The Determinants of the Decision to Join Terrorism.

Nicola Brugali*

Paolo Buonanno ${ }^{\dagger}$

Mario Gilli ${ }^{\ddagger}$

February 2017

Abstract

What are the individual, social, economic and political causes of terrorism? In the last years there have been many empirical analysis of these questions, however we believe a general theoretic model is still missing and it would significantly help empirical research and data interpretations. This paper is just a first attempt towards this aim, the construction of a general model that consider individual education, government responsiveness and economic development as possible factors in a general model of why individual agents might decide to use terrorism as a political strategy to try to reach their political aim. The above important empirical works focus on new sources of data examined in new ways, however the conclusions drawn from the evidence are partially contradictory and not always convincing, e.g. because they often are overly confident that correlations in the data have causal interpretations. As a result, although these works make real contributions to our understanding of the empirical landscape of terrorism, we remain partially skeptical without a theoretical model. The aim of the model is to study the determinants of the citizens and government decisions. As possible determinants we consider citizens' human capital, citizens political preferences and the population political heterogeneity, labour productivity as a measure of economic development, government responsiveness to political activism and government instability. In particular, using these exogenous variables we determine the dynamic of citizens decisions and its interaction with the amount of government repression.

Keywords: terrorism, protest, repression.
JEL classification:

[^0]
Contents

1 Introduction 3
2 The Model 4
2.1 The Structure of the Model 4
3 The Set of Equilibria 11
3.1 A possible separating equilibrium 11
3.1.1 Citizens' choices at the fifth stage 12
3.1.2 Government choice at the fourth stage 16
3.1.3 Terrorists' choices at the third stage 24
3.1.4 Citizens' choices at the second stage 28
4 Remarks on the results and conclusion 34

1 Introduction

What are the individual, social, economic and political causes of terrorism?
In the last years there have been many empirical analysis of these questions, ${ }^{1}$ however we believe a general theoretic model is still missing and it would significantly help empirical research and data interpretations. This paper is just a first attempt towards this aim, the construction of a general model that consider individual education, government responsiveness and economic development as possible factors in a general model of why individual agents might decide to use terrorism as a political strategy to try to reach their political aim.

The above important empirical works focus on new sources of data examined in new ways, however the conclusions drawn from the evidence are partially contradictory and not always convincing, e.g. because they often are overly confident that correlations in the data have causal interpretations. As a result, although these works make real contributions to our understanding of the empirical landscape of terrorism, we remain partially skeptical without a theoretical model.

Our model posits that terrorists are rational actors who attack for political ends. In particular terrorists are utility maximizers that use terrorism when the expected political gains minus the expected costs outweigh the net expected benefits of alternative forms of protest. In particular we two class of players: a continuum of citizens who can join the terrorism or the political activism to change government or can support the status quo, and the government that has to decide how much of the fiscal revenue can be used to repress terrorism. A crucial point of our model is that we consider incomplete information on the effectiveness of terrorism activity: only the citizens joining terrorism in the first period will learn the true state that they may signal to the other players in a separating equilibrium or may conceal in a pooling equilibrium. The reason to consider an incomplete information game is to take seriously terrorism as "Propaganda of the Deed", i.e. that terrorism activity not only want to increase the government costs to refuse either requests, it also want to recruit new converts claiming that their choice is the most effective.

The aim of the model is to study the determinants of the citizens and government decisions. As possible determinants we consider

1. citizens' human capital,
2. citizens political preferences and the population political heterogeneity
3. labour productivity as a measure of economic development

[^1]4. government responsiveness to political activism
5. government instability.

In particular, using these exogenous variables we determine the dynamic of citizens decisions and its interaction with the amount of government repression.

The paper proceeds as follows. Next section presents the structure of the model, then we present the results and their analysis, while the final section concludes explaining the relevance and the prospective of this approach. All the long calculations are in a online appendix.

2 The Model

2.1 The Structure of the Model

In the following notation the pedix denotes the role of the player while the apex denotes the time. The model we propose is sequential, where within each stage the agents play simultaneously and at the beginning of each stage all the players are informed of all the previous stage players' choices. The timing of the game is the following.

FIRST STAGE

Nature chooses the likelihood of a revolutionary outcome $\theta \in\{d,(1-d)\}$ with probability $\operatorname{Pr}\{\theta=d\}$;

SECOND STAGE

The citizens $i \in\{1, \ldots, P\}$ are uninformed on the likelihood of a revolutionary outcome $\theta \in\{d,(1-d)\}$ and they have to decide whether to join one of three different groups, terrorists, T^{1}, political activists, A^{1}, or conservative, C^{1}. Denote by N_{T}^{1}, N_{A}^{1}, and N_{A}^{1} the number of, respectively, terrorists, activists and conservatives at stage 1 as a consequence of individual decisions;

THIRD STAGE

- each $i \in T^{1}$ learn the true θ and then chooses the terrorism effort $E_{i}^{1} \in$ $\left\{0, H_{i}\right\}$ and thus the labour supply $L_{i}^{1}=H_{i}-E_{i}$, where $H_{i} \in[0,1]$ is the individual human capital equally affecting $i^{\prime} s$ productivity in both activities, terrorism and labour effort. W.l.g. the human capital is normalized. Finally, $i^{\prime} s$ income Y_{i} is determined by the production function $f(L)=\alpha L$, where $\alpha \in(0,+\infty)$ is the labour's productivity; hence from the usual budget constraint we get: $C_{i \in T}^{1}=(1-t) Y_{i \in T}^{1}$, where $t \in[0,1]$ is the tax rate;
- each $i \in A^{1}$ does not learn the true θ and chooses political effort $E_{i}^{1}=\frac{1}{2} H_{i}$ and labour supply $L_{i}^{1}=\frac{1}{2} H_{i}$. Again, $i^{\prime} s$ income Y_{i} is determined by the production function $f(L)=\alpha L$, hence from the usual budget constraint we get: $C_{i \in A}^{1}=\frac{1}{2} \alpha(1-t) H_{i}$;
- each $i \in C^{1}$ does not learn the true θ and then chooses political effort $E_{i}^{1}=$ 0 and labour supply $L_{i}^{1}=H_{i}$. Again, $i^{\prime} s$ income Y_{i} is determined by the production function $f(L)=\alpha L$, hence from the usual budget constraint we get: $C_{i \in C}^{1}=\alpha(1-t) H_{i}$;

FOURTH STAGE

The government G observes previous actions and then it chooses the amount of repression ρ or equivalently the tax rate t, subject to the public budget constraint: $t \sum_{i \in P} Y_{i}^{1}=\rho$;

FIFTH STAGE

The Citizens $i \in\{1, \ldots, P\}$ decide whether to join T^{2}, A^{2} or C^{2}; denote by N_{T}^{2}, N_{A}^{2}, and N_{C}^{2} the number of, respectively, terrorists, activists and conservatives at stage 2 as a consequence of individual decisions;

SIXTH STAGE

- each $i \in T^{2}$ chooses terrorist effort $E_{i}^{2}=H_{i}$ and labour supply $L_{i}^{2}=0$, hence from the usual budget constraint we get: $C_{i \in T}^{2}=0$;
- each $i \in A^{2}$ chooses political effort $E_{i}^{2}=\frac{1}{2} H_{i}$ and labour supply $L_{i}^{2}=\frac{1}{2} H_{i}$, hence from the usual budget constraint we get: $C_{i \in A}^{2}=\frac{1}{2} \alpha H_{i}$;
- each $i \in C^{2}$ chooses political effort $E_{i}^{2}=0$ and labour supply $L_{i}^{2}=H_{i}$, hence from the usual budget constraint we get: $C_{i \in C}^{2}=\alpha H_{i}$.

FINAL OUTCOMES

The game ends with the final outcome: there are two possible final outcomes, Revolution or Status Quo with probability, respectively, R and $1-R$.

The timing of the model is represented in figure 1:

The sequential structure of the game and the related players' information, i.e. the game form, is the most complex part of the model, while the players' payoff functions and the conflict technology are simplified to find a closed form solution.

PLAYERS' UTILITIES

The final outcome is associate to the following public payoff

$$
\Pi= \begin{cases}1 & \text { if Revolution } \\ 0 & \text { if status quo }\end{cases}
$$

that in turn affect the players' payoffs linearly, as follows:

1. the government payoff is

$$
U^{G}(\pi)=1-\Pi
$$

Figure 1:
2. the citizens payoffs are

$$
U_{i}(\pi)=C_{i}^{1}+C_{i}^{2}+\gamma_{i} \Pi .
$$

where

$$
\gamma_{i} \in\left[-\frac{m}{2} P, \frac{m}{2} P\right]
$$

is an individual parameter that describes a citizen's position towards revolution: higher γ_{i} means a high propensity for revolution, while lower γ_{i} denotes a taste for status quo.

THE CONFLICT TECHNOLOGY

The final crucial aspect of this model is the specification of how the players' choices affect the probability of Revolution:

$$
R=\min \left\{\theta\left[\left(1-\frac{\rho}{\sum_{i \in P} Y_{i}^{1}}\right) \frac{E_{T}^{1}+E_{T}^{2}}{P}+a \frac{E_{A}^{1}+E_{A}^{2}}{P}\right], 1\right\}
$$

This conflict technology is quite standard and it says in the simplest way that the probability of revolution increases linearly with the percentage of global terrorists' activity but its is reduced by governments repression. Also active participation to protests increases the likelihood of a revolution, however the effects of such protests is demoltiplicate by a parameter a. Finally this probability depends also on an unknown parameter θ : the higher θ, the greater is the probability of revolution for given terrorism effort, protest activity and government's repression.

Before deriving formally the game, we make the following hypotheses on the model's parameters.

Condition 1 The parameters of the model satisfy the following conditions

$$
\begin{gathered}
P \in\{1, \ldots, \infty\}, h_{J}^{\tau} \in[0,1], \theta \in\{d,(1-d)\}, d \in\left(0, \frac{1}{2}\right), \quad \operatorname{Pr}\{\theta=d\}=\frac{1}{2} \\
\alpha \in(0,+\infty), a \in(0 ; 1), \gamma_{i} \sim U\left[-\frac{m}{2} P, \frac{m}{2} P\right], \quad m \in(0,+\infty)
\end{gathered}
$$

where

1. $P \in\{1, \ldots, \infty\}$ is the population size;
2. $h_{J}^{\tau}:=\frac{1}{N_{J}^{\tau}} \sum_{i \in J^{\tau}} H_{i} \in[0,1]$ is the average human capital at period $\tau=1,2$ within group $J \in\{T, A, C\}$, and N_{J}^{τ} is the number of citizens $i \in P$ that join group $J \in\{T, A, C\}$ at period $\tau=1,2$;
3. $\theta \in\{d,(1-d)\}$ is the state of nature that measure the weakness of the government;
4. $(1-d) \in\left(\frac{1}{2}, 1\right)$ is a measure of the dispersion of opinions on the weakness of the government. Note that $E(\theta)=\frac{1}{2}$ since $\operatorname{Pr}\{\theta=d\}=\frac{1}{2}$;
5. $\alpha \in(0, \infty)$ is a measure of productivity which is correlated to the general economic situation;
6. $a \in(0 ; 1)$ is a measure of the effectiveness of activism to change the status quo;
7. γ_{i} is citizen's i marginal utility of the revolution;
8. $U\left[-\frac{m}{2} P, \frac{m}{2} P\right]$ is the uniform distribution on $\left[-\frac{m}{2} P, \frac{m}{2} P\right]$, thus $G\left(\gamma_{i}\right)=$ $\frac{1}{m P} \gamma_{i}+\frac{1}{2}$, hence
9. $m \in(0,+\infty)$ is a measure of the political heterogeneity in the population.

