for

each i ∈ S, µ′(i) Ri µ(i), and for some j ∈ S, µ′(j) Pj µ(j). An assignment µ is weakly blocked

by S if the agents in S can reallocate their endowments in a way that makes no agent worse o�; that

is, there exists µ′ such that µ′(S) = ω(S) and for each i ∈ S, µ′(i) Ri µ(i). The weak core is the set

of assignments that are not strictly blocked by any coalition. The core is the set of assignments that

are not blocked by any coalition.

An assignment µ can be considered as a set of cycles, where each agent in a cycle is assigned to the

object she points to in that cycle. When an assignment µ is blocked by a coalition S, we assume the

least about the formation of the coalition and that the resulting assignment η is the following: each

agent in the coalition S is assigned to the endowment of another agent in S; each agent in a cycle,

which has an empty intersection with S, is assigned to the same object which she is assigned under µ;

and every other agent is assigned to her endowment. Thus, a blocking coalition's e�ect is only through

the cycles it breaks down. When we say that coalition S blocks µ via η, we mean that η is the

assignment described above.

If the preferences are strict, then the core is non-empty (it is a singleton set). On the other hand,

if we allow indi�erences, the core might be an empty set, but as a weaker notion, the weak core is

always non-empty.

A di�erent notion is bargaining set: any blocking by a coalition S is deterred by another coalition,

say C(S), including agents in S. The agents in S \ C(S) (the ones, who are better o� in case blocking

by S occurs) cannot convince the agents in S ∩ C(S) to take part in this blocking coalition. Next, we

de�ne this notion. Let M denote the set of individually rational assignments. For a given assignment
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µ and a set of agents C, let MC(µ) = {µ′ ∈M : for each i ∈ C : µ′(i) Ii µ(i)}.

De�nition 1 An assignment µ is in the bargaining set if and only if

(i) it is not strictly blocked by any coalition, and

(ii) if S blocks µ via η, then there exists C(S) with S ∩ C(S) 6= ∅, such that C(S) blocks η via some

µ′′ ∈MC(S)(µ).

Bargaining set is strong in the sense that only a speci�c deterrence prevents blocking: the agents

in C(S) can deter blocking only via an assignment indi�erent for themselves to the current assignment.

Note that if this restriction on deterrence is removed, then, since deterring blocking coalitions is easier

in this case, the notion will be weaker. Thus, this restriction actually allows less amount of blocking

and makes the notion move away further from weak core to core. For an assignment problem (ω,R),

we denote the bargaining set by B(ω,R).

Bargaining set is clearly stronger than weak core. There is another motivation for a stronger notion

than weak core, which is, as the next example demonstrates, �too� weak.

Example 1 Let N = {i1, i2, i3, i4, i5, i6} and O = {o1, o2, o3, o4, o5, o6} where ω(ik) = ok. The prefer-

ences are given below with each set in the table being an indi�erence set:

Ri1 Ri2 Ri3 Ri4 Ri5 Ri6

{o2} {o3, o4} {o1} {o2, o6} {o6} {o5}

{o1} {o2} {o3} {o4} {o4} {o6}

{o5}

The assignment µ = (o2, o3, o1, o6, o4, o5) is in the weak core and the core is empty. One can argue

that agents i5 and i6 are endowed with each other's unique best objects and thus, they should be able

to exchange their objects. Also, note that the coalition S = {i5, i6} weakly dominates µ and any

assignment, at which agent i5 and i6 are assigned objects o6 and o5, respectively, is not weakly blocked

by a coalition including agent i5 or i6.

Example 1 suggests that we need a stronger notion to account for such cycles S = {i5, i6} above.

This simple requirement can be captured via the following property which guarantees such trades.
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De�nition 2 An assignment µ satis�es top-trade property if for any cycle S = {a1, a2, ..., aK}

where ω(ak) is agent ak−1's single best object for k = 2, ...,K and ω(a1) is agent aK 's single best

object, µ(ak−1) = ω(ak) for k = 2, ...,K and µ(aK) = ω(a1).

Proposition 1 Let (ω,R) be an assignment problem and let µ ∈ B(ω,R). If A is a minimal self-

mapped set which is covered, then µ allocates the objects in A to the agents in A such that each agent

receives one of her top objects in A.

Proof. Suppose not. Then, S = A blocks µ, say via η, under which each agent in A receives a top

object. Since µ ∈ B(ω,R), there is a C(S) with C(S) ∩ S 6= ∅ such that C(S) blocks η via some

µ′ ∈ MC(S)(µ). Thus each agent in C(S) ∩ S receives a top object under both µ and η. Note that

C(S) * S, since otherwise C(S) cannot block η via some µ′ ∈MC(S)(µ). There is an agent in C(S)∩S

who receives, under η, an object owned by some agent in C(S) \ S. But since S is a minimal self-map

set , this object cannot be a top object for this agent, contradicting with the fact that each agent in

C(S) ∩ S receives a top object under η.

A direct corollary to the above proposition is the following.

Corollary 1 If an assignment is in the bargaining set, then it satis�es the top-trade property.

Proof. Since any cycle S = {a1, a2, ..., aK}, where ω(ak) is agent ak−1's single best object for k =

2, ...,K and ω(a1) is agent aK 's single best object, is a minimal self-mapped set that is covered, by

Proposition 1, µ assigns each agent in S a top object from the endowment set of the agents in S. Since

each agent has a single top object, the top-trade property is satis�ed.

4 The class of the Top Trading Cycles (TTC) assignment rules

The TTC class is a set of assignment rules as an extension of the well-known TTC mechanism de�ned

on the strict domain. Each rule in this class takes an assignment problem; that is, a preference pro�le

and an endowment pro�le, (ω,R), as input and produces an allocation, TTC(ω,R), as an output.

Let F be a selection rule: for each minimal self-mapped set that is not covered, F selects one of the

cycles in the minimal self-mapped sets. The TTC updates the endowment pro�le by assigning each

agent in the cycle to the object that she points to in the same cycle. We call this endowment update
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as top-trading the cycle. Let ω1 = ω and for k ≥ 1, the steps below are repeated until all agents

and objects are removed.

Step k.1: Let each agent point to her maximal objects among the remaining objects and each

remaining object points to its owner according to the endowment pro�le ωk. Select a minimal self-

mapped set T in this digraph.

Step k.2: (i) If T is covered, then each agent in T is removed by assigning her one of the best

objects in T . (ii) Otherwise, select one of the cycles in the minimal self-mapped set using the selection

rule F , and update the endowment pro�le by top-trading the cycle to obtain ωk+1.

Lemma 1 If an agent i's endowment is updated at some step before Tk is removed, then agent i gets

a top object among the remaining objects after
⋃k−1
j=0 Tj and µ(

⋃k−1
j=0 Tj) are removed.

Proof. Once an agent's endowment is updated before Tk is removed the agent is tentatively endowed

with a top object among the remaining objects after
⋃k−1
j=0 Tj and µ(

⋃k−1
j=0 Tj) are removed. Since, at

any step before the agent is assigned an object and removed, the agent always points to her top objects

among the remaining objects, she is never degraded to an object that is not a top object among the

remaining ones. Thus, she ends up with a top object among the remaining ones.

Lemma 2 If an agent i's endowment is updated at some step before Tk is removed, then the original

owner of agent i's new endowment receives a top object among the remaining objects after
⋃k−1
j=0 Tj and

µ(
⋃k−1
j=0 Tj) are removed.

Proof. First note that any agent who originally owns a top object receives a top object, otherwise the

mechanism would not be individually rational. Now, suppose at some step, say before Tk is removed,

that agent i does not originally own a top object among the remaining objects after
⋃k−1
j=0 Tj is removed.

And suppose her endowment is updated right before Tk is removed, such that she now owns (tentatively)

a top object among the remaining objects after
⋃k−1
j=0 Tj and µ(

⋃k−1
j=0 Tj) are removed. Then, in the

endowment update that is carried out in this step, agent i points to an object, call it ok, which is one of

her top objects among the remaining objects and according to the prior it is the highest ranked among

the remaining objects. Note that agent i does not own a top object among the remaining objects until

this step, in the chain partition i ∈ N0. So among her top objects she points to the one according to

the priority ordering. Now there are two cases, either the current owner of ok, call her j, is also the
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original owner of ok, or not. If it is the �rst case, then j gets a top object by Lemma 1. But if it is the

second case, then it means that the object ok was in an earlier endowment update hence the original

owner of ok, say agent k, received (tentatively) a top object at some earlier step. Again, by Lemma 1,

agent k who is the original owner of agent i's new endowment gets a top object.

