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Abstract

This paper analyzes optimal consumption choices and weight when consumers make

errors due to self-control problems and naiveté. Contrary to the existing literature,

we show that both types of errors do not determine whether an individual is over-

weight or underweight. Instead, they affect only the extent of over- or underweight

and do not impact a healthy weight consumer. Consequently, a paternalistic tax on

unhealthy food that is designed to correct self-control problems and naiveté cannot

induce individuals to have a healthy weight. Moreover, there exists a tax that in-

duces both rational and non-rational individuals to have a healthy weight in steady

state. This tax does not depend on the degree of self-control problems or naiveté.
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1 Introduction

High prevalence of obesity is a major health problem in many countries which has led

economists to search for its causes and policies to address it. The seminal articles of

O’Donoghue and Rabin (2003, 2006) view the overconsumption of unhealthy foods as the
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result of individuals’ self-control problems. They investigate “optimal paternalism”, i.e.

search for policies which correct the errors of the non-rational individuals at the lowest

costs for the remaining consumers. Within this framework, a tax on unhealthy foods

(a fat tax) is such a policy, as it imposes only a second-order cost to the fully rational

individuals and a first-order benefit to the consumers without full self-control.

While the literature on optimal paternalism assumes that fully rational individuals

do not overconsume, another strand of the economic literature on obesity shows that

consumers may choose to become overweight even if they fully take into account its

negative health consequences (Levy, 2002). Levy shows that rational obesity occurs either

when the instantaneous utility of unhealthy food is high or its price is low.

This paper merges the literatures on optimal paternalism and rational obesity. We

use a dynamic version of the optimal paternalism framework of O’Donoghue and Rabin

(2006) in which a representative consumer may exhibit not only self-control problems

but also naive expectations regarding her future consumption. The individual may be

overweight, underweight or have a healthy weight. The negative health consequences of

abnormal weight are increasing in weight if the individual is overweight, decreasing if she

is underweight and achieve a minimum at the healthy weight.

We analyze the effects of self-control problems and naiveté on the steady state weight.

We show that a higher degree of self-control problems raises the weight of an overweight

consumer, lowers the weight of an underweight individual and does not affect an individual

with a healthy weight. Thus, this form of non-rationality does not determine whether an

individual is over-, healthy- or underweight. Instead, it can only influence the degree

of the problem of abnormal weight. Furthermore, we show that naiveté also does not

influence how the consumer’s steady state weight relates to the healthy weight.

These results emerge because in a steady state with a healthy weight, a marginal

increase in consumption does not create additional health problems, i.e. there are zero

marginal health costs. Therefore, whether an individual can maintain such a weight in

steady state does not depend on how she discounts the health consequences of unhealthy

consumption (the degree of self-control problems) or how she expects to discount them

in the future (the degree of naiveté). An optimal consumption path is compatible with

a healthy steady state if an only if the marginal instantaneous utility of consumption is
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also zero. Hence, this steady state can only be achieved when the price of unhealthy

foods is such that the consumption level compatible with a healthy weight equals the

instantaneous utility-maximizing consumption level.

Our second purpose is to analyze the fat tax, when it is set by a social planner who

is paternalistic, i.e. maximizes the ‘true’ utility of the consumer. First, we consider a tax

that is returned in lump-sum fashion to the representative individual. This tax equals

optimally zero if the consumer is fully rational and nonzero otherwise. Moreover, it

cannot be used to induce rational or non-rational individuals to achieve a healthy weight.

Second, we consider a tax whose proceeds are fully returned to the consumer only in

steady state but may not be fully returned during transition. The optimal level of this

tax does achieve a healthy weight. Furthermore, its steady state value is independent

of the degree of non-rationality of the consumer. Finally, we consider a social planner

who cannot condition the tax rate on the consumers’ self-control problems and naiveté.

In this case the government can induce a healthy weight by levying a constant tax rate

equal to the steady state tax from the previous case. The tax in this last scenario is

non-paternalistic as it does not correct errors in consumption choices. Nevertheless, it

incentivizes both rational and non-rational individuals to follow a healthy consumption

path.

The non-paternalistic tax has several advantages relative to paternalistic taxation.

First, it can induce a healthy steady state, which is not possible for taxes designed to

correct non-rationalities. Second, it is easier to implement as it does not require infor-

mation on the share of the population with self-control problems and naiveté and the

severity of these problems. This is even more important, considering the sensitivity of the

optimal paternalistic tax to small changes in the degree of non-rationality. O’Donoghue

and Rabin (2006) calibrate the optimal paternalistic tax on potato chips in a heteroge-

neous population where half of the population is fully rational, while the other half exhibit

self-control problems, represented by hyperbolic discounting. If the health costs of chips

consumption are relatively high, the optimal tax rises from 5% to 28% when the rate of

hyperbolic discounting of the second half of the population drops from 0.99 to 0.95. When

this rate drops further to 0.9, the optimal tax becomes 63%. This high sensitivity may

lead to errors in designing the optimal paternalistic tax.
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This paper is related to two strands of literature. The first investigates the causes of

obesity and the second examines the paternalistic taxation of unhealthy food.

The literature on the causes of obesity is very diverse. Obesity could be explained

through rational addiction (Becker and Murphy, 1988) or technical change that lowers

food prices and raises the cost of physical activity (Philipson and Posner, 1999; Lak-

dawalla et al., 2005). A third strand of literature focuses on self-control problems, that

are formalized as quasi-hyperbolic discounting, as a reason for over- or under-consumption

(see e.g. Laibson, 1997; O’Donoghue and Rabin, 2003, 2006). Yet another explanation is

provided by the rational obesity literature. Levy (2002) shows that a rational individ-

ual may choose to be obese. The model of rational obesity can explain the occurrence

of alternating diets and binges if habits in consumption are considered (Dragone, 2009).

Moreover, (Dragone and Savorelli, 2012) show that the rational individual may also choose

to be underweight if the utility of consumption is relatively low or the price of food high.

This article contributes to the literature by embedding the rational obesity model to

the framework of quasi-hyperbolic discounting. The resulting model can better explain

the role that non-rational behavior plays in the determination of consumption and weight.

The optimal paternalistic tax on unhealthy food is first studied by O’Donoghue and

Rabin (2003, 2006). They derive large values for the optimal tax in a heterogeneous

population where a small share of consumers exhibit non-rational behavior. This result

emerges because the costs that the tax imposes on rational individuals is of second or-

der. Moreover, they show that there exist Pareto improving positive tax rates when the

tax revenues are returned as lump-sum transfers to consumers, as this policy results in

redistribution from the individuals with high consumption to those with low consump-

tion. Haavio and Kotakorpi (2011) show that individuals with self-control problems have

incentives to vote for such taxes.

Our contribution to the literature consists in deriving a non-paternalistic tax that can

induce both individuals with self-control problems and those without to be healthy weight.

Moreover, we show that the paternalistic tax can only correct the problems arising from

non-rational behavior but cannot be health-maximizing, i.e. the optimal paternalistic tax

cannot induce an overweight individual to choose a consumption path compatible with a

healthy steady state weight.
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The rest of the article is organized as follows. In Section 2 we present the model and

analyze the optimal consumption path and steady state weight. In Section 3 we analyze

the optimal government policy. Section 4 concludes.

2 The Model

This model merges the literature on optimal paternalism (see e.g. O’Donoghue and Rabin,

2006) and the literature on rational obesity (Levy, 2002; Dragone and Savorelli, 2012). A

representative individual consumes unhealthy food xt and a bundle of other goods zt in

period t. They give rise to a quasi-linear instantaneous utility ut ≡ v(xt)+zt−c(wt), where

v′(·) > 0 > v′′(·), wt denotes the weight of the individual in period t and c(wt) represents

the negative health consequences of abnormal weight. There exists a healthy weight wH ,

which minimizes the health problems, i.e. c′(wt) R 0 ⇔ wt Q wH . Furthermore, we

require c′′(·) > 0, which guarantees that the consumption choices of the individual are

well-behaved. Weight at time t depends on the consumption of junk-food in all previous

periods according to the following equation of motion:

wt = xt−1 + (1− d)wt−1, (1)

where d ∈]0, 1[ denotes the effect of burning calories on weight. We assume that the

individual may have a present-bias, i.e. seek immediate gratification, which is inconsistent

with her long term preferences. This present-bias is modelled by allowing for quasi-

hyperbolic discounting in the lifetime utility of the agent in period t, Ut, as introduced

by Laibson (1997):

Ut = ut + β
T∑

s=t+1

δs−tus, (2)

where δ ∈]0, 1] denotes the degree of exponential discounting and β ∈]0, 1] the rate of

hyperbolic discounting. If β = 1, then there is no present-bias and the preferences are

time-consistent. On the other hand, β < 1 denotes desire for immediate gratification and

time-inconsistency, as the discount factor between any two consequtive future periods δ is

larger than the discount rate between the current and next period βδ. In the subsequent

analysis, we will use interchangeably the terms ‘self-control problems’ and ‘present-bias’

in referring to the case β < 1.
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The individual’s income at time t is denoted by I. Both goods are produced at

constant unitary marginal cost under perfect competition and, therefore, their prices

equal one. However, the government may impose a tax τt on unhealthy food in period

t. The proceeds are either returned to the individual as a lump-sum transfer `t or are

used to subsidize the composite good at a rate σt. This subsidy may be interpreted as a

reduction in the sales tax on other goods in such a way that the introduction of a tax on

junk-food is revenue-neutral. Thus, the time t budget constraint is

(1 + τt)xt + (1− σt)zt = I + `t. (3)

