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Abstract

We study formation of mutual insurance networks in a model where agents who obtain

more resources share a fixed amount of resources with all directly linked agents that obtain

fewer resources. We identify the pairwise stable networks and efficient networks in a basic

model where agents are identical. Then, we introduce in the model two types of heterogeneity:

an exogenous one, where agents differs in their income or in their preferences over the transfer

scheme, and an endogenous heterogeneity where the costs of linking to an agent depends on

the number of links the latter has already formed in the network. We examine the impact of

these heterogeneities on stability and efficiency.
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1 Introduction

A growing body of evidence has shown that while household income in developing countries

varies greatly, consumption is remarkably smooth at a community level (e.g., Townsend, 1994,

Paxson, 1992, Jacoby and Skouas, 1997). Given the lack of formal insurance especially in the

rural areas, this suggests that informal institutions play a crucial role in helping households to

counter the effects of income variation. In this paper we study the formation of these informal

mutual insurance networks building on several stylized facts.

A first key feature is that informal insurance is not a village level phenomenon. Indeed, as

has been well documented in the literature on social networks, in times of need individuals do

not rely on the entire village, instead they seek help primarily through a network of mutual

insurance relationships with friends and family (see Fafchamps and Lund, 2003, and Wellman

and Currington, 1988). Another important feature is that mutual insurance networks are not

complete within the observed set of individuals. That is, within any community, individuals

do not enjoy the benefits of being insured by all others individuals of the village. Finally, the

sharing of resources in times of need is not equal (Townsend, 1994). In fact to the best of our

knowledge, this aspect of the formation of mutual insurance networks has not been addressed

before.

Our goal is to provide a picture of the mutual insurance arrangements within the community

from a networks perspective. We examine when symmetric and asymmetric network architec-

tures can be stable among ex ante symmetric agents. We ask whether such arrangements may

be locally complete, i.e., involve every individual in a small group. We also study efficiency

and the impact of agent heterogeneity in this problem.

In our model mutual insurance takes place between pairs of individuals in a village or a small

community. A specific feature is the way agents “share” their resources (and hence the risk):

individuals who draw high resources give a fixed amount of resources to individuals in their

immediate neighborhood in the network who draw low resources. Thus, agents do not engage

in equal sharing of resources. This type of sharing mechanism has two realistic features: (i)

it ensures that individuals who draw high resources can always transfer resources to all their

neighbors who draw low resources, and (ii) individuals who draw high resources always obtain

higher benefits than individuals who draw low resources.
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In our benchmark model, we assume that each agent obtains random resources which take

on two values: high or low. If a person draws the high endowment state, then she gives an

amount δ > 0 of resources to each of her neighbors (agents with whom she has established

a bilateral risk-sharing agreement) that has drawn the low endowment state. Conversely, if

a person draws the low endowment state, then she obtains an amount δ of resources from

each of her neighbors who has drawn the high endowment state.1 Note that such a mutual

insurance network exposes agents to the risk of their neighbors. Indeed, if two individuals

decide to insure each other, then each of them increases her chances of obtaining a satisfying

payoff when her own resources are low, but also increases her chances of reducing her payoffs

when her own resources are high.

We also assume that informal agreements are not binding and hence to make them work

agents need to invest time in their relationships. So, in our model, establishing such mutual

insurance agreements is costly. More precisely, the cost of an agreement (a link) between

two individuals depends on the number of agreements established by them. In particular, we

assume that the marginal cost of individual i, when she forms a link with an individual j,

is increasing with the number of links formed by i. This captures the idea that a mutual

insurance agreement between two agents requires the agents to spend a minimal amount of

time on it. Now the more links they have already formed, the less time they have to spend

on any additional link, and so the higher is the cost of time. It follows that the cost of an

additional link increases with the number of links.

Using this framework, we examine the formation of mutual insurance links and ask what

structures will emerge when agents cannot coordinate link formation across the entire popula-

tion. We use pairwise stability as the equilibrium concept (see Jackson and Wolinsky, 1996).

In a pairwise stable network no pair of unlinked agents has an incentive to reach a mutual in-

surance agreement (add a link), and no individual has an incentive to break a mutual insurance

agreement (remove one of her links). We contrast pairwise stable networks with the efficient

networks for mutual insurance agreements. An efficient network is one which maximizes the

1In reality transfers can take a wide range of values depending on the incomes of the individuals and may be

even the needs of the agents in a community. However, in our model individuals have either high or low incomes.

Therefore it is reasonable to assume that in the high income state agents give a fixed amount to their neighbors who

have drawn the low income state.
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amount of total expected payoffs obtained by agents.

In the basic model, we have several findings.

• We establish that there exist pairwise stable networks, in which individuals are in asym-

metric situations relative to the risk they support. More precisely, in stable pairwise

networks, either all individuals form the same number of links, or there exist two types

of individuals relative to the number of links they form. Thus, agents have different

risk-sharing outcomes, despite that they have identical preferences and their incomes

are identically distributed. Moreover, in pairwise stable networks where there exist two

types of agents relative to the number of links they form, agents who obtain the smallest

amount of insurance are always linked together.

• We show that in efficient networks agents always obtain similar amounts of insurance. In

that case, an efficient network is a pairwise stable network (or a network very similar to a

stable network), but the converse is not true. More precisely, we show that a non-efficient

pairwise stable network is always under-connected with regard to efficiency. Thus there

may exist a conflict between pairwise stable networks and efficient networks.

Then we extend the basic model by introducing two types of agents heterogeneity, an

exogenous one and an endogenous one.

First, we consider situations where agents are exogenously heterogeneous: they do not

obtain the same income when they draw the high income state. In the first case, we assume

that there exist two types of agents concerning the income they get when they draw the high

income state. In that case, we show that there exist situations where only people who get the

highest income when they draw the high income state get access to insurance, while people

who get the lowest income when they draw the high income state will never be insured. It

follows that the insurance mechanism increases the gap between the expected well-being of high

potential income people and the expected well-being of low potential income people. This kind

of pairwise stable networks are compatible with a result stressed by several empirical studies:

the majority of transfers takes place only between sub-groups of agents (see Rosenzweig, 1988,

and Udry, 1994).

Second, we consider situations where the cost of linking to an agent is increasing in the

number of links that this agent has already formed. This captures the fact that insurance
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agreements are informal and are honored if agents involved in a relationship invest time. In

such situation, it is more difficult to establish a relationship with an agent who already has

numerous links since she has less time available. Note that in this situation agents heterogene-

ity arises endogenously in the model: an agent who is involved in a lot of links is less valuable

than an agent who is involved in few links. In this framework, pairwise stable networks contain

between one and three groups of agents relative to the number of links they are involved in.

Let us consider pairwise stable networks which contain three groups of agents. We show again

that agents who obtain the smallest amount of insurance are always linked together. However,

by contrast with the basic model, we show that agents who have the highest amount of insur-

ance cannot be linked together. Concerning efficiency, we show that unlike in the basic model,

if a network is efficient, then it is not always pairwise stable (or a network very similar to a

pairwise stable network). More precisely, there exist situations where efficient networks and

pairwise networks never coincide and the efficient network is under connected with respect to

stability.

A recent theoretical literature about revenue sharing in developing economies examines

the formation of risk-sharing networks. Bramoulle and Kranton (2006 and 2007) discuss the

stability/efficiency dilemma of risk-sharing networks. A distinctive aspect of their work is that

after the income realization occurs, linked pairs of agents meet (sequentially and randomly)

and share their current money holding equally. The authors show that with many rounds of

such meetings, an individual money holding converges to the mean of realized income in her

group,2 that is in a group there is always equal revenue sharing among individuals.

By contrast, in our paper we deal with situations where individuals do not engage in equal

income sharing. In particular, after income sharing, an individual who has initially obtained

high income always ends up better than an individual who has obtained low income. There is

an interesting difference between our paper and the Bramoulle and Kranton papers concerning

externalities generated by links.

In our paper, when an agent i forms a link with an agent j, this link may have a negative

impact on the utility of i’s neighbors (there is a negative externality), since agent i will now

have less time to spend on relations with her neighbors (idem for j’s neighbors). It follows

2In their paper, a group consists of agents who are directly or indirectly linked.
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that when two agents have an incentive to form a link, this link may decrease social welfare.

In the Bramoulle and Kranton model, when an agent i forms a link with an agent j, this link

has a positive impact on the expected utility of i’s neighbors. Indeed, in their model there is

equal income sharing between all the agents of the groups. Therefore due to the additional

link between i and j, i’s neighbors will share their income with an additional agent (agent

j) and their expected utility will increase. It follows that it can be that two agents have no

incentive to form a link, and this link increases the social welfare.