5 A new class of assignment rules: Deferred Top Trading Cycles

(DTTC)

We propose a new class of assignment rules, the Deferred Top Trading Cycles (DTTC). This is mo-

tivated by a very simple idea: At each step, a cycle is chosen to concede each agent in the cycle the

object she points to. But di�erent from the TTC, the endowment is not updated, instead, the agent

is guaranteed the welfare level which corresponds to the object she points to. Thus, the Let (N ′, ε)

be a feasible entitlement. Since agents in N ′ are entitled certain welfare levels, it could be that only

some objects are available for a given agent. Let O(i) be the set of available objects for agent i (the

interpretation is that agent i can receive an object only from this set).4 Let the triple (N ′, ε, (O(i))i∈N )

denote a partial assignment problem where each i ∈ N ′ is entitled one of the objects in ε(i) and

only the objects in O(i) are available for agent i ∈ N .

Given a partial assignment problem (N ′, ε, (O(i))i∈N ), the graph G(N ′, ε, (O(i))i∈N ) is the associ-

ated directed graph where each object points to its owner and each agent i ∈ N points to the objects

in bi(O(i)). The partial assignment problem, when there is no entitlement, is denoted by (∅, ε0, O0)

where O0 = (O0(i))i∈N with O0(i) = O for each i ∈ N . The associated directed graph G(∅, ε0, O0) is

such that each object points to its owner and each agent points to her best objects.

We denote a cycle in the graph G(N ′, ε, (O(i))i∈N ) by the set of agents included in the cycle

unless otherwise noted and no confusion arises. An improvement cycle is a cycle including an agent

in N \ N ′. A feasible improvement cycle is an improvement cycle S such that there exists an

individually rational assignment µ with the following properties: (1) the entitlement (N ′, ε) is feasible

under µ, (2) each agent i ∈ S \N ′, µ(i) ∈ bi(O(i)).

The DTTC rule is based on creating new entitlements at each step while respecting existing ones

and also individual rationality. The DTTC is similar to the Top Trading Cycles (TTC) algorithm since

4In the de�nition of the DTTC below, we specify how (O(i))i∈N is sequentially constructed.
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a cycle is selected at each step. But there is an important di�erence: agents in the cycle do not trade

their (current) endowments (as it is in the TTC algorithm), rather each agent in the cycle is reserved

an object from the indi�erence class including the object that she points to and trading is deferred

to the end. An implication is that the endowment pro�le does not change throughout the algorithm

as opposed to the TTC, where endowments are updated by assigning each agent the object that she

points to in the selected cycle at each step.

Deferred Top Trading Cycles Algorithm: LetN0 = ∅. For each k ≥ 1, letGk−1 = G(Nk−1, εk−1, Ok−1).

(k.1) In the graph Gk−1, select a feasible improvement cycle Nk. Let Sk = Nk \Nk−1. For each N ′ ⊆

Nk = Nk−1 ∪ Sk such that
∣∣∣∣ ∪i∈N ′bi(Ok−1(i))

∣∣∣∣ = |N ′|, the objects in ∪i∈N ′bi(Ok−1(i)) are unavailable
for the agents in N \ N ′. For each i ∈ N , the set of available objects Ok(i) is the set Ok−1(i)

minus unavailable objects for her. Let Ok = (Ok(i))i∈N . The entitlement εk on Nk is de�ned as

follows: for each i ∈ Nk−1, εk(i) = εk−1(i) and for each i ∈ Sk, εk(i) = αil with αil ⊇ bi(Ok−1(i)).

(k.2) If Nk = N , the algorithm terminates and it gives an assignment µ such that for each i, µ(i) ∈

εk(i).

The DTTC is a class and each selection of cycles gives an assignment (or an essentially single-valued

set of assignments: each agent is indi�erent between any two assignments in this set). For each

problem (ω,R), the setDTTC(ω,R) denotes the set of outcomes of the DTTC; that is, the assignments

obtained by the DTTC via all possible selections of feasible improvement cycles in Step k.1.

6 A characterization of the bargaining set

Our main result is that the bargaining set is characterized by the TTC and also by the DTTC. We

present this result, the proof of which relies on the graph theoretical framework introduced in Section 2.2

and Ho�man's Circulation Theorem, an important result from graph theory.

Theorem 1 An assignment is in the bargaining set if and only if it is an outcome of the TTC.

PROOF of THEOREM 1: We prove the theorem in parts: (I) the DTTC is well-de�ned, (II) each

assignment in the bargaining set is an outcome of the DTTC, (III) each outcome of the TTC is in the
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bargaining set, and (IV) for each outcome µ of the DTTC, there exists a selection rule F such that µ

is obtained by the TTC via F .

I. The DTTC is well-de�ned. We show that a feasible improvement cycle at Step k.1 exists and

thus, the DTTC algorithm is well-de�ned.

Base case: At Step 1, there exists at least one improvement cycle and it is feasible to assign each

agent in this cycle the object she points to. Thus, there is a feasible improvement cycle, which implies

that the statement holds for Step 1.

Inductive step: We assume that the DTTC is well de�ned through steps 1 to k − 1 and thus, there

exists an assignment such that each agent i ∈ Nk−1 receives an object from the set εk−1(i). We use a

graph theoretical notation to prove the inductive hypothesis that there exists a feasible improvement

cycle in the graph Gk−1; that is, Step k.1 of the DTTC is well-de�ned.

In the DTTC algorithm, a cycle is chosen at each step, and each agent in this cycle is entitled one

of the objects that she points to at that step. This corresponds to a set of new constraints along the

existing ones such that each agent i ∈ Nk−1 is already entitled one of the objects from the set εk−1(i).

These constraints possibly imply that certain objects are no longer available for other agents. We

argue that given these existing constraints at each step, the existence of a feasible improvement cycle

is implied by the existence of a circulation respecting properly de�ned bounds c, d. For this argument,

we reconstruct the graph and bounds d and c at each step to be consistent with the existing constraints.

The reason we refer to circulations is the di�culty due to the fact that not every improvement cycle

is feasible, as shown in the following example.

Example 2 In Figure 1 below, cycle C1 is chosen and entitlement is such that agent ai is entitled to

{hx, hy} and agent aj is entitled to {hu, hz}. Note that non of the objects become unavailable but cycle

C2 is not feasible. But there is a feasible cycle for sure, which is C3 in this case.

For the graph Gk−1, de�ne the functions dk−1, ck−1 as follows: For each edge e in the graph Gk−1,

we set ck−1(e) = 1. Since the upper-bound function c is constant at each step, we suppress its

subscript, and set c = 1 for each k. If an edge e is from an object to an agent in Nk−1, then we

set dk−1(e) = 1; otherwise, we set dk−1(e) = 0. Since we suppress the upper-bound c, for convenience

we say a circulation f in Gk−1 respects dk−1 if for each edge e, 1 ≥ f(e) ≥ dk−1(e). Also, if a

circulation f is such that for an agent i and an object o, f((i, o)) = 1, we say that object o is
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aj

hz

C2
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hy

ai

hu
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C3

Figure 1: Not every improvement cycle is feasible.

assigned to agent i under f . As demonstrated next, the existence of a circulation respecting dk−1

implies the feasibility of the entitlement (Nk−1, εk−1).

Lemma 3 If there exists a circulation in Gk−1 respecting dk−1, then the entitlement (Nk−1, εk−1) is

feasible.

Proof. Let f be a circulation in Gk−1 respecting dk−1. Since for each e from an object to an agent

in Nk−1, dk−1(e) = 1, and f respects dk−1, for each agent i ∈ Nk−1, there is an edge with the f−value

equivalent to one to an object in bi(Ok−1(i)) ⊆ εi(k − 1). Let µ be an assignment de�ned as follows:

for each i ∈ N such that f(i, o) = 1 for some o ∈ O, let µ(i) = o; for any other agent j, let µ(j) = ω(j).

Since each other agent points to her best available objects in the graph Gk−1, this is an individually

rational assignment and thus, the entitlement (Nk−1, εk−1) is feasible.

Lemma 3 enables us to slightly modify the induction argument in the following way: The existence

of a feasible improvement cycle in the base case is equivalent the existence of a circulation respecting d1

such that, for each e from the object in the feasible improvement cycle to its owner, d1(e) = 1 and

for each other edge, it is equal to zero. Thus, inductive hypothesis is that there exists a circulation

13



in Gk−1 respecting dk−1. Let dk be a lower-bound function such that:

for each i ∈ N, dk((ω(i), i)) ≥ dk−1((ω(i), i)), (1)

for some j ∈ N \Nk−1, dk((ω(j), j)) = 1 > dk−1((ω(j), j)) = 0. (2)

Let S be the set of the agents satisfying property (2). Lemma 3 implies that, if there exists a circulation

respecting dk in the graph Gk−1, then there exists an assignment, under which the entitlement for

the agents in (Nk−1, εk−1) is feasible and each agent i ∈ S is assigned one of her best available

object, that is an object from the set bi(Ok−1(i)), which is equivalent to the existence of a feasible

improvement cycle. Thus, showing the existence of a circulation respecting a lower-bound function dk

with properties (1) and (2) as de�ned above (as the inductive step) is su�cient for the DTTC algorithm

being well-de�ned. The existence of a circulation guarantees that individual rationality is maintained

throughout the algorithm since by de�nition, a circulation implies that whenever an object becomes

unavailable, its owner is assigned to an object under that circulation. Thus, we have the following

remark:

Remark 3 If an object o becomes unavailable for some agents at Step k, then ω−1(o) ∈ Sk
′
for

some k′ ≤ k.