Each period the individual chooses xt and zt so as to maximize the lifetime utility (2)

under consideration of the equation of motion for weight (1) and the budget constraint

(3). If the individual exhibits present-bias, then the optimal consumption path depends

on whether and to what extent the individual expects her future selves to behave time-

inconsistently, i.e. how sophisticated the agent is. We follow O’Donoghue and Rabin

(2001) and assume that an agent with discount rate β expects her future selves to have a

taste for immediate gratification β̂ ∈ [β, 1]. If β̂ = β < 1, then the individual is said to be

sophisticated, i.e. she anticipates perfectly her future self-control problems. On the other

hand, an individual is naive if she is characterized by β < 1 ∧ β̂ = 1, as this individual

is not aware of the present-bias of her future selves. Partial naiveté is present when

β < β̂ < 1.1 In order to distinguish the different types of individuals in the remaining

analysis, we will index consumption and weight using a superscript i = s, n, where s

denotes a sophisticated individual and n a (fully or partially) naive individual.

Before we solve the individual problem of utility maximization, we can summarize

how the model differs from the existing literature. The literature on optimal paternalistic

taxes (see e.g. O’Donoghue and Rabin, 2003, 2006, and others) assumes as a simplification

that the health problems in period t are monotonically increasing in the unhealthy con-

sumption in period t− 1. By modelling the negative health consequences as a function of

weight and postulating a non-monotone relationship between weight and health centered

1This form of modelling the degree of sophistication of individuals with self-control problems has

become standard in the literature. See e.g. Gruber and Köszegi (2001, 2004) for application to cigarette

consumption, Diamond and Köszegi (2003) in the context of quasi-hyperbolic discounting and retirement,

and others.
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aroung the healthy weight level wH , we allow for rational agents to be either overweight

or underweight. This approach is consistent with the literature on rational obesity, as

developed by Levy (2002); Dragone and Savorelli (2012) and others. However, this strand

of literature does not discuss how a rational individual differs from a non-rational indi-

vidual in becoming obese and what the consequences of rational obesity for the optimal

taxation of unhealthy consumption are. This is the purpose of this article.

2.1 Optimal Consumption

The representative individual of type i maximizes the perceived lifetime utility at time

t, given by Equation (2). The optimal consumption is derived from the solution of the

Bellman equation

V i(wit) = max
xit

{
u(xit, w

i
t) + βδV (wit+1)

}
, (4)

where V i(wit) is the value function, which gives the discounted lifetime utility of leaving a

weight wit in period t and consuming optimally afterwards. Using Equations (1) and (3),

we can derive the following first-order condition:

v′(xit)−
1 + τt
1− σt

+ βδV i′(wit+1)
∂wit+1

∂xit
= v′(xit)−

1 + τt
1− σt

+ βδV i′(wit+1) = 0. (5)

As a second step, we derive V i′(wit+1), which from the perspective of the self in period t

is determined by

V i(wit+1) = ut+1(x
s
t+1(β̂), wit+1) + δV i(wit+2). (6)

Two comments are necessary. First, Equation (6) is derived from the perspective of the

self in period t and, therefore, the individual discounts exponentially at the rate δ between

periods t+ 1 and t+ 2 in accordance with the lifetime utility (2). Second, the individual

believes that her future selves in periods t+ 1, t+ 2, . . . will have self-control problems β̂.

Thus, she expects to be a sophisticated consumer with β = β̂ from period t+ 1 onwards

and to consume xst+1(β̂) in that period. We differentiate the above equation with respect

to wit+1 and derive the following value for V i′(wit+1):

V i′(wit+1) =

[
v′(xst+1(β̂))− 1 + τt+1

1− σt+1

]
∂xst+1(β̂)

∂wit+1

−c′(wit+1)+δV
i′(wit+2)

[
(1− d) +

∂xst+1(β̂)

∂wit+1

]
.

(7)
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The last step in deriving the optimal stream of consumption is to solve the maximization

problem that the self in t expects to solve in t+ 1, which is given by

V i(wit+1) = max
xst+1

{
u(xst+1, w

i
t+1) + β̂δV i(wit+2)

}
. (8)

Note that the only difference between Equations (4) and (8) is that the expected self-

control problem β̂ may differ from the actual present-bias β. The expected first-order

condition is given by

v′(xst+1(β̂))− 1 + τt+1

1− σt+1

+ β̂δV i′(wit+2) = 0. (9)

Lastly, one can plug Equation (5) in (7), solve for V i′(wit+2) and plug the resulting ex-

pression in Equation (9) in order to derive the Euler equation of the individual. Denoting

the relative price of unhealthy food in period t as pt ≡ (1 + τt)/(1 − σt), we derive the

following result:

v′(xit)−pt =
βδ

β̂

[(
v′(xst+1(β̂))− pt+1

)(
(1− d) + (1− β̂)

∂xst+1(β̂)

∂wit+1

)
+ β̂c′(wit+1)

]
. (10)

Equation (10) looks complicated, but can be easily interpreted. Assume for the moment

that both sides of (10) are positive. Note furthermore that along the optimal path, a small

increase in consumption in period t, followed by a small reduction in period t + 1, does

not affect utility. The term on the left-hand side of (10) gives the marginal utility that

a consumer derives of consuming one more unit of unhealthy food in period t, while the

first term in brackets on the right-hand side gives the reduction in utility from consuming

one unit less in the next period. The second term on the right-hand side displays the

utility loss of this perturbation of the consumption path in terms of higher weight and,

therefore, more health problems.

A steady state level of consumption and weight can be reached when the relative

price is constant. Denote the steady state values of the variables as x̃i, p̃, w̃i. While

the determinants of p̃ are analyzed in the next section, where we consider the optimal

government policy, x̃i and w̃i are determined by Equations (1) and (10) and are given by

dw̃i = x̃i, (11)(
v′(x̃i)− p̃

)
=

(
v′(x̃s(β̂))− p̃

) βδ
β̂

[
(1− d) + (1− β̂)

∂x̃s(β̂)

∂w̃i

]
+ βδc′(w̃i). (12)
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The literature on rational obesity examines whether an individual without self-control

problems is optimally over- or underweight in steady state (see e.g. Dragone and Savorelli,

2012). In order to compare our results to that literature, we first need to derive a solution

for the steady-state consumption x̃i and its dependance on weight.

2.2 Closed-form solution for the consumption path

We follow Gruber and Köszegi (2001, 2004) and derive a closed-form solution for junk-food

consumption by assuming that v(x) and c(w) are quadratic:

v(x) = γx− ε

2
x2, c(w) = c̄+

ω

2
(w − wH)2. (13)

In Appendix A we show that the Euler equation (10) and the assumed functional forms

in (13) lead to junk-food consumption being a linear function of weight, given by xit =

λitw
i
t + µit. We derive the following results:

Proposition 1. If the instantaneous utility is represented by quadratic functional forms,

then optimal consumption satisfies xit = λitw
i
t + µit. If the consumer has an infinite time

horizon and β ≥ 1/2, then λit converges to the constant value λ∗i ∈]− (1− d), 0[, which is

independent of the price of unhealthy food. Additionally, µit converges to the value µ∗it (pt),

where pt = (pt, pt+1, . . .)
T .

Proof: See Appendix A.

Several comments are necessary. First, we can show that the assumption of quasi-

linear preferences leads to λ∗i being independent of the price of unhealthy food and, hence,

of the tax rate. This result simplifies the analysis as the introduction of a tax impacts

consumption only through the term µ∗it . Second, λ∗i < 0 emerges because of the additive-

separability of the instantaneous utility in current-period consumption and weight. If

instead uxw > 0, then the possibility of λ∗i > 0 emerges. However, the exact value of λ∗i

is not essential to the remaining analysis.

2.3 Steady State

Proposition 1 can be used to analyze the steady state described by Equations (11)-(12).

In order to simplify the subsequent analysis, it is useful to define a satiation level of

9



consumption xF , as the junk-food intake, which maximizes instantaneous utility in steady

state and the healthy consumption xH , which is compatible with healthy long-term weight,

i.e.

v′(xF )− p̃ = 0, dwH = xH . (14)

A consumer is said to be overconsuming if x̃i > xF and underconsuming if x̃i < xF . More-

over, an individual is overweight if x̃i > xH and underweight otherwise. Note furthermore

that xF and xH are the same for all types of individuals, because xF is determined by the

instantaneous utility function and the relative price, while xH is determined by the level

of healthy weight and the equation of motion. We can derive the following results:

Proposition 2. There exist three possible steady states for the consumer of type i =

s, n. The individual is either (a) overweight and underconsuming if xH < x̃i < xF , (b)

underweight and overconsuming if xF < x̃i < xH or (c) healthy weight and consuming

until satiation is achieved if xH = x̃i = xF .