Some change in notation will help the following calculus. So let define
1.

$$
n_{J}^{\tau}=\frac{N_{J}^{\tau}}{P}
$$

as the proportion of citizens in group $J \in\{T, A, C\}$ at period $\tau \in\{1,2\}$;
2.

$$
e_{J}^{\tau}=\frac{\sum_{i \in J} E_{i}^{\tau}}{N_{J}^{\tau}}
$$

as the average effort of citizens within group $J \in\{C, T, A\}$ at period $\tau \in\{1,2\}$, so that

$$
E_{J}^{\tau}=P n_{J}^{\tau} e_{J}^{\tau}
$$

Using this notation, we can rewrite the public budget constraint as follows:

$$
t=\frac{\rho}{\sum_{i \in P} Y_{i}^{1}}=\frac{\rho}{\alpha P\left[\frac{1}{P} \sum_{i \in C^{1}} H_{i}+\frac{1}{2} \frac{1}{P} \sum_{i \in A^{1}} H_{i}+\frac{1}{P} \sum_{i \in T^{1}}\left(H_{i}-E_{i}^{1}\right)\right]}=\frac{\rho}{\alpha P l^{1}}
$$

where l^{1} is the average labour supply at period $\tau=1$ and thus αl^{1} is the average income. Hence, we can rewrite the probability of successful revolution as follows

$$
\begin{gathered}
R=\min \left\{\theta\left[(1-t) \frac{E_{T}^{1}+E_{T}^{2}}{P}+a \frac{E_{A}^{1}+E_{A}^{2}}{P}\right], 1\right\}= \\
=\min \left\{\theta\left[(1-t)\left(n_{T}^{1} e_{T}^{1}+n_{T}^{2} h_{T}^{2}\right)+\frac{1}{2} a\left(n_{A}^{1} h_{A}^{1}+n_{A}^{2} h_{A}^{2}\right)\right], 1\right\}
\end{gathered}
$$

remember that αl^{1} is endogenous since

$$
l^{1}=n_{C}^{1} h_{C}^{1}+\frac{1}{2} n_{A}^{1} h_{A}^{1}+n_{T}^{1}\left(h_{T}^{1}-e_{T}^{1}\right)
$$

Finally, we rewrite the players payoffs as follows.

PLAYERS' PAYOFFS

1. Government:

$$
U^{G}=1-R=1-\min \left\{\mathbb{E}_{G}(\theta)\left[(1-t)\left(n_{T}^{1} e_{T}^{1}+n_{T}^{2} h_{T}^{2}\right)+\frac{1}{2} a\left(n_{A}^{1} h_{A}^{1}+n_{A}^{2} h_{A}^{2}\right)\right], 1\right\}
$$

2. Citizens:

$$
\begin{gathered}
U_{i}=\gamma_{i} R+C_{i}^{1}+C_{i}^{2}= \\
=\gamma_{i} R_{-i}\left(t, \bar{n}_{T}^{1} \bar{e}_{T}^{1}, \bar{n}_{T}^{2} \bar{h}_{T}^{2}, \bar{n}_{A}^{1} \bar{h}_{A}^{1}, \bar{n}_{A}^{2} \bar{h}_{A}^{2} \mid \mathbb{E}_{i}(\theta)\right)+B_{i}\left(i^{1} \in J^{1}, i^{2} \in J^{2}, E_{i}^{1} \mid \mathbb{E}_{i}(\theta)\right)
\end{gathered}
$$

where

$$
\begin{gathered}
R_{-i}\left(t, \bar{n}_{T}^{1} \bar{e}_{T}^{1}, \bar{n}_{T}^{2} \bar{h}_{T}^{2}, \bar{n}_{A}^{1} \bar{h}_{A}^{1}, \bar{n}_{A}^{2} \bar{h}_{A}^{2} \mid \mathbb{E}_{i}(\theta)\right)= \\
=\min \left\{\mathbb{E}_{i}(\theta)\left[(1-t)\left(\bar{n}_{T}^{1} \bar{e}_{T}^{1}+\bar{n}_{T}^{2} \bar{h}_{T}^{2}\right)+\frac{1}{2} a\left(\bar{n}_{A}^{1} \bar{h}_{A}^{1}+\bar{n}_{A}^{2} \bar{h}_{A}^{2}\right)\right], 1\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
B_{i}\left(i^{1} \in J, i^{2} \in J, E_{i}^{1} \mid \mathbb{E}_{i}(\theta)\right)= \\
=\left\{\begin{array}{cl}
\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) E_{i}^{1}+\alpha(1-t)\left(H_{i}-E_{i}^{1}\right)+\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) H_{i} & \text { if } i^{1} \in T^{1}, i^{2} \in T^{2} \\
\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) E_{i}^{1}+\alpha(1-t)\left(H_{i}-E_{i}^{1}\right)+\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha H_{i} & \text { if } i^{1} \in T^{1}, i^{2} \in A^{2} \\
\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) E_{i}^{1}+\alpha(1-t)\left(H_{i}-E_{i}^{1}\right)+\alpha H_{i} & \text { if } i^{1} \in T^{1}, i^{2} \in C^{2} \\
\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha(1-t) H_{i}+\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) H_{i} & \text { if } i^{1} \in A^{1}, i^{2} \in T^{2} \\
\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha(1-t) H_{i}+\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha H_{i} & \text { if } i^{1} \in A^{1}, i^{2} \in A^{2} \\
\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha(1-t) H_{i}+\alpha H_{i} & \text { if } i^{1} \in A^{1}, i^{2} \in C^{2} \\
\alpha(1-t) H_{i}+\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) H_{i} & \text { if } i^{1} \in C^{1}, i^{2} \in T^{2} \\
\alpha(1-t) H_{i}+\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha H_{i} & \text { if } i^{1} \in C^{1}, i^{2} \in A^{2} \\
\alpha(1-t) H_{i}+\alpha H_{i} & \text { if } i^{1} \in C^{1}, i^{2} \in C^{2}
\end{array}\right.
\end{gathered}
$$

where $i^{1} \in\left\{T^{1}, A^{1}, C^{1}\right\}$ and $i^{2} \in\left\{T^{2}, A^{2}, C^{2}\right\}$ denotes $i^{\prime} s$ choice whether to join group $J^{\tau}=\left\{T^{\tau}, A^{\tau}, C^{\tau}\right\}$ in period $\tau \in\{1,2\}$ and

$$
\bar{n}_{J}^{\tau}=\frac{1}{P} \sum_{j \neq i, j=1}^{P} I_{\{j \in J\}} \text { and } \bar{h}_{J}^{\tau}=\frac{1}{P} \sum_{j \neq i, j=1}^{P} I_{\{j \in J\}} H_{j}
$$

where $I_{\{j \in J\}}$ is the indicator function for a citizen $j \in\{1, \ldots, P\}$ choice of group J, hence \bar{n}_{J}^{τ} and \bar{h}_{J}^{τ} denote, respectively, the percentage and the average human capital of citizens different from i that choose group $J^{\tau}=\left\{T^{\tau}, A^{\tau}, C^{\tau}\right\}$ in period $\tau \in\{1,2\}$. In particular, it is important to consider the citizens' continuation payoff, which by definition is different at different stages:

Fifth stage: Citizen's i 's continuation payoff is

$$
\begin{aligned}
& E V_{i}^{2}\left(i^{2} \mid \bar{n}_{T}^{2} \bar{h}_{T}^{2}, \bar{n}_{A}^{2} \bar{h}_{A}^{2} ; t, n_{T}^{1} e_{T}^{1}, n_{A}^{1} h_{A}^{1}, \mathbb{E}_{i}(\theta)\right)=B_{i}\left(i^{2} \in J^{2} \mid i^{1} \in J^{1}, E_{i}^{1}, t, \mathbb{E}_{i}(\theta)\right)= \\
& =\left\{\begin{array}{cl}
\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)(1-t) H_{i} & \text { if } i^{2} \in T^{2} \\
\frac{1}{2 P} \gamma_{i} \mathbb{E}_{i}(\theta) a H_{i}+\frac{1}{2} \alpha H_{i} & \text { if } i^{2} \in A^{2} \\
\alpha H_{i} & \text { if } i^{2} \in C^{2}
\end{array}\right.
\end{aligned}
$$

Fourth stage: Government continuation payoff is

$$
\begin{gathered}
E V^{G}\left(t \mid n_{T}^{1} e_{T}^{1}, n_{A}^{1} h_{A}^{1}, \mathbb{E}_{G}(\theta)\right)=1-R= \\
=1-\min \left\{\mathbb{E}_{G}(\theta)\left[(1-t)\left(n_{T}^{1} e_{T}^{1}+n_{T}^{2 *} h_{T}^{2}\right)+\frac{1}{2} a\left(n_{A}^{1} h_{A}^{1}+n_{A}^{2 *} h_{A}^{2}\right)\right], 1\right\}
\end{gathered}
$$

where $n_{J}^{2 *}$ is the sequential best reply at the fifth stage;
Third stage: Citizen's $i \in T^{1}$ continuation payoff is

$$
\begin{gathered}
E V_{i^{1} \in T^{1}}^{1}\left(E_{i}^{1} \mid n_{T}^{1}, n_{A}^{1}, \mathbb{E}_{i}(\theta)\right)= \\
=\gamma_{i} R_{-i}\left(t^{*}, \bar{n}_{T}^{1} \bar{e}_{T}^{1}, n_{T}^{2 *} h_{T}^{2}, \bar{n}_{A}^{1} \bar{h}_{A}^{1}, n_{A}^{2 *} h_{A}^{2} \mid \mathbb{E}_{i}(\theta)\right)+B_{i}\left(E_{i}^{1} \mid i^{1} \in J^{1}, \mathbb{E}_{i}(\theta) ; t^{*}, i^{2 *} \in J^{2}\right)= \\
=\gamma_{i} \min \left\{\mathbb{E}_{i}(\theta)\left[\left(1-t^{*}\right)\left(\bar{n}_{T}^{1} \bar{e}_{T}^{1}+n_{T}^{2 *} h_{T}^{2}\right)+\frac{1}{2} a\left(\bar{n}_{A}^{1} h_{A}^{1}+n_{A}^{2 *} h_{A}^{2}\right)\right], 1\right\}+ \\
+\frac{1}{P} \gamma_{i} \mathbb{E}_{i}(\theta)\left(1-t^{*}\right) E_{i}^{1}+\alpha\left(1-t^{*}\right)\left(H_{i}-E_{i}^{1}\right)+C_{i}^{2 *}= \\
=\gamma_{i} \min \left\{\theta\left[\left(1-t^{*}\right)\left(\bar{n}_{T}^{1} \bar{e}_{T}^{1}+n_{T}^{2 *} h_{T}^{2}\right)+\frac{1}{2} a\left(\bar{n}_{A}^{1} h_{A}^{1}+n_{A}^{2 *} h_{A}^{2}\right)\right], 1\right\}+ \\
+\frac{1}{P} \gamma_{i}\left(1-t^{*}\right) E_{i}^{1}+\alpha\left(1-t^{*}\right)\left(H_{i}-E_{i}^{1}\right)+C_{i}^{2 *}
\end{gathered}
$$