Belhaj and Deroian (2012) also examine a situation where the bilateral partial risk-sharing

rule is such that neighbors share equally a part of their revenue. However, they focus on the

impact of informal risk-sharing on risk taking incentives when transfers are organized through

a social network. Some papers explain partial risk-sharing by self-enforcing mechanisms in

networks (Bloch et al., 2008).3 These models consider that individuals can use their links to

punish individuals who deviate from the insurance scheme. For instance, if an agent deviates

from the insurance scheme (i.e. fails to transfer money to directly connected agents that have

negative income shocks), the victim will communicate such behavior to other connected agents

who in turn will terminate the insurance scheme with the deviating household as a punish-

ment. In this paper, we do not deal with the self-enforcement mechanism problem. Instead, we

assume that establishing a relationship is costly and it commits the parties to future resource

sharing, say, due to a social norm or a social punishment in case of non-sharing.4 More pre-

cisely, we assume that the self-enforcement mechanism problem is solved when agents invest

enough time and resources in the informal insurance agreements.5

The rest of the paper is organized as follows. In section 2, we present the definitions and

the basic model setup. In section 3, we provide the main properties of the payoff function of

agents. In section 4, we examine pairwise stable networks and efficient networks in the basic

model context. In section 5, we extend the basic model by introducing agents who do not

3This literature extends the literature about the robustness of mutual insurance (see for instance Genicot and

Ray, 2003).
4This kind of relation can be illustrated with the marriage of daughters in India which are arranged to maximize

gains from risk sharing, see Rosenzweig and Stark, 1989.
5The time an agent invests in the relationship and the social punishment in case of non-sharing are related since

a bilateral relation in which agents have invested a lot of time can be more easily observed by the peers.
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obtain the same income when they draw the high income state. In section 5, we assume that

the cost of each link depends on both agents involved in. In section 6, we conclude.

2 Basic model setup

Let N = {1, . . . , n} be a community of n, n ≥ 3, ex ante identical agents. Agents receive an

endowment and consume resources. Each agent’s endowment is a random variable that takes

two values. The low endowment state is called state 0 while the high endowment state is called

state 1. Each agent i obtains an endowment 0 in state 0 while she obtains Θ > 0 in state 1.

State 1 occurs with probability p > 0 while the low endowment state occurs with probability

1− p > 0. The realizations of endowments are independent and identical across the agents.

Networks. To model bilateral mutual insurance agreements in a small population, we use

tools from the theory of networks. Although the agreements themselves are bilateral, the

amount of resources consumed by each agent depends on how many other agents she is con-

nected with, and the endowments of these agents. Hence tools from network theory are useful

for modeling such bilateral insurance networks. In the model, we assume that individuals i

and j can have a mutual insurance agreement by forming a costly link between themselves.

This assumption reflects the idea that there are always some costs (time at the least) to build

a relationship.

We represent links and a network of links with the following notation: A network g is an

n × n matrix, where gij = 1 when i and j are linked (i.e., have established a risk-sharing

agreement) and gij = 0 otherwise. We assume that risk-sharing relations are mutual, so that

gij = gji. By convention, gii = 0. Let g+ gij denote the network obtained by replacing gij = 0

in g by gij = 1. Similarly, let g − gij denote the network obtained by replacing gij = 1 in

g by gij = 0. We say that there is a chain between two agents i and j in the network g if

there exists a sequence of agents i1, . . . , ik such that gii1 = gi1i2 = gi2i3 = . . . = gikj = 1.

A subset of agents is connected if there is a chain between any two agents in the subset. A

component of the network g is a maximal connected subset of agents. Moreover, network g[N ′]

is a sub-network of g if it consists in the agents in N ′ ⊂ N , and i ∈ N ′ and j ∈ N ′ are linked

in g[N ′] if and only if they are linked in g.
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The empty network is the network where all agents have formed no links. The complete

network is the network where each agent has formed links with all the agents. A k-regular

network is a network where all agents have formed exactly k links. A k−-regular network is

a network where all agents but one have formed k links; the agent who is the exception has

formed k − 1 links. A k+-regular network is a network where all agents but one have formed

k links; the agent who is the exception has formed k + 1 links. An almost-k-regular-network

is either a k−-regular network, or a k+-regular network. We illustrate the notions of k-regular

network, and k+-regular network in Figure 1.

4

1 2

3

53 42

1

98

6 7

2-regular network 3+-regular network

Figure 1: Networks architectures

In the following, the neighbors of agent i, that is agents with whom i has formed a link, will

play a crucial role. Hence we define Ni(g) = {j ∈ N | gij = 1} as the set of the neighbors of i.

Let ni(g) = |Ni(g)| be the degree of agent i. We let Nk(g) = {i ∈ N | ni(g) = k} be the set of

agents who form k links in g, N+
k (g) = {i ∈ N | ni(g) > k} and N−k (g) = {i ∈ N | ni(g) < k}

be the sets of agents who form more than k links, and less than k links in g respectively. Let

N 6=k (g) = N−k (g) ∪N+
k (g). Finally, we let nM (g) = maxi∈N ni(g) and nm(g) = mini∈N ni(g).

Payoffs. Having described the set of players and their strategies, we now ask: Given a

network g, how are expected payoffs determined under different endowment realizations in the

network? We consider a benchmark model where agents are ex ante identical: they get the

same resources Θ when they draw state 1 and the same resources 0 when they draw state 0.

Moreover, if an agent draws state 1, then she always gives δ ∈ (0, 1) to each of her neighbors

who has drawn state 0.6 Conversely, if an agent draws state 0, then each of her neighbors

6Here, we assume that the transfer amount δ comes from some kind of social norm. Our goal in this paper is

to study what is the architecture of the mutual insurance network within a community. Hence we do not explicitly
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who has drawn state 1 always gives her δ. Note that in our model, agents may receive differ-

ent amounts of transfers depending on the network architecture. Moreover, we assume that

Θ > (n−1)δ, to ensure that players who draw state 1 always end better than agents who draw

state 0, after transfers occur.

In this paper we assume that the payoff obtained by an agent, say i, can be divided into two

parts.

1. The benefits part which involves uncertainty captures the fact that each additional link

formed by i allows her to obtain additional insurance when she draws the bad state (0),

and the fact that i has to insure more agents when she draws the good state (1).

2. The costs part which involves no uncertainty captures the fact that links are costly, with

additional links being more costly.

We now present these two parts of an agent’s payoff function.

Benefits. Working with a general payoff function in the context of a network formation

problem poses tractability issues. Hence from now on we deal with the exponential utility

function: ui(x) = 1 − exp[−ρx], where x is the income of agent i, and ρ is a positive pa-

rameter. Consequently, our model exhibits Constant Absolute Risk Aversion.7 It follows

that if agent i draws state 0 and k agents in her neighborhood draw state 1, then she ob-

tains a benefit equal to bg(0, k) = ui(kδ) = 1 − exp[−ρkδ]. Conversely, if agent i draws

state 1 and k agents in her neighborhood draw state 1, then she obtains a benefit equal to

bg(1, k) = ui(Θ− (ni(g)− k)δ) = 1− e[−ρ(Θ−(ni(g)−k)δ)].

We now define the expected neighborhood benefits (ENB) function, Bi(g), which captures the

expected benefits obtained by an agent i given her neighborhood ni(g). We have:

Bi(g) = φ(ni(g)) = p
∑ni(g)

k=0

(ni(g)
k

)
pk(1− p)ni(g)−kbg(1, k)

+(1− p)
∑ni(g)

k=0

(ni(g)
k

)
pk(1− p)ni(g)−kbg(0, k),

(1)

where
(
x
y

)
is just the probability of y high resources out of x draws.

In the following, for each function f we set ∆f(x) = f(x) − f(x − 1). Moreover, since we

model where δ comes from.
7Here we use an exponential function, but we obtain the same qualitative results for some other CARA functions.
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use non-continuous function, we use a slightly modified version of convexity and concavity.

We say that f is concave if for all x, ∆f(x + 1) − ∆f(x) ≤ 0 and f is convex if for all x,

∆f(x+ 1)−∆f(x) ≥ 0.

Costs of links. Informal insurance arrangements are potentially limited by the presence

of various incentive constraints. As a first cut, it appears that the most important constraint

arises from the fact that these arrangements are informal, i.e., not written on legal paper. It

follows that they will be honored only if agents involved in such a relationship invest time.

Since each agent has a limited amount of time, the costs for agent i of forming an additional

link with some agent j should increase with the number of links formed by agent i. We have:

Ci(g) = f1(ni(g)),

where f1 is a strictly increasing and convex function. In addition, to simplify the analysis we

assume that f1(0) = 0 and f(1)− f(0) 6= φ(1)− φ(0).

Expected payoffs function. The expected payoff function, Ui(g), of each agent i, given

the network g, is the difference between the ENB function and the cost function of forming

links:

Ui(g) = Bi(g)− Ci(g) = Φ(ni(g)) = φ(ni(g))− f1(ni(g)). (2)

Pairwise stable networks and efficient networks. A network g is pairwise stable if no

pair of unlinked agents would benefit by forming a link in g and if no agent would benefit from

severing one of her existing links in g. Formally, following Jackson and Wolinsky (1996) we

have (i) for all gij = 1, Ui(g) ≥ Ui(g − gij) and Uj(g) ≥ Uj(g − gij); and (ii) for all gij = 0, if

Ui(g) ≤ Ui(g + gij), then Uj(g) > Uj(g + gij).

An efficient network is one that maximizes the sum of the expected payoffs of the agents. Let

W (g) =
∑

i∈N Ui(g) be the total expected payoffs obtained in a network g. A network ge is

efficient if W (ge) ≥W (g) for all networks g.
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3 Properties of the ENB function

Our first proposition provides some useful properties of the ENB function.

Proposition 1 Suppose that the ENB function is given by equation 1. (a) Then, the ENB

function is strictly increasing and strictly concave with the number of links formed. (b) More-

over, the marginal ENB function increases with Θ. (c) Finally, there exists p̃ ∈ (1/2, 1) such

that the marginal ENB function increases with p iff p < p̃.