The condition xF > xH is necessary and sufficient for an overweight steady state.

The conditions xF < xH is necessary and sufficient for an underweight steady state. A

necessary and sufficient condition for a healthy weight steady state is xF = xH .

Proof: See Appendix B.

The first part of Proposition 2 is analogous to the result of Dragone and Savorelli

(2012), who consider only rational individuals. We generalize their result by proving that

it continues to hold when consumers might exhibit self-control problems and naiveté.

Furthermore, according to Proposition 2, the relation between the satiation level of con-

sumption and the healthy consumption is sufficient for the determination of whether an

individual is overweight or underweight. In the next Proposition we consider explicitly

the implications of self-control problems and naiveté for the steady state weight:

Proposition 3. The degree of self-control problems does not impact the decision of be-

ing under-/healthy- or overweight. An increase in the degree of self-control problems (a

reduction in β) raises the weight of an overweight consumer, lowers the weight of an

underweight individual and does not impact a healthy weight individual.

The degree of naiveté does not impact the decision of being under-/healthy- or over-

weight. An increase in naiveté (higher β̂) does not affect the steady state weight of a
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healthy weight individual and has an ambiguous effect on the steady state weight, if the

individual is over- or underweight.

Proof: See Appendix C.

Proposition 3 has the following interpretation. Self-control problems lead to under-

evaluation of the future negative healthy consequences associated with abnormal weight.

An over-(under-)weight individual underestimates the negative consequences of being

over-(under-)weight and, thus, consumes more (less) than a consumer without present-

bias. Therefore, hyperbolic discounting can only worsen the problem of abnormal weight

but cannot determine whether an individual’s weight is above or below the healthy level.

While naiveté also does not determine whether w̃n R wH , its impact on the steady state

weight is ambiguous. On the one hand, lack of sophistication leads to wrong expectations

of future consumption that lower the perceived effect of consumption today on weight

and aggravate the problem of over- or underweight. On the other hand, if the individual

expects to consume time-consistently in the future, consumption smoothing mitigates the

problem of over- or underconsumption. It is unclear which effect dominates.

Note that the condition for a healthy steady state is a knife edge condition. While

xF is determined by the instantaneous utility and the relative price of unhealthy food,

xH is determined by how many calories a healthy weight individual burns per period, i.e.

dwH . However, public policy can influence xF through changes in the relative price of

unhealthy food and induce w̃i = wH .

2.4 The effect of price changes on consumption

Proposition 1 shows that prices affect consumption only through the parameter µ∗it . In

Appendix A we derive the values of µ∗it for sophisticated and for naive consumers. Since

the degree of naiveté impacts how prices affect consumption, we consider first the response

of a sophisticated individual to a change in the tax on unhealthy food in period t. In

Appendix A we show that

µ∗st = µ̃∗s −
(pt − p̃)− [δ ((1− d) + (1− β)λ∗s)− k∗s]

∞∑
i=1

k∗s i−1(pt+i − p̃)

ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)
, (15)
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where k∗s ∈]0, 1[ is a constant defined in Appendix A and µ̃∗s is the steady state value of

µ∗st associated with the steady state price p̃ (see Equation (A.18) for a formal expression

of µ̃∗s). We see that consumption depends not only on the current price, but also on

the prices in all subsequent periods. Therefore, the impact of a change of the tax rate

in period t on consumption in period t depends on what the consumer expects to be its

effect on future prices. We assume that the individual expects future prices to evolve

according to the following general rule:

(pt+1 − p̃) = a(pt − p̃), a ∈]0, 1[, (16)

where a ∈]0, 1[ ensures that the tax rate and, hence, the price converge to their steady

state values. We will later prove that the government’s optimal policy follows a rule of

the same form as in Equation (16). Nevertheless, we do not assume that the individual

has perfect foresight regarding the value of a and may or may not expect a to equal the

actual value chosen by the government. Thus, µ∗st can be rewritten as

µ∗st = µ̃∗s − 1− aδ ((1− d) + (1− β)λ∗s)

(1− k∗sa) [ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)]
(pt − p̃). (17)

Now, we can derive the impact of a change in the tax rate τt on the consumption of a

sophisticated individual in period t, which is given by

dxst
dτt

=
dµ∗st
dτt

= − 1− aδ ((1− d) + (1− β)λ∗s)

(1− k∗sa) [ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)]

dpt
dτt

< 0. (18)

If an individual is naive, then µ∗nt is determined by Equation (A.21). Following the same

steps, we can show that the naif’s consumption in period t changes according to

dxnt
dτt

=
dµ∗nt
dτt

= −
1− aβδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
[
ε− βδ

β̂

(
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

)] dpt
dτt

+ak∗n
dµ∗st+1(β̂)

dpt+1

dpt
dτt

< 0,

(19)

where λ∗s(β̂) and µ∗st+1(β̂) are the values of λ and µ, respectively, that a sophisticated

individual with self-control problems β̂ would follow.

3 Goverment Policy

In analyzing government policy, we follow O’Donoghue and Rabin (2003, 2006) and Gru-

ber and Köszegi (2001) and assume that the social planner maximizes the long-run utility
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of a long-lived representative consumer, which is given by the exponentially discounted

sum of instantaneous utilities

W i
t =

∞∑
t=0

δtuit (20)

subject to

wi(0) = wi0,

wit+1 = xit + (1− d)wit,

xit = λ∗iwit + µ∗it (pt),

I + `t = (1 + τt)x
i
t + (1− σt)zit.

However, we depart from the existing literature in two aspects. First, we do not constrain

the tax rate to be constant as in Gruber and Köszegi (2001). Second, we assume that the

tax revenues are not necessarily paid back to the individual in the form of a lump-sum

transfer.

In the following, we consider three cases. First, we examine the most widely analyzed

case in the existing literature of a tax on unhealthy food, which is returned to the consumer

in lump-sum fashion. We will see that such a tax can correct over-or underweight resulting

from self-control problems and naiveté, but cannot induce an individual to become healthy

weight, if she is not healthy weight in the absence of the tax. Second, we will consider a

tax that is used to subsidize the composite good z and show that it can achieve a healthy

steady state. Third, we will analyze how the social planner can induce individuals to be

healthy weight when it does not have information on the values of β and β̂.

3.1 Case I

Consider the transfer `t = τtx
i
t and subsidy σt = 0. In this case the optimization problem

of the social planner is to

max
{τt}∞t=0

W i
t =

∞∑
t=0

δt
[
v(λ∗iwit + µ∗it (pt))− c(wit) + I − (λ∗iwit + µ∗it (pt))

]
(20.1)

subject to

wi(0) = wi0, w
i
t+1 = (1− d+ λ∗i)wit + µ∗it (pt).

13



Denoting the value function of the social planner in period t as V SP (wit), the optimal tax

is derived from the solution of the following Bellman equation:

V SP (wit) = max
τt

{
v(λ∗iwit + µ∗it (pt))− c(wit) + I − (λ∗iwit + µ∗it (pt)) + δV SP (wit+1)

}
.

(21)

The first-order condition is given by[
v′(xit)− 1 + δV SP ′(wit+1)

] dµ∗it
dpt

dpt
dτt

= 0. (22)

Moreover, the value function evolves according to

V SP (wit+1) = v(λ∗iwit+1 +µ∗it+1(pt+1))− c(wit+1) + I − (λ∗iwit+1 +µ∗it+1(pt+1)) + δV SP (wit+2).

(23)

Differentiating both sides of the above equation with respect to wit+1, we get

V SP ′(wit+1) =
[
v′(xit+1)− 1 + δV SP ′(wit+2)

] dµ∗it+1

dpt+1

dpt+1

dτt+1

dτt+1

dwit+1

+
(
v′(xit+1)− 1

)
λ∗i − c′(wit+1) + δV SP ′(wit+2)(1− d+ λ∗i). (24)

The Euler equation of the government can be derived by rewriting the first-order condition

(22) for period t + 1 and plugging the resulting expression and Equation (22) in (24) to

get [
v′(xit)− 1

]
= δ

[
(v′(xit+1)− 1)(1− d) + c′(wit+1)

]
. (25)

Lastly, we note that both Euler equations of the consumer and the government need to

be satisfied. Plugging Equation (10) in Equation (25), we can derive the equation, which

determines the optimal stream of tax rates:

δ(1− d)τt+1 − τt = δ(1− β)
[(
v′(xit+1)− pt+1

)
λ∗i − c′(wit+1)

]
+ ∆i

t+1, (26)

where ∆i
t+1 determines the error that a type i consumer makes regarding period t+ 1 and

is defined as

∆i
t+1 ≡

βδ

β̂

[
(v′(xst+1(β̂))− pt+1)((1− d) + (1− β̂)λ∗s(β̂))

]

− δ
[
(v′(xit+1)− pt+1)((1− d) + (1− β)λ∗i)

]= 0, if i = s,

6= 0, if i = n.
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Equation (26) shows that there are two reasons for taxation in this case: the first term on

the right-hand side corrects for the self-control problem of the representative individual,

while the second term corrects for the naiveté of the consumer. The optimal tax may be

either positive or negative.