where t^{*} and $C_{i}^{2 *}$ are, respectively, the sequential best reply at the fourth and fifth stages;
Second stage: Citizen's i 's continuation payoff is

$$
\begin{aligned}
& E V_{i}^{1}\left(i^{1}\right)=\gamma_{i} R_{-i}\left(t^{*}, \bar{n}_{T}^{1} e_{T}^{1 *}, n_{T}^{2 *} \bar{h}_{T}^{2}, \bar{n}_{A}^{1} h_{A}^{1 *}, n_{A}^{2 *} h_{A}^{2}\right)+B_{i}\left(i^{1} \in J^{1} \mid i^{2 *} \in J^{2}, t^{*}, E_{i}^{1 *}\right)= \\
& =\gamma_{i} \min \left\{\frac{1}{2}\left[\left(1-t^{*}\right)\left(\bar{n}_{T}^{1} e_{T}^{1 *}+n_{T}^{2 *} h_{T}^{2}\right)+\frac{1}{2} a\left(\bar{n}_{A}^{1} h_{A}^{1}+n_{A}^{2 *} h_{A}^{2}\right)\right], 1\right\}+
\end{aligned}
$$

and

$$
+\left\{\begin{array}{cl}
\frac{1}{P} \gamma_{i} \frac{1}{2}\left(1-t^{*}\right) E_{i}^{1 *}+\alpha\left(1-t^{*}\right)\left(H_{i}-E_{i}^{1} *\right)+\frac{1}{P} \gamma_{i} \frac{1}{2}\left(1-t^{*}\right) H_{i} & i^{1} \in T^{1}, i^{2 *} \in T^{2} \\
\frac{1}{P} \gamma_{i} \frac{1}{2}\left(1-t^{*}\right) E_{i}^{1+}+\alpha\left(1-t^{*}\right)\left(H_{i}-E_{i}^{1 *}\right)+\frac{1}{2 P} \gamma_{i} \frac{1}{2} a H_{i}+\frac{1}{2} \alpha H_{i} & i^{1} \in T^{1}, i^{2 *} \in A^{2} \\
\frac{1}{P} \gamma_{i} \frac{1}{2}\left(1-t^{*}\right) E_{i}^{1 *}+\alpha\left(1-t^{*}\right)\left(H_{i}-E_{i}^{1 *}\right)+\alpha H_{i} & i^{1} \in T^{1}, i^{2 *} \in C^{2} \\
\frac{1}{2 P} \gamma_{i} \frac{1}{2} a H_{i}+\frac{1}{2} \alpha\left(1-t^{*}\right) H_{i}+\frac{1}{P} \gamma_{i} \frac{1}{2}\left(1-t^{*}\right) H_{i} & i^{1} \in A^{1}, i^{2 *} \in T^{2} \\
\frac{1}{2 P} \gamma_{i} \frac{1}{2} a H_{i}+\frac{1}{2} \alpha\left(1-t^{*}\right) H_{i}+\frac{1}{2 P} \gamma_{i} \frac{1}{2} a H_{i}+\frac{1}{2} \alpha H_{i} & i^{1} \in A^{1}, i^{2 *} \in A^{2} \\
\frac{1}{2 P} \gamma_{i} \frac{1}{2} a H_{i}+\frac{1}{2} \alpha\left(1-t^{*}\right) H_{i}+\alpha H_{i} & i^{1} \in A^{1}, i^{2 *} \in C^{2} \\
\alpha\left(1-t^{*}\right) H_{i}+\frac{1}{P} \gamma_{i} \frac{1}{2}\left(1-t^{*}\right) H_{i} & i^{1} \in C^{1}, i^{2 *} \in T^{2} \\
\alpha\left(1-t^{*}\right) H_{i}+\frac{1}{2 P} \gamma_{i} \frac{1}{2} a H_{i}+\frac{1}{2} \alpha H_{i} & i^{1} \in C^{1}, i^{2 *} \in A^{2} \\
\alpha\left(1-t^{*}\right) H_{i}+\alpha H_{i} & i^{1} \in C^{1}, i^{2 *} \in C^{2} .
\end{array}\right.
$$

Before going to the results, let we sum up the exogenous and endogenous variable of the model, and their meaning

Exogenous variables	Meaning				
$P \in\{0, \ldots, \infty\}$	population size				
$m \in \mathbb{R}^{+}$	measure of political heterogeneity				
$\alpha \in(0, \infty)$	measure of economic development				
$a \in(0,1)$	measure of regime's responsiveness				
$\gamma_{i} \in\left[-\frac{m}{2} P, \frac{m}{2} P\right]$	citizens' political position				
$1-d \in\left(\frac{1}{2}, 1\right)$	measure of dispersion of opinions on regime instability				
$\theta \in\{d, 1-d\}$	measure of regime				
instability		$	$	$h_{J}^{\tau} \in[0,1]$	average human capital of
:---:	:---:				
Endogenous variables	citizens in group $J \in\{T, A, C\}$ in period $\tau=1,2$				
$n_{J}^{\tau} \in[0,1]$	Meaning				
$t \in[0,1]$	percentage of citizens in				
$e_{i}^{1} \in\left\{0, h_{i}\right\}$	group $J \in\{T, A, C\}$ in period $\tau=1,2$				

3 The Set of Equilibria

Denote by $E V_{i}^{\tau}\left(J \mid h_{i}^{\tau}\right)$ the expected utility of agents $i \in P$ when she chooses of joining group J at stage τ given the choices of all the other agents and given previous choices h_{i}^{τ}.

3.1 A possible separating equilibrium

We start assuming that there exists a possible separating equilibrium , i.e. such that in the second stage

$$
\forall i \in T^{1} \quad e_{i}^{1}=\left\{\begin{array}{cc}
0 & \text { if } \theta=d \\
h_{i} & \text { if } \theta=1-d
\end{array}\right.
$$

This implies that in all subsequent stages, all the players can infer the true state of nature θ from the terrorists' first stage behavior.

3.1.1 Citizens' choices at the fifth stage

Condition 2 From now on, assume that

$$
\frac{\alpha}{m \theta a}+\frac{1}{2} \leq 1 \Leftrightarrow \frac{\alpha}{m \theta a} \leq \frac{1}{2} \Leftrightarrow m \geq \frac{2 \alpha}{\theta a} .
$$

This condition means that the ratio of political heterogeneity of the population over productivity is bounded from below so that their relative changes should be related. The condition is useful to simplify the actual calculus of the proportion of citizens in the different groups, however it is also plausible.

Then, we can conclude this analysis of players' strategic behavior with the following claims.

Proposition 1 In the fifth stage, citizens will chase the organization according to the following inequalities

$$
\begin{gather*}
i \in T^{2} \Leftrightarrow\left\{\begin{array}{cc}
\gamma_{i} \in\left[\frac{\alpha P}{\theta(1-t)}, \frac{m}{2} P\right] & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta(2-2 t-a)}, \frac{m}{2} P\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right] \\
\text { never } & \text { if } t \in\left[1-\frac{a}{2}, 1\right] .
\end{array}\right. \tag{2}\\
i \in A^{2} \Leftrightarrow\left\{\begin{array}{cc}
\text { never } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{\alpha P}{\theta(2-2 t-a)}\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{m}{2} P\right] & \text { if } t \in\left[1-\frac{a}{2}, 1\right] .
\end{array}\right. \tag{2}\\
i \in C^{2} \Leftrightarrow\left\{\begin{array}{cc}
\gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha P}{\theta(1-t)}\right] & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha P}{\theta a}\right] & \text { if } t \in[1-a, 1] .
\end{array}\right. \tag{2}
\end{gather*}
$$

The situation is pictured in the following figure:

Hence, we can compute the average members of each organization in the last stage:

Corollary 1 Proposition 1 can be rephrased as follows:

$$
\begin{gathered}
n_{C}^{2 *}(t \mid \alpha, a, m, \theta)= \begin{cases}\frac{\alpha}{m \theta(1-t)}+\frac{1}{2} & t \in[0,1-a] \\
\frac{\alpha}{a m \theta}+\frac{1}{2} & t \in[1-a, 1]\end{cases} \\
n_{A}^{2 *}(t \mid \alpha, a, m, \theta)= \begin{cases}0 & t \in[0,1-a] \\
\frac{\alpha}{m \theta(2-2 t-a)}-\frac{\alpha}{m \theta a} & t \in\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right] \\
\frac{1}{2}-\frac{\alpha}{m \theta a} & t \in\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]\end{cases}
\end{gathered}
$$

Figure 2:

Figure 3:

$$
n_{T}^{2 *}(t \mid \alpha, a, m, \theta)= \begin{cases}\frac{1}{2}-\frac{\alpha}{m \theta(1-t)} & t \in[0,1-a] \\ \frac{1}{2}-\frac{\alpha}{m \theta(2-2 t-a)} & t \in\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right] \\ 0 & t \in\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]\end{cases}
$$

The following picture shows the connection between percentage of citizens in each group and government repression:

Comparative statics From proposition 1 and corollary 1, it is immediate to derive the following comparative static results.