Our proof of the existence of a circulation respecting a lower-bound function dk with proper-

ties (1) and (2) relies mostly on the following theorem which characterizes the conditions under which

there exists a circulation respecting the bounds on the set of edges E.

Ho�man's Circulation Theorem Let G = (V,E) be a directed graph and let d, c : E → < with

d ≤ c. Then, there exists a circulation f satisfying d ≤ f ≤ c if and only if for each U ⊆ V ,

d(δin(U)) ≤ c(δout(U)). If moreover d and c are integers, f can be taken integer-valued.

By our inductive hypothesis, Ho�man's Circulation Theorem implies that for each U ⊆ N ∪ O,

dk−1(δ
in(U)) ≤

∣∣δout(U)
∣∣.5 At Step k, there exists at least one agent whom is not entitled any ob-

ject (note that otherwise, the algorithm terminates). This implies that in the graph Gk−1 with the

lower-bound function dk−1, there exists at least one edge from an object to its owner with lower-bound

5Note that since the upper-bound (or capacity) function c is constant at one, we can rewrite the right-hand side of
the condition in Ho�man's Circulation Theorem as the number of leaving edges.
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zero.6 If in the graph Gk−1, for each U ⊂ N ∪ O, dk−1(δin(U)) <
∣∣δout(U)

∣∣, then Ho�man's Circu-

lation Theorem implies that by increasing the lower-bound of an edge e from an object to an agent

who is not entitled any object,7 a circulation exists respecting this new lower-bound and the inductive

step follows trivially. Thus, we assume that there exists at least one set of vertices U ⊂ N ∪ O, such

that dk−1(δin(U)) =
∣∣δout(U)

∣∣. Let AX be the set of agents in the set X, and OX the set of objects in

the set X.

Lemma 4 We can assume without loss of generality that OU = ∪
i∈AU

bi(Ok−1(i)).

Proof. Let i ∈ AU and o ∈ bi(Ok−1(i)). Suppose o 6∈ OU . Thus, the edge (i, o) is in δout(U). Note that

the inequality in Ho�man's Circulation Theorem is satis�ed for any set of vertices, in particular for U ∪

{o}. Moreover, dk−1(δin(U ∪{o})) ≥ dk−1(δin(U))−1 and this holds with equality only if ω−1(o) ∈ AU

and dk−1((o, ω−1(o))) = 1 (that is, agent ω−1(o) is in Nk−1). Moreover,
∣∣δout(U ∪ {o})∣∣ ≤ ∣∣δout(U)

∣∣−1,
and this holds with equality only if agent i is the only agent in AU pointing to o. Thus, by these two

inequalities, (1) the only agent in the set AU pointing to object o is agent i, and (2) agent ω−1(o) is

in AU ∩Nk−1. But then, dk−1(δin(U ∪ {o})) =
∣∣δout(U ∪ {o})∣∣. Thus, we can assume without loss of

generality that OU ⊇ ∪
i∈AU

bi(Ok−1(i)).

Suppose there exists o ∈ OU \ ∪
i∈AU

bi(Ok−1(i)). Suppose also ω−1(o) 6∈ AU . Thus, there is an edge

from the set U to the set N \U . Since there is no vertex in U pointing to o, we have
∣∣δout(U \ {o})∣∣ =∣∣δout(U)

∣∣− 1. Since the sets U and U \ {o} have the same sets of agents (AU ) and also the same sets

of objects pointing to these agents, dk−1(δin(U \ {o})) = dk−1(δ
in(U)). This implies that dk−1(δin(U \

{o})) >
∣∣δout(U \ {o})∣∣, which contradicts Ho�man's Circulation Theorem. Thus, ω−1(o) ∈ AU . Sup-

pose dk−1((o, ω−1(o))) = 1. Since there is no edge from an agent in AU to o, and also no edge

from object o to an agent in A \ AU , the sets U and U \ {o} have the same set of leaving edges;

that is
∣∣δout(U \ {o})∣∣ = ∣∣δout(U)

∣∣. But since object o points to an agent in AU and this edge has

a lower-bound one, dk−1(δin(U \ {o})) = dk−1(δ
in(U)) + 1. This implies that dk−1(δin(U \ {o})) >∣∣δout(U \ {o})∣∣. This contradicts with Ho�man's Circulation Theorem. Thus, dk−1((o, ω−1(o))) = 0.

As in the previous case, the sets U and U\{o} have the same set of leaving edges; that is
∣∣δout(U \ {o})∣∣ =∣∣δout(U)

∣∣. Moreover, since the edge from object o to its owner ω−1(o) has a lower-bound zero,

6Note that by construction of the bounds, only edges from objects to their owners can have a lower-bound of one.
All edges from agents to objects have lower-bound zero. This is su�cient for the underlying entitlement to be feasible
(see Lemma 3).

7That is, de�ne dk as follows: let dk(e) = 1 (note that dk−1(e) = 0) and for all other edges, dk and dk−1 coincide.
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dk−1(δ
in(U \ {o})) = dk−1(δ

in(U)). Thus, dk−1(δin(U \ {o})) =
∣∣δout(U \ {o})∣∣, and we can assume

without loss of generality that OU ⊆ ∪
i∈AU

bi(Ok−1(i)).

Let A1
X be the set of agents in AX who are entitled an object (vertices with an entering edge of

lower-bound one) and let A0
X = AX \ A1

X . For n = 0, 1, let An,YX be the set of agents in AnX , the

endowment of each of whom is in OY . The following lemma demonstrates that each edge from an

object in N \ U into U has a lower-bound one.

We consider a set of vertices U ⊂ N ∪ O, such that dk−1(δin(U)) =
∣∣δout(U)

∣∣ and assume by

Lemma 4 that OU = ∪
i∈AU

bi(Ok−1(i)). We need to show that there exists a circulation f respecting dk−1

with f(e) = 1 for some e = (o, ω−1(o)) where ω−1(o) ∈ N \Nk−1. This completes the proof (that the

DTTC algorithm is well-de�ned) since by de�nition, this implies the existence of a cycle including o

and ω−1(o), which is a feasible improvement cycle. So, let f be a circulation such that for no edge

including an agent in N \Nk−1, f(e) = 1.

Lemma 5 The set A0,U
N\U is empty.

Proof. Let i ∈ A0
U such that ω(i) ∈ N \ U . By de�nition, the set OU consists of objects endowed by

the agents A1,U
U and A0,U

U , and also the agents A1,U
N\U and A0,U

N\U . Thus,

|OU | =
∣∣∣A1,U

U

∣∣∣+ ∣∣∣A0,U
U

∣∣∣+ ∣∣∣A1,U
N\U

∣∣∣+ ∣∣∣A0,U
N\U

∣∣∣ . (3)

Also, the set AU consists of A1,U
U , A0,U

U , A1,N\U
U and A0,N\U

U .

Since U is such that dk−1(δin(U)) =
∣∣δout(U)

∣∣ and by Lemma 4, no agent in U points to an object

in N \ U , we have that ∣∣∣A1,N\U
U

∣∣∣ = ∣∣∣ω(A1,U
N\U )

∣∣∣+ ∣∣∣ω(A0,U
N\U )

∣∣∣ , (4)

note that the right-hand side is the number of edges with lower-bound one entering U , and the left-hand

side is the number of all edges leaving U .

Since f is a circulation such that for no edge e including an agent in N \ Nk−1, f(e) = 1, only

the edges entering and leaving A1,U
U , A1,N\U

U , ω(A1,U
U ) and ω(A1,U

N\U ) have an f−value equivalent to

one (that is, agents in A1,U
U , A1,N\U

U are assigned to objects in ω(A1,U
U ) and ω(A1,U

N\U ) under f). This

implies that ∣∣∣A1,U
U

∣∣∣+ ∣∣∣A1,N\U
U

∣∣∣ = ∣∣∣ω(A1,U
U )

∣∣∣+ ∣∣∣ω(A1,U
N\U )

∣∣∣ . (5)
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Since
∣∣∣A1,U

U

∣∣∣ = ∣∣∣ω(A1,U
U )

∣∣∣, this implies that

∣∣∣A1,N\U
U

∣∣∣ = ∣∣∣ω(A1,U
N\U )

∣∣∣ . (6)

Thus, equalities (4) and (6) together imply that
∣∣∣ω(A0,U

N\U )
∣∣∣ = 0 (that is, A0,U

N\U = ∅).

Lemma 6 There exists a lower-bound function dk, which satis�es properties (1) and (2), and a cir-

culation respecting dk. Thus, there exists a feasible improvement cycle.

Proof. Let f be a circulation respecting dk−1 such that for no edge e including an agent in N \

Nk−1, f(e) = 1.