Proof See Appendix in 8.1.

�

Proposition 1 (a) states that the ENB obtained by agent i is increasing. In other words,

each agent i prefers to be more insured than less insured when the cost of insurance (the cost

of forming links) is sufficiently low. Moreover, Proposition 1 implies that Φ is strictly concave:

the marginal ENB that an agent i obtains from an additional link strictly decreases with the

number of links she has formed. Consequently, if the cost of forming links is constant, then

the incentive of an agent to form an additional link decreases with the number of links she has

formed.

Since φ is strictly concave and −f1 is concave, Φ is strictly concave. We have three possibili-

ties. (i) Suppose Φ(1)−Φ(0) < 0. Then, Φ(k)−Φ(k− 1) < 0, for all k ∈ {2, . . . , n}: no agent

has an incentive to form a link. (ii) Suppose Φ(1)−Φ(0) = 0. Again, Φ(k)−Φ(k− 1) < 0, for

all k ∈ {2, . . . , n}. Consequently, each agent has a weak incentive to form one link instead of

zero. (iii) Suppose Φ(n− 1)−Φ(n− 2) ≥ 0. Then, Φ(k)−Φ(k− 1) > 0, for all k ∈ {2, . . . , n}:

each agent has a weak incentive to form n − 1 links. (iv) Suppose Φ(1) − Φ(0) > 0 and

Φ(n− 1)−Φ(n− 2) < 0. Then, there exists k̃ ∈ {1, . . . , n− 2}, such that Φ(k̃)−Φ(k̃− 1) ≥ 0

and Φ(k̃+ 1)−Φ(k̃) < 0. Let k? be either the highest k such that Φ(k)−Φ(k− 1) ≥ 0, or 0 if

for all k ∈ {1, . . . , n−1}, Φ(k)−Φ(k−1) < 0. We have Φ(k?) ≥ Φ(k), for all k ∈ {0, . . . , n−1}.

Proposition 1 (b) suggests that we should observe more insurance links in population with

high incomes in state 1. In that case, the insurance mechanism increases the gap between the

expected well-being of high potential income communities and the expected well-being of low

potential income communities.
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Let us now give the intuition behind this result. Obviously, when agent i draws the low income

state, then her ENB is not affected by her income. Suppose now that agent i draws the high

income state. Due to the strict concavity of the payoff function, when the income increases,

the utility function of agent i is less affected by the loss of money she incurs when she has

to help one of her neighbors. It follows that the marginal expected neighborhood benefits

function of agent i increases with Θ.

Proposition 1 (c) suggests that we should observe more insurance links in a population with

high probability of success than in a population with low probability of success when the prob-

ability of success is low. Conversely, we should observe less insurance links in a population

with high probability of success than in a population with low probability of success when the

probability of success is high.

The intuition of this result is easy to understand from the polar cases. When an agent has

a zero probability of failure then she obtains no marginal benefits from forming an insurance

links. So, these marginal benefits are lower than the marginal benefits obtained by an agent

who has high probability of success. Similarly, when agents have a zero probability of success

then they obtain no marginal benefits from forming insurance links. So, these marginal ben-

efits are lower than the marginal benefits obtained by agents who have a low probability of

success.

4 Pairwise stable and efficient networks analysis

We prove the existence and we characterize pairwise stable networks. To ensure the existence

of pairwise stable networks, we use a theorem established by Erdös and Gallai. We need the

following definition to present this theorem.

Definition 1 A finite sequence s = (d1, d2, . . . , dn), such that d1 ≥ d2 ≥ . . . ≥ dn, of nonneg-

ative integers is graphical if there exists a network g whose nodes have degrees d1, d2, . . . , dn.

Theorem 1 (Erdös and Gallai, 1960) A sequence s = (d1, d2, . . . , dn) of nonnegative integers,
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such that d1 ≥ d2 ≥ . . . ≥ dn, and whose sum is even is graphical if and only if

r∑
i=1

di ≤ r(r − 1) +

n∑
i=r+1

min{di, r}, for every r, 1 ≤ r < n.8 (3)

In the next proposition, we focus on the pairwise stable networks. We show that there

always exists a pairwise stable network. We establish that no agent forms more than k? links

in pairwise stable networks and agents who form strictly less than k? links are linked together.

Moreover, we prove that networks where agents form k? links, i.e., agents are in symmetric

position relative to the number of insurance links they form, are pairwise stable and efficient

when n is even. Recall that in k?-regular networks, agents do not always obtain the same

amount of benefits: in our model agents who draw state 0 always obtain a lower amount of

benefits than the benefits obtained by agents who draw state 1. Finally, we establish that

the complete network is the unique pairwise stable network when the cost of forming links is

sufficiently low.

To present the next proposition, we need some additional definitions. Let g[N 6=k ] be the sub-

network associated with the set of agents N 6=k (g).

Proposition 2 Suppose that the ENB function is given by equation 1.

(a) There always exists a pairwise stable network.

(b) Network g is pairwise stable if and only if N 6=k?(g) = N−k?(g) and g[N 6=k? ] is complete.

(c) If n or k? is even, then k?-regular networks are pairwise stable and efficient.

(d) If n and k? are odd, then k?−-regular networks are pairwise stable. Moreover, if Φ(k?+1) <

Φ(k?−1), then k?−-regular networks are the unique efficient networks; and if Φ(k?+ 1) >

Φ(k? − 1), then k?+-regular networks are the unique efficient networks.

(e) If there is no costs of forming links, then the unique pairwise equilibrium network is the

complete network.

Proof See Appendix in 8.2. �

Let us provide the intuition of Proposition 2. Part (b) follows the fact that no agent has an

incentive to form strictly more than k? links and that two unlinked agents, who have formed

8The theorem can also be found in Harary, 1969, Chapter 6 pp. 59-62 and the statement here is based on his

presentation.
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a number of links strictly smaller than k?, have an incentive to form a link together. We

now deal with the pairwise stable networks described in parts (c) and (d). By construction,

agents who form k? links have no incentive to modify her strategy. Similarly, since Φ is strictly

concave, if agent i cannot form k? links, then she forms k?− 1 links in a pairwise equilibrium.

By Theorem 1, we know that if n or k? is even, then the sequence (k?, . . . , k?) is graphical

and when if n and k? are odd the sequence (k? − 1, k?, . . . , k?) is graphical. Consequently, If

n or k? is even, then k?-regular networks are pairwise stable and if n and k? are odd then,

k?−-regular networks are pairwise stable. Part (a) is straightforward from parts (c) and (d).

Part (e) follows the fact that the ENB is strictly increasing. Finally, we deal with the efficient

networks described in parts (c) and (d). Due to the strict concavity of Φ in efficient networks

every agent should form k? links. Again, by Theorem 1 we know that the sequence (k?, . . . , k?)

is not always graphical. If this sequence is not graphical, then agents who do not form k? links

have to form either k?−1 or k?+1 links since Φ is strictly concave. Obviously, an agent forms

k?− 1 links instead of k? + 1 links if and only if Φ(k?− 1) > Φ(k? + 1). Finally, by Theorem 1,

we know that the sequences (k?− 1, k?, . . . , k?) and (k?, . . . , k?, k? + 1) are graphical when the

sequence (k?, . . . , k?) is not graphical. Consequently, in an efficient network there is at most

one agent who does not form k? links; this agent forms either k? − 1, or k? + 1 links.

Let us now discuss Proposition 2. First, there is a kind of solidarity among the less insured

agents: agents who obtain the smallest amount of insurance are always linked together. This

property illustrates the fact that agents, who do not have a sufficient amount of insurance,

will always reach mutual insurance agreements.

Second, we observe that in our setting agents can be partitioned into distinct components

in a pairwise stable network. Moreover some of these stable insurance networks may also be

locally complete as the network between agents 1, 2 and 3 in the following example.

Example 1 Suppose N = {1, . . . , 12} and k? = 2. Then, network g shown in Figure 2 is a

pairwise stable network.

Third, networks where agents are in symmetric positions and networks where agents are

in asymmetric positions are candidates to be pairwise stable.
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Figure 2: Network g

Fourth, results in Ben-Porath (1980), Platteau (1991), Fafchamps (1992), indicate that

informal insurance of an agent does not involve all the village, but just a part of it (family or

friends of this agent). Proposition 2 is in line with this result since the complete network is a

pairwise stable only if the cost of forming links are sufficiently low.

Fifth, we note that if n or k? are even, then an efficient network is always pairwise stable

while there exist pairwise stable networks that are not efficient. More precisely, non-efficient

pairwise stable networks are always under-connected with regard to efficiency. Indeed, we

know that in an efficient network each agent forms k? links. In a pairwise stable network no

agent forms more than k? links, but some agents can form less than k? links. Suppose now

that n and k? are odd. If Φ(k? + 1) < Φ(k? − 1), then k?−-regular network are efficient and

pairwise stable networks. If Φ(k? + 1) > Φ(k? − 1), then k?+-regular networks are efficient.

These networks are very similar to pairwise stable k?−-regular networks. However, as in the

case where n or k? are even, there exist pairwise stable networks that are significantly under

connected with regard to efficiency. Recall that empirical results (see Lund and Fafchamps,

2003) refute the hypothesis that informal insurance system achieve an efficient risk sharing.

Let us now provide some some insights concerning the role played by the value of the gift δ.