Corollary 2 From Corollary 1:
1.
$\frac{\partial n_{C}^{2 *}}{\partial \alpha}>0 ; \quad \frac{\partial n_{C}^{2 *}}{\partial a}=\left\{\begin{array}{cc}0 & t \in \frac{\partial}{\partial a}[0,1-a]<0 \\ <0 & t \in \frac{\partial}{\partial a}[1-a, 1]>0\end{array} ; \quad \frac{\partial n_{C}^{2 *}}{\partial m}<0 ; \quad \frac{\partial n_{C}^{2 *}}{\partial \theta}<0\right.$
i.e. the percentage of conservatives is increasing in economic development, weakly decreasing in regime responsiveness, decreasing in political heterogeneity and in regime stability. In particular note that $n_{C}^{2 *}(t \mid \alpha, a, m, \theta)$
reaches its maximum at $t=1-a$ at a value $\frac{\alpha}{a m \theta}+\frac{1}{2}$ that it is decreasing in a, m, θ and increasing in α;
2.

$$
\begin{aligned}
& \frac{\partial n_{A}^{2 *}}{\partial \alpha}= \begin{cases}0 & t \in[0,1-a] \\
>0 & t \in \frac{\partial}{\partial \alpha}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]<0 \\
<0 & t \in \frac{\partial}{\partial \alpha}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases} \\
& \frac{\partial n_{A}^{2 *}}{\partial a}= \begin{cases}0 & t \in \frac{\partial}{\partial a}[0,1-a]<0 \\
>0 & t \in \frac{\partial}{\partial a}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]>0 \\
>0 & t \in \frac{\partial}{\partial a}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases} \\
& \frac{\partial n_{A}^{2 *}}{\partial m}= \begin{cases}0 & t \in[0,1-a] \\
<0 & t \in \frac{\partial}{\partial m}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]>0 \\
<0 & t \in \frac{\partial}{\partial m}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases} \\
& \frac{\partial n_{A}^{2 *}}{\partial \theta}= \begin{cases}0 & t \in[0,1-a] \\
<0 & t \in \frac{\partial}{\partial \theta}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]>0 \\
<0 & t \in \frac{\partial}{\partial \theta}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases}
\end{aligned}
$$

i.e. the percentage of activists is non monotone in economic development, weakly increasing in regime responsiveness, decreasing in political heterogeneity and in regime stability. In particular note that $n_{A}^{2 *}(t \mid \alpha, a, m, \theta)$ reaches its maximum at $t=1-\frac{a}{2}-\frac{\alpha}{m \theta}$ at a value $\frac{1}{2}-\frac{\alpha}{m \theta a}$ that it is decreasing in α and increasing in a, m, θ;
3.

$$
\begin{aligned}
& \frac{\partial n_{T}^{2 *}}{\partial \alpha}= \begin{cases}<0 & t \in[0,1-a] \\
<0 & t \in \frac{\partial}{\partial \alpha}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]<0 \\
0 & t \in \frac{\partial}{\partial \alpha}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases} \\
& \frac{\partial n_{T}^{2 *}}{\partial a}= \begin{cases}0 & t \in \frac{\partial}{\partial a}[0,1-a]<0 \\
<0 & t \in \frac{\partial}{\partial a}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]>0 \\
0 & t \in \frac{\partial}{\partial a}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases} \\
& \frac{\partial n_{T}^{2 *}}{\partial m}= \begin{cases}>0 & t \in[0,1-a] \\
>0 & t \in \frac{\partial}{\partial m}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]>0 \\
0 & t \in \frac{\partial}{\partial m}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases}
\end{aligned}
$$

$$
\frac{\partial n_{T}^{2 *}}{\partial \theta}= \begin{cases}>0 & t \in[0,1-a] \\ >0 & t \in \frac{\partial}{\partial \theta}\left[1-a, 1-\frac{a}{2}-\frac{\alpha}{m \theta}\right]>0 \\ 0 & t \in \frac{\partial}{\partial \theta}\left[1-\frac{a}{2}-\frac{\alpha}{m \theta}, 1\right]>0\end{cases}
$$

i.e. the percentage of terrorists is weakly decreasing in economic development, weakly decreasing in regime responsiveness, weakly increasing in political heterogeneity and in regime stability. In particular note that $n_{T}^{2 *}(t \mid \alpha, a, m, \theta)$ reaches its maximum at $t=0$ at a value $\frac{1}{2}-\frac{\alpha}{m \theta}$ that it is decreasing in α and increasing in m, θ, constant in a.

3.1.2 Government choice at the fourth stage

Then, we might conclude with the following proposition.
Proposition 2 At stage 4, the government sequential best reply depends on the parameters as follows:

1. FIRST $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{1}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\begin{aligned}
& h_{A}^{2} \in\left[0,\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m}\right] \cup \\
& \quad h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
& \cup \quad \cap\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right] \&
\end{aligned}
$$

then

$$
t_{1}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

2. $\operatorname{SECOND} h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{2}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\begin{gathered}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

then

$$
t_{2}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}} & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

3. THIRD $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{3}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \&
\end{array}\right\}
$$ then

$$
t_{3}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

4. FOURTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{4}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right]
\end{array}\right] \quad \begin{aligned}
& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{aligned}
$$

then
$t_{4}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
5. FIFTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{5}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{c}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \&
\end{array}\right\}
$$

then

$$
t_{5}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}} & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

6. SIXTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{6}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\begin{aligned}
& h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
& \cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \& \\
& \& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{aligned}
$$

Figure 4:
then

$$
t_{6}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

7. SEVENTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{7}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \cap\left[\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}, 1\right]
$$

then

$$
t_{7}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1-a & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

The following picture shows the seven regions:

Remark 3 From proposition 2, we see two interesting characteristics of government policy

1. repression is decreasing when activists' human capital is comparatively high wrt terrorists' human capital
2. repression is not responsive to previous period terrorism activity in region 1, in region 5 and in region $7 R_{G}^{7}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$, i.e. when there is maximum repression because activists' human capital is comparatively low wrt terrorists' human capital or when there is lower repression because activists' human capital is comparatively high wrt terrorists' human capital.

Comparative statics The following corollary is not immediate since the regions' areas are not always nice polygon, however geometric simulations help the derivation of the following result.

Corollary 3 Let consider the seven political relevant regions, then their dimension depends on the parameters as follows:

Proposition 3 1. FIRST $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{1}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[0,\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m}\right] \cup \\
\quad h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cup \\
\quad \&\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right] \&
\end{array}\right]+\frac{1}{4} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m} .
$$

then

$$
t_{1}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

2. SECOND $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{2}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\begin{gathered}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

then

$$
t_{2}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}} & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

3. THIRD $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{3}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \&
\end{array}\right\}
$$

then

$$
t_{3}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

4. FOURTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{4}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right] \&
\end{array}\right\} \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m} .
$$

then
$t_{4}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
5. FIFTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{5}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\begin{gathered}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

then
$t_{5}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}} & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
6. SIXTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{6}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$

$$
\left.\begin{array}{c}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \&
\end{array}\right\}
$$

then
$t_{6}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
7. SEVENTH $h_{T}^{2}-h_{A}^{2}$ REGION $R_{G}^{7}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$
$h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \cap\left[\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}, 1\right]$
then

$$
t_{7}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1-a & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

Now, consider the effects of the usual parameters on the repression policies, distinguishing the six $h_{A}^{2}-h_{T}^{2}$ regions, which are immediate to derive.

Corollary 4 Let consider the six political relevant regions and the associate government's policies:

1. In region $R_{G}^{1}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where

$$
t_{1}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

then

$$
\begin{aligned}
& \frac{\partial t_{1}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}=\frac{\partial t_{1}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}= \\
= & \frac{\partial t_{1}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=\frac{\partial t_{1}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}=0
\end{aligned}
$$

which means that the political parameters have no effect;
2. In region $R_{G}^{2}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where

$$
t_{2}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}} & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

then

$$
\begin{aligned}
& \frac{\partial t_{2}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}=\frac{\partial t_{2}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}= \\
&=\frac{\partial t_{2}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=\frac{\partial t_{2}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial t_{2}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \alpha}<0 ; \frac{\partial t_{2}^{*}(0 \mid \alpha, a, m, \theta)}{\partial a}<0 \\
& \frac{\partial t_{2}^{*}(0 \mid \alpha, a, m, \theta)}{\partial m}=\frac{\partial t_{2}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \theta}>0
\end{aligned}
$$

which means that repression is affected by political parameters only if there was no terrorism in the first period, and that in this case repression is decreasing in economic development and in regime responsiveness, while is increasing in political heterogeneity and in regime fragility;
3. In region $R_{G}^{3}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where

$$
t_{3}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1 & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

then

$$
\begin{aligned}
& \frac{\partial t_{3}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}=\frac{\partial t_{3}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}= \\
&=\frac{\partial t_{3}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=\frac{\partial t_{3}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial t_{3}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \alpha}=0 ; \frac{\partial t_{3}^{*}(0 \mid \alpha, a, m, \theta)}{\partial a}<0 \\
& \frac{\partial t_{3}^{*}(0 \mid \alpha, a, m, \theta)}{\partial m}=\frac{\partial t_{3}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \theta}=0
\end{aligned}
$$

which means that repression is affected by political parameters only if there was no terrorism in the first period, and that in this case repression is decreasing in regime responsiveness;
4. In region $R_{G}^{4}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where
$t_{4}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
then

$$
\begin{aligned}
& \frac{\partial t_{4}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}<0 ; \frac{\partial t_{4}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}<0 \\
& \frac{\partial t_{4}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=\frac{\partial t_{4}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}>0
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial t_{4}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \alpha}=\frac{\partial t_{4}^{*}(0 \mid \alpha, a, m, \theta)}{\partial m}= \\
&=\frac{\partial t_{4}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \theta}=\frac{\partial t_{4}^{*}(0 \mid \alpha, a, m, \theta)}{\partial a}=0
\end{aligned}
$$

which means that when there was no terrorism in the first period, repressions not affected by political parameters, while when there was terrorism in the first period then repression is decreasing in economic development and in regime responsiveness, while is increasing in political heterogeneity and in regime fragility;
5. In region $R_{G}^{5}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where
$t_{5}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}} & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
then

$$
\begin{aligned}
& \frac{\partial t_{5}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}<0 ; \frac{\partial t_{5}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}<0 \\
& \frac{\partial t_{4}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=\frac{\partial t_{4}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}>0
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial t_{5}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \alpha}<0 ; \frac{\partial t_{5}^{*}(0 \mid \alpha, a, m, \theta)}{\partial a}<0 \\
& \frac{\partial t_{5}^{*}(0 \mid \alpha, a, m, \theta)}{\partial m}=\frac{\partial t_{5}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \theta}>0
\end{aligned}
$$

which means that whether there was terrorism or not in the first period, repression is decreasing in economic development and in regime responsiveness, while is increasing in political heterogeneity and in regime fragility;
6. In region $R_{G}^{6}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where
$t_{6}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases}$
then

$$
\begin{gathered}
\frac{\partial t_{6}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \alpha}=\frac{\partial t_{6}^{*}(0 \mid \alpha, a, m, \theta)}{\partial m}= \\
=\frac{\partial t_{6}^{*}(0 \mid \alpha, a, m, \theta)}{\partial \theta}=0 ; \frac{\partial t_{6}^{*}(0 \mid \alpha, a, m, \theta)}{\partial a}<0
\end{gathered}
$$

and

$$
\begin{aligned}
& \frac{\partial t_{6}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}<0 ; \frac{\partial t_{6}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}<0 \\
& \frac{\partial t_{6}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=\frac{\partial t_{6}^{*}\left(h_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}>0
\end{aligned}
$$

which means that when there is terrorism in the first period, repression is decreasing in economic development and in regime responsiveness, while is increasing in political heterogeneity and in regime fragility, while when there was no terrorism in the first period, then repression is not affected by political parameters apart from regime responsiveness that reduces government's repression.
7. In region $R_{G}^{7}\left(\alpha, a, m, \theta, n_{T}^{1} h_{T}^{1}\right)$ where

$$
t_{7}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\ 1-a & e_{T}^{1}=h_{T}^{1}\end{cases}
$$

then

$$
\frac{\partial t_{7}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \alpha}=\frac{\partial t_{7}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial m}=
$$

$$
=\frac{\partial t_{7}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial \theta}=0 ; \frac{\partial t_{7}^{*}\left(e_{T}^{1} \mid \alpha, a, m, \theta\right)}{\partial a}<0
$$

which means that previous terrorism activity notwithstanding, repression is not affected by political parameters apart from regime responsiveness that reduces government's repression.

