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Abstract: Industrial, business and financial catastrophes often have human

causes. In order to prevent such outcomes from occurring, governments, busi-

ness organizations and individuals a priori invest in risk management rules,

processes, technologies, and other safeguards aiming to alleviate the effects of

human failures. This paper investigates how these investments combine with

the incentive systems set afterwards. We find that, in both the first and the

second-best, the agent will be fully insured on the downside: her wealth stays

the same ex post, whether a bad or a very bad outcome realizes. We also show

that the principal’s safeguards investment and the agent’s effort are strategic

substitutes. These conclusions are subject to change, however, depending on

current regulatory constraints (such as limited liability, compensation caps or

due diligence requirements) and the agent’s endowed wealth.
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1. Introduction

In the presence of significant tail risks and threats of catastrophes, cost-bearing entities

typically invest in safeguards that will reduce the likelihood of disaster. Means of this sort

include sensors, cameras and other warning systems installed at industrial plants, build-

ings or homes to alert people about a fire or the leakage of some noxious substance, double

hulls equipping oil tankers in order to prevent spills, preventive bank rescue plans aiming

to stabilize financial markets and avoid an economic meltdown, constitutional checks and

balances meant to overcome a political body’s excesses or failures, and the calls for atten-

tion our brain will automatically send us if we are about to fail dangerously on a routine

task. When incentives are set in organizations or public policy, such safeguards often

exist already. This paper’s objectives are to examine (i) whether and how this matters

for incentive provision, (ii) what the upshot might be for the probability of disaster, and

(iii) how certain regulatory constraints (such as limited liability, caps on compensation,

and due diligence requirements) matter in this context.

We consider these issues using a static principal-agent model baring mostly standard

features (risk-averse agent, risk-neutral principal, unobservable agent effort) and three

specific traits: (i) the agent’s effort determines the probability of success or failure, (ii)

failure may lead to bad or very bad outcomes, (iii) the principal can invest in observable

safeguards which decrease the probability a failure results in disaster. This framework

departs from studies of dual moral hazard (e.g., Kim and Wang 1998), in which neither

the agent’s nor the principal’s effort are observable, or team work (e.g., Itoh 1993), in
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which both the agent and the principal can monitor each other’s effort perfectly. It is

also distinct from works that seek to compare control systems (e.g., Kim 1995), since

the safeguards we focus on here do not make the principal better or less informed. An

additional peculiarity of our model is to endow the agent with certain assets whose value

might be affected by the outcome; this allows to examine cases where the agent’s stakes

on the downside are either similar or opposed to those of the principal

In both the first and the second-best, we first find that the agent will be fully insured

on the downside: her wealth stays the same ex post, whether a bad or a very bad outcome

realizes. This provides a rationale for bailing out financial institutions that generate sys-

temic risk. This conclusion may change, however, if some regulatory (or social) constraint

imposes a cap on the agent’s compensation in the event of a catastrophe. We also find that

the principal’s safeguards investment and the agent’s effort are strategic substitutes. This

corroborates the current literature (e.g., Daniélsson et al. 2002, Zardkoohi et al. 2016).1

The strength of this relationship, though, and the ensuing probability of a disaster, vary

according to regulation and the agent’s endowment.

The rest of the paper is organized as follows. The following section introduces our

mathematical notations and develops the basic model. Section 3 shows, presents and

discusses our main results. The effect of widespread regulatory constraints such as lim-

ited liability, compensation caps and due diligence are considered in Sections 4, 5 and 6

respectively. Section 7 contains our concluding remarks.

1 A notable exception is Schwartz (2016).
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2. The model

Consider a principal (P) - say a regulator, a business firm, a representative voter, or the

reflective part of the brain2 - who must rely on an agent (A) - say, respectively, a financial

institution, an executive or employee, an elected official, or the impulsive part of the brain

- to achieve a good state 1. Realizing 1 with probability  costs the agent (). Missing

1, however, leads to bad or very bad states 2 and 3 with respective probabilies (1−)

and (1 − )(1 − ), where  ∈ [0 1] captures the effectiveness of the risk management

devices, or safeguards, the principal previously implemented at cost ().

Let 1, 2 and 3 represent transfers from the principal to the agent in states 1, 2

and 3 respectively. The value functions write

 ( ; ()) = (1 − 1) + (1− )(2 − 2) + (1− )(1− )(3 − 3)− ()

for the principal, and

( ; ()) = (1 + 1) + (1− )(2 + 2) + (1− )(1− )(3 + 3)− ()

for the agent, where  (resp. ) denotes the value of the principal’s (resp. the agent’s)

assets in state  and  : → R is the agent’s utility function.