Case 1: The set A0,U
U is non-empty.

Suppose that there exists A′ ⊆ A0,U
U such that for each i ∈ A′, ω(A′) ∩ bi(Ok−1(i)) 6= ∅. Since there

is an edge from each vertex in A′ ∪ ω(A′) to a vertex in the same set, there is a cycle C including

only the vertices in A′ ∪ ω(A′). Let dk be such that for each object o in C, dk((o, ω−1(o))) = 1, and

for each other object o′, dk((o′, ω−1(o′)) = dk−1((o
′, ω−1(o′))). Clearly, the lower-bound function dk

satis�es property (1). Moreover, since each object o in C is such that ω−1(o) ∈ A′ ⊆ A0,U
U , by

de�nition dk−1((o, ω−1(o))) = 0. Thus, dk satis�es property (2) as well. Moreover, since by assumption,

circulation f is such that for no edge e including an agent inN\Nk−1, f(e) = 1, the following function f ′

is a circulation as well and respects dk: for each edge e in the cycle, f ′(e) = 1, and for each other

edge e′, f ′(e′) = f(e′). Thus, there exists a feasible improvement cycle.

Suppose that for each A′ ⊆ A0,U
U , there exists i ∈ A′ such that ω(A′) ∩ bi(Ok−1(i)) = ∅ (†).

Suppose for each i ∈ A1
U , bi(Ok−1(i)) ∩ ω(A

0,U
U ) = ∅. By Lemma 5, this implies that ∪

i∈A1
U

bi(Ok−1(i)) =

ω(A1,U
U ) ∪ ω(A1,U

N\U ). But then,

∣∣∣∣∣ ∪i∈A1
U

bi(Ok−1(i))

∣∣∣∣∣ = ∣∣∣ω(A1,U
U )

∣∣∣+ ∣∣∣ω(A1,U
N\U )

∣∣∣ = ∣∣∣A1,U
U

∣∣∣+ ∣∣∣A1,N\U
U

∣∣∣ = ∣∣A1
U

∣∣ , (7)

where the second equality follows from equality (5) in Lemma 5, and the third equality follows from

the de�nition of A1
U . By de�nition of the DTTC, this implies that the objects in ω(A1,U

U ) ∪ ω(A1,U
N\U )

are unavailable for the agents in N \A1
U , in particular for the agents in A0,U

U . Thus, for each i ∈ A0,U
U ,

we have that Ok−1(i) ∩ OU = ∅, which contradicts the assumption that OU = ∪
i∈AU

bi(Ok−1(i)) by

Lemma 4. Thus, there exists j ∈ A1
U such that bj(Ok−1(j)) ∩ ω(A0,U

U ) 6= ∅.
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Let i1 ∈ A0,U
U such that ω(i1) ∈ bj(Ok−1(j)). By (†), ω(i1) 6∈ bi1(Ok−1(i1)). Let i2 ∈ A0,U

U such

that ω(i2) ∈ bi1(Ok−1(i1)). Let A′ = {i1, i2} in (†). Since ω(i2) ∈ bi1(Ok−1(i1)), by (†), {ω(i1), ω(i2)} ∩

bi2(Ok−1(i2)) = ∅. Since the set A0,U
U is �nite, by applying (†) repeatedly in this way, we obtain a

sequence i1, . . . , im in A0,U
U such that for l = 1, . . . ,m − 1, ω(il+1) ∈ bil(Ok−1(il)), and for some o ∈

ω(A1,U
U ) ∪ ω(A1,U

N\U ), o ∈ bim(Ok−1(im)) (?).

Let S = {i1, . . . , im}. Let dk be such that for each object o ∈ ω(S), dk((o, ω−1(o))) = 1, and for

each other object o′, dk((o′, ω−1(o′)) = dk−1((o
′, ω−1(o′))) (⊗). Clearly, the lower-bound function dk

satis�es property (1). Moreover, since each object o ∈ ω(S) is such that ω−1(o) ∈ S ⊆ A0,U
U , by

de�nition dk−1((o, ω−1(o))) = 0. Thus, dk satis�es property (2) as well.

We claim that there is bijection η : S ∪ A1
U → ω(S) ∪ ω(A1,U

U ) ∪ ω(A1,U
N\U ) such that for each i ∈

S ∪ A1
U , η(i) ∈ bi(Ok−1(i)).8 To prove the existence, we refer to the well-known Hall's Marriage

Theorem.

Hall's Marriage Theorem Let A= {A1, . . . , An} be a family of subsets of some �nite set X. There

exists a bijection π : {1, . . . , n} → Y ⊆ X such that for each i ∈ {1, . . . , n}, π(i) ∈ Ai if and only if for

each subset I of {1, . . . , n} ∣∣∣∣ ∪i∈I Ai
∣∣∣∣ ≥ |I| . (8)

In our context, Hall's Marriage Theorem gives the necessary and su�cient conditions for the existence

of such a bijection: there exists a bijection η : S ∪ A1
U → ω(S) ∪ ω(A1,U

U ) ∪ ω(A1,U
N\U ) such that for

each i ∈ S ∪ A1
U , η(i) ∈ bi(Ok−1(i)) if and only if for each subset A′ of S ∪ A1

U ,

∣∣∣∣ ∪i∈A′ bi(Ok−1(i))
∣∣∣∣ ≥ ∣∣A′∣∣ . (9)

Suppose the claim does not hold. Then, by the condition (9), there exists a set A′ ⊆ S ∪ A1
U such

that

∣∣∣∣ ∪i∈A′ bi(Ok−1(i))
∣∣∣∣ < |A′|. Since each agent in S has a di�erent best available object, the set A′

cannot be a subset of S. Also, f is a circulation respecting dk−1 such that for no edge e including an

8Since η is such a bijection and f is a circulation, the following function f ′ is also a circulation respecting dk: for each
edge e in U , f ′(e) = 1 if and only if e is from an object in ω(S) ∪ ω(A1,U

U ) to its owner, or from an agent i ∈ S ∪ A1
U to

the object η(i), and for any other edge e′, f ′(e′) = f(e′).
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agent in N \Nk−1, f(e) = 1 and agents in A1
U are assigned to objects in ω(A1,U

U ) ∪ ω(A1,U
N\U ) under f .

Thus, the set A′ cannot be a subset of A1
U neither. Suppose the set A′ does not include im. Each agent

in il ∈ A′ ∩ S can be assigned to object ω(il+1) and each agent i ∈ A′ ∩ A1
U can be assigned to the

object, which she is assigned under f . Hall's Marriage Theorem implies that condition (9) holds for

the set A′ and each subset of it, contradicting with the set A′ violating (9). Thus, im ∈ A′.

Let A′ be such that im ∈ A′ and A′ ∩ A1
U 6= ∅. Then, since

∣∣∣∣ ∪i∈A′ bi(Ok−1(i))
∣∣∣∣ < |A′|, we have

∣∣∣∣ ∪i∈A′∩S
bi(Ok−1(i))

∣∣∣∣+
∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ < ∣∣A′ ∩ S∣∣+ ∣∣A′ ∩ A1
U

∣∣ . (10)

Since

∣∣∣∣ ∪i∈A′∩S
bi(Ok−1(i))

∣∣∣∣ ≥ |A′ ∩ S| and
∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ ≥ ∣∣A′ ∩ A1
U

∣∣, the intersection of the

two sets ∪
i∈A′∩S

bi(Ok−1(i)) and ∪
i∈A′∩A1

U

bi(Ok−1(i)) cannot be empty. (Note that some of the objects

in ∪
i∈A′∩A1

U

bi(Ok−1(i)) are possibly in the set ω(S), but since under f each agent in A1
U can be assigned

to an object in ω(A1,U
U ) ∪ ω(A1,U

N\U ), actually,

∣∣∣∣∣ ∪
i∈A′∩A1

U

(
bi(Ok−1(i)) ∩

(
ω(A1,U

U ) ∪ ω(A1,U
N\U )

))∣∣∣∣∣ ≥ ∣∣A′ ∩ A1
U

∣∣ . (11)

Thus, it must be that the set ∪
i∈A′∩S

bi(Ok−1(i)) has a non-empty intersection with ∪
i∈A′∩A1

U

bi(Ok−1(i))

in ω(A1,U
U ) ∪ ω(A1,U

N\U ). Note that, by (?), the only such object (which is possibly in this intersec-

tion) is object o (??). First suppose that ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)

= ∅. But then, con-

dition (10) implies that

∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ = ∣∣A′ ∩ A1
U

∣∣. But then, by de�nition of the DTTC,

object o is not in the set Ok−1(im)) (that is, unavailable for agent im), which is a contradiction

with (?). Thus, ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)
6= ∅. Suppose there exists an object in the

set ω(A0
U ) \ ω(S). But then, condition (11) implies that

∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ > ∣∣A′ ∩ A1
U

∣∣. But,

since we have (??) and also

∣∣∣∣ ∪i∈A′∩S
bi(Ok−1(i))

∣∣∣∣ ≥ |A′ ∩ S|, condition (10) cannot hold. Thus, the

object in ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)
is in the set ω(S). We can assume without loss of gen-

erality that this object is ω(i1).9 But then, since ω(i1) 6∈ ∪
i∈A′∩S

bi(Ok−1(i)), condition (10) cannot

9This is because otherwise we can rede�ne the set S such that the �rst agent in the sequence constructed (?), is the

owner of the object in ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)
.
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hold. Thus, we conclude a set A′ satisfying condition (10) does not exist. Thus, by Hall's Mar-

riage Theorem, there exists a bijection η : S ∪ A1
U → ω(S) ∪ ω(A1,U

U ) ∪ ω(A1,U
N\U ) such that for

each i ∈ S ∪ A1
U , η(i) ∈ bi(Ok−1(i)). But then, by footnote 6, there exists a circulation f ′ which

respects dk, thus there exists a feasible improvement cycle.