3.1.3 Terrorists' choices at the third stage

This is probably the stage where calculations are most complex, and the interpretation is less meaningful. To slightly simplify calculations, we assume that population is big enough

Condition 4 Let assume that
$P \geq \max \left\{\frac{\alpha\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}}\right) H_{i}}{\sqrt{\frac{\alpha a d m h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{32}}+\sqrt{\frac{\left(\alpha h_{T}^{2}\right)^{3}}{8 a d m\left(h_{A}^{2}-h_{T}^{2}\right)}}-\frac{\alpha h_{T}^{2}}{2}}, \frac{2 a d m(1-2 \alpha a) H_{i}}{\alpha\left(2 h_{T}^{2}-h_{A}^{2}\right)(a d m-2 \alpha)}\right\}$
so that

$$
\begin{gathered}
\min \left\{P \sqrt{\frac{\alpha m h_{T}^{2}}{2 d a\left(h_{A}^{2}-h_{T}^{2}\right)}}, \frac{\alpha\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right)} H_{i}\right.}{\left(\frac{1}{4} a d\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}-\sqrt{\frac{\alpha a d h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\right)}\right\}= \\
=\frac{\alpha\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right) H_{i}}\right.}{\left(\frac{1}{4} a d\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}-\sqrt{\frac{\alpha a d h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\right)}
\end{gathered}
$$

and

$$
\max \left\{\frac{\alpha P}{a d}, \frac{2(1-2 \alpha a) m H_{i}}{\left(2 h_{T}^{2}-h_{A}^{2}\right)(a d m-2 \alpha)}\right\}=\frac{\alpha P}{a d} .
$$

Now, we are able to derive first period individual terrorist's behavior, which will depends on government's repression and thus on different $h_{A}^{2}-h_{T}^{2}$ regions.

Proposition 4 At stage 3, the first period terrorists will separate according to the agents' human capital and to their preferences:

1. FIRST h_{A}^{2}-REGION when

$$
\begin{aligned}
& h_{A}^{2} \in\left[0,\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m}\right] \cup \\
& \quad h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
& \cup \quad \cap\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right] \&
\end{aligned} \quad \& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m} .
$$

then we get a separating equilibrium if and only if

$$
\forall i \in T^{1} \quad \gamma_{i} \in\left[-\frac{m}{2} P, \frac{m}{2} P\right]
$$

2. SECOND h_{A}^{2}-REGION when

$$
\begin{gathered}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

then we get a separating equilibrium if and only if

$$
\forall i \in T^{1}: \quad \gamma_{i} \in\left[-\frac{m}{2} P, \min \left\{P \sqrt{\frac{\alpha m h_{T}^{2}}{2 d a\left(h_{A}^{2}-h_{T}^{2}\right)}}, \frac{\alpha\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right) H_{i}}\right.}{\left(\frac{1}{4} a d\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}-\sqrt{\frac{\alpha a d h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\right)}\right\}\right.
$$

3. THIRD h_{A}^{2}-REGION when

$$
\left.\begin{array}{l}
\quad h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \&
\end{array}\right\}
$$

then we get a separating equilibrium if and only if

$$
\forall i \in T^{1}: \quad \gamma_{i} \in\left[-\frac{m}{2} P, \min \left\{\frac{\alpha P}{a d}, \frac{4 \alpha a m H_{i}}{\left(h_{A}^{2}-2 h_{T}^{2}\right)(a d m-2 \alpha)}\right\}\right] .
$$

4. FOURTH h_{A}^{2}-REGION when

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right] \&
\end{array}\right\}
$$

then we get a separating equilibrium if and only if

$$
\forall i \in T^{1}: \quad \gamma_{i} \in\left[-\frac{m}{2} P, \frac{m}{2} P\right] .
$$

5. FIFTH h_{A}^{2}-REGION when

$$
\begin{gathered}
\quad h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

then we get a separating equilibrium if and only if

$$
\begin{gathered}
\forall i \in T^{1}: \gamma_{i} \in \\
\in\left[\frac{\alpha}{1-d}[A]^{-1}\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m(1-d)\left(2 n_{T}^{1} h_{T}^{1}-\frac{2}{P} H_{i}+h_{T}^{2}\right)}}\right) H_{i}, \frac{\alpha}{d}[B]^{-1}\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}}\right) H_{i}\right] \\
\subset\left[-\frac{m}{2} P, \frac{\alpha}{a(1-d)} P\right]
\end{gathered}
$$

where
$A:=$

$$
\begin{gathered}
:=\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m(1-d)}}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m(1-d)\left(2 n_{T}^{1} h_{T}^{1}-\frac{2}{P} H_{i}+h_{T}^{2}\right)}} \frac{1}{P} H_{i}+ \\
:-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m(1-d)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} \frac{1}{P} H_{i}-\frac{a}{2 P} H_{i}
\end{gathered}
$$

and

$$
B:=\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\left(\frac{\frac{2}{P}(1-d) H_{i}+h_{T}^{2}}{2 d \sqrt{(1-d)\left(\frac{2}{P} H_{i}+h_{T}^{2}\right)}}+\frac{\frac{1}{P} H_{i}}{\sqrt{d\left(\frac{2}{P} H_{i}+h_{T}^{2}\right)}}-\sqrt{\frac{h_{T}^{2}}{d}}\right)+\frac{a}{2 P} H_{i}
$$

6. SIXTH h_{A}^{2}-REGION when

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \&
\end{array}\right\}
$$

then we get a separating equilibrium if and only if

$$
\forall i \in T^{1}: \quad \gamma_{i} \in
$$

$$
\begin{gathered}
\in\left[\frac{\alpha}{1-d}[A]^{-1}\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m(1-d)\left(2 n_{T}^{1} h_{T}^{1}-\frac{2}{P} H_{i}+h_{T}^{2}\right)}}\right) H_{i}, \frac{\alpha a}{d}[C]^{-1} H_{i}\right] \subset \\
\subset\left[-\frac{m}{2} P, \frac{\alpha}{a(1-d)} P\right]
\end{gathered}
$$

where

$$
\begin{gathered}
A:=\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m(1-d)}}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m(1-d)\left(2 n_{T}^{1} h_{T}^{1}-\frac{2}{P} H_{i}+h_{T}^{2}\right)}} \frac{1}{P} H_{i}+ \\
-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m(1-d)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} \frac{1}{P} H_{i}-\frac{a}{2 P} H_{i}
\end{gathered}
$$

and
$C:=\frac{a}{2 P} H_{i}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{8(1-d) d^{2} m\left(\frac{2}{P} H_{i}+h_{T}^{2}\right)}}\left(\frac{4}{P} H_{i}+h_{T}^{2}\right)-\frac{1}{4} a h_{T}^{2}-\frac{\alpha h_{A}^{2}}{2 m}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{8(1-d) m\left(\frac{2}{P} H_{i}+h_{T}^{2}\right)}} \frac{2}{P} H$
7. SEVENTH h_{A}^{2}-REGION when
$h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \cap\left[\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}, 1\right]$
then we get a separating equilibrium if and only if

$$
\forall i \in T^{1}: \quad \gamma_{i} \in\left[\frac{\alpha P}{a(1-d)}, \frac{\alpha P}{a d}\right]
$$

3.1.4 Citizens' choices at the second stage

Proposition 5 1. in the FIRST h_{A}^{2}-REGION when

$$
\begin{aligned}
& h_{A}^{2} \in\left[0,\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m}\right] \cup \\
& \quad h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
& \cup \quad \cap\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right] \&
\end{aligned} \quad \& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m} .
$$

then we get a separating equilibrium such that

$$
\begin{align*}
& i_{1 R}^{1 *} \in T^{1} \cup C^{1} \Leftrightarrow \gamma_{i} \in\left[-\frac{m}{2} P, 0\right] \text { and } i_{1 R}^{1 *} \in A^{1} \Leftrightarrow \gamma_{i} \in\left[0, \frac{m}{2} P\right] \\
& \forall i^{1} \in T^{1} \quad E_{i, 1 R}^{1 *}(\theta)=\left\{\begin{array}{cc}
0 & \theta=d \\
H_{i} & \theta=1-d
\end{array}\right. \\
& t_{1 R}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \theta\right)= \begin{cases}1 & e_{T}^{1}=0 \\
1 & e_{T}^{1}=h_{T}^{1}\end{cases} \\
& i_{1 R}^{2 *} \in T^{2} \Leftrightarrow\left\{\begin{array}{cc}
\gamma_{i} \geq \frac{\alpha P}{\theta(1-t)} & \text { if } t \in[0,1-a] \\
\gamma_{i} \geq \frac{\alpha P}{\theta(2-2 t-a)} & \text { if } t \in\left[0,1-\frac{a}{2}\right] \\
\text { never } & \text { if } t \in\left[1-\frac{a}{2}, 1\right]
\end{array}\right. \tag{2}\\
& i_{1 R}^{2 *} \in A^{2} \Leftrightarrow\left\{\begin{array}{cc}
\text { never } & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{\alpha P}{\theta(2-2 t-a)}\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right] \\
\gamma_{i} \geq \frac{\alpha P}{\theta a} & \text { if } t \in\left[1-\frac{a}{2}, 1\right]
\end{array}\right. \tag{2}\\
& i_{1 R}^{2 *} \in C^{2} \Leftrightarrow\left\{\begin{array}{cc}
\gamma_{i} \leq \frac{\alpha P}{\theta(1-t)} & \text { if } t \in[0,1-a] \\
\gamma_{i} \leq \frac{\alpha P}{\theta a} & \text { if } t \in[1-a, 1]
\end{array}\right. \tag{2}
\end{align*}
$$

hence when

$$
\begin{aligned}
& h_{A}^{2} \in\left[0,\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T, 1 R}^{1 *} h_{T}^{1}}{a(1-d) m}\right] \cup \\
& h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T, 1 R}^{1 *} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T, 1 R}^{1 *} h_{T}^{1}}{\alpha}\right] \cap \\
& \cup
\end{aligned}
$$

$$
\frac{1}{2} a(1-d) n_{T, 1 R}^{1 *} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T, 1 R}^{1 *} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
$$

the equilibrium outcome is

$$
\begin{gathered}
n_{T, 1}^{1 *}+n_{C, 1}^{1 *}=n_{A, 1}^{1 *}=\frac{1}{2} \\
e_{T, 1 R}^{1 *}(\theta)=\left\{\begin{array}{cc}
0 & \theta=d \\
h_{T}^{1} & \theta=1-d
\end{array}\right. \\
t_{T, 1}^{*}=1 \\
n_{1 R}^{2 *}=0, \quad n_{A, 1}^{2 *}=\left\{\begin{array}{ccc}
\frac{1}{2}-\frac{\alpha}{a d m} & \text { prob } & \frac{1}{2} \\
\frac{1}{2}-\frac{\alpha}{a(1-d) m} & \text { prob } & \frac{1}{2}
\end{array}, \quad n_{C, 1}^{2 *}=\left\{\begin{array}{ccc}
\frac{1}{2}+\frac{\alpha}{a d m} & \text { prob } & \frac{1}{2} \\
\frac{1}{2}+\frac{\alpha}{a(1-d) m} & \text { prob } & \frac{1}{2}
\end{array}\right.\right.
\end{gathered}
$$