This parameter can be interpreted as a social norm: it is the value that a lucky agent should

give to an unlucky agent. We establish through two examples that the social norm plays an

ambiguous role on the number of links of the insurance networks.

Example 2 Suppose that N = {1, . . . , 6}, (δ, p, ρ,Θ) = (0.15, 0.3, 0.5, 15), and Ci(g) = 0.05×

ni(g), then the complete network is a pairwise stable network, and the empty network is not a

pairwise stable network. Suppose now that δ = 0.1 instead of 0.15, then the empty network is
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pairwise stable. In other words, when p and δ are low, an increase of the social norm implies

that agents should increase their number of links.

Example 3 Suppose that N = {1, . . . , 6}, (δ, p, ρ,Θ) = (0.95, 0.93, 0.95, 15), and Ci(g) =

0.266 × ni(g), then the empty network is the unique pairwise stable network. Suppose now

that δ = 0.91 instead of 0.95, then the empty network is not pairwise stable. In other words,

when p and δ are high, an increase of the social norm implies that agents should decrease their

number of links.

5 Pairwise stable networks with heterogeneous agents

We examine a situation where agents do not obtain the same income when they draw state 1.

More precisely, we assume that the population is partitioned into two sub-sets of agents: NΘ

and NΘ′
. Agents in NΘ obtain an income equal to Θ if they draw state 1, and agents in NΘ′

obtain an income equal to Θ′ < Θ if they draw state 1. In the following, we call the members

of NΘ high potential agents and the members of NΘ′
low potential agents.

We denote by Φx(ni(g)) the expected payoff of agent i ∈ Nx, x ∈ {Θ,Θ′}, when she forms

ni(g) links. By using similar argument as in the previous section, we define kx, x ∈ {Θ,Θ′},

either as the highest number such that Φ(kx) − Φ(kx − 1) ≥ 0 , or kx = 0 if such a number

does not exist. We observe that kx maximizes {Φx(k) : k ∈ {0, . . . n − 1}}. For x ∈ {Θ,Θ′},

let N 6=x (g) = {i ∈ Nx : ni(g) 6= kx} be the set of agents who belong to Nx and do not

form an optimal number of links in g; and let N 6=(g) = N 6=Θ (g) ∪ N 6=Θ′(g) be the set of agents

who do not form an optimal number of links in g. Similarly, we define for x ∈ {Θ,Θ′},

N−x (g) = {i ∈ Nx : ni(g) < kx} and N−(g) = N−Θ (g) ∪ N−Θ′(g). By Proposition 1, we know

that ∂∆Bi(g, ij)/∂Θ > 0, so kΘ ≥ kΘ′
.

In the next proposition, we establish that the results obtained in Proposition 2 are robust.

Moreover, we show that there exist costs of forming links such that only high potential agents

form links in pairwise stable networks.

Proposition 3 Suppose that the benefits function is given by equation (1), Nx 6= ∅ and kx ≤

|Nx| for x ∈ {Θ,Θ′}.
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(a) There always exists a pairwise stable network.

(b) Network g is pairwise stable if and only if N−(g) = N 6=(g) and g[N 6=] is complete.

(c) If both NΘ and NΘ′
are even, then networks g where g[Nx] is kx-regular, x ∈ {Θ,Θ′},

and there is no link between agents in NΘ and agents in NΘ′
are pairwise stable and

efficient.

(d) If both Nx, x ∈ {Θ,Θ′}, and Ny, y ∈ {Θ,Θ′} \ {x}, are odd, then either (i) network g

where g[Nx] is kx−-regular and g[Ny] is ky-regular and there is no link between agents in

NΘ and agents in NΘ′
are pairwise stable networks, or (ii) networks g where each agent

in Nx forms kx links and each agent in Ny forms ky links are pairwise stable networks

and efficient networks.

(e) Suppose that f1(ni(g)) = Fni(g), F > 0. Then, there exists F such that only agents in

NΘ have formed links.

Proof See Appendix in 8.3. �

Intuitions of Proposition 3 parts (a), (b), (c) and (d) are similar to the intuition provided

for Proposition 2. Part (e) of Proposition 3 follows the fact that ∂∆Bi(g, ij)/∂Θ > 0. Due

to this property, the marginal expected utility obtained by player i ∈ NΘ due to the first

link she forms is higher than the marginal expected utility obtained by player i ∈ NΘ′
due

to the first link she forms. It follows that there exists a cost of forming the first link F > 0,

such that agents in NΘ have an incentive to form this first link while agents in NΘ′
have no

incentive to form this first link. In Part (e) of Proposition 3, we establish that there exist

situations where high potential agents have formed links together while low potential agents

have formed no links. In other words, only high potential people get access to insurance.

In that case, the insurance mechanism increases the gap between the expected well-being of

high potential people and the expected well-being of low potential people. In Example 4, we

exhibit a situation where g[NΘ] is complete and g[NΘ′
] is empty. In that case, the insurance

mechanism increases the gap between the expected well-being of high potential people and the

expected well-being of low potential people.

Example 4 We assume N = {1, . . . , 6}, Θ = 7, Θ′ = 6, NΘ = {1, 2, 3}, NΘ′
= {4, 5, 6},

ρ = 0.2, δ = 0.5, p = 0.13 and Ci(g) = 0.02 × ni(g). Then network g, where gNΘ is complete
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and gNΘ′ is empty, is the unique pairwise stable network.

Empirical studies (see Rosenzweig, 1988, and Udry, 1994) stress the fact that the majority of

transfers takes place only between sub-groups of agents. This evidence is in line with Part (e)

of the Proposition and Example 4. In our model, it is likely to obtain situations where high

potential agents are better insured than low potential agents.

It is worth noting that in parts (c) we highlight the fact that there exist pairwise equilib-

rium networks where agents in NΘ and agents in NΘ′
form links only with agents that belong

to the same group. Hence, we find a possible understanding of why an agent i forms insurance

links only with a sub-set of the village population.

We have examined players who are heterogeneous with regard to their income in state 1.

By using Proposition 1.c, it is also possible to examine players who are heterogeneous with

regard to their probability to draw state 1. Note that if the population is partitioned into two

sub-sets of agents: Np and Np′ , where agents in Np (resp. Np′) has a probability p (resp. p′)

to draw state 1, with p > p′. We denote by Φx(ni(g)) the expected payoff of agent i ∈ Nx,

x ∈ {p, p′}, when she forms ni(g) links.

In the next proposition, we focus on cases where the heterogeneity of probabilities leads to

pairwise networks where members of a subset of the population has formed no insurance links,

while members of the other subset of the population has formed insurance links.

Proposition 4 Suppose that the benefits function is given by equation (1), Nx 6= ∅ for x ∈

{p, p′}, and f1(ni(g)) = Fni(g), F > 0.

1. Suppose that p′ > p̃. Then, there exists F such that only agents in Np′ have formed links.

2. Suppose that p < p̃. Then, there exists F such that only agents in Np have formed links.

Proof We show the first part of the proposition. By Proposition 1 (c), we know that the

marginal expected payoff function associated with each link k is lower for agents in Np than

agents in Np′ . By Proposition 1 (a), the ENB function is concave: the maximal marginal payoff

is associated with the first link formed by a player. Consequently, (Φp′(1)−Φp′(0))− (Φp(k)−

Φp(k − 1)) > 0, for k ∈ {1, . . . , n− 1} and there exists F > 0 such that (Φp′(1)− Φp′(0)) > F

and Φp(1)− Φp(0) < F .

18



We show the second part of the proposition by using the same arguments as in the previous

part and the fact that the marginal expected payoff function associated with each link k is

higher for agents in Np than agents in Np′ . �

In this proposition, we establish that when the probability that state 1 occurs is sufficiently

high, then there exist parameters such that agents with the highest probability of success does

not want to form insurance links, while players with the highest probability of success form

insurance links together. In that situation the insurance mechanism decreases the gap between

the expected well-being between the two types of agents. Similarly, when the probability that

state 1 occurs is sufficiently low, then there exist parameters such that agents with the lowest

probability of success does not want to form insurance links, while players with the highest

probability of success form insurance links together. In that situation the insurance mechanism

increases the gap between the expected well-being between the two types of agents.

6 Costs of forming links depend on the neighbor-

hood of agents

We have assumed that the costs for agent i of forming an additional link with some agent j

should increase with the number of links formed by agent i. Here we take into account the

fact that these costs should also increase with the number of links formed by agent j. Indeed,

it is more difficult to establish a relationship with an agent who already has numerous links

since she has less time available.9

6.1 Cost function and expected payoff function

We assume the following cost function for link formation:

Ci(g) = f1(ni(g)) +
∑

`∈Ni(g)

f2(n`(g)),

9Another option that makes such informal arrangements feasible is the threat of punishment as in Bloch, Genicot

and Ray, 2008.
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where f2 is strictly increasing and convex on {1, . . . , n−1}. We observe that this cost function

extends the cost function we used in the previous section; the two costs function coincide when

f2(x) = 0, for all x ∈ {1, . . . , n− 1}.

Given this cost function, an additional link formed with agent j induces a cost for agent i

equal to

Ci(g + ij)− Ci(g) = ∆f1(ni(g) + 1) + f2(nj(g) + 1).

Since f1 is strictly increasing and f2 is a strictly positive valued function, Ci(g+ij)−Ci(g) > 0.