Case 2: The set A0,U
U is empty.

We claim that U = A1
U ∪ ω(A

1,U
U ) ∪ ω(A1,U

N\U ). Suppose this does not hold. Then, the set A0,N\U
U is

non-empty. Since the set A0,U
U is empty, for each agent i ∈ A1

U , bi(Ok−1(i)) ⊆ ω(A
1,U
U ) ∪ ω(A1,U

N\U ). By

equality (5), the objects in ω(A1,U
U ) ∪ ω(A1,U

N\U ) are available only for the agents in A1
U . But then, by

de�nition of the DTTC, for each agent i ∈ A0,N\U
U , Ok−1(i) ∩

(
ω(A1,U

U ) ∪ ω(A1,U
N\U )

)
= ∅. But this

contradicts with OU = ∪
i∈AU

bi(Ok−1(i)) by Lemma 4. Thus, U = A1
U ∪ ω(A

1,U
U ) ∪ ω(A1,U

N\U ).

The set N \U consists of the agents in A1
N\U = A1,U

N\U ∪ A
1,N\U
N\U and A0

N\U = A
0,N\U
N\U (by Lemma 5,

the set A0,U
N\U is empty), and the objects in ω(A

1,N\U
U ) ∪ ω(A

1,N\U
N\U ) ∪ ω(A

0,N\U
N\U ). Since f is a

circulation respecting dk−1 such that for no edge e including an agent in N \ Nk−1, f(e) = 1, the

agents in A1
N\U are assigned to the objects in ω(A

1,N\U
U ) ∪ ω(A

1,N\U
N\U ). Note that this possible by

equality (6). But then, this is the symmetric to Case 1 above, and the same argument applies: we

construct a sequence of agents (the same way as in (?) ) and a lower-bound function dk (the same way

as in (⊗) ), then show that there exists a circulation f ′ respecting dk.

An equivalent algorithm to the DTTC. Before we prove the equivalence between the DTTC and

the bargaining set, we introduce a slight modi�cation of the DTTC, which is without loss of generality.

This equivalent version of the DTTC enables us to use a simpler exposition in the proof.

In the graph Gk−1, let T be a minimal self-mapped set.10 Let N(T ) be the set of agents in T . Since

each object points to its owner, by de�nition of a minimal self-mapped set, T consists of a set of agents

and their endowments.11 Thus, T = N(T ) ∪ ω(N(T )). Suppose N(T ) 6⊆ Nk−1.12 Since there is no

edge leaving T , the circulation f respecting dk−1 is such that for each edge e entering T , f(e) = 0.

Thus, the induction argument based on circulations constructed via Lemma 3 through 6 applies to the

subgraph induced by T . Thus, there exists a feasible improvement cycle S in T . Moreover, suppose

10Please see Section 2.2 for the de�nition of a minimal self-mapped set and other graph theoretical concepts we use in
what follows.

11This follows from the fact that a minimal self-mapped set is strongly connected (Remark 1) and each path to an
agent includes her endowment.

12If N(T ) ⊆ Nk−1, then since T is a minimal self-mapped set, no object in ω(N(T )) is available for agents in N \N(T ).
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each feasible improvement cycle selected until Step k′ ≥ k is disjoint with T . Then, at Step k′, the

set T is a minimal self-mapped set and S is a feasible improvement cycle.

Let S′ be a feasible improvement cycle, which does not belong to a minimal self-mapped set in Gk−1.

Suppose each feasible improvement cycle selected until Step k′ ≥ k belongs to a minimal self-mapped

set at that step. Then, S′ is a feasible improvement cycle at Step k′ as well. Thus, the DTTC can be

rede�ned such that at each step, a feasible improvement cycle is selected from a minimal self-mapped

set at that step.

Lemma 7 Let Gk−1 be the directed graph at Step k of the DTTC. Let T be a minimal self-mapped set

in Gk−1. If T is covered, then the DTTC assigns each agent i ∈ N(T ) an object from the set Ok−1(i)

(that is, one of the objects which she points to in ω(N(T )).

Proof. Since T is covered in Gk−1, by de�nition, there is an integer-valued circulation f ′ such that

for each v ∈ T , f ′(e) = 1 for some edge e entering v. Thus, by de�nition of this circulation, it is

possible to assign each agent i ∈ N(T ) to one of the objects in Ok−1(i). This implies that each time

a feasible improvement cycle is selected from the set T , for each agent i ∈ N(T ), the set of best

available objects is still a subset of Ok−1(i). Thus, the DTTC assigns agent i ∈ N(T ) one of the

objects in Ok−1(i) ⊆ ω(N(T )).

Thus, we modify the DTTC as follows: Let Gk−1 be the graph at the end of Step k − 1. At

Step (k.1), (i) if there exists a minimal self-mapped set T in the graph Gk−1, which is covered, then

each agent i ∈ N(T ) is assigned one of the objects in Ok−1(i) and the objects ω(N(T )) become

unavailable for the agents in N \N(T ),13 otherwise (ii) a feasible improvement cycle is selected from

a minimal self-mapped set in the graph Gk−1.14

II. Each assignment in the bargaining set is an outcome of the DTTC. Let (ω,R) be an

assignment problem and µ be an assignment in the bargaining set. By induction, we assume that for

each step k′ < k, for at least one feasible improvement cycle, each agent in that cycle is assigned

to one of her best available objects in graph Gk′ . We prove that the inductive hypothesis holds for

Step k. That is, given the entitlement de�ned by µ, say (Nk−1, εk−1), and the graph Gk−1, and a

minimal self-mapped set in this graph, there exists a cycle in this set such that each agent in this cycle

13This follows from the fact that

∣∣∣∣ ∪i∈N(T )
bi(Ok−1(i))

∣∣∣∣ = |ω(N(T ))| = |N(T )| and Hall's Marriage Theorem.
14By Remark 2, part (ii) is well-de�ned.
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is assigned a best-available object in this graph. This complete the proof since this is equivalent to

Step k.1, where a feasible improvement cycle is chosen and µ is consistent with the new entitlement as

de�ned in the DTTC. Suppose that in the graph Gk−1, there exists a minimal self-mapped set which is

covered. Then, by Proposition 1, under µ, each agent in this minimal self-mapped set is assigned to one

of the objects she points to. By Lemma 7, this is equivalent to the DTTC at Step k.1. Thus, let T be

a minimal self-mapped set which is not covered, that is, it is not feasible to assign each agent in N(T )

one of her best available objects. As argued above (in the part where we discuss the modi�ed version

of the DTTC), there exists at least one feasible improvement cycle in T . We prove our result towards

a contradiction by supposing that there exists at least one agent in each of these feasible improvement

cycles, who is not assigned one of the best available objects in the graph Gk−1.

Let S be such a feasible improvement cycle. Since at least one of the agents in this set is not assigned

one of her best available objects, the assignment µ is blocked by S via η. Let η be an assignment such

that each agent in S is assigned one of her best available objects and the entitlement (Nk−1, εk−1) is

feasible. Without loss of generality, suppose that under η, for each feasible improvement cycle in T , it

is not possible to assign each agent in this cycle a best available object. It is without loss of generality,

since, if there exists such a cycle S′, then we consider the blocking coalition as S ∪ S′ instead of S.

Now consider the coalition Nk−1 ∪ S as a blocking coalition via η. Note that we can assume that

agents in this blocking coalition reallocate their endowments according to η, since it is consistent with

the de�nition of a blocking coalition reallocating their endowments by the de�nition of the DTTC up

to Step k and also that each agent in S is assigned one of her best available objects in the graph Gk−1

(note that these imply that there is no other reallocation such that no agent is worse o� and at least

one agent is better o� than the assignment η).