2. In the SECOND h_{A}^{2}-REGION when

$$
\begin{gathered}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \geq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

then we get a separating equilibrium such that

$$
\begin{gathered}
i_{2}^{1 *} \in T^{1} \cup C^{1} \Leftrightarrow \gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}}\right) H_{i}}{\left(\frac{1}{4} a d\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}-\sqrt{\frac{\alpha a d h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\right)}\right] \\
i_{2}^{1 *} \in C^{1} \Leftrightarrow \gamma_{i} \in\left[\frac{\alpha\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right) H_{i}}\right.}{\left(\frac{1}{4} a d\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\left.\alpha h_{T}^{2}-\sqrt{\frac{\alpha a d h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\right)}{2 m}\right)} \frac{\alpha}{a}\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right)}\right) P\right] \\
i_{2}^{1 *} \in A^{1} \Leftrightarrow \gamma_{i} \in\left[\frac{\alpha}{a}\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right)}\right) P, \frac{m}{2} P\right] \\
\forall i^{1} \in T^{1} \quad E_{i, 2 R}^{1 *}(\theta)= \begin{cases}0 \quad \theta=d \\
H_{i} \quad \theta=1-d & e_{T}=h_{T}^{1}\end{cases} \\
t_{2}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)=t_{4 R}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m \mathbb{E}_{G}(\theta) h_{T}^{2}}} & e_{T}^{1}=0 \\
1\end{cases}
\end{gathered}
$$

$$
\begin{gather*}
R_{2}^{*}= \begin{cases}\frac{1}{4} a \mathbb{E}_{G}(\theta) h_{T}^{2}+\sqrt{\frac{\alpha a \mathbb{E}_{G}(\theta)\left(h_{A}^{2}-h_{T}^{2}\right) h_{T}^{2}}{2 m}}+\frac{1}{2} a \mathbb{E}_{G}(\theta) n_{A}^{1} h_{A}^{1}-\frac{\alpha\left(h_{A}^{2}+h_{T}^{2}\right)}{2 m} & e_{T}^{1}=0 \\
\frac{1}{2} a \mathbb{E}_{G}(\theta) n_{A}^{1} h_{A}^{1}+\frac{1}{4} a \mathbb{E}_{G}(\theta) h_{A}^{2}-\frac{\alpha h_{A}^{2}}{2 m} & e_{T}^{1}=h_{T}^{1}\end{cases} \\
i_{2}^{2 *} \in T^{2} \Leftrightarrow\left\{\begin{array}{cl}
\gamma_{i} \geq \frac{\alpha P}{\theta(1-t)} & \text { if } t \in[0,1-a] \\
\gamma_{i} \geq \frac{\alpha P}{\theta(2-2 t-a)} & \text { if } t \in\left[0,1-\frac{a}{2}\right] \\
\text { never } & \text { if } t \in\left[1-\frac{a}{2}, 1\right]
\end{array} \quad\left(T^{2}\right)\right. \tag{2}\\
i_{2}^{2 *} \in A^{2} \Leftrightarrow\left\{\begin{array}{ll}
\text { never } & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{\alpha P}{\theta(2-2 t-a)}\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right]
\end{array} \quad\left(A^{2}\right)\right. \tag{2}\\
\gamma_{i} \geq \frac{\alpha P}{\theta a} \tag{2}\\
i_{2}^{2 *} \in C^{2} \Leftrightarrow\left\{\begin{array}{cl}
\gamma_{i} \leq \frac{\alpha P}{\theta(1-t)} & \text { if } t \in\left[1-\frac{a}{2}, 1\right] \\
\gamma_{i} \leq \frac{\alpha P}{\theta a} & \text { if } t \in[1-a]
\end{array} \quad\left(C^{2}\right)\right.
\end{gather*}
$$

hence the equilibrium outcome is

$$
\begin{aligned}
& n_{T, 2}^{1 *}+n_{C, 2}^{1 *}=\frac{1}{2}+\frac{\alpha}{a m}\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}}\right) \\
& \max n_{T, 2}^{1 *}=\frac{1}{2}+\frac{\alpha\left(\frac{a}{2}+\sqrt{\left.\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}\right)} H_{i}\right.}{\left(\frac{1}{4} a d\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}-\sqrt{\frac{\alpha a d h_{T}^{2}\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m}}\right) m P} \\
& n_{A, 2}^{1 *}=\frac{1}{2}-\frac{\alpha}{a m}\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 m d h_{T}^{2}}}\right) \\
& e_{T, 2}^{1 *}(\theta)=\left\{\begin{array}{cc}
0 & \theta=d \\
h_{T}^{1} & \theta=1-d
\end{array}\right. \\
& t_{2}^{*}= \begin{cases}1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2 d m h_{T}^{2}}} & \text { prob } \frac{1}{2} \\
1 & \text { prob } \frac{1}{2}\end{cases} \\
& n_{T 2}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)=\left\{\begin{array}{lll}
\frac{1}{2}-\sqrt{\frac{\alpha h_{T}^{2}}{2 a d m\left(h_{A}^{2}-h_{T}^{2}\right)}} & \text { prob } \frac{1}{2} \\
0 & \text { prob } \frac{1}{2}
\end{array}\right. \\
& n_{A 2}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)= \begin{cases}\sqrt{\frac{\alpha h_{T}^{2}}{2 a d m\left(h_{A}^{2}-h_{T}^{2}\right)}}-\frac{\alpha}{a d m} & \text { prob } \frac{1}{2} \\
\frac{1}{2}-\frac{\alpha}{a(1-d) m} & \text { prob } \frac{1}{2}\end{cases}
\end{aligned}
$$

$$
n_{C 2}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)=\left\{\begin{array}{cl}
\frac{1}{2}+\frac{\alpha}{a d m} & \text { prob } \frac{1}{2} \\
\frac{1}{2}+\frac{\alpha}{a(1-d) m} & \text { prob } \frac{1}{2}
\end{array}\right.
$$

3. In the THIRD h_{A}^{2}-REGION when

$$
\left.\begin{array}{l}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \&
\end{array}\right\}
$$

then we get a separating equilibrium such that

$$
\begin{align*}
& i_{3 R}^{1 *} \in T^{1} \cup C^{1} \Leftrightarrow \gamma_{i} \in\left[-\frac{m}{2} P, \frac{4 \alpha a m H_{i}}{\left(h_{A}^{2}-2 h_{T}^{2}\right)(a d m-2 \alpha)}\right] \\
& i_{3 R}^{1 *} \in C^{1} \Leftrightarrow \gamma_{i} \in\left[\frac{4 \alpha a m H_{i}}{\left(h_{A}^{2}-2 h_{T}^{2}\right)(a d m-2 \alpha)}, \alpha P\right] \\
& i_{3 R}^{1 *} \in A^{1} \Leftrightarrow \gamma_{i} \in\left[\alpha P, \frac{m}{2} P\right] \\
& \forall i^{1} \in T^{1} \quad E_{i, 3 R}^{1 *}(\theta)=\left\{\begin{array}{cc}
0 & \theta=d \\
H_{i} & \theta=1-d
\end{array}\right. \\
& t_{3}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1-a & e_{T}^{1}=0 \\
1 & e_{T}^{1}=h_{T}^{1}\end{cases} \\
& i_{3}^{*} \in T^{2} \Leftrightarrow\left\{\begin{array}{cc}
\gamma_{i} \in\left[\frac{\alpha P}{\theta(1-t)}, \frac{m}{2} P\right] \quad & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta(2-2 t-a)}, \frac{m}{2} P\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right] \\
\text { never } & \text { if } t \in\left[1-\frac{a}{2}, 1\right] .
\end{array}\right. \tag{2}\\
& i_{3}^{*} \in A^{2} \Leftrightarrow\left\{\begin{array}{cc}
\text { never } & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{\alpha P}{\theta(2-2 t-a)}\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{m}{2} P\right] & \text { if } t \in\left[1-\frac{a}{2}, 1\right] .
\end{array}\right. \tag{2}\\
& i_{3}^{*} \in C^{2} \Leftrightarrow\left\{\begin{array}{cc}
\gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha P}{\theta(1-t)}\right] & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha P}{\theta a}\right] \quad & \text { if } t \in[1-a, 1] .
\end{array}\right. \tag{2}
\end{align*}
$$

hence the equilibrium outcome is

$$
\begin{gathered}
n_{T, 3}^{1 *}+n_{C, 3}^{1 *}=\frac{1}{2}+\frac{\alpha}{m} \\
\max n_{T, 3}^{1 *}=\frac{1}{2}+\frac{4 \alpha a H_{i}}{\left(h_{A}^{2}-2 h_{T}^{2}\right)(a d m-2 \alpha) P}
\end{gathered}
$$

$$
\begin{gathered}
n_{A, 3}^{1 *}=\frac{1}{2}-\frac{\alpha}{m} \\
e_{T, 3}^{1 *}(\theta)=\left\{\begin{array}{cc}
0 & \theta=d \\
h_{T}^{1} & \theta=1-d
\end{array}\right. \\
t_{3}^{*}=\left\{\begin{array}{lll}
1-a & \text { prob } \frac{1}{2} \\
1 & \text { prob } \frac{1}{2}
\end{array}\right. \\
n_{T 3}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)=\left\{\begin{array}{lll}
\frac{1}{2}-\frac{\alpha}{a d m} & \text { prob } \frac{1}{2} \\
0 & \text { prob } \frac{1}{2}
\end{array}\right. \\
n_{A 3}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)=\left\{\begin{array}{lll}
0 & \text { prob } & \frac{1}{2} \\
\frac{1}{2}-\frac{\alpha}{a(1-d) m} & \text { prob } & \frac{1}{2}
\end{array}\right. \\
n_{C 3}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)=\left\{\begin{array}{lll}
\frac{1}{2}+\frac{\alpha}{a d m} & \text { prob } & \frac{1}{2} \\
\frac{1}{2}+\frac{\alpha}{a(1-d) m} & \text { prob } & \frac{1}{2}
\end{array}\right.
\end{gathered}
$$