The expected payoff function, Ui(g), of each agent i, given the network g, is the difference

between the ENB function and the cost function of forming links. We assume the same ENB

as in section 2. We have:

Ui(g) = Bi(g)− Ci(g) = φ(ni(g))−

f1(ni(g)) +
∑

`∈Ni(g)

f2(n`(g))

 . (4)

To simplify the analysis, we assume that φ(1) − [f1 + f2](1) − (φ(0) − f1(0)) 6= 0 and

φ(n)− [f1 + f2](n)− (φ(n− 1)− [f1 + f2](n− 1)) 6= 0.

Proposition 1 allows us to characterize some properties of the marginal payoffs, ∆Ui(g, ij) =

Bi(g + ij)− Ci(g + ij)− (Bi(g)− Ci(g)), obtained by agent i in a network g when she forms

an additional link with agent j. We have ∆Ui(g, ij) = γ(ni(g) + 1, nj(g) + 1) and

γ(ni(g) + 1, nj(g) + 1) = ∆φ(ni(g) + 1)−∆f1(ni(g) + 1)− f2(nj(g) + 1),

Clearly, γ is strictly decreasing in its first argument since ∆φ is strictly decreasing by Proposi-

tion 1 and ∆f1 is strictly increasing. Similarly, γ is strictly decreasing in its second argument

since f2 is strictly increasing.10 Let k? be either the highest k such that γ(k?, k?) ≥ 0, or 0 if

for all k ∈ {1, . . . , n− 1}, Φ(k)− Φ(k − 1) < 0. Recall that γ is strictly decreasing in its two

arguments. Hence, if k? > 0, then γ(k, k) > 0 for all k < k?.

6.2 Pairwise stable networks and efficient networks

The next proposition imposes conditions that a pairwise stable network must satisfy and sheds

light on when insurance arrangements will exhibit symmetric and asymmetric structures. In

10T. Morrill (2011) has also defined a class of network formation game with degree-base utility function under

negative externalities. However in order to deal with situations where transfers between agents are allowed, the

author uses a simplified payoff function where the payoffs of an agent are linear in her number of links.
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particular, this proposition does not exclude from the set of pairwise stable networks those

networks where agents are in asymmetric positions relative to the amount of insurance they

receive. Moreover, we establish that networks where some agents form strictly more than k?

links are candidate to be pairwise equilibrium networks. Finally, in this proposition, we bound

the difference in the number of links formed by the agent who has formed the highest number

of links and the agent who has formed the highest number of links in a pairwise stable network.

Proposition 5 Suppose that the payoff function satisfies equation (4).

(a) There always exists a pairwise stable network.

(b) Let g be a pairwise stable network. Then, g[N+
k? ] is empty and g[N−k? ] is complete. More-

over, if γ(k?, k? + 1) < 0, then N−k?(g) = N 6=k?(g).

(c) Suppose g contains agents i, i′, j and j′ such that ni′(g) ≤ ni(g) < k? < nj′(g) ≤ nj(g).

If there is a link between agents i and j in g, then there is a link between agents i′ and

j′ in g.

(d) We have |N+
k?(g)| < n/2 and nM (g)− nm(g) ≤ |Nk?(g)|.

Proof See Appendix in 8.4. �

We now graphically illustrate Proposition 5. In Figure 3, network g satisfies the properties

given in (b). Indeed, if we assume that k? = 4, we observe that agents 1 and 2 are involved

in k? + 1 links, agents 3, 4 and 5 are involved in k? links and agents 6 and 7 are involved in

k? − 1 links, and they are linked.

7

1 2

3 4

5

6

Figure 3: Network g satisfying (b) and (c)

Note that in Proposition 5 we do not examine agents who have formed exactly k? links.

Indeed, these agents can form links both with agents who have formed x > k? links and with

agents who have formed y < k? links.
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In Proposition 5, we highlight several properties of pairwise stable networks in a community

of ex ante identical agents when we assume that the cost of forming an insurance link with

an agent depends on the number of links formed by both agents involved in. First, there now

exist agents who obtain insurance from strictly more than k? agents (they are the most insured

agents). These agents are never linked together. In other words, when insurance links require

time to be maintained, some agents play a specific role in the provision of mutual insurance

in the pairwise stable networks. These agents insure (and are insured by) a large part of the

population. But an agent of this type does not interact with other agents of this type. In some

sense there may exist “some insurance leaders” but these leaders themselves are not linked by

mutual insurance agreements. Furthermore, we find again that there is a kind of solidarity

among the less insured agents: agents who obtain the smallest amount of insurance are always

linked together. This property illustrates the fact that agents, who do not have a sufficient

amount of insurance, will always reach mutual insurance agreements. Pairwise stable networks

may divide the population into sets of agents who are in asymmetric positions relative to their

risk exposure. In other words, in a pairwise stable network, some agents are better off since

they obtain insurance from others agents, who are involved in few mutual insurance agree-

ments themselves. However, even if agents can have different numbers of bilateral insurance

agreements, this difference is bounded. This result is in line with the evidence (see Lund and

Fafchamps, 2003, who establish that certain categories of household are better insured than

others).

We now deal with efficient networks. In this section, we always use the payoff function given

by equation (4) and we let η(k) = φ(k)−f1(k)−kf2(k) for k 6= 0 and η(0) = 0. By Proposition

1, φ is strictly concave, and f1 is convex. Moreover, kf2 is convex, since f2 is increasing and

convex. It follows that η is strictly concave. Recall that φ(1)− [f1 +f2](1)− (φ(0)−f1(0)) 6= 0

and φ(n − 1) − [f1 + f2](n − 1) − (φ(n − 2) − [f1 + f2](n − 2)) 6= 0. There are three possi-

bilities (a) η(1) − η(0) < 0. In that case we have η(0) > η(k), for all k ∈ {1, . . . , n − 1}, (b)

η(n − 1) − η(n − 2) > 0. In that case we have η(n) > η(k), for all k ∈ {0, . . . , n − 2}, (c)

η(1)− η(0) > 0 and η(n− 1)− η(n− 2) < 0. In that case, there exists k̂ such that η(k̂) > η(k),

for all k 6= k̂. It follows that η always admits a unique maximum, ke. To simplify the analysis,

we extend η to {−1, . . . , n} and we let η(−1) = η(n) = −∞.
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Note that the neighbors of agent i are connected to an agent with ni(g) neighbors. Conse-

quently, we have W (g) =
∑

i∈N [φ(ni(g)) − f1(ni(g)) − ni(g)f2(ni(g))] =
∑

i∈N η(ni(g)). We

know that there exists ke ∈ {0, . . . , n−1} such that η(ke) is maximal. Therefore
∑

i∈N η(ke) ≥∑
i∈N η(ni(g)) for all ni(g) ∈ {0, . . . , n−1}. Moreover, we have arg maxk 6=ke η(k) ⊂ {ke−1, ke+

1}, since η is concave and maximum for k = ke. Therefore, we have
∑n−1

i=1 η(ke) + max{η(ke−

1), η(ke + 1)} ≥
∑n−1

i=1 η(ke) + η(nn(g)) for nn(g) 6= ke. These observations are summarized in

the Part (a) of the next proposition.

Proposition 6 Suppose that the payoff function satisfies equation (4) and let ge be a non-

empty efficient network.

(a) Then, ge is either a ke-regular network, or an almost-ke-regular network.

(b) Suppose n is even. Let g? be a regular non-empty pairwise stable network. Then agents

in g? form at least the same number of links as in an efficient network.

(c) If γ(ke+1, ke+1)−γ(ke, ke) > (ke−1)(f2(ke−1)−f2(ke)), then a non-complete efficient

network is not pairwise stable.

Proof Part (a) of the proposition follows Lemma 4 for the existence and the arguments given

above the proposition. We now show part (b) of the Proposition. First, suppose n is even

and let g? be a regular pairwise stable network. By Proposition 4 (b), we know that g[N−k? ] is

complete. It follows that g? is a k?-regular network. Second, by the arguments presented before

the proposition, an efficient network is a ke-regular network. Moreover, we have for 0 < k < n,

γ(k, k)− (η(k)−η(k−1)) = (k−1)(f2(k)−f2(k−1)). We have γ(k, k)− (η(k)−η(k−1)) ≥ 0,

since f2 is strictly increasing. Moreover, by definition of ke, we have η(ke)− η(ke − 1) ≥ 0. It

follows that we have γ(ke, ke) ≥ η(ke)− η(ke − 1) ≥ 0. We know that by definition of k?, we

have γ(k, k) < 0, for all k > k?. It follows that k? is at least equal to ke. Consequently, agents

in a ke-regular network have no incentive to remove a link.

In Part (c) we establish that if γ(ke, ke)−γ(ke+1, ke+1) < (ke−1)(f2(ke)−f2(ke−1)), then

the efficient network is not pairwise stable. We have γ(ke + 1, ke + 1)− (η(ke)− η(ke − 1)) =

γ(ke + 1, ke + 1)− γ(ke, ke) + γ(ke, ke)− (η(ke)− η(ke − 1)) > (ke − 1)(f2(ke − 1)− f2(ke))−

(ke − 1)(f2(ke − 1) − f2(ke)) = 0. By construction, η(ke) − η(ke − 1) ≥ 0. It follows that

γ(ke + 1, ke + 1)− (η(ke)− η(ke − 1)) > 0 implies γ(ke + 1, ke + 1) > 0. Each agent in ge has
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an incentive to form an additional link. It follows that ge is not pairwise stable since it is not

complete. �

The intuition behind Part (b) is as follows. Let g? be the k?-regular network, and let

i, j, k be three agents such that g?ij = g?ik = 1 and g?kj = 0. If agents i deletes her link

with agent j, then agent k will benefit from this deletion, since her payoffs will increase by

f2(ni(g
?)−1)−f2(ni(g

?)). However, when i decides whether to delete her link with j in g?, she

does not take into account the positive externality that would accrue to k from the deletion of

this link.