Thereafter, we have 1  2  3. We also take  as an interval of real numbers,

and assume that  is increasing, concave and twice continuously differentiable. The

cost functions  and , furthermore, are supposed to be strictly increasing, convex and

twice continuously differentiable on the interval [0 1]; their first derivatives are such that

0(0) = 0(0) = 0 and 0() 0() → ∞ as   → 1. Altogether, these assumptions

ensure that optimal values for  and  exist, are unique, and lie strictly between 0 and 1.

2 For the arguments drawn from neurobiology which support a principal-agent representation of the

brain, see Brocas and Carrillo (2008).
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3. Main results

Let us now first examine the first-best allocation. We shall next compare it with the

second-best one.

3.1. The first-best

At the first-best, the principal will set probabilities and transfers that maximize  while

insuring that the agent is willing to participate. This boils down to solving the following

problem:

max
()

 ( ; ())

s.t. ( ; ()) ≥ 0

The corresponding Lagrangean function is given by

L( ; ()) =  ( ; ()) + ( ; ())

where  is the (non-negative) multiplier associated with the constraint. The first-order

conditions for the optimal transfers ∗1 
∗
2 and ∗3 are then respectively given by

3

L

1
= −+ 0(1 + 1) = 0 so 0(1 + 1) =

1


, (1)

L

2
= −(1− ) + (1− )0(2 + 2) = 0 so 0(2 + 2) =

1


, (2)

L

3
= −(1− )(1− ) + (1− )(1− )0(3 + 3) = 0 so 0(3 + 3) =

1


.(3)

It follows that

1 + ∗1 = 2 + ∗2 = 3 + ∗3 ; (4)

the agent thus receives the same payoff in every states and is thereby fully insured.4

3 Provided, of course, that 0  ∗ ∗  1, and that   0 (so ( ; ()) = 0).

4 Note that this outcome does not depend on the agent’s being risk averse.
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Using (4), the first-order conditions for the optimal probabilities ∗ and ∗ are now

respectively

L


= (1−1)−[(2−2)+(1−)(3−3)]+{(1+1)−[(2+2)+(1−)(3+3)]}−0() = 0

which reduces to

(1 − 1)− [(2 − 2) + (1− )(3 − 3)] = 0() , and (5)

L


= (1− ){[(2 − 2)− (3 − 3)] + [(2 + 2)− (3 + 3)]}− 0() = 0

which reduces to

(1− )[(2 − 2)− (3 − 3)] = 0() . (6)

According to (5), the optimal probability ∗ is then such that the marginal cost for the

agent of delivering this likelihood of success equals the marginal benefit to the principal.

The agent thus completely internalizes the principal’s preferences. These observations are

summarized in the following statement.

Proposition 1. In the first best, the risk-averse agent is fully insured by the risk-neutral

principal, i.e. her wealth stays the same whatever the outcome. The agent sets her effort

 so that her marginal cost equals the principal’s marginal benefit.

We shall comment further on this, and on expression (6), in the next subsection.

3.2. The second-best

At the second-best, the principal adopts safeguards of effectiveness • and offers the agent

contingent transfers •1 
•
2 and 

•
3 which maximize  , acknowledging that the agent will

thereafter set a probability of success • that maximizes  and accept this contract only
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if the resulting expected value is above 0. This amounts to solving the following problem:

max
()

 (• ; ())

s.t. • = argmax


( ; ())

(• ; ()) ≥ 0

The above assumptions allow to replace the first constraint - the incentive constraint

- by the first-order condition for •, which is

(1 + 1)− [(2 + 2) + (1− )(3 + 3)] = 0() . (7)

The principal’s problem is then equivalent to the relaxed program

max
()

 ( ; ())

s.t. (1 + 1)− [(2 + 2) + (1− )(3 + 3)] = 0() (8)

( ; ()) ≥ 0

The Lagrangean associated with problem (8) is given by

L( ; ()) =  ( ; ())+{(1+1)−[(2+2)+(1−)(3+3)]−0()}+( ; ())

where  and  are the (non-negative) multipliers associated with the first (so-called

‘incentive-compatibility’) and the second (so-called ‘participation’) constraint respectively.