However, in the absence of self-control problems (β = β̂ = 1) the right-hand side

of (26) is zero and, therefore, the only solution for the optimal tax is τt = 0,∀t. The

reason is that the consumer is rational and maximizes the same lifetime utility as the

social planner. Therefore, there is no need for an intervention.

Moreover, Equations (1) and (26) form a system of two linear first-order difference

equations in wit, τt. The steady state of the system is derived by setting wit = w̃i, τt = τ̃ ,∀t
and is given by

w̃i =
µ̃∗i

d− λ∗i
=
x̃i

d
, τ̃(1− δ(1− d)) = −δ(1− β)

[
(v′(x̃i)− (1 + τ̃))λ∗i − c′(w̃i)

]
− ∆̃i,

(27)

where

∆̃i ≡ βδ

β̂

[
v′(x̃s(β̂))− p̃

] (
(1− d) + (1− β̂)λ∗s(β̂)

)
−δ
[
v′(x̃i)− p̃

] (
(1− d) + (1− β)λ∗i

)
.

Note furthermore that, according to Proposition 2, the right-hand side of Equation (27)

equals zero for a healthy weight individual. This means that in this case the left-hand

side also equals zero, i.e. τ̃ = 0. Thus, healthy weight can only be achieved if in the

absence of taxation the individual finds it optimal to be healthy weight, but cannot be

achieved by the use of taxation. Furthermore, according to Equation (27), there does

not exist any non-zero tax that is compatible with a healthy steady state, because τ̃ 6= 0

requires the right-hand side of (27) to be non-zero in steady state, which is incompatible

with w̃i = wH . This means that the government cannot use this tax in order to induce

individuals with abnormal weight to choose w̃i = wH .

The system of difference equations (1) and (26) can be solved for τt and wit as functions

of wi0 during the transition to steady state. The system is stable, if it has at least one

eigenvalue which is in the interval ] − 1, 1[. In Appendix D we show that a sufficient

condition for saddle-path stability is δ ∈]δ, 1], where δ is a lower bound for δ, defined in

Equation (D.10). Denoting the eigenvalues of the system as ν1 ∈]0, 1[, ν2 > 1, we show in
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Appendix D that the optimal trajectories are given by

wit = w̃i + (wi0 − w̃i)νt1, (28a)

τt = τ̃ − a11 − ν1
a12

(wi0 − w̃i)νt1, (28b)

where a11, a12 are constants defined in Equations (D.5a) and (D.5b) Appendix D.

We summarize the solution to the optimal tax rate in the following Proposition:

Proposition 4. When the tax revenues are returned to the consumer in lump-sum fashion,

the optimal steady state tax is positive if the individual is overweight, negative if the

individual is underweight and zero if (i) the individual has no self-control problems or (ii)

the individual has a healthy weight in the absence of taxation. Moreover, there does not

exist a non-zero steady state tax compatible with healthy weight.

A sufficient condition for the system of difference equations in wit and τt to be saddle-

path stable is δ ∈]δ, 1[. Its solution is given by Equations (28a), (28b).

Proof: See Appendix D.

We note that in the first case of a zero tax in Proposition 2, the individual may be

rationally overweight or underweight. Since this tax is designed to correct self-control

problems and naiveté, it cannot correct for rationally abnormal weight. In the next

subsection, we consider a tax which is designed to correct abnormal weight.

3.2 Case II

In this case we set `t = 0. We also assume that the composite good is subsidized at a rate

σt, which is proportional to τt. Note that if the system is balanced in each period, i.e. if

the tax revenues τtx
i
t equal the expenditures σtz

i
t, then the budget constraint collapses to

the budget constraint in Case I. In order to consider policy, which is different from Case

I, we assume that the subsidy σt is defined in a constant relation to τt in such a way that

the tax system is balanced in the steady state, but not necessarily balanced during the

transition period. Thus, we assume that σtz̃
i = τtx̃

i, or

σt = τt
x̃i

z̃i
. (29)
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The system will generate a surplus (deficit) in period t, if τt(x
i
t/z

i
t − x̃i/z̃i) > (<)0.

We assume that any surplus is spent on goods and services not directly benefiting the

representative consumer and if there is a deficit, it is financed by other taxes that are not

levied on the consumer. The term x̃i/z̃i can be interpreted as the social planner’s desired

unhealthy food consumption as a proportion of the total expenditures.

In this case, the problem of the social planner becomes to

max
{τt}∞t=0

W i
t =

∞∑
t=0

δt
[
v(λ∗iwit + µ∗it (pt))− c(wit) +

I − (1 + τt)(λ
∗iwit + µ∗it (pt))

1− σt

]
. (20.2)

The solution procedure is the same as in Case I and results in the following Euler equation

of the government (analogue to Equation (25) in the previous subsection):

[
v′(xit)− pt

]
= δ

[
(v′(xit+1)− pt+1)(1− d) + c′(wit+1)

]
+

xit − zitx̃i/z̃i
dµ∗it
dpt

dpt
dτt

(1− σt)
−δ(1−d+λ∗i)

xit+1 − zit+1x̃
i/z̃i

dµ∗it+1

dpt+1

dpt+1

dτt+1
(1− σt+1)

.

(30)

In order to simplify the above equation, we note that dµ∗it /dpt = dµ∗it+1/dpt+1 = dµ∗i/dp

according to Equations (18) and (19). Moreover, from the definition of σt and the budget

constraint of the individual, we can simplify the last two terms in Equation (30) in the

following way:

xit − zitx̃i/z̃i
dµ∗it
dpt

dpt
dτt

(1− σt)
=
xit −

I−(1+τt)xit
(1−σt) x̃i/z̃i

dµ∗i

dp

(
1 + 1+τt

1−σt
x̃i

z̃i

) =
xit

(
1 + x̃i

z̃i

)
− x̃i

(
1 + x̃i

z̃i

)
dµ∗i

dp

(
1 + x̃i

z̃i

) =
(xit − x̃i)

dµ∗i

dp

,

where in the second equality we used I = x̃i + z̃i. Using the above result and the Euler

equation of the consumer, which is given by (10), we can derive the following equation,

determining the optimal path of the tax policy:[
(xit − x̃i)− δ(1− d+ λ∗i)(xit+1 − x̃i)

]
dµ∗i

dp

= δ(1−β)
[
(v′(xit+1)− pt+1)λ

∗i − c′(wit+1)
]
+∆i

t+1,

(31)

where ∆i
t+1 is defined analogously to the same term in Case I.

Now we can discuss the difference to the previous subsection. Note that Equations

(1) and (31) define a system of linear first-order difference equations in wit, pt, while in the

previous case the endogenous variables were wit, τt. Therefore, it is more convenient to

present the optimal tax policy in terms of the optimal choice of the relative price pt and
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not τt. The system of difference equations does not necessarily converge and saddle-path

stability has to be assumed. If there is convergence, then the solution to the system is

given by

wit = w̃i + (wi0 − w̃i)νt1, (32a)

pt = p̃− a11 − ν1
a12

(wi0 − w̃i)νt1, (32b)

where a11, a12 are constants defined in Equations (E.7a), (E.7b) and ν1 is an eigenvalue

defined in Equation (E.12) in Appendix E.

We can prove the following results:

Proposition 5. The steady state relative price is given by p̃ = v′(x̃i) = γ − εdwH , where

x̃i = xF = xH = dwH , and is independent of the degree of self-control problems β and the

degree of naiveté β̂ − β. In the steady state, the consumer is healthy-weight w̃i = wH and

does not make errors in her expected consumption choices, i.e. ∆̃i = 0,∀i.
If the system of difference equations in (wt, pt) is characterized by a saddle-path, then

its solution is given by Equations (32a), (32b). Otherwise, the system is unstable.

Proof: See Appendix E.

Using Proposition 5, one can derive an explicit solution for the optimal steady state

tax:

τ̃ =
((γ − εdwH)− 1)

(γ − εdwH) dwH

I−dwH + 1
. (33)

Thus, the steady state tax depends only on (i) the instantaneous utility of the consumer,

(ii) the consumer’s income and (iii) the calorie expenditure when the consumer is healthy

weight. The intuition behind this result is the following. When the individual has a

healthy weight, then a marginal weight change does not affect her health. The only

possiblity to maintain this weight is if the instantaneous utility is maximized in each

period, i.e. if the individual consumes until satiation, because in this case a perturbation

of the optimal consumption path in period t, which is undone in period t+1 also has a zero

impact on utility. Therefore, the price that ensures x̃i = xF also induces the individual

to be healthy weight.