7 Conclusion

In this paper, we study situations where agents form some mutual informal insurance arrange-

ments on their own. More precisely, we examine when agents will create agreements with their

neighbors concerning the following transfer scheme: each agent helps her neighbors who draw

the low income state when she herself draws the high income state and each agent is helped by

her neighbors who draw the high income state when she herself draws the low income state.

We find that efficient networks are either k-regular networks, or almost-k-regular networks. In

other words, only networks where agents obtained a very similar level of insurance are efficient

networks. By contrast, this is not always true for pairwise stable networks. Under certain

conditions they can be asymmetric, with those having the lowest levels of insurance always

connecting to each other, while those with the highest levels of insurance never forming any

links with each other.

Then, we introduce in the model two types of heterogeneity: an exogenous one, where agents

differ in their income and an endogenous heterogeneity where the costs of linking to an agent

depends on the number of links the latter has already formed in the network. We examine

the impact of these heterogeneities on stability and efficiency. We obtain several distinctive

results. In particular, when agents do not obtain the same income when they draw the high

income state, we show that the insurance mechanism may increase the gap between the ex-

pected well-being of high income potential people and the expected well-being of low income

potential people. Indeed, in some situation only agents who obtain the highest income when

they draw the high income form insurance links. Finally, we assume that the cost of each link
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depends on both agents involved in. This assumption implies that there exist three types of

agents, with regard to the number of links they form, in a pairwise network. Agents, who form

the highest number of links, do not form links together and agents, who form the smallest

number of links, are all linked together. In this context, we provide condition under which an

efficient network is not pairwise stable.
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8 Appendix

8.1 Proof of Proposition 1

To simplify notation, we extend bg(1, ·) to bg(1,−1) = 1 − exp[−ρ(Θ − (ni(g) + 1)δ)]. To

demonstrate Proposition 1, we need to compute the difference between Bi(g + ij) and Bi(g),

called ∆Bi(g, ij). We set P (ni(g), k) =
(ni(g)

k

)
pk(1− p)ni(g)−k. Proposition 1 follows Lemmas

1, 2 and 3.

Lemma 1 Suppose that the ENB function is given by equation (1). Then, the ENB function

is strictly increasing and strictly concave with the number of links formed.

Proof 1. We calculate the marginal expected benefits associated with the addition of a link.

We present successively the two situations which can arise when agent i forms an additional

link with agent j in g.

Suppose j draws state 1. This occurs with probability p. Then the benefits obtained by agent

i when she forms a link with agent j is(
p
∑ni(g)

k=0 P (ni(g), k)bg(1, k)
)

+
(

(1− p)
∑ni(g)

k=0 P (ni(g), k)bg(0, k + 1)
)

26



Suppose j draws state 0. This occurs with probability 1 − p. Then the benefits obtained by

agent i when she forms a link with j is(
p
∑ni(g)

k=0 P (ni(g), k)bg(1, k − 1)
)

+
(

(1− p)
∑ni(g)

k=0 P (ni(g), k)bg(0, k)
)

We set ∆bg(0, k + 1) = (exp[−ρδ])k(1 − exp[−ρδ]) > 0, and ∆bg(1, k) = (exp[ρδ])ni(g)−k

exp[−ρΘ](exp[ρδ]− 1).

By using the binomial theorem and straightforward computations we obtain

∆Bi(g,ij)
p(1−p) =

∑ni(g)
k=0 P (ni(g), k)∆bg(0, k + 1)−

∑ni(g)
k=0 P (ni(g), k)∆bg(1, k)

= (1− exp[−ρδ])(1 + p(exp[−ρδ]− 1))ni(g)

−(exp[ρδ]− 1) exp[−ρΘ](exp[ρδ] + p(1− exp[ρδ]))ni(g)

= (1 + p(exp(−ρδ)− 1))ni(g)(1− exp(−ρδ))(1− exp(ρ(δ(ni(g) + 1)−Θ)).

(5)

We let

u = (1 + p(exp(−ρδ)− 1))ni(g); v = (1− exp(−ρδ)); w = (1− exp(ρ(δ(ni(g) + 1)−Θ)).

We have v > 0, w > 0 since (n− 1)δ < Θ, and u > 0 since

1 + p(e−ρδ − 1) > 0 ⇐⇒ p <
−1

e−ρδ − 1
=

1

1− e−ρδ
=

eρδ

eρδ − 1
= 1 +

1

eρδ − 1
,

which is always true. It follows that ∆Bi(g, ij) > 0. In other words, the expected neighborhood

benefits function of agent i is strictly increasing in the number of links formed by agent i.

2. We show that the expected neighborhood benefits function of agent i is strictly concave.

In order to prove this statement we need to assign a sign to the difference between the marginal

benefits. To obtain this result, we assume that agent i adds the link gik = 1 to the network

g + gij . Following the same steps as in Point 1. we have:

∆Bi(g+ij,ik)
p(1−p) = (1− exp[−ρδ])(1 + p(exp[−ρδ]− 1))ni(g)+1

−(exp[ρδ]− 1) exp[−ρΘ](exp[ρδ] + p(1− exp[ρδ]))ni(g)+1.
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We now determine the sign of the difference between ∆Bi(g + ij, ik) and ∆Bi(g, ij). We

observe that
(1 + p(exp[−αδ]− 1))ni(g)+1

(1 + p(exp[−αδ]− 1))ni(g)
= 1 + p(exp[−αδ]− 1 < 1,

and
(exp[αδ] + p(1− exp[αδ]))ni(g)+1

(exp[αδ] + p(1− exp[αδ]))ni(g)
= (1− p) exp[αδ] + p > 1.

It follows that ∆Bi(g + ij, ik)−∆Bi(g, ij) < 0.

�

Lemma 2 Suppose that the ENB function is given by equation (1). The marginal ENB func-

tion of agent i increases with Θ.

Proof By inspecting the proof of Lemma 1, we know that ∆Bi(g, ij) is equal to

∆Bi(g, ij) = p(1− p)(1− exp[−ρδ])(1 + p(exp[−ρδ]− 1))ni(g)

−p(1− p)(exp[ρδ]− 1) exp[−ρΘ](exp[ρδ] + p(1− exp[ρδ]))ni(g).

(6)

From this we have:

∂∆Bi(g, ij)

∂Θ
= ρp(1− p)(exp[ρδ]− 1) exp[−ρΘ](exp[ρδ] + p(1− exp[ρδ]))ni(g)−1 > 0.

This completes the proof. �

Lemma 3 Suppose that the ENB function is given by equation (1). The marginal ENB func-

tion increases with p iff p > p̃.

Proof By inspecting the proof of Lemma 1, we have ∆Bi(g, ij) = p(1− p)(1 + p(exp(−ρδ)−

1))ni(g)vw. Let ϕ : p 7→ p(1− p)(1 + p(exp(−ρδ)− 1))ni(g)vw. We have

ϕ′(p) = vw
(

(1− 2p)u+ p(1− p)ni(g) (1 + p(exp(−ρδ − 1)))ni(g)−1 (exp(−ρδ − 1))
)
.

The sign of ϕ′(p) is the same as the sign of

(1− 2p)
(

1 + p(e−ρδ − 1)
)ni(g)

+ p(1− p)ni(g) (1 + p(exp(−ρδ − 1)))ni(g)−1 (exp(−ρδ − 1)),

which is quadratic in p, and therefore changes of sign at most 2 times between p = 0 and p = 1.

It is equal to 1, hence positive, at p = 0, and equal to − exp(−ρδ), hence negative, at p = 1.
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Then it changes of sign exactly one time between p = 0 and p = 1 (otherwise it would change

of sign three times), and there is a threshold p̃ such that p(1− p)F is increasing on [0, p̃) and

decreasing on (p̃, 1]. Note that at p = 1
2 , it is negative, so that p̃ < 1

2 . �

8.2 Proof of Proposition 2

To complete the proof, we need the following lemma. In this lemma we provide conditions that

ensure the existence of three kinds of networks that turn out to be quite useful subsequently.

Lemma 4 Let n and k be nonnegative integers with n > k.

1. Let n or k be even. Then, the sequence s = (k, . . . , k) is graphical.

2. Let n and k be odds. Then, the sequences s = (k, k, . . . , k, k + 1), s′ = (k, k, . . . , k, k − 1)

are graphical.

Proof We prove successively that the three sequences are graphical.

1. Suppose n or k is even. Let n > k > 0. Since either n, or k is even, the sum of the

sequence s = (k, k . . . , k) is even. Equation 3 can be written as

rk ≤ r(r − 1) +

n∑
i=r+1

min{k, r}, for every r, 1 ≤ r < n. (7)

There are two cases. Suppose r ≤ k. Then equation (7) is satisfied if

rk ≤ r(r − 1) + (n− r)r ⇒ k ≤ (r − 1) + (n− r)⇒ k ≤ n− 1.