We claim that there does not exist a coalition C(S) in T disjoint with Nk−1 ∪ S, such that C(S)

blocks η via some µ′′ ∈MC(S)(µ). First, note that C(S) cannot be a feasible improvement cycle. The

reason is the following: if C(S) is a feasible improvement cycle, then by reallocating their endowments,

each agent in C(S) is assigned one her best available objects in the graph Gk−1. But this contradicts

with that, under µ, no feasible improvement cycle is such that each agent in this cycle is assigned one

of her best available objects in the graph Gk−1 (note that by de�nition, each agent i in the cycle C(S)

is indi�erent between µ(i) and µ′′(i)). Similarly, C(S) cannot be an improvement cycle which is not

feasible: because the agents in such a set reallocates its endowments under µ′′ such that each of them
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is assigned one of the best available objects in the graph Gk−1, but this is not possible under µ since

this is not a feasible improvement cycle. Also, it is clear that C(S) cannot be a non-improvement cycle

since by de�nition, such a cycle is in the set Nk−1 and cannot block η by µ′′ since each agent i in this

cycle is indi�erent between η(i) and µ′′(i). Thus, there does not exist a coalition C(S) in T disjoint

with Nk−1 ∪ S, such that C(S) blocks η via some µ′′ ∈ MC(S)(µ). Thus, if we show that C(S) must

be in the set T , then the proof is complete.

Suppose there exists a coalition C(S) 6⊆ N(T ) which blocks η via some µ′′ ∈MC(S)(µ). Since C(S) 6⊆

N(T ) and T is a minimal self-mapped set, by de�nition, there is an agent, say i in C(S), who is not

assigned a best available object under µ′′ ∈MC(S)(µ) with coalition C(S). Then, i does not get a best

available object under µ. Also, i cannot be in (Nk−1 ∪ S) ∩ C(S), otherwise, she would get a best

available object under η via Nk−1 ∪ S but not under µ, contradicting C(S) blocking η. Thus, i must

be in another cycle in T , say cycle S′ ⊆ N(T ) with S′ 6= S. Now since agent i ∈ S′ is not assigned a

best available object under µ, S′ blocks µ, say via η′, but there would be no C(S′) (with a non-empty

intersection with S′), which would block η′. This is because agent i ∈ S′ is assigned a best available

object under η′ but not under µ, thus there is no C(S′) such that µ′ ∈MC(S′)(µ) would block η′. This

contradicts with µ being an assignment in the bargaining set. Thus, each agent in the coalition C(S)

must be assigned a best available object, which implies that C(S) is a cycle in N(T ).

Remark 4 Each outcome of the DTTC is in the bargaining set.

Although this result derives from the implications below, we think it is better to include a simple

proof of this result to demonstrate better the relationship between the DTTC and the bargaining set.

Let (ω,R) be an assignment problem and µ be an outcome of the DTTC. Suppose µ is (strictly)

blocked by a coalition S via ν. Let S = SB ∪ SI where SB is the set of agents in S who are strictly

better o� under ν than under µ and SI is the set of agents in S who are indi�erent between ν and µ.

Let k? = min{k : S ∩ Sk 6= ∅}.

Lemma 8 SB ∩ Sk? = ∅.

Proof. Suppose SB ∩ Sk? 6= ∅ and let i ∈ SB ∩ Sk? . By de�nition, agent i ∈ S ∩ Sk? is assigned

under ν an object of another agent in j ∈ S, which is strictly better than µ(i) and unavailable

for i at the beginning of Step k?. That is, ω(j) Pi µ(i) and ω(j) becomes unavailable at some
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step k < k?. By Remark 3, this implies that j ∈ Sk′ for some k′ ≤ k. Since j ∈ S, this contradicts

with k? = min{k : S ∩ Sk 6= ∅}.

By Lemma 8, S = SB cannot hold, which implies that S cannot strictly block µ, thus part (i) of

De�nition 1 follows immediately. Now, suppose S blocks µ via ν. Lemma 8 also implies that it cannot

be S ⊆ Sk
?
. Thus, S is such that S 6⊆ Sk

?
and SB ∩ Sk? = ∅. Let k?? = min{k : SB ∩ Sk 6= ∅}

(note that k?? > k?). Let i ∈ SB. By de�nition of the set SB, the object ν(i) is unavailable for her

at Step k??. Suppose ν(i) ∈ Ok′−1(i) \ Ok′(i), that is, it becomes unavailable for her at Step k′. Let

Step k be the �rst step at which for some agent in SB, her assigned object under ν becomes unavailable.

By de�nition, k < k??.

Case 1: Suppose a covered minimal self-mapped set T in the graph Gk−1 is selected at

Step k. Thus, Sk = N(T ) and the objects ω(N(T )) become unavailable for the agents in the set N \T .

Since, by de�nition, ν is such that each agent in S is assigned to an endowment of another agent in S,

and also T is a covered minimal self-mapped set,15 an agent i ∈ S ∩ N(T ) must be assigned to an

endowment of an agent in N \ N(T ). But then, since T is covered, by de�nition, Ok−1(i) ⊆ O(T )

and µ(i) ∈ Ok−1(i), and we have µ(i) Pi ν(i). This contradicts that S blocks µ.

Case 2: Suppose that Sk is a feasible improvement cycle in a minimal self-mapped set

which is not covered. By de�nition of the DTTC algorithm, the entitlement (Nk, εk) is feasible only

if ν(i) is assigned to one of the agents j ∈ Nk and, if the object ν(i) is assigned to agent i ∈ N \Nk,

agent j is worse o� under ν than under µ. Thus, there is a cycle C including ν(i) and agent j. For each

agent i′ in C, let µ′ be such that µ′(i′) = o′, where o′ is the object she points to in cycle C. Note that,

by de�nition of the entitlement and the DTTC, o′ Ii′ µ(i′). Also, since, under ν, agent j cannot be

assigned to an object from the indi�erence set including object ν(i), by de�nition of ν, ν(j) = ω(j).16

Both S and cycle C include agent ω−1(ν(i)), thus they intersect. We claim that cycle C does contain

any agent in SB. (Note that agent i is not in the cycle C.) Let i′ ∈ SB ∩ C. In the graph Gk−1, each

agent points to her best available objects and for agent i′, the object ν(i′) is available at the beginning

of Step k, since by de�nition of k, it did not become unavailable before this step. Thus, agent i′ points

to her best available objects, that is object ν(i′) and other available objects indi�erent to it, if any.

15That T is minimal self-mapped set implies that the endowment of an agent in N \N(T ) is not in T .
16See the the de�nition of blocking via an assignment in Section 3: when a coalition blocks an assignment, the resulting

assignment is such that, if a cycle de�ned by the original assignment is broken because of a departing coalition, any
agent in that cycle not included in the coalition gets her endowment.
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Since i′ ∈ C, by de�nition of the DTTC, it must be that ν(i′) Ii′ µ(i′), contradicting that i′ ∈ SB.

It can be that an agent in SB points to the endowment of an agent in C (agent i is such an agent

pointing to object ν(i)) but it cannot be that an agent in SB is also in C and points to an object,

which is the endowment of an agent not included in C (note that, by de�nition of SB, it can not point

to the endowment of an agent in C). Thus, C ∩ S ⊆ SI . Now consider ν and the coalition C. Each

agent in C ∩ S is indi�erent between µ′ and ν and each other agent in C \ S is either indi�erent

between µ′ and ν (because the coalition S does not break the cycle including that agent) or better o�

under µ′ than under ν (there exists at least one such agent, agent j). Thus, C blocks ν via µ′ such

that µ′ ∈MC(µ).

III. Each outcome of the TTC is in the bargaining set. Let (ω,R) be an assignment problem

and let µ ∈ TTC(ω,R). We need to show that µ satis�es De�nition 1. We begin with part (ii) of

De�nition 1.

Part (ii) of De�nition 1: Let T0 be the �rst set of agents who leave the mechanism before

any endowment update is made. Note that T0 may be empty. Let V1 be the set of all agents whose

endowments are updated after the agents in T0 leave the mechanism. Let Vt be the set of agents whose

endowment has been updated after the agents in Tt−1 and before the agents in Tt leave the mechanism.

Let Tt 6= ∅ be the set of all agents who leave the mechanism after the endowment update for the agents

in Vt and before the endowment update for the agents in Vt+1 take place. Let TK be the last set of

agents who leave the mechanism. Thus N =
⋃K
t=0 Tt. Note that if Vτ is empty for some τ , then Tτ−1

would be the last set of agents who leave the mechanism, that is, N =
⋃τ−1
t=0 Tt.

Suppose µ does not satisfy part (ii) of De�nition 1. Then, there exists an S0 which blocks µ via

η0, for which there is no C(S0), with a non-empty intersection with S0, such that C(S0) blocks η0 via

some µ′ ∈MC(S0)(µ). Under this supposition, denote it with (??), we show that S0 ∩
⋃K
t=0 Vt ∪Tt = ∅,

through an induction argument. This will give us a contradiction since
⋃K
t=0 Vt ∪ Tt = N and S0 ⊆ N .

Induction Step t=1: S0 ∩ (V1 ∪ T1) = ∅.