Nevertheless, according to Equations (32a) and (32b), the optimal tax τt does depend

upon β and β̂ during transition if the system converges. If the system is unstable, then
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the only solution to the social planner’s problem may be to set the price of unhealthy

food equal to p̃ in each period. In the next subsection we show that this policy guarantees

convergence to the same steady state weight w̃i = wH . A second reason for considering

this policy is that it does not require information on the values of β and β̂.

3.3 Case III: second-best policy

Suppose that the government cannot implement the policy from Case II either because

the steady state is unstable or because the government does not know whether the repre-

sentative individual makes errors and behaves time-inconsistently. Assume furthermore

that it levies a constant tax rate on unhealthy food τt = τ̄ ,∀t. The tax revenues may

either be returned each period to the consumer in the form of a lump-sum transfer or

used to subsidize the bundle of other goods. Then we can prove the following result:

Proposition 6. Suppose that the government levies a constant tax rate τt = τ̄ , such

that the relative price of unhealthy food equals the steady state price from Case II, i.e.

pt = p̄ = γ − εdwH . Then the consumer unambiguously achieves a steady state of healthy

weight w̃i = wH , ∀i and healthy consumption x̃i = xH ,∀i irrespective of her degree of

self-control problems and naiveté.

Proof: The proof consists of two parts. First, we prove that the steady state is

indeed w̃i = wH ,∀i. Second, we show that the steady state is stable, i.e. the weight wit

converges to wH .

Note that under a constant tax rate, µ∗it and µ∗st (β̂) become constant and equal

their steady state values in each period t. Furthermore, we showed in Appendix A that

µ̃∗i = w̃i(d−λ∗i) and µ̃∗s(β̂) = w̃s(β̂)(d−λ∗s(β̂)). Thus, consumption in period t is given

by xit = λ∗iwit+µ̃
∗i = dw̃i+λ∗i(wit−w̃i) and expected consumption in period t+1 from the

viewpoint of period t is xst+1(β̂) = λ∗s(β̂)wit+1 + µ̃∗s(β̂) = dw̃s(β̂) + λ∗s(β̂)(wit+1 − w̃s(β̂)).

We can use these expressions and pt = p̄ = γ−εdwH in the Euler equation of the consumer

(10) and rewrite it in the following way:

ελ∗i(wit − w̃i) =
βδ

β̂
ελ∗s(β̂)((1− d) + (1− β̂)λ∗s(β̂))(wit+1 − w̃s(β̂))− βδω(wit+1 − wH)

− εd(w̃i − wH) +
βδ

β̂
εd(w̃s(β̂)− wH)((1− d) + (1− β̂)λ∗s(β̂)). (34)
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Now we can derive the steady state. Consider first the case i = s. In a steady state

wst = wst+1 = w̃s and Equation (34) collapses to

(w̃s − wH)[βδω + εd(1− δ((1− d) + (1− β)λ∗s))] = 0.

The solution of the above equation is w̃s = wH . Now we can consider the second case

i = n. If we plug w̃s(β̂) = wH in (34), evaluate at steady state and simplify, we get

(w̃n − wH)

(
εd+ βδω − βδ

β̂
ελ∗s(β̂)((1− d) + (1− β̂)λ∗s(β̂))

)
= 0.

The solution to the above equation is w̃n = wH . Hence, we have proven that the steady

state is w̃i = wH , i = s, n and what is left is to show that the weight converges to this value

irrespective of the starting weight. Plugging w̃i = wH in Equation (34) and simplifying,

we get

(wit+1 − wH) =
−ελ∗i

βδ

β̂

[
−ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
+ β̂ω

](wit − wH).

Using the definition of λ∗i from Equation (A.11), we can show that the term in front of

(wit−wH) is in the interval ]0, 1[. Thus, the weight of the individual converges to w̃i = wH

and the consumption of junk-food converges to x̃i = xH . Q.E.D.

The policy considered in Proposition 6 is only a second-best instrument which can

be used in the absence of information on the errors that consumers make. Even though

it does not achieve the first-best, as it does not optimize the utility of the representative

consumer during the transition to the steady state, it does achieve the health-maximizing

steady state and the utility-maximizing steady state from Case II. Moreover, it is not

paternalistic, since it does not seek to correct any errors that individuals might make.

The reason why the health-maximizing steady state is reached by this policy is that

individuals do not make errors in the steady state. Hence, no paternalistic policy is

required.

4 Conclusion

This paper has merged the optimal paternalism and rational obesity literatures in or-

der to study how rational and irrational individuals differ in their consumption choices
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and weight. Our first contribution is in showing that irrationality in the form of self-

control problems and naive expectations regarding future consumption cannot induce an

individual to have a steady state weight below or above the healthy weight.

This result makes it possible for policy makers to construct a non-paternalistic tax

that incentivizes both rational and irrational individuals to have a healthy weight. While

this policy is only health-maximizing, but not utility-maximizing, it has two advantages

relative to the paternalistic policy. First, it is easy to implement, as it does not require

information on the type and degree of irrationality that consumers exhibit. Second, the

paternalistic tax cannot induce obese individuals to have a healthy weight. While the

paternalistic tax may be utility-maximizing, the externality that obesity causes on the

rest of society through its medical treatment costs may make the health-maximizing policy

more desirable to a social planner.
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A Proof of Proposition 1

The derivation of the closed-form solution for junk-food consumption follows closely the

analysis of Gruber and Köszegi (2001). First, we insert the assumed functional forms for

v(x) and c(w) in Equation (10):

γ − εxit − pt =
βδ

β̂

[(
γ − εxst+1(β̂)− pt+1

)(
(1− d) + (1− β̂)

∂xst+1(β̂)

∂wit+1

)

+β̂ω(wit+1 − wH)

]
. (A.1)

We solve the above equation by the method of undetermined coefficients. Assume that

xit = λitw
i
t+µ

i
t, where λit and µit are constants to be determined. In this case ∂xit/∂w

i
t = λit.

Moreover, Equation (1) changes to wit+1 = (1− d)wit + λitw
i
t + µit. Inserting the terms for

xit, ∂x
i
t/∂w

i
t and wit+1 in (A.1), we get

γ − ε(λitwit + µit)− pt =
βδ

β̂

[(
γ − ε[λst+1(β̂)((1− d+ λit)w

i
t + µit) + µst+1(β̂)]− pt+1

)
(

(1− d) + (1− β̂)λst+1(β̂)
)

+ β̂ω[(1− d+ λit)w
i
t + µit)− wH ]

]
.

(A.2)

In order to determine λit, we have to equate the terms in front of wit on the left- and the

right-hand side of (A.2). This leads to the following equation:

− ελit =
βδ

β̂

[
−ελst+1(β̂)(1− d+ λit)

(
(1− d) + (1− β̂)λst+1(β̂)

)
+ β̂ω(1− d+ λit)

]
.

(A.3)

The above expression can be simplified to give:

λit = −(1− d) +
ε(1− d)

ε− βδ

β̂

[
ελst+1(β̂)

(
(1− d) + (1− β̂)λst+1(β̂)

)
− β̂ω

] . (A.4)

In the above equation λst+1(β̂) is the constant proportion of weight that a sophisticated

individual with β = β̂ consumes, as the self in period t expects to be a sophisticate with

present-bias β̂ from time t + 1 onwards. Thus, in order to show that λit is constant, we

first need to show that the λst+1(β̂) converges to a constant. Thus, we derive first the

solution of λst when β = β̂:

λst = −(1− d) +
ε(1− d)

ε− δ
[
ελst+1

(
(1− d) + (1− β)λst+1

)
− βω

] . (A.5)
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The above equation represents backward recursion in λst . In order to prove that it con-

verges to a constant value λ∗s, we define the right-hand side of (A.5) as fs(λ
s
t+1). Note

that the second term of fs(·) is the reciprocal of a quadratic equation in λst+1 with a

negative coefficient in front of λs2t+1. Thus, if it is positive for two λst+1 values, it is also

positive for all values in between. We will show that it is positive for λst+1 = −(1−d) and

λst+1 = 0 and that λst is bounded by these values, i.e. (i) fs(−(1− d)) > −(1− d) and (ii)

fs(0) < 0. First, we have:

fs(−(1− d)) = −(1− d)

[
1− ε

ε+ δ [ε(1− d)2β + βω]

]
> −(1− d). (A.6)

Second:

fs(0) = −(1− d)

[
1− ε

ε+ δβω

]
< 0. (A.7)

Equations (A.6) and (A.7) prove that λst is bounded in the interval ]− (1−d), 0[. In order

to prove convergence, it is sufficient to show that fs(λ
s
t+1) is continuous and monotonically

increasing in λst+1 on the interval ]− (1− d), 0[. The derivative of fs with respect to λst+1

is given by

f ′s(λ
s
t+1) =

δε2(1− d)
[
2(1− β)λst+1 + (1− d)

][
ε− δ

(
ελst+1

(
(1− d) + (1− β)λst+1

)
− βω

)]2 . (A.8)

Next, note that fs(·) is strictly convex in the interval λst+1 ∈]− (1− d), 0[, i.e. f ′′s (·) > 0

in the interval of interest. Thus, f ′s(·) > 0 for all values of λst+1 if f ′s(λ
s
t+1 = −(1−d)) ≥ 0,

i.e. if

f ′s(−(1− d)) =
δε2(1− d)2 [2β − 1][

ε− δ
(
ελst+1

(
(1− d) + (1− β)λst+1

)
− βω

)]2 ≥ 0. (A.9)

The above inequality holds if β ≥ 1/2. Therefore, if there are infinitely many periods till

the end of the time horizon, λst converges to the unique solution of

λ∗s = −(1− d)

[
1− ε

ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)

]
∈]− (1− d), 0[. (A.10)

On the other hand, a naive consumer, who makes a decision in period t, expects to behave

as a sophisticated consumer with present-bias β̂ from t + 1 onwards. Thus, she expects

to consume according to λ∗s(β̂) from period t+ 1 onwards, and chooses the consumption
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in period t according to

λ∗n = −(1− d)

1− ε

ε− βδ

β̂

(
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

)
 ∈]− (1− d), 0[.