4. In the FOURTH h_{A}^{2}-REGION when

$$
\begin{aligned}
& h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
& \cap h_{A}^{2} \in\left[h_{T}^{2},\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2}\right]
\end{aligned} d \begin{aligned}
& \& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{aligned}
$$

then we get a separating equilibrium such that

$$
\begin{aligned}
& i_{4}^{1 *} \in T^{1} \Leftrightarrow \gamma_{i} \in \\
& \in\left[\min \left\{\alpha\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1} P, \frac{\alpha P}{a(1-d)}\right\}, \frac{m}{2}\right. \\
& i_{4}^{1 *} \in A^{1} \Leftrightarrow \gamma_{i} \in \\
& \in\left[2 \alpha\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(a+\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1} P,\right. \\
& \left.\min \left\{\alpha\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1} P, \frac{\alpha P}{a(1-d)}\right\}\right] \\
& i_{4}^{1 *} \in C^{1} \Leftrightarrow \gamma_{i} \in\left[-\frac{m}{2} P, 2 \alpha\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(a+\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& t_{4}^{*}\left(e_{T}^{1} \mid n_{T}^{1}, n_{A}^{1} ; \mathbb{E}_{G}(\theta)\right)= \begin{cases}1 & e_{T}^{1}=0 \\
1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & e_{T}^{1}=h_{T}^{1}\end{cases} \\
& i \in T^{2} \Leftrightarrow \begin{cases}\gamma_{i} \in\left[\frac{\alpha P}{\theta(1-t)}, \frac{m}{2} P\right] \quad \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[\frac{\alpha P}{\theta(2-2 t-a)}, \frac{m}{2} P\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right] \\
\text { never } & \text { if } t \in\left[1-\frac{a}{2}, 1\right] .\end{cases} \tag{2}\\
& i \in A^{2} \Leftrightarrow \begin{cases}\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{\alpha P}{\theta(2-2 t-a)}\right] & \text { if } t \in\left[1-a, 1-\frac{a}{2}\right]\end{cases} \tag{2}\\
& \quad \begin{array}{ll}
\gamma_{i} \in\left[\frac{\alpha P}{\theta a}, \frac{m}{2} P\right] & \text { if } t \in\left[1-\frac{a}{2}, 1\right] .
\end{array} \tag{2}\\
& i \in C^{2} \Leftrightarrow \begin{cases}\gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha P}{\theta(1-t)}\right] & \text { if } t \in[0,1-a] \\
\gamma_{i} \in\left[-\frac{m}{2} P, \frac{\alpha P}{\theta a}\right] & \text { if } t \in[1-a, 1] .\end{cases} \left(C^{2}\right)
\end{align*}
$$

hence the equilibrium outcome is

$$
n_{C, 4}^{1 *}=\frac{1}{2}+\frac{2 \alpha}{m}\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(a+\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1}
$$

$$
e_{T, 4}^{1 *}(\theta)=\left\{\begin{array}{cc}
0 & \theta=d \\
h_{T}^{1} & \theta=1-d
\end{array}\right.
$$

$$
\begin{gathered}
t_{4}^{*}=\left\{\begin{array}{lll}
1 & \text { prob } & \frac{1}{2} \\
1-\frac{a}{2}-\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}} & \text { prob } & \frac{1}{2}
\end{array}\right. \\
n_{T 4}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)=\left\{\begin{array}{lll}
0 & \text { prob } \frac{1}{2} \\
\frac{1}{2}-\sqrt{\frac{\alpha\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 a(1-d) m\left(h_{A}^{2}-h_{T}^{2}\right)}} & \text { prob } \frac{1}{2}
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& n_{T, 4}^{1 *}=\frac{1}{2}-\frac{\alpha}{m} \min \left\{\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1}, \frac{1}{a(1-a}\right. \\
& n_{A, 2 R}^{1 *}=\frac{\alpha}{m}\left[\begin{array}{rl}
\min \{ & \left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1}, \frac{1}{a(1-a} \\
& -2\left(\frac{a}{2}+\sqrt{\frac{\alpha a\left(h_{A}^{2}-h_{T}^{2}\right)}{2(1-d) m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}\right)\left(a+\sqrt{\frac{2 \alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)}{m\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}}-a d\right)^{-1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
n_{A 4}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)= \begin{cases}\frac{1}{2}-\frac{\alpha}{a d m} & \text { prob } \frac{1}{2} \\
\sqrt{\frac{\alpha\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 a(1-d) m\left(h_{A}^{2}-h_{T}^{2}\right)}}-\frac{\alpha}{a(1-d) m} & \text { prob } \frac{1}{2}\end{cases} \\
n_{C 4}^{2 *}\left(t, n^{1}, e_{T}^{1} \mid \mathbb{E}_{i}(\theta)\right)= \begin{cases}\frac{1}{\frac{1}{2}+\frac{\alpha}{a d m}} & \text { prob } \frac{1}{2} \\
\frac{1}{2}+\frac{\alpha}{a(1-d) m} & \text { prob } \frac{1}{2}\end{cases}
\end{gathered}
$$

5. In the FIFTH h_{A}^{2}-REGION when

$$
\begin{gathered}
h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
\cap h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a d m}+1\right) h_{T}^{2},\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}\right] \& \\
\& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{gathered}
$$

there is no separating equilibrium.
6. In the SIXTH h_{A}^{2}-REGION when

$$
\begin{aligned}
& h_{A}^{2} \in\left[\left(\frac{2 \alpha}{a(1-d) m}+1\right) h_{T}^{2}+\frac{4 \alpha n_{T}^{1} h_{T}^{1}}{a(1-d) m},\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}\right] \cap \\
& \cap h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \& \\
& \& \frac{1}{2} a(1-d) n_{T}^{1} h_{T}^{1}+\sqrt{\frac{\alpha a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)\left(2 n_{T}^{1} h_{T}^{1}+h_{T}^{2}\right)}{2 m}} \leq \frac{1}{4} a(1-d)\left(h_{A}^{2}-h_{T}^{2}\right)+\frac{\alpha h_{T}^{2}}{2 m}
\end{aligned}
$$

then there is no separating equilibrium.
7. In the SEVENTH h_{A}^{2}-REGION when

$$
h_{A}^{2} \in\left[\left(\frac{a d m}{2 \alpha}+1\right) h_{T}^{2}, 1\right] \cap\left[\left(\frac{a(1-d) m}{2 \alpha}+1\right) h_{T}^{2}+\frac{a(1-d) m n_{T}^{1} h_{T}^{1}}{\alpha}, 1\right]
$$

then there is no separating equilibrium

4 Remarks on the results and conclusion

The final proposition shows many interesting properties of the endogenous variables. The first thing to stress is that the existence of a separating equilibrium requires two conditions: high political heterogeneity of the population and that the ratio between activists' and terrorists human capital is not to high. Note that even if the citizens' human capital enters multiplicatively in their productivity and therefore it seems irrelevant for the individual choices between engagement or labour, actually it is crucially important both for the existence of a separating equilibrium and for its properties.

When there is a separating equilibrium, we have shown that terrorists' affiliates are decreasing through time, while the temporal behavior of activists' affiliates is indeterminate. Note that the first period terrorists activity is not an indicator of the number of terrorists, because they might be silent when the regime is strong.

The effects of our political and economic variables on the consistency of the terrorists depends on the h_{A}^{2}-regions, however usually:

1. in both periods, it is increasing in the political heterogeneity of the population, in the regime responsiveness and in the activists' human capital
2. in both periods is often decreasing in the level of economic development (there is an exception in the third region first period), in the dispersion of opinions on the weakness of the government and in terrorists' human capital

Government repression responsiveness to terrorists' activity depends on the ration of the terrorists' and activists' human capita: when the activists' human capital is increasing wrt terrorists, then the government policy becomes responsive. More generally

1. it is decreasing in the level of economic development, in the dispersion of opinions on the weakness of the government and in the regime responsiveness and in the activists' human capital
2. It is increasing in the terrorists' human capital and in the political heterogeneity of the population.

Acknowledgement

The financial support from the Center in Interdisciplinary Studies in Economics, Psychology and Social Sciences (CISEPS) is gratefully acknowledged.

References

[1] Abadie A. (2006), "Poverty, Political Freedom, and the Roots of Terrorism", The American Economic Review, 2, 50-56.
[2] Appelbaum E. (2008), "Extremism as a strategic tool in conflicts", Journal of Economic Behavior and Organization, 68, 352-364. ${ }^{2}$
[3] Anderton. C. H. and J. R. Carter (2004), "Applying Intermediate Microeconomics to Terrorism", Working Paper N. 04-12, College of the Holy Cross. ${ }^{3}$

[^2][4] Azam J. P. (2005), "Suicide bombing as inter-generational investment", Public Choice, 122, 177-198.
[5] Benmelech E. and C. Berrebi (2007), "Human Capital and the Productivity of Suicide Bombers", Journal of Economic Perspectives, 3, 223-238. ${ }^{4}$
[6] Berman E. and Laitin D. D. (2005), "Harda Targets: Theory and Evidence on Suicide Attacks", NBER Working Paper 11740.5
[7] Baliga S. and T. Sjostrom (2009), "Decoding Terror", mimeo. ${ }^{6}$
[8] Besley T. and T. Persson (2009), "Repression or Civil War", The Americam Economic Review, 99, 292-297. ${ }^{7}$
[9] Besley T. and T. Persson (2011), "The Logic of Political Violence", The Quarterly Journal Of Economics, 126, 1411-1445. ${ }^{8}$
[10] Blomberg S. B., Hess G. D. and A. Weerapana (2003), "Economic Conditions and Terrorism", mimeo. ${ }^{9}$
[11] Bruck T., D. Meierrieks and F. Schneider (2008), "The Economics of Terrorism and Counter-Terrorism: A Survey (Part I), CESifo Working Paper N. 3011 .
[12] Bruck T., D. Meierrieks and F. Schneider (2008), "The Economics of Terrorism and Counter-Terrorism: A Survey (Part II), CESifo Working Paper N. 3012.
[13] Bueno De Mesquita E. (2003), "The Quality of Terror", mimeo. ${ }^{10}$
[14] Bueno De Mesquita E. (2005), "The Terrorist Endgame: A Model with Moral Hazard and Learning", The Journal of Conflict Resolution, 2, 237$258 .{ }^{11}$
[15] Bueno De Mesquita E. (2005), "Conciliation, Counterrorism, and Patterns of Terrorist Violence", International Organization, 1, 145-176. ${ }^{12}$