Transfers •1 
•
2 and •3 which solve (8) must satisfy the first-order conditions

L

1
= −+ 0(1 + 1) + 0(1 + 1) = 0

L

2
= −(1− ) − 0(2 + 2) + (1− )0(2 + 2) = 0

L

3
= −(1− )(1− )− (1− )0(3 + 3) + (1− )(1− )0(3 + 3) = 0
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These equations are respectively equivalent to

1

0(1 + 1)
= +




(9)

1

0(2 + 2)
= − 

1− 
(10)

1

0(3 + 3)
= − 

1− 
(11)

Since  is concave and the multipliers  and  are non-negative, we then have that

1 + •1  2 + •2 = 3 + •3 . (12)

The principal will thus fully insure the agent against lower-tail risk. This was also the case

in the first-best, but the agent now rather gets a premium if the good state is reached. This

result does not depend on whether or not the agent is downside risk-averse, or prudent.5

Proposition 2. In the second best, the risk-averse agent gets a premium if the best

outcome is achieved. She is also fully insured by the risk-neutral principal, i.e. her wealth

stays the same, across all lower-tailed (either bad or very bad) results.

Note that the wages themselves need not increase with the principal’s valuation of

states. For instance, if the agent suffers as well in state 3, i.e. 2  3, then meeting the

equality in (12) implies that •2  •3 .

Taking stock of the relationships in (12), furthermore, the agent’s incentive constraint

(7) becomes

(1 + •1)− (2 + •2) = 0(•) . (13)

5 Formally, someone is prudent when her marginal utility function is strictly convex (Kimball 1990). A

prudent decision maker dislikes mean and variance-preserving transformations that skew the distribution

of outcomes to the left (Menezes et al. 1980). Equivalently, she prefers additional volatility to be

associated with good rather than bad outcomes (Eeckhoudt and Schlesinger 2006). Note that prudence

is strictly finer than risk aversion: as Crainich et al. (2013) show, risk lovers can be prudent while risk

avoiders may not be.
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Observe that the principal’s safeguards are not explicitly present here; they remain im-

plicit, though, through the multipliers  and  which serve to determine the optimal

transfers.

Comparing (5) and (13), one can see that, if the difference 1− 2 is big enough, then

•  ∗, so the agent’s second-best effort is lower than it would be in the first-best.

Turning to the principal’s optimal choice of safeguards •, under program (8) it will

satisfy the first-order condition

L


= (1−)[(2−2)−(3−3)]−[(2+2)−(3+3)]+(1−)[(2+2)−(3+3)]−0() = 0

This, by (12), comes down to

(1− •)[(2 − •2)− (3 − •3)] = 0(•) . (14)

In the benchmark case where the agent does not have any assets, i.e. 1 = 2 = 3 = 0,

we have that ∗1 = ∗2 = ∗3 and 
•
2 = •3. Comparing expressions (6) and (14) with 

• 

∗ then implies that ∗  •. The principal would therefore make greater investments in

safaguards in the second-best, thereby compensating for the agent’s subsequent selection

of a lower probability of success.

Proposition 3. In the second best, the principal’s optimal choice of safeguards • and

the agent’s selected effort level • are strategic substitutes: the principal’s greater (lower)

investments in safeguards has the agent deliver a lower (greater) probability of success.

How strongly • and • can move in opposite directions, however, depends on the

relative magnitude of 2 and 3. Using (12), the relationship in (14) becomes

(1− •)[(2 + 2)− (3 + 3)] = 0(•) . (15)
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If 2  3, for instance (so the agent’s stakes on the downside are the opposite of the

principal’s), the factor [(2 + 2) − (3 + 3)] is then smaller, so • will adjust more

following a change in •. The opposite conclusion holds of course if 2 ≥ 3 (in which case

the principal and the agent face similar downside stakes).

The next three sections will now examine how certain regulatory constaints might

affect the present conclusions.

4. Limited liability

Having in mind the case of a regulator and a bank, or that of a firm and an executive or

employee, let the law impose a lower bound on compensation (so the penalties that can be

inflicted to the agent). Without loss of generality, the principal’s problem, as expressed

in (8), must now include the additional contraints

1 ≥ 0 (16)

2 ≥ 0 (17)

3 ≥ 0 (18)

The new Lagrangean function associated with this problem is given by

L( ; ()) =  ( ; ()) + {(1 + 1)− [(2 + 2) + (1− )(3 + 3)]− 0()}

+( ; ()) + 11 + 22 + 33

where 1, 2, 3 are the (non-negative) multipliers associated with constraints (16), (17)

and (18) respectively.