(A.11)

Equations (A.10) and (A.11) show that λ∗i is independent of the price level.

In order to determine the parameter µit, we equate the terms on the left-and right-

hand sides of Equation (A.2), which are not multiplicative of wit:

γ − εµit − pt =
βδ

β̂

[(
γ − ε[λst+1(β̂)µit + µst+1(β̂)]− pt+1

)(
(1− d) + (1− β̂)λst+1(β̂)

)
+β̂ω[µit − wH ]

]
. (A.12)

The above equation can be solved for µit:

µit =
γ − βδ

β̂

[
γ
(

(1− d) + (1− β̂)λst+1(β̂)
)
− β̂ωwH

]
ε− βδ

β̂

[
ελst+1(β̂)

(
(1− d) + (1− β̂)λst+1(β̂)

)
− β̂ω

] (A.13)

−
pt − pt+1

βδ

β̂

(
(1− d) + (1− β̂)λst+1(β̂)

)
ε− βδ

β̂

[
ελst+1(β̂)

(
(1− d) + (1− β̂)λst+1(β̂)

)
− β̂ω

]
+

εβδ
β̂

[
(1− d) + (1− β̂)λst+1(β̂)

]
ε− βδ

β̂

[
ελst+1(β̂)

(
(1− d) + (1− β̂)λst+1(β̂)

)
− β̂ω

]µst+1(β̂).

Note that the value of µit converges if the term in front of µst+1(β̂) is between zero and

one, because λst+1(β̂) converges to λ∗s(β̂) and the price level also converges to a given p̃.

We denote the limit value of the term of interest as k∗i and using Equation (A.11) show

that it is always in the interval ]0, 1[:

k∗i ≡
εβδ
β̂

[
(1− d) + (1− β̂)λ∗s(β̂)

]
ε− βδ

β̂

[
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

] (A.14)

=

βδ

β̂

[
(1− d) + (1− β̂)λ∗s(β̂)

]
(λ∗n + (1− d))

1− d
∈]0, 1[.

In order to solve for µ∗it (β̂), we solve first for a sophisticated consumer’s µ∗st , which is

given by the solution of (A.13) when β = β̂, i.e. the solution of

µst =
γ − δ

[
γ ((1− d) + (1− β)λ∗s)− βωwH

]
ε− δ [ελ∗s ((1− d) + (1− β)λ∗s)− βω]

− pt − pt+1δ ((1− d) + (1− β)λ∗s)

ε− δ [ελ∗s ((1− d) + (1− β)λ∗s)− βω]
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+
εδ [(1− d) + (1− β)λ∗s)]

ε− δ [ελ∗s ((1− d) + (1− β)λ∗s)− βω]
µst+1. (A.15)

Denoting the term in front of µst+1 as k∗s and noting that Equation (A.15) is a simple

geometric progression, we get

µ∗st =
γ − δ

[
γ ((1− d) + (1− β)λ∗s)− βωwH

]
(1− k∗s) [ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)]

−
pt − [δ ((1− d) + (1− β)λ∗s)− k∗s]

∞∑
i=1

k∗s i−1pt+i

ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)
. (A.16)

Furthermore, if the tax rate and, hence, the relative price reach their steady state values,

µ∗st also reaches a steady state, defined by

µ̃∗s =
(γ − p̃) [1− δ ((1− d) + (1− β)λ∗s)] + δβωwH

(1− k∗s) [ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)]
. (A.17)

Note that µ̃∗s can be simplified significantly by solving Equation (A.2) for a sophisticated

individual in a steady state, which gives

(γ−p̃) [1− δ ((1− d) + (1− β)λ∗s)]+δβωwH = ε(λ∗sw̃s+µ̃∗s) [1− δ ((1− d) + (1− β)λ∗s)]+βδωw̃s.

Plugging the above Equation in (A.17) and simplifying, we get

µ̃∗s = w̃s(d− λ∗s). (A.18)

Lastly, we can rewrite the solution of µ∗st in a more convenient form by expressing it as a

function of pt − p̃. Using Equations (A.16) and (A.17), we get

µ∗st = µ̃∗s −
(pt − p̃)− [δ ((1− d) + (1− β)λ∗s)− k∗s]

∞∑
i=1

k∗si−1(pt+i − p̃)

ε− δ (ελ∗s ((1− d) + (1− β)λ∗s)− βω)
. (A.19)

The solution for naive consumers can be easily derived from Equations (A.13) and (A.16):

µ∗nt =
γ − βδ

β̂

[
γ
(

(1− d) + (1− β̂)λ∗s(β̂)
)
− β̂ωwH

]
ε− βδ

β̂

[
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

] (A.20)

−
pt − pt+1

βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
ε− βδ

β̂

[
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

] + k∗nµ∗st+1(β̂).
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Analogous to µ∗st , we can express µ∗nt more conveniently as a function of pt− p̃. Following

the same steps as in the derivation of Equation (A.19), we get

µ∗nt = µ̃∗n−
(pt − p̃)− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
(pt+1 − p̃)

ε− βδ

β̂

[
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

] + k∗n
(
µ∗st+1(β̂)− µ̃∗s(β̂)

)
,

(A.21)

where the steady state values µ̃∗n and µ̃∗s(β̂) are defined in the following way:

µ̃∗n =
(γ − p̃)

[
1− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
+ βδωwH

ε− βδ

β̂

[
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)
− β̂ω

] + k∗nµ̃∗s(β̂) = w̃n(d− λ∗n),

(A.22)

µ̃∗s(β̂) = w̃s(β̂)(d− λ∗s(β̂)). (A.23)

Note that in deriving the second equality in Equation (A.22) we replaced the numerator

in the first term in Equation (A.22) by its steady state value as derived by evaluating

Equation (A.2) in a steady state. On the other hand, Equation (A.23) is derived in

the same way as Equation (A.18) with the difference that it applies to a sophisticated

individual with present-bias β̂. Q.E.D.

B Proof of Proposition 2

First, we prove the first part of Proposition 2, which states that there are three possible

steady states: (a) xH < x̃i < xF , (b) xF < x̃i < xH , (c) xH = x̃i = xF . Using Equations

(A.18), (A.22) and (A.23) from Appendix A, we can rewrite the steady state, described

by Equations (11) and (12), in the following way:

βδω(w̃i − wH) =
(
γ − εdw̃i − p̃

) [
1− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
(B.1)

+ (w̃s(β̂)− w̃i)(d− λ∗s(β̂))ε
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
.

We will consider separately the two types of individuals. Assume first that the individual

is sophisticated. In this case Equation (B.1) simplifies to

βδω(w̃s − wH) = (γ − εdw̃s − p̃) [1− δ ((1− d) + (1− β)λ∗s)] (B.2)
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Noting that the term in brackets on the right-hand side of (B.2) is positive and using

the definitions of xH and xF from Equation (14), the proof for a sophisticated individual

follows immediately.

We turn now to the naive individual. In this case the steady state is determined by

βδω(w̃n − wH) = (γ − εdw̃n − p̃)
[
1− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
(B.3)

+ (w̃s(β̂)− w̃n)(d− λ∗s(β̂))ε
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
,

where w̃s(β̂) is determined by Equation (B.2) when β = β̂. One can use Equations (B.2)

and (B.3) in order to prove the following intermediate result:

w̃n R w̃s(β̂) ⇔ w̃s(β̂) R wH . (B.4)

Assume first that w̃s(β̂) = wH . Inserting this in Equation (B.2) gives γ − p̃ = εdw̃s(β̂) =

εdwH . Inserting this equality in (B.3) and simplifying, we get

(w̃n − wH)(βδω + εd− ελ∗s(β̂)βδ(1− d+ (1− β̂)λ∗s(β̂))/β̂) = 0.

This equation can only be satisfied if w̃n = wH .

There are two remaining cases in Equation (B.4): w̃s(β̂) > (<)wH . We use proof by

contradiction to show that (B.4) holds in these cases. To do so, evaluate Equation (B.2)

for β = β̂, insert it in Equation (B.3) and rewrite the resulting expression in the following

way:

βδω(w̃n − wH)− β̂δω(w̃s(β̂)− wH) = (γ − εdw̃n − p̃)
[
1− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
−
(
γ − εdw̃s(β̂)− p̃

) [
1− δ

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
+ (w̃s(β̂)− w̃n)(d− λ∗s(β̂))ε

βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

]
.