This equation is always satisfied. Suppose r > k. Then equation (7) is

rk ≤ r(r − 1) + (n− r)k (8)

If k = n−1, then s = (n−1, . . . , n−1) is a graphical sequence since the complete network

supports this sequence. Similarly, if k = 0, then s = (0, . . . , 0) is a graphical sequence

since the empty network supports this sequence. We now deal with k, 0 < k < n − 1.

We have

r(r − 1) + (n− r)k − rk = r2 − r(1 + 2k) + nk =

(
r − 2k + 1

2

)2

+ nk −
(

2k + 1

2

)2

.
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Since nk ≥ (k+2)k = (k+1)k+k and
(

2k+1
2

)2
= (k+1)k+1/4, we have nk−

(
2k+1

2

)2 ≥ 0,

for 0 < k < n− 1.

2. Suppose n and k are odd, with n− 1 > k > 0 (k 6= n− 1 since k and n are odd). Since

n is odd, n − 1 is even and since k is odd, k + 1 is even. Consequently, the sum of the

sequence s = (k + 1, k . . . , k) is even.

For r = 1, equation (3) is satisfied since k + 1 ≤ (n − 1) for 0 < k < n − 1. For r ≥ 2,

equation (3) is equal to

k + 1 + (r − 1)k ≤ r(r − 1) +
n∑

i=r+1

min{k, r}, for every r, 2 ≤ r < n. (9)

There are two cases. (1) Suppose r ≤ k, with k ≤ n− 2, and r ≥ 2. Then equation (9) is

k + 1 + (r − 1)k ≤ r(r − 1) + (n− r)r ⇒ k ≤ (r − 1) + (n− r)− 1

r
⇒ k ≤ (n− 1)− 1

r
.

This equation is always satisfied since k < n − 1 and 1/r < 1 for r > 2. (2) Suppose

r > k. Then equation (9) is

rk + 1 ≤ r(r − 1) + (n− r)k. (10)

We first deal with the case where k = n− 2. In that case r = n− 1. Therefore, we have:

(n− 1)(n− 2) + 1 ≤ (n− 1)(n− 2) + n− 2,

and since n ≥ 3, this equation is always satisfied. We now deal with k < n− 2, we have

r(r−1)+(n−r)k−rk−1 = r2−r(1+2k)+nk−1 =

(
r − 2k + 1

2

)2

+nk−
(

2k + 1

2

)2

−1.

Since nk ≥ (k + 3)k = (k + 1)k + 2k and
(

2k+1
2

)2
+ 1 = (k + 1)k + 5/4, we have

nk −
(

2k+1
2

)2 − 1 > 0, for 0 < k < n− 2.

3. Suppose n and k are odd. Since n is odd, n− 1 is even and since k is odd, k− 1 is even.

Consequently, the sum of the sequence s = (k, . . . , k, k− 1) is even. equation (3) is equal

to

rk ≤ r(r − 1) +

n−1∑
i=r+1

min{k, r}+ min{k − 1, r}, for every r, 1 ≤ r < n− 1. (11)
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There are two cases. (1) Suppose r ≤ k− 1, with k < n− 1 (k 6= n− 1 since n and k are

odd). Then equation (11) becomes

rk ≤ r(r − 1) + (n− r)r, for every r, 1 ≤ r < n.

We have already shown in point 1., equation (8), that this equation is always satisfied.

(2) Suppose r > k − 1. Then equation (11) becomes

rk ≤ r(r − 1) + (n− r)k − 1⇒ rk + 1 ≤ r(r − 1) + (n− r)k. (12)

We first deal with the case where k = n− 2. In that case either r = n− 1, or r = n− 2.

We have shown in point 2., equation (10), that the previous equation is satisfied when

r = n− 1 and k = n− 2. If r = n− 2 and k = n− 2, we have

(n−2)(n−2)+1 ≤ (n−2)(n−3)+2(n−2)⇒ (n−2)(n−2)+1 ≤ (n−2)(n−2)+(n−2).

This equation is always satisfied since n ≥ 3. Finally, we have shown in point 2. equation

(10), that equation (12) is satisfied when 0 < k < n− 2.

�

Lemma 5 Network g is pairwise stable if and only if N 6=k?(g) = N−k?(g) and g[N 6=k? ] is complete.

Proof First, we show the only if part. Let g be a pairwise stable network. If an agent i

has formed more than k? links in g, then g is not a pairwise stable since k? ∈ arg max{Φ(k) :

k ∈ {0, . . . n− 1}}, and agent i has an incentive to remove a link. Similarly, if there exist two

unlinked agents i and j who have formed less than k? links in g, then g is not a pairwise stable

network since i and j have an incentive to form a link together. It follows that N 6=k?(g) = N−k?(g)

and g[N 6=k? ] is complete.

Second, we show the if part. Suppose that N 6=k?(g) = N−k?(g) and g[N 6=k? ] is complete. Since

agents j ∈ N−k?(g) form k? links and k? ∈ arg max{Φ(k) : k ∈ {0, . . . , n−1}}, they do not have

any incentive to modify their strategy. Agents j ∈ Nk?(g) have no incentive to remove links

since ENB is strictly concave by Proposition 1. Agents j ∈ N 6=k?(g) cannot form additional

links since g[N 6=k? ] is complete and agents j′ ∈ Nk?(g) have no incentive to form additional

links. It follows that g is pairwise stable. �
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Lemma 6 Suppose that the benefits function is given by equation 1. If n or k? are even, then

k?-regular networks are pairwise stable. If n and k? are odd then, k?−-regular networks are

pairwise stable.

Proof First, we assume that n or k? are even. By Lemma 4, the sequence of degrees

s = (k?, k? . . . , k?) is graphical: we can build a k?-regular-network, g. In k?-regular-networks

every agent i ∈ N obtains the maximum of {Φ(k) : k ∈ {0, . . . , n − 1}}: she has no incentive

to modify its number of links. Therefore, g is pairwise stable.

Second, assume that n and k? are odd. By Lemma 4, the sequence of degrees s = (k? −

1, k?, . . . , k?) is graphical: we can build a k?−-regular-network, g. In g every agent i ∈ Nk?(g)

obtains the maximum of {Φ(k) : k ∈ {0, . . . , n− 1}} and agent i, who forms k? − 1 links in g,

cannot find a partner to form an additional link. Moreover due to the strict concavity of Φ,

agent i has no incentive to remove a link. It follows that g is pairwise stable. �

Lemma 7 Suppose that the ENB is given by equation 1.

(a) Suppose n or k? are even, then k?-regular networks are the unique efficient networks.

(b) Suppose n and k? are odd.

(i) If Φ(k?+1) < Φ(k?−1), then k?−-regular networks are the unique efficient networks.

(ii) If Φ(k?+1) > Φ(k?−1), then k?+-regular networks are the unique efficient networks.

Proof Suppose that n or k? are even. By Lemma 4, k?-regular networks exist. In a k?-regular

network g, each agent maximizes its expected payoffs. It follows that g is efficient. Suppose

that n and k? are odd. By Theorem 1, it is not possible to build a k?-regular network. By

Lemma 4, k?+-regular networks and k?−-regular exist. In an almost-k?-regular network g, each

agent except one, say i, maximizes its expected payoffs. Since i cannot form k? links and

Φ is strictly concave, she maximizes her payoffs when she forms k? + 1 or k? − 1 links. If

Φ(k? + 1) < Φ(k? − 1), then the agent, who has not formed k? links, forms k? − 1 links in an

efficient network; this agent forms k? + 1 links in an efficient network if Φ(k? + 1) > Φ(k?− 1).

�

Proof of Proposition 2 We prove successively the different parts of the Proposition. First,

we show Part (a) of the proposition. By Lemma 6, we know that there always exists a
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pairwise stable network. Part (b) of the proposition follows Lemma 5. Parts (c) and (d) of

the proposition follow Lemmas 6 and 7. Part (e) of the proposition follows Proposition 1 and

the proof of Lemma 1. Indeed, we know by Proposition 1 that the ENB function is strictly

increasing. By inspecting the proof of Lemma 1, we observe that the inequality ∆Bi(g, ij) > 0

is always true. It follows that if F = 0, then the complete network is the unique pairwise

stable network.

�

8.3 Proof of Proposition 3

We establish part (b) of the proposition by using similar arguments as in Lemma 5. We now

show part (c) and (d).

Part (c). Suppose that Nx is even and kx < |Nx| for x ∈ {Θ,Θ′}. Then, by Lemma 4,

for all kΘ and kΘ′
it is possible to build two sub-networks g[NΘ] and g[NΘ′

] in g that

are kΘ-regular and kΘ′
-regular respectively. Hence, we build network g such that g[NΘ]

and g[NΘ′
] in g are kΘ-regular and kΘ′

-regular respectively and where there is no link

between agents in NΘ and agents in NΘ′
in g. Since each agent i ∈ N maximizes

{Φx(k) : k ∈ {0, . . . n − 1}}, x ∈ {Θ,Θ′} in g, i has no incentive to modify her strategy

and no pair of agents has an incentive to add a link: g is pairwise stable. Moreover, since

each agent maximizes {Φx(k) : k ∈ {0, . . . n− 1}}, x ∈ {Θ,Θ′}, g is an efficient network.

Part (d). Suppose that Nx is odd and kx < |Nx| for x ∈ {Θ,Θ′}. We deal with three

possibilities successively.