Optimal compensation will satisfy the first-order conditions
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L

1
= −+ 0(1 + 1) + 0(1 + 1) + 1 = 0

L

2
= −(1− ) − 0(2 + 2) + (1− )0(2 + 2) + 2 = 0

L

3
= −(1− )(1− )− (1− )0(3 + 3) + (1− )(1− )0(3 + 3) + 3 = 0

These equations are respectively equivalent to

− 1
0(1 + 1)

=  +



(19)

(1− ) − 2
(1− ) 0(2 + 2)

=  − 

1− 
(20)

(1− )(1− )− 3
(1− )(1− )0(3 + 3)

=  − 

1− 
(21)

Since the agent’s incentive constraints (7) remains the same here, we may suppose

that 
1  

2 and 
3 . Hence 1 = 0, and (19) reduces to

1

0(1 + 1)
=  +




. (22)

In view of (20) and (21), though, the agent may not be fully insured anymore against

downside contingencies if 2  0 (so 2 = 0) or 3  0 (so 3 = 0).

5. Caps on compensation

It might happen that the regulator or the firm (bending perhaps to political pressure), or

even the brain (subject to negative emotions such as remorse or shame), would set a cap

on the amount the agent can receive if a catastrophe happens. The following constraint

is then added to the principal’s problem, as expressed in (8):

3 ≤  (23)
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The Lagrangean function now writes

L( ; ()) =  ( ; ()) + {(1 + 1)− [(2 + 2) + (1− )(3 + 3)]− 0()}

+ · ( ; ()) +  · ( − 3)

where  is the (non-negative) multiplier associated with constraint (23).

The first-order conditions on optimal incentive pay are given by

L

1
= −+ 0(1 + 1) + 0(1 + 1) = 0

L

2
= −(1− ) − 0(2 + 2) + (1− )0(2 + 2) = 0

L

3
= −(1− )(1− )− (1− )0(3 + 3) + (1− )(1− )0(3 + 3)−  = 0

These equations respectively reduce to

1

0(1 + 1)
=  +




(24)

1

0(2 + 2)
=  − 

1− 
(25)

(1− )(1− ) + 

(1− )(1− )0(3 + 3)
=  − 

1− 
(26)

The upshot is that 1 + 

1  2 + •2, but the equality 2 + •2 = 3 + •3 is not

guaranteed if   0 (so  = ).

6. Due diligence

Assume, finally, that (in response to the law or as required by an insurance contract,

in the case of a firm; as mandated by the constitution, in a political context; or as a

personaly trait or developed through culture and training, in the case of the brain) the

principal’s safeguards are subject to some due diligence standards. The constraint

 ≥  (27)
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is then added to the principal’s problem expressed in (8).

The Lagrangean function is then

L( ; ()) =  ( ; ()) + {(1 + 1)− [(2 + 2) + (1− )(3 + 3)]− 0()}

+ · ( ; ()) +  · ( − )

with  the (non-negative) multiplier of constraint (27).

Optimal pay will meet the conditions

L

1
= −+ 0(1 + 1) + 0(1 + 1) = 0

L

2
= −(1− ) − 0(2 + 2) + (1− )0(2 + 2) = 0

L

3
= −(1− )(1− )− (1− )0(3 + 3) + (1− )(1− )0(3 + 3) = 0

These equations respectively reduce to

1

0(1 + 1)
=  +




(28)

1

0(2 + 2)
=  − 

1− 
(29)

1

0(3 + 3)
=  − 

1− 
(30)

The relationship

1 + 
1  2 + 

2 = 3 + 
3

thus holds, as in the second-best.

On the other hand, the principal’s optimal safeguards  must meet the first-order

condition

0 =
L


= (1− )[(2 − 2)− (3 − 3)]− [(2 + 2)− (3 + 3)]

+ (1− )[(2 + 2)− (3 + 3)]− 0() +  
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which comes down to

(1− )[(2 + 2)− (3 + 3)] +  = 0() . (32)

If   0 so the lower bound on safeguards is hit ( = ), it is then possible for  to

go up without any change in . The principal’s safeguards and the agent’s effort are

thus not any more strategic substitutes.

7. Conclusion

This paper investigated the relationship between incentive provision and the presence of

safeguards to mitigate downside risk. We found that, in both the first and the second

best, the agent should be fully insured agains downside risk. Also, the agent’s effort to

lower the probability of failure and the principal’s safeguards investment to alleviate the

impact of failure are strategic substitutes. These results must be qualified, however, in

the presence of limited liability, compensation caps or due diligence requirements.

One next step at this stage would be to modify the agent’s utility function according

to certain observations from behavioral economics or the economics of training. For

instance, one might think that the agent’s intrinsic motivation could be affected by the

amount of safeguards (a high amount would affect her morale, for it would be seen as

lack of confidence on the part of the principal). On the other hand, safeguards might

consist in investments in ergonomics which will decrease the agent’s marginal cost of

effort. Intuitively, the former will tend to reinforce safeguards as strategic substitutes

for the agent’s effort, while the latter would have the opposite effect. In both cases, the

resulting probability of catastrophe remains to be investigated.
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