(B.5)

Consider now the first case: w̃s(β̂) > wH and assume that w̃n ≤ w̃s(β̂). It is trivial to

show that in this case the assumption w̃n ≤ w̃s(β̂) makes the left-hand side of Equation

(B.5) negative and its right-hand side positive. This is a contradiction and we conclude

that if w̃s(β̂) > wH , then it must hold true that w̃n > w̃s(β̂).
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In the second case w̃s(β̂) < wH . Assume now that w̃n ≥ w̃s(β̂). It is again trivial to

show that this assumption makes the left-hand side of (B.5) positive and its right-hand

side negative. This is a contradiction and we conclude that if w̃s(β̂) < wH , then it must

hold true that w̃n < w̃s(β̂). Thus, Equation (B.4) is always true.

Note now that Equations (B.3) and (B.4) together determine the following relations:

sgn{w̃n − wH} = sgn{γ − εdw̃n − p̃} = sgn{w̃s(β̂)− wH}. (B.6)

The first equality in Equation (B.6) proves the results from the first part of Proposition

2 in the case of a naive consumer.

Consider now the second part of Proposition 2. Suppose that xF > xH . This implies

γ−εx̃i− p̃ > 0 for x̃i ≤ xH . Assume that the individual achieves a healthy or underweight

steady state, i.e. w̃i ≤ wH and x̃i = dw̃i ≤ xH . In this case Equations (B.4) implies

w̃i ≤ w̃s(β̂), where strict inequality applies for i = n and equality for i = s. Therefore,

we have

(γ − εx̃i − p̃)
[
1− βδ

β̂
((1− d) + (1− β̂)λ∗s(β̂))

]
> 0 ≥ βδω(w̃i − wH)

− (w̃s(β̂)− w̃i)(d− λ∗s(β̂))ε
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
. (B.7)

Therefore, Equation (B.1) is not satisfied and consumption must increase. Thus, in steady

state x̃i > xH and w̃i > wH . This has proven that xF > xH is a sufficient condition for

an overweight steady state. In order to see that this condition is also necessary, assume

that the opposite holds, i.e. xF ≤ xH . In this case we use proof by contradiction to show

that a steady state of w̃i > wH is not possible. Suppose that w̃i > wH is the steady state.

Then γ − εx̃i − p̃ < γ − εxH − p̃ ≤ γ − εxF − p̃ = 0. Moreover, according to Equation

(B.4) we have w̃i ≥ w̃s(β̂), where strict inequality applies for i = n and equality for i = s.

Thus, we can show

(γ − εx̃i − p̃)
[
1− βδ

β̂
((1− d) + (1− β̂)λ∗s(β̂))

]
< 0 < βδω(w̃i − wH)

− (w̃s(β̂)− w̃i)(d− λ∗s(β̂))ε
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
. (B.8)

Therefore, Equation (B.1) is violated. This means that xF > xH is also a necessary

condition.
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Next we show that xF < xH is a sufficient condition for an underweight steady state.

If this condition holds, then γ − εx̃i − p̃ < 0 for x̃i ≥ xH . Suppose that the individual

achieves a healthy or overweight steady state, i.e. w̃i ≥ wH . Using these conditions and

(B.4), we can show that

(γ − εx̃i − p̃)
[
1− βδ

β̂
((1− d) + (1− β̂)λ∗s(β̂))

]
< 0 ≤ βδω(w̃i − wH)

− (w̃s(β̂)− w̃i)(d− λ∗s(β̂))ε
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
. (B.9)

The above inequality violates Equation (B.1) and we conclude that xF < xH is sufficient

for an underweight steady state. To show that it is also necessary, assume that it does

not hold, i.e. xF ≥ xH . Assume furthermore that w̃i < wH . Under these conditions

γ − εx̃i − p̃ > γ − εxH − p̃ ≥ γ − εxF − p̃ = 0. Using Equation (B.4), we can show that

(γ − εx̃i − p̃)
[
1− βδ

β̂
((1− d) + (1− β̂)λ∗s(β̂))

]
> 0 > βδω(w̃i − wH)

− (w̃s(β̂)− w̃i)(d− λ∗s(β̂))ε
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
. (B.10)

The above inequality violates Equation (B.1) and, therefore, an underweight steady state

is not possible under xF ≥ xH , i.e. xF < xH is also necessary for this steady state.

Consider lastly the case xF = xH . Plugging this condition in Equation (B.2), we

conclude that w̃s = wH ,∀β. Using this result and Equation (B.6), we get w̃n = wH . In

order to show that it is also necessary, assume xF 6= xH and w̃i = wH . From Equation

(B.6), we know that the latter condition implies w̃s(β̂) = w̃i. Thus, Equation (B.1) can

be rewritten as

(γ − εx̃i − p̃)
[
1− βδ

β̂
((1− d) + (1− β̂)λ∗s(β̂))

]
= 0. (B.11)

The above equality is satisfied if and only if x̃i = xF . However, w̃i = wH implies x̃i = xH .

This contradicts the assumption xF 6= xH and we conclude that xF = xH is both necessary

and sufficient condition for a healthy steady state. Q.E.D.

C Proof of Proposition 3

In order to derive the effects of β and β̂ on the steady state weight, note first that xF

and xH do not depend on these variables. Second, β̂ does not impact a sophisticated

29



individual. Thus, we only need to derive the impact of β on the steady state weight of a

sophisticated consumer, which is solely determined by its effect on w̃s and through it on

x̃s. Therefore, we differentiate Equation (B.2) with respect to β and w̃s and simplify:

dw̃s

dβ
= −

δω(w̃s − wH)

[
1− βδ(λ∗s−(1−β) ∂λ

∗s
∂β )

(1−δ((1−d)+(1−β)λ∗s))

]
εd (1− δ ((1− d) + (1− β)λ∗s)) + βδω


< 0, if w̃s > wH

> 0, if w̃s < wH .

= 0, if w̃s = wH .

(C.1)

Note that in determining the sign of Equation (C.1), we need to prove that the term in

brackets in the numerator of (C.1) is positive. This condition can be simplified in the

following way:

1−
βδ
(
λ∗s − (1− β)∂λ

∗s

∂β

)
(1− δ((1− d) + (1− β)λ∗s))

> 0 ⇔ 1−δ(1−d+λ∗s)+δβ(1−β)
∂λ∗s

∂β
> 0, (C.2)

where ∂λ∗s/∂β can be derived by totally differentiating Equation (A.10) with respect to

λ∗s and β and is given by

∂λ∗s

∂β
= − (1− d+ λ)δ(ελ∗s 2 + ω)

ε [1− δ(1− d)2 − δλ∗s(2(1− d)(2− β) + 3λ∗s(1− β))] + δβω
< 0. (C.3)

Inserting (C.3) in (C.2) and rearranging, we can show after some tedious calculations that

it always holds:

1− δ(1− d+ λ∗s) + δβ(1− β)
∂λ∗s

∂β
=

ε(1− δ(1− d+ λ∗s))(1− δ((1− d)2 − λ∗sd))

ε [1− δ(1− d)2 − δλ∗s(2(1− d)(2− β) + 3λ∗s(1− β))] + δβω

− εδλ∗s
(1− d+ λ∗s)(1− β)(1− δ(1− d+ λ∗s)) + 1−δ(1−d+λ∗s)(δ+(d−λ∗s)(1−β−δ))

δ(1−d+λ∗s)

ε [1− δ(1− d)2 − δλ∗s(2(1− d)(2− β) + 3λ∗s(1− β))] + δβω
> 0.

(C.4)

Thus, the numerator of Equation (C.1) has the same sign as w̃s − wH .

Now we totally differentiate Equation (B.3) with respect to β and w̃n and simplify:

dw̃n

dβ
=
−δω(w̃n − wH)−

[
(γ − εdw̃n − p̃)− (d− λ∗s(β̂))ε(w̃s(β̂)− w̃n)

]
δ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
βδω + εd− ελ∗s(β̂)βδ

β̂
(1− d+ (1− β̂)λ∗s(β̂))

.

(C.5)

Equations (B.4), (B.6) and (C.5) together prove that the sign of the effect of β on the

weight of the naive individual is the same as in the case of a sophisticated individual.
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Therefore, (C.1) and (C.5) together prove the first part of Proposition 3: a reduction in

β cannot determine whether the individual is overweight, underweight or healthy weight,

because it does not impact the healthy weight consumer and raises (lowers) the weight of

an overweight (underweight) individual.

Next we show that naiveté does not impact the individual’s decision to be over-

/healthy- or underweight. This follows immediately from Equations (B.4) and (C.1):

sgn{w̃n − w̃s(β̂)} = sgn{w̃s(β̂)− wH} = sgn{w̃s(β)− wH}, ∀β, β̂. (C.6)

The first equality in (C.6) follows directly from Equation (B.4) and the second from

(C.1). Thus, a naive individual is overweight if a sophisticated consumer with the same

β is overweight. However, the above result does not state whether the difference w̃n−wH

is greater or smaller than w̃s(β)− wH .