(i) Suppose that kΘ and kΘ′
are even. By Lemma 4, it is possible to build two sub-

networks g[NΘ] and g[NΘ′
] in g that are kΘ-regular and kΘ′

-regular respectively.

Again, we build network g such that g[NΘ′
] in g that are kΘ-regular and kΘ′

-regular

respectively and where there is no link between agents in NΘ and agents in NΘ′
in

g. Since each agent i ∈ N obtains the maximum of {Φx(k) : k ∈ {0, . . . n − 1}},

x ∈ {Θ,Θ′}, i has no incentive to modify her strategy and no pair of agents has an

incentive to add a link: g is pairwise stable. Moreover, since each agent obtains the

maximum of {Φx(k) : k ∈ {0, . . . n− 1}}, x ∈ {Θ,Θ′}, g is an efficient network.
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(ii) Suppose that kΘ and kΘ′
are odd. Then by Lemma 4 it is possible to build two sub-

networks g[NΘ] and g[NΘ′
] in g that are kΘ

−-regular and kΘ′
− -regular respectively. Let

ix, x ∈ {Θ,Θ′}, be the agent who forms kx− 1 links in g[Nx]. We build the network

g such that g[NΘ] and g[NΘ′
] in g that are kΘ

−-regular and kΘ′
− -regular respectively

and where there is a link between agents iΘ and iΘ′ . Each agent i ∈ N obtains the

maximum of {Φx(k) : k ∈ {0, . . . n− 1}}, x ∈ {Θ,Θ′}. Therefore g is pairwise stable

and efficient.

(iii) Suppose that kx, x ∈ {Θ,Θ′}, is odd and ky, y ∈ {Θ,Θ′} \ {x}, is even. Then by

Lemma 4 it is possible to build network g which contains two sub-networks g[Nx]

and g[Ny] in g that are kx−-regular and ky-regular respectively. By using the same

argument as in Lemma 7, we establish that g is pairwise stable.

Part (a) of the proposition follows parts (c) and (d).

We now establish part (e) of the proposition. By Proposition 1 (b), we know that the marginal

expected payoff function associated with each link k is higher for agents in NΘ than agents

in NΘ′
. By Proposition 1 (a), the ENB function is concave: the maximal marginal payoff is

associated with the first link formed by a player. Consequently, (ΦΘ(1)−ΦΘ(0))− (ΦΘ′
(k)−

ΦΘ′
(k− 1)) > 0, for k ∈ {1, . . . , n− 1} and there exists F such that (ΦΘ(1)−ΦΘ(0)) > F and

ΦΘ′
(1)− ΦΘ′

(0) < F .

8.4 Proof of Proposition 5

Lemma 8 Suppose that the payoff function satisfies equation 4. There always exists a pairwise

stable network.

Proof In the following, we assume that k? 6= 0, otherwise the empty network is pairwise

stable. Let n or k? be even. We build a k?-regular network, gk
?

where all agents form k? links.

We know by Lemma 4 that gk
?

exists. We now show that gk
?

is pairwise stable. First, no

agent has a strict incentive to remove a link since by construction γ(k?, k?) ≥ 0 in gk
?
. Second,

no agent has an incentive to add a link since γ(k? + 1, k? + 1) < 0 in gk
?
. Therefore gk

?
is a

pairwise stable network.

Suppose now that n and k? are odd. There are two possibilities
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(i) Suppose γ(k?+1, k?) ≥ 0 and γ(k?, k?+1) ≥ 0. By Lemma 4, the sequence (k?, . . . , k?, k?+

1) is graphical. We build the network g where one agent, say i, forms k? + 1 links and

all other agents form k? links. By Lemma 4, the network g exists. First, we establish

that there is no pair of agents who have simultaneously an incentive to add a link. More

precisely, we establish that the (n − 1) agents in Nk?(g) have no incentive to form an

additional link. By definition no agent i ∈ Nk?(g) has an incentive to form a link with

an agent j ∈ Nk?(g) since γ(k? + 1, k? + 1) < 0. Similarly, no agent j′ ∈ Nk?(g) has an

incentive to form a link with agent i ∈ N+
k?(g) since γ(k+ 1, k+ 2) < γ(k+ 1, k+ 1) < 0;

the first inequality follows the fact that γ is strictly decreasing in its two arguments.

Second, we establish that no agent has an incentive to remove a link. By using the same

arguments as in the case where n or k are even, we know that no agent j in Nk?(g)

has an incentive to delete a link she forms with a member of Nk?(g). Similarly, since

γ(k? + 1, k?) ≥ 0 agent i ∈ N+
k?(g) has no incentive to remove one of her links. Finally,

since γ(k?, k? + 1) ≥ 0 no agent j ∈ Nk?(g) has an incentive to remove the link she forms

with i ∈ N+
k?(g) in g. It follows that g is pairwise stable.

(ii) Suppose γ(k? + 1, k?) < 0 or γ(k?, k? + 1) < 0. We consider network g where one agent,

say i, forms k? − 1 links and all other agents form k? links. By Lemma 4, the sequence

(k?−1, k?, . . . , k?) is graphical. Since γ(k?+1, k?+1) < 0, no unlinked agents j ∈ Nk?(g)

and j′ ∈ Nk?(g) have an incentive to form a link together. If agent i ∈ N−k?(g) forms a

link with agent j ∈ Nk?(g), then i obtains a marginal payoff associated with this link

equal to γ(k?, k? + 1), while j obtains a marginal payoff associated with this link equal

to γ(k? + 1, k?). By assumption, min{γ(k?, k? + 1), γ(k? + 1, k?)} < 0. Therefore agent

i or agent j has no incentive to form this link. Moreover, by using similar arguments as

in (i) no agent has an incentive to remove one of her links. It follows that g is pairwise

stable.

Since there exists a pairwise equilibrium network when n or k? is even, and there exists a

pairwise equilibrium network when n and k? are odd, there always exists a pairwise equilibrium

network. �

Proof of Proposition 5. By Lemma 8, we establish Part (a) of the proposition. We show

part (b) of the proposition. Let g be a pairwise stable network. To introduce a contradiction,
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suppose that g does not satisfy g[N+
k? ] is empty and g[N−k? ] is complete. First, suppose that

g[N+
k? ] is not empty. Then, there exist agents i, j ∈ N+

k?(g) who have formed a link together.

We have γ(ni(g), nj(g)) ≤ γ(k? + 1, nj(g)) ≤ γ(k? + 1, k? + 1) < 0 since γ is decreasing in

its two arguments and ni(g), nj(g) ≥ k?. Consequently, agents i and j have an incentive

to remove the link they have formed together and g is not pairwise stable, a contradiction.

Suppose that g[N−k? ] is not complete. Then there exist i, j ∈ N−k?(g) who have not formed a

link together. Let ki and kj be the number of links formed by i and j respectively in g. We

have γ(ki, kj) ≥ γ(k? + 1, kj) ≥ γ(k?, k?) > 0 since γ is decreasing in its two arguments and

ki, kj ≤ k?. Consequently, agents i and j have an incentive to form a link together and g is not

pairwise stable, a contradiction. Suppose now that γ(k?, k? + 1) < 0. Toward a contradiction,

suppose g[N+
k? ] 6= ∅, and let agent i belong to g[N+

k? ]. Since γ(k?, k?+1) < 0 and γ is decreasing

in its second argument, agents who have formed k? links have not formed a link with agent i

in g. Moreover, by definition of k?, we know that agent i has not formed links with agents who

have formed k > k? links in g. Therefore, all the neighbors of agent i in g have formed k < k?

links. Moreover, we know that agents, who have formed k < k? links in g, have formed links

together. Therefore, these agents are less than k?. Consequently the number of neighbors of

agent i is k < k? < ni(g), a contradiction.

We now show part (c). We consider agents i, i′, j and j′ such that ni′(g) ≤ ni(g) <

k? < nj′(g) ≤ nj(g). Suppose that there is a link between agents i and j. We have

γ(ni(g), nj(g)) ≥ 0 and γ(nj(g), ni(g)) ≥ 0. We have γ(ni′(g), nj′(g)) ≥ γ(ni(g), nj(g)) ≥ 0

and γ(nj′(g), ni′(g)) ≥ γ(nj(g), ni(g)) ≥ 0 since γ is strictly decreasing in its two arguments.

It follows that the link between i′ and j′ belong to g.

We now establish part (d) of the proposition. Suppose that |N+
k?(g)| ≥ n/2. Since agents in

N+
k?(g) have not formed links together, agents in N \ N+

k?(g) have formed at least (n/2)(k? +

1) links with agents in N+
k?(g). Then there is at least one agent in N+

k? who has formed

(|N+
k?(g)|/|N \ N+

k?(g)|)(k? + 1) links. Since (|N+
k?(g)|/|N \ N+

k?(g)|)(k? + 1) > k?, we obtain a

contradiction. We now establish that nM (g?)− nm(g?) ≤ |Nk?(g)|. By part (b) of the propo-

sition, we have nM (g) ≤ |Nk?(g) ∪ N−k?(g)| and nm(g) ≥ |N−k?(g)|. Since Nk?(g) ∩ N−k?(g) = ∅,

|Nk?(g)∪N−k?(g)| = |Nk?(g)|+ |N−k?(g)|. It follows that nM (g)−nm(g) ≤ |Nk?(g)|+ |N−k?(g)|−

|N−k?(g)| = |Nk?(g)|.
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