[^3][16] Bueno De Mesquita E. and E. S. Dickson (2007), "The Propaganda of the Deed: Terrorism, Counterterrorism and Mobilization", American Journal of Political Science, 2, 364-381. ${ }^{13}$
[17] Bueno De Mesquita E. (2008), "The Political Economy of Terrorism: A Selective Overview of Recent Work", mimeo. ${ }^{14}$
[18] Bueno De Mesquita E. (2010), "Rebel Tactics", mimeo. ${ }^{15}$
[19] Caplan B. (2006), "Terrorism: The relevance of the rational choice model", Public Choice, 128, 91-107. ${ }^{16}$
[20] Caruso R. and F. Schneider (2011), "The socio-economic determinants of terrorism and political violence in Western Europe (1994-2007)", European Journal of Political Economy, 2, 1-13. ${ }^{17}$
[21] Crenshaw M. (1981), "The Causes of Terrorism", Comparative Politics, 4, 379-399.
[22] Crettez B. and R. Deloche (2008), "An Economic Analysis of the Aldo Moro Kidnapping and Assassination", mimeo. ${ }^{18}$
[23] Das S. P. and S. Lahiri (2006), "A Strategic Analysis of Terrorist Activity and Counter-Terrorism Policies", Topics in Theoretical Economics, 1, 1$28 .{ }^{19}$
[24] Della Porta D. (1992), "Institutional Responses to Terrorism: The Italian Case", Terrorism and Political Violence, 4, 151-170.
[25] Della Porta D. (1995), "Left-Wing Terrorism in Italy", in Terrorism in Context, edited by M. Crenshaw, The Pennsylvania State University Press, Pennsylvania.
[26] Enders W. and T. Sandler (1993), "The Effectiveness of Antiterrorism Policies: A Vector-Autoregression-Intervention Analysis", The American Political Science Review, 4, 829-844. ${ }^{20}$

[^4][27] Enders W. and S. Xuejuan (2007), "Rational Terrorist and Optimal Network Structure", The Journal of Conflict Resolution, 1, 33-57. ${ }^{21}$
[28] Garoupa N., Klick J. and F. Parisi (2006), "A law and economci perspective on terrorism", Publci Choice, 128, 147-168. ${ }^{22}$
[29] Gassebner M. and S. Luechinger (2011), "Lock, stock, and barrel: a comprehensive assessment of the determinants of terror", Public Choice, 149, $235-261 .{ }^{23}$
[30] Ginkel J. and A. Smith (1999), "So You Say You Want a Revolution: A Game Theoretic Explanation of Revolution In Repressive Regimes", The Journal of Conflict Resolution, 3, 291-316. ${ }^{24}$
[31] Gries T., Krieger T. and D. Meierrieks (2009), "Causal Linkages Between Domestic Terrorism and Economic Growth", CIE Working Paper 2009-02.
[32] Grossman H. I. (1991), "A General Equilibrium Model of Insurrections", The American Economics Review, 4, 912-921. ${ }^{25}$
[33] Grossman H. I. (1994), "Production, Appropriation, and Land Reform", The American Economics Review, 3, 705-712. ${ }^{26}$
[34] Gupta D. K. 2006), "Toward An Integrated Behavioral Framework For Analyzing terrorism: Individual Motivations to Group Dynamics, mimeo. ${ }^{27}$
[35] Kalivas S. (2004), "The Paradox of Terrorism in Civil War", The Journal of Ethics, 8, 97-138. ${ }^{28}$
[36] Krieger T. and D. Meierrieks (2009), "What Causes Terrorism?", mimeo. ${ }^{29}$
[37] Krueger A. B. and J. Maleckova (2003), "Education, Poverty and Terrorism: Is There a Causal Connection?", Journal of Economic Perspectives, 4, $119-144 .{ }^{30}$
[38] Lapan H. and T. Sandler (1993), "Terrorism and signalling", European Journal of Political Economy, 9, 383-397. ${ }^{31}$

[^5][39] Lazear E. P. (2006), "Speeding, Terrorism, and Teaching to the Test", The Quarterly Journal of Economics, 3, 1029-1061. ${ }^{32}$
[40] Lichbach M. I. (1987), "Deterrence or Escalation? The Puzzle of Aggregate Studies of Repression and Dissent", The Journal of Conflict Resolution, 2, 266-297. ${ }^{33}$
[41] Lussa F. and J. Tavares (2008), "Economics and Terrorism: What We Know, What We Should Know and the Data We Need", Proceeding of the 10 th Annual Conference on Economics and Security. ${ }^{34}$
[42] Lyall J. (2008), "Does Indiscriminate Violence Incite Insurgent Attacks? Evidence from Chechnya", mimeo. ${ }^{35}$
[43] MacCulloch R. (2001), "What Makes a Revolution?", STICERD Working Paper 30. ${ }^{36}$
[44] Morelli M. and D. Rohner (2010), "Natural Resource Distribution and Multiple Forms of Civil War", mimeo. ${ }^{37}$
[45] Overgaard P. B. (1994), "The Scale of Terrorist Attacks as a Signal of Resources", The Journal of Conflict Resolution, 3, 452-478. ${ }^{38}$
[46] Rosendorff B. P. and T. Sandler (2004), "Too Much of a Good Thing? The Proactove Response Dilemma", The Journal of Conflict Resolution, 5, 657-671. ${ }^{39}$
[47] Sandler T. and H. E. Lapan (1988), "The Caluclus of Dissent: An Analysis of Terrorists' choice of Targets", Synthese, 76, 245-261. ${ }^{40}$
[48] Shughart II W. F. (2006), "An analytical History of terrorism, 1945-2000", Public Choice, 128, 7-39. ${ }^{41}$

[^6][49] Siqueira K. (2003), "Participation in organized and unorganized protests and rebellions", European Journal of Political Economy, 19, 8861-874.42
[50] Siqueira K. and T. Sandler (2006), "Terrorist versus the Government: Strategic Interaction, Support, and Sponsorship", The Journal of Conflict Resolution, 6, 878-898. ${ }^{43}$
[51] Young J. K. and M. G. Findley (2011), "Promise and Pitfalls of Terrorism Research", International Studies Review, 13, 411-431. ${ }^{44}$

[^7]
[^0]: * Adress:
 ${ }^{\dagger}$ Adress:
 \ddagger Department of Economics - University of Milano-Bicocca

[^1]: ${ }^{1}$ Abadie 2006, Benmelech and Berrebi 2007, Berrebi 2007, Krueger 2009, Freytag et al 2009, Krieger and Meierrieks 2011, Bandyopadhyaya and Younas 2011, Brockhoff, Krieger and Meierrieks 2012.

[^2]: ${ }^{2}$ strategic role of extremism within a two-country multi-stage game: there exists an eq where extremism is used by both pls
 ${ }^{3}$ max utility to explain 1 . T resource allocation 2 . G counterterrorism effort

[^3]: ${ }^{4}$ more able suicide bombers are more destructive, this affect both demand and supply
 ${ }^{5}$ model of choice of tactics by rebels: waht has to believe a suicide attacker and operatives are embedded in a club good model
 ${ }^{6}$ cheap-talk messages to manipulate the likelihood of conflict
 ${ }^{7}$ unified approach to studying political violence with roots in poverty, natural resources rents and weak political institutions
 ${ }^{8}$ Incumbent or opposition can use violence to maintain or to acquire power
 ${ }^{9}$ model that links incidence of T and economic circumstances
 ${ }^{10}$ Supply of T by a population of potential and screening by the T
 ${ }^{11}$ Model of negotiation between G and ex T, when G is uncertain on ability and skills of ex T
 ${ }^{12} \mathrm{~T} \& \mathrm{G}$ interaction based on different types of T

[^4]: ${ }^{13}$ under what circumstances is the use of T an effective tactic for mobilizing support? in thuis model thsi can result from damage caused by counterterrorism or by changing population's assessment of the G's motivations. It is a partial eq model
 ${ }^{14}$ Nice survey
 ${ }^{15}$ Chice of T leader between insurgency and T
 ${ }^{16}$ Methodological paper arguing for an intermediate position on the rationality of T
 ${ }^{17} 1$. the larger the set of economic opportunities the lower the likelihood to be involved in T ; 2. expected future growth is associated to increase in current T; 3 T brutality (N . of people killed) is associated with real GDP per capita
 ${ }^{18}$ trivial model of kidnapping, tackling the problem of whether to kill the ostage
 ${ }^{19} \mathrm{~T}$ chooses size \& number attacks, G level of security
 ${ }^{20}$ using quarterly data 1968-1988 on transnational T, they find strong evidence of both substitutes and complements among the attack modes. This has implications for anti T policies.

[^5]: ${ }^{21}$ Model of trade-off between security and intraterrorist comunication
 ${ }^{22}$ survey on deterrence and incapacitation
 ${ }^{23}$ assessment of the robustness of previous findings on the determinants of terrorism
 ${ }^{24}$ interaction among G, dissidents and public. Concessions may signal weakness \& publci trust more D when there is high repression
 ${ }^{25}$ general equilibrium frame to study insurrection
 ${ }^{26}$ theory of endogenous determination of the equilibrium distribution of property
 ${ }^{27}$ tentaive to expand rational choice theory
 ${ }^{28}$ distinction between discriminate and indiscriminate violence, stressing that the second is much cheaper and usually is more likely at early stages
 ${ }^{29}$ overview of empirical evidence
 ${ }^{30}$ evidence shows that reduction in poverty or increase in education would not reduce international terrorism
 ${ }^{31}$ Government uncertain on terrorist capabilities

[^6]: ${ }^{32}$ Why it might be rational to make illegal choice when repression is low, and why the best G choice might be to revela where is detecting illegal behavior
 ${ }^{33} 3$ results: 1. an increaese in repression of nonviolence will reduce non violent activities and increase violent; 2. the total effect depend on G's accomodative policy; 3. Consistent acc \& repress policy reduce dissent
 ${ }^{34}$ Review of Dataset
 ${ }^{35}$ Empirical analysis suggests that indiscriminate violence deter insurgents attacks.
 ${ }^{36}$ Empirical Paper on the effect of income and income inequality on the likelihood of revolution. Both are shown to be signifcant.
 ${ }^{37}$ how natiral resource location, rent sharing and fighting capacities of different groups matter for ethnic conflict
 ${ }^{38}$ Signalling game where the magnitude of T signals resources
 ${ }^{39} \mathrm{G}$ first chooses measures against T , then T choose the type of event. Proactive policies increase T recruitment. Aggressive anti-T may result in dure consequences.
 ${ }^{40} \mathrm{~T}$ choice of wheter to attack and of target, showing when there is over- or under-deterrence
 ${ }^{41}$ Argues that terrorism is rooted in the artificial nation-states created in the inter-war period

[^7]: ${ }^{42}$ multiple equilibria whent individuals joint protests without regard to prob pf success and for potential benefits
 ${ }^{43}$ Strategic interaction between T and G as both vie for support. they model $\mathrm{g}, \mathrm{r}, \mathrm{t}$ and use the budget constraint, however they use a partial equilibrium model
 ${ }^{44}$ Methodological survey of literature