First note that if V1 = ∅, then by de�nition T0 = N , that is, every agent leaves the mechanism

and no endowment update takes place. Thus, every agent receives a top object (among all objects)

under µ. Thus, S0 cannot block µ. Thus, consider the case where there is some endowment update,

that is, V1 6= ∅. Also note that by de�nition, T1 ∩ V1 6= ∅, since otherwise no agent in T1 would have
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an endowment update. Then, T1 would essentially be removed before the endowment update of V1,

contradicting with the de�nitions of V1, T1 and T0.

Now, suppose S0 ∩ (V1 ∪ T1) 6= ∅, that is, (S0 ∩ V1) ∪ (S0 ∩ T1) 6= ∅. Thus, at least one of the two

intersections S0 ∩ V1 or S0 ∩ T1 is non-empty. Note that S0 ∩ T0 = ∅, since otherwise there would be

one agent in the intersection that would have a top object that is owned by some agent outside of T0,

which would contradict with T0 being a covered minimal self-mapped set. Note also that each agent

in V1 ∪ T1 receives, under µ, a top object among the remaining objects after T0 and objects in µ(T0)

are removed, by Lemma 1. Thus, the agent in S0 who is strictly better o� under η0 than under µ must

be in S0 \ (V1 ∪ T1), that is, S0 \ (V1 ∪ T1) 6= ∅.17 Now, we prove that there is a C(S0), which blocks

η0 via some µ′ ∈MC(S0)(µ) with C(S0) ∩ S0 6= ∅ through the following lemma.

Lemma 9 If S0 ∩ (V1 ∪ T1) 6= ∅, then there is a C(S0), which blocks η0 via some µ′ ∈MC(S0)(µ).

Proof. We consider two cases: one with S0 ∩ V1 6= ∅ and the other with S0 ∩ V1 = ∅. For each case

we �nd a blocking C(S0) with the desired properties.

Case1. Suppose S0 ∩ V1 6= ∅. In this case, consider C(S0) = V1.18 De�ne µ′ ∈ MC(S0)(µ), where

µ′(a) = uV1(a) for each a ∈ V1, where uV1(a) is the updated endowment of agent a at the end of the 1st

endowment update, that is, µ′ carries out the cycle V1. No agent in C(S0) = V1 is better o� under η0

than under µ′. This is because µ′ ∈ MC(S0)(µ) and that each agent in V1 receives a top object under

µ among the available objects, ω(N) \ ω(T0). Thus, µ′(a)Raη0(a) for each a ∈ C(S0). Also note that

ω(V1) = µ′(V1) by the de�nition of µ′. Now, we show that there is at least one agent in C(S0) = V1

who is worse o� under η0 than under µ. Since S0 blocks µ as a cycle and since S0 ∩ V1 6= ∅, there is

an agent a ∈ S0 \ V1 who receives an object, under η0, say h, which is the original endowment of some

agent in S0 ∩ V1. There is also another agent â ∈ V1 \ S0 for whom h is one of her top objects among

ω(N)\ω(T0), which may be the only top object or among her multiple top objects. Thus, under µ this

agent â gets an object that is either h or some other top object among ω(N) \ ω(T0) (see Figure 2).

Under η0 this agent â ∈ V1 \S0, gets her original endowment. Thus, if h Pâ ω(â), then â is worse o�

under η0 than under µ. Suppose ω(â) is also a top object for â among ω(N)\ω(T0). In the endowment

17Clearly, there may be more than one such agent.
18Set V1 may consist of more than one cycles, in which case S0 intersects with at least one of them, and we would take

C(S0) to be that particular cycle. We treat V1 as one single cycle. This is without loss of generality since the agents in
those cycles in V1 that do not intersect with S0 receive, under η0, the same object they receive under µ, by de�nition of
blocking allocation η0.
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update ω(â) will be the new endowment of some other agent, say ã, and this agent will receive a top

object among ω(N)\ω(T0) under µ, and ω(â) is a top object for her among ω(N)\ω(T0) (see Figure 3).

Then, if for ã, ω(â) is a better object than her original endowment, ã would be worse o� under η0.

Continuing in this fashion we �nd that there would be another agent who would be worse o� under η0

than under µ. To see this, suppose every agent in V1 \ S0 has her original endowment among her top

objects among ω(N) \ ω(T0) (see Figure 4). Then, V1 ∪ S0 would Pareto dominate µ, contradicting

Pareto e�ciency of TTC mechanism.19 Thus, there is at least one agent in V1 who is worse o� under

η0 than under µ, and C(S0) = V1 blocks η0 via µ′ ∈MC(S0)(µ).

Case 2. Suppose S0 ∩ V1 = ∅ and S0 ∩ T1 6= ∅. In this case, consider C(S0) = V1 ∪ T1 and

µ′ ∈ MC(S0)(µ), where µ
′(a) = µ(a) for each a ∈ T1 and µ′(a) = uV1(a) for each a ∈ V1 \ T1, where

uV1(a) is the updated endowment of agent a at the end of the 1st endowment update. Note that

ω(T1 ∪ V1) = µ′(T1 ∪ V1). Now, the same argument in Case 1 above applies here as well and there is

at least one agent in T1 who is worse o� under η0 than under µ. Thus, C(S0) = V1 ∪ T1 blocks η0 via

µ′ ∈MC(S0)(µ).

Thus, by Lemma 9, we get a contradiction with our supposition (??). Thus, S0 ∩ (V1 ∪ T1) = ∅.

â

a

h

S0

V1

â

a

h

S0

V1

Figure 2: â's original endowment is not one of her top objects.

Induction Step t+1: If S0 ∩ (Vt ∪ Tt) = ∅, then S0 ∩ (Vt+1 ∪ Tt+1) = ∅.

Suppose S0 ∩ (Vt ∪ Tt) = ∅ for all t, and S0 ∩ (Vt+1 ∪ Tt+1) 6= ∅. First note that S0 ⊆ (Vt+1 ∪

Tt+1) \
⋃t
τ=0 Vτ ∪ Tτ is not possible. This is because each agent in Vt+1 ∪ Tt+1 receives an object

that is top among the remaining objects after Tt and µ(Tt) are removed, by Lemma 1. If S0 ⊆

(Vt+1 ∪ Tt+1) \
⋃t
τ=0 Vτ ∪ Tτ , then no agent in S0 is strictly better o� under η0 than under µ.

19Pareto e�ciency is shown in Saban and Sethuraman (2013).
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â
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S0

V1

ω(â)

ã

Figure 3: â's original endowment is one of her top objects.

â

a

h

S0

V1

ω(â)

ã

ω(ã)

Figure 4: For both â and ã original endowment is a top object.

Thus, it must be the case that S0 \ (Vt+1 ∪ Tt+1) 6= ∅. In this case, there is an agent a ∈

S0 \ (Vt+1 ∪ Tt+1) and another agent â ∈ S0 ∩ (Vt+1 ∪ Tt+1). The agent â cannot be strictly better

o� under η0 than under µ. To see this, suppose she is better o�. By Lemma 1, she receives a top

object among the remaining objects after Tt is removed, since â ∈ Vt+1∪Tt+1. Thus, she must receive,

under η0, an object that is allocated (under µ) to some agent in Tt, say agent ã. Then, ã ∈ S0, since

η0(S0) = w(S0), where w(S0) is the set of original endowments of agents in S0. This contradicts

S0 ∩ (Vt ∪ Tt) = ∅. Thus, each agent in S0 ∩ (Vt+1 ∪ Tt+1) is indi�erent between µ and η0. Thus,

no agent in
⋃t+1
τ=0 Vτ ∪ Tτ is strictly better o� under η0 than under µ, that is, µ(a)Raη0(a) for each

a ∈
⋃t+1
τ=0 Vτ ∪ Tτ .

Now, we prove that there is a C(S0), which blocks η0 via some µ′ ∈MC(S0)(µ) with C(S0)∩S0 6= ∅

through the following lemma.

Lemma 10 If S0∩ (Vt+1∪Tt+1) 6= ∅, then there is a C(S0), which blocks η0 via some µ′ ∈MC(S0)(µ).

Proof. We consider two cases: one with S0 ∩ Vt+1 6= ∅ and the other with S0 ∩ Vt+1 = ∅. For each
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case we �nd a blocking C(S0) with the desired properties.

Case1. Suppose S0 ∩ Vt+1 6= ∅. In this case, consider C(S0) = Vt+1 ∪
(⋃t

τ=0 Vτ ∪ Tτ
)
. De�ne

µ′ ∈ MC(S0)(µ) such that µ′(a) = µ(a) for each a ∈ Tτ for any τ ≤ t and µ′(a) = uVτ (a) for each

a ∈ C(S0)\
⋃t
τ=0 Tτ , where u

Vτ (a) is the updated endowment of agent a at the end of the τ st endowment

update. Thus, under µ′, each agent who has already left the mechanism on or before t receives her

assignment under µ, and each agent who has not left yet by t + 1 but has an updated endowment,

receives her last updated endowment. By Lemma 1, we have µ′ ∈MC(S0)(µ). Note that by de�nition

of µ′ we also have ω(C(S0)) = µ′(C(S0)). Also note that no agent in C(S0) is better o� under η0 than

under µ′. This is because, under η0, any agent in C(S0) \ S0 either receives her allocation under µ or

her endowment, and because µ′ ∈MC(S0)(µ).
20 Thus, we have µ′(a)Raη0(a) for each a ∈ C(S0). Now,

we show that there is at least one agent in C(S0) who is worse o� under η0 than under µ.

Note that S0 ∩ (Vt ∪ Tt) = ∅ for all t, and S0 ∩ Vt+1 6= ∅. Now, since S0 blocks µ as a cycle and

since S0 ∩ Vt+1 6= ∅, there is an agent a ∈ S0 who receives an object under η0, say h, which is the

(potentially updated) endowment of some agent in S0∩Vt+1. There is also another agent â ∈ Vt+1 \S0

for whom h is one of her top objects among the remaining objects after Tt is removed, which may be

the only top object or among her multiple top objects. Thus, under µ this agent â gets an object that

is either h or some other top object among the remaining objects after Tt is removed. Under η0 this

agent â ∈ Vt+1 \S0, gets her original endowment. Thus, if h Pâ ω(â), then â is worse o� under η0 than

under µ. Suppose ω(â) is also a top object for â among the remaining objects after Tt is removed. In

the endowment update ω(â) will be the new endowment of some other agent, say ã, and this agent will

receive a top object among the remaining objects after Tt is removed under µ, and ω(â) is a top object

for her among the remaining objects after Tt is removed. Then, if for ã, ω(â) is a better object than

her original endowment, ã would be worse o� under η0. Note that since S0∩Vt+1 6= ∅ and η0 gives each

agent in Vt+1 \ S0 her original endowment, we can continue in this fashion and �nd that there would

be another agent who would be worse o� under η0 than under µ. To see this, suppose every agent in

Vt+1 \ S0 has her original endowment among her top objects among the remaining objects after Tt is

removed. Then, Vt+1 ∪
(⋃t

τ=0 Vτ ∪ Tτ
)
∪ S0 would Pareto dominate µ, contradicting Pareto e�ciency

20Lemma 1 says that if an agent a's endowment is updated at stage t, then she gets a top object, under µ, among the
remaining objects after agents in Tt−1 and the objects allocated to them are removed. Agent a's updated endowment at
stage t is also a a top object among those remaining objects after agents in Tt−1 and the objects allocated to them are
removed. Thus, an agent's updated endowment cannot be worse than the object she receives under µ.
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of TTC mechanism. Thus, there is at least one agent in Vt+1 who is worse o� under η0 than under µ,

and C(S0) blocks η0 via µ′ ∈MC(S0)(µ).

Case2. Suppose S0 ∩ Vt+1 = ∅ and S0 ∩ Tt+1 6= ∅. In this case, consider C(S0) =
⋃t+1
τ=0 Vτ ∪ Tτ .

De�ne µ′ ∈ MC(S0)(µ) such that µ′(a) = µ(a) for each a ∈ Tτ for any τ ≤ t + 1 and µ′(a) = uVτ (a)

for each a ∈ C(S0) \
⋃t+1
τ=0 Tτ , where u

Vτ (a) is the updated endowment of agent a at the end of the

τ st endowment update. Note that ω(C(S0)) = µ′(C(S0). Now, the same argument in Case 1 above

applies here as well and there is at least one agent in Tt+1 who is worse o� under η0 than under µ.

Thus, C(S0) blocks η0 via µ′ ∈MC(S0)(µ).

Thus, by Lemma 10, we get a contradiction with our supposition (??). Thus, S0∩(Vt+1∪Tt+1) = ∅.

Induction argument implies that S0∩
⋃K
τ=0 Vτ ∪Tτ = ∅. This is a contradiction since

⋃K
τ=0 Vτ ∪Tτ = N .

Thus, our initial supposition must not hold, that is, µ satis�es part (ii) of De�nition 1.

Part (i) of De�nition 1: Suppose µ ∈ TTC(ω,R) is strictly blocked by some coalition S. Then,

all agents in S get a strictly better object within the coalition than under µ. S ∩ T0 = ∅, because

otherwise S cannot strictly block µ since all agents in T0 get a top object under µ. So there exits a

t ≥ 1 such that S ∩
⋃t−1
τ=0 Tτ = ∅ and S ∩ Tt 6= ∅. Now, consider the following two cases:

Case 1. No agent in
⋃t−1
τ=0 Tτ has an updated endowment (before Tt is removed) which is originally

endowed by some agent in S. Thus, the original endowment of any agent in S ∩ Tt is not removed

yet, before Tt is removed. Note that each agent in Tt, thus each agent in S ∩ Tt, receives a top object

(under µ) among the remaining objects after
⋃t−1
τ=0 Tτ and µ(

⋃t−1
τ=0 Tτ ) are removed. Note also that

each agent in S, thus those in S ∩ Tt, receives an object (under µ′) which is an original endowment of

some agent in S, since S is a coalition. Thus, for an agent i ∈ S ∩ Tt, µ′(i) Pi µ(i) is not possible.

Case 2. There is an agent in
⋃t−1
τ=0 Tτ who has an updated endowment (before Tt is removed) which

is originally endowed by some agent in S. Denote the set of such agents by Ŝ. By Lemma 2, each

agent in Ŝ receives a top object (under µ) among the remaining objects after
⋃t−1
τ=0 Tτ and µ(

⋃t−1
τ=0 Tτ )

are removed. Since the coalition S via µ′ creates a cycle, there is an agent i ∈ Ŝ who receives an object

(under µ′) which is the original endowment of some agent j ∈ S \ Ŝ. By the de�nition of Ŝ, agent j's

original endowment is among the remaining objects after
⋃t−1
τ=0 Tτ and µ(

⋃t−1
τ=0 Tτ ) are removed. Since

agent i receives (under µ) a top object among the remaining ones after
⋃t−1
τ=0 Tτ and µ(

⋃t−1
τ=0 Tτ ) are

removed, µ′(i) Pi µ(i) is not possible.

Thus, µ ∈ B(ω,R), which �nishes the proof of part III. �
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IV. For each outcome µ of the DTTC, there exists a selection rule F such that µ is

obtained by the TTC via F . In the �rst step of the DTTC, a cycle is chosen and each agent in the

cycle is entitled one of her best objects. The TTC obtains the same welfare level for these agents by

top-trading the chosen cycle. Suppose, by an inductive argument, that at Step k − 1, the entitlement

given by the DTTC is obtained by top-trading a sequence of cycles: the TTC gives an endowment

pro�le such that, given the entitlement (Nk−1, εk−1) obtained by the DTTC, for each i ∈ Nk−1, her en-

dowment at Step k−1, that is, ωk−1(i), is in the set εk−1(i). Let Nk be the feasible improvement cycle

chosen by the DTTC at Step k. By de�nition of a feasible improvement cycle (see Section 5), there

exists an individually rational matching µ such that the entitlement (Nk−1, εk−1) is feasible under µ

and each agent in Nk is assigned one of the objects she points to. Suppose the sets Nk and Nk−1 are

disjoint. Since Nk is a feasible improvement cycle in the graph Gk−1 and does not include any agent,

whose endowment is updated, by top-trading Nk, the inductive hypothesis is satis�ed. Suppose now

that the intersection of Nk−1 and Nk is non-empty.

Suppose that all the matchings such the entitlement (Nk−1, εk−1) is feasible under µ and each agent

in Nk is assigned one of the objects she points to, induce the same set of cycles including the agents

in Nk−1. Then, the set Nk must be in this set of cycles, since otherwise by selecting Nk in this step

would violate the existing entitlement, thus a contradiction that Nk is a feasible improvement cycle.

Since the updated endowments of Nk−1 are in this set of cycles, by making each agent in Nk−1 ∪ Nk

point to the object that she is assigned to under this set of cycles, and each object point to its updated

owner inNk−1, we obtain a sequence of top trading cycles and the update after top-trading this sequence

of cycles gives the inductive hypothesis. Suppose that the matchings such the entitlement (Nk−1, εk−1)

is feasible under µ and each agent in Nk is assigned one of the objects she points to, do not induce

the same set of cycles including the agents in Nk−1. But, after a number of steps, say at Step k′, since

the problem is �nite, they should induce only one set of cycles including Nk−1. At that step, the same

argument above applies. The only question remains is that whether one can change the ordering of

the selection of the feasible improvement cycles in the DTTC, to achieve the same matching. While

the answer is clearly negative in general, it is a�rmative as long as the same entitlements are created.

Since the same entitlements are created when a feasible improvement cycle is chosen at Step k′ or at
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Step k, the feasible improvement cycles chosen between steps k and k′ are not a�ected by this change

in the order of selection. Thus, the inductive hypothesis is satis�ed in this case as well.
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