Therefore, next we consider the impact of naivete on steady state weight.

In order to derive the effect of naivete on the steady state weight, we totally differ-

entiate Equation (B.3) with respect to weight and β̂, which gives

dw̃n

dβ̂
=
εβδ
β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

) [
(d− λ∗s(β̂))dw̃

s(β̂)

dβ̂
− (w̃s(β̂)− w̃n)∂λ

∗s(β̂)

∂β̂

]
βδω + εd− ελ∗s(β̂)βδ

β̂
(1− d+ (1− β̂)λ∗s(β̂))

(C.7)

+

[
(γ − εdw̃n − p̃)− (d− λ∗s(β̂))ε(w̃s(β̂)− w̃n)

]
βδ

β̂2

(
1− d+ λ∗s(β̂)− β̂(1− β̂)∂λ

∗s(β̂)

∂β̂

)
βδω + εd− ελ∗s(β̂)βδ

β̂
(1− d+ (1− β̂)λ∗s(β̂))

.

Using Equations (B.4) and (B.6), we can immediately show that the right-hand side of

(C.7) is zero, if w̃n = wH . On the other hand, if w̃n > wH , then the first row is negative

and the second row is positive. The opposite holds for w̃n < wH . It is not possible

to derive an explicit result for the sign of (C.7) in the latter two cases. Therefore, we

conclude that naivete does not affect the weight of a healthy-weight individual and has

an ambiguous impact on the weight of a non-healthy weight individual. Q.E.D.

D Proof of Proposition 4

First we derive the sign of the steady state tax when the individual is overweight or

underweight. If the consumer is sophisticated, then ∆̃s = 0 and τ̃ > (< 0) ⇔ w̃s > (<
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)wH follows immediately from Proposition 2 and Equation (27). In the case of a naive

consumer, plug Equation (B.3) in (27) in order to derive the following expression for the

steady state tax:

τ̃(1− δ(1− d)) = δω(w̃n − wH)− (γ − εdw̃n − p̃)(1− δ(1− d)). (D.1)

Suppose w̃n − wH > 0. Then, the following relations hold:

δω(w̃n − wH) > δω(w̃s(β̂)− wH) =
(γ − εdw̃s(β̂)− p̃)(1− δ((1− d)) + (1− β̂)λ∗s(β̂))

β̂

> (γ − εdw̃n − p̃)(1− δ(1− d)) > 0. (D.2)

The first inequality in Equation (D.2) stems from (B.4), the next equality comes from

(B.2) and the third inequality is also a consequence of (B.4) and λ∗s(β̂) < 0. Together

(D.1) and (D.2) determine τ̃ > 0 if w̃n > wH .

Suppose w̃n − wH < 0. Then, the following relations hold:

δω(w̃n − wH) < δω(w̃s(β̂)− wH) =
(γ − εdw̃s(β̂)− p̃)(1− δ((1− d)) + (1− β̂)λ∗s(β̂))

β̂

< (γ − εdw̃n − p̃)(1− δ(1− d)) < 0. (D.3)

The inequalities in (D.3) come from (B.4) and the equality from (B.2). Together (D.1)

and (D.3) determine τ̃ < 0 if w̃n < wH . Thus, we have proven that the tax rate is positive,

if the individual is overweight, and negative, if the individual is underweight.

The next result in Propositoin 5 states that the steady state tax is zero if (i) the

individual has no self-control problems or (ii) the individual has a healthy weight in the

absence of taxation. Moreover, there does not exist a non-zero steady state tax compatible

with healthy weight. These results follow directly from evaluating Equation (27) first at

β = β̂ = 1 and secondly at w̃i = wH .

Lastly, we derive the optimal trajectory for τt during the transition to steady state.

The equation of motion for weight (1) and Equation (26) determine the following system

of two linear first-order difference equations:(
wit+1

τt+1

)
=

(
a11 a12

a21 a22

)
︸ ︷︷ ︸

=J

(
wit

τt

)
+

(
b1

b2

)
, (D.4)
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where

a11 ≡ 1− d+ λ∗i > 0, (D.5a)

a12 ≡
dµ∗it
dpt

=
dµ∗i

dp
< 0, (D.5b)

a21 ≡
(1− d+ λ∗i)

[
δ(1− d)ελ∗i − δ(1− β)ω − βδ

β̂
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
−δ(1− d)εdµ

∗i

dp
+ βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

) < 0,

(D.5c)

a22 ≡
1 + dµ∗i

dp

[
δ(1− d)ελ∗i − δ(1− β)ω − βδ

β̂
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
−δ(1− d)εdµ

∗i

dp
+ βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

) > 0.

(D.5d)

The terms b1, b2 are constants. The system of difference equations (D.4) has two eigen-

values denoted by νi, i = 1, 2 and is saddle-path stable if one eigenvalue is in the interval

]0, 1[ while the other is greater than one. In order to determine the stability properties of

this system, we need to derive and determine the signs of the trace and determinant of

the matrix J :

Tr(J) = a11 + a22

=

 1 + (1− d+ λ∗i)βδ
β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
−dµ∗i

dp

[
δ(1− d)2ε+ δ(1− β)ω + βδ

β̂
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)] 
−δ(1− d)εdµ

∗i

dp
+ βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

) > 0,

(D.6)

Det(J) = a11a22 − a12a21

=
1− d+ λ∗i

−δ(1− d)εdµ
∗i

dp
+ βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

) > 0. (D.7)

In determining the signs of the above expressions, we used Equation (18) in order to show

that the last term in the denominator is positive:(
1 + ε

dµ∗s(β̂)

dp

)
=

−δ
[
ελ∗s(β̂)((1− d) + (1− β̂)λ∗s(β̂))− βω

]
−δ
[
ελ∗s(β̂)((1− d) + (1− β̂)λ∗s(β̂))− βω

]
+ ε[1− aδ((1− d) + (1− β̂)λ∗s(β̂))]

∈]0, 1[.

(D.8)
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Since ν1 + ν2 = Tr(J) > 0 and ν1ν2 = Det(J) > 0, we conclude that both eigenvalues are

positive. However, a sufficient condition for a saddle path is Det(J) ∈]0, 1[. On order to

prove whether this condition holds, use Equations (19) and (A.14) to derive the following

expression for the effect of the price of unhealthy food on its consumption:

dµ∗n

dp
= −1− d+ λ∗n

(1− d)ε

[
1− aβδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + ε

dµ∗s(β̂)

dp

)]
. (D.9)

Note that if β = β̂, then Equation (D.9) coincides with (18), which determines dµ∗s/dp.

Therefore, Equation (D.9) can be rewritten with a superscript i instead of n as it can

be solved for both sophisticated and naive individuals. Then, the determinant can be

rewritten as

Det(J) =
1− d+ λ∗i

δ(1− d+ λ∗i) + βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
(1− aδ(1− d+ λ∗i))

.

(D.10)

If δ is equal to or close to one, then the determinant is unambiguously smaller than one.

However, there exists a small enough δ, which makes the above term greater than one.

Define the value of δ which makes Det(J) = 1 as δ. Then, a sufficient condition for the

system to be saddle-path is δ ∈]δ, 1[.

Denoting the eigenvalue that is less than one as ν1, we can express it as

ν1 =
Tr(J)−

√
Tr(J)2 − 4Det(J)

2
. (D.11)

The system of difference equations (D.4) can then be solved and the solution is given by

wit = w̃i + (wi0 − w̃i)νt1, (D.12a)

τt = τ̃ − a11 − ν1
a12

(wi0 − w̃i)νt1. (D.12b)

Q.E.D.

E Proof of Proposition 5

In order to derive the steady state price level p̃, evaluate Equation (31) in the steady

state. Its left-hand side equals zero and the right-hand side can be extended to

0 = δ(1− β)ω(w̃i − wH) + (γ − εdw̃i − p̃)
[
δ(1− d)− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
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+ ε(d− λ∗s(β̂))(w̃s(β̂)− w̃i)βδ
β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
. (E.1)

Assume first that the individual is sophisticated. In this case the second row of Equation

(E.1) is identically equal to zero, while Equation (B.2) from Appendix B shows that the

two terms on the first row are of the same sign. Thus, if γ − εdw̃s − p̃ > (<)0, the

right-hand side of (E.1) does not equal zero. The unique steady state price level which

satisfies (E.1) in the case of a sophisticated consumer is, thus, p̃ = γ − εdw̃s = γ − εdwH .

On the other hand, if the consumer is naive, we evaluate Equation (30) in steady

state in the case i = n:

(1− δ(1− d))(γ − εdw̃n − p̃) = δω(w̃n − wH). (E.2)

We solve Equation (E.2) for (γ − εdw̃n − p̃), plug the resulting expression in Equation

(E.1) and rewrite (w̃s(β̂)− w̃n) = (w̃s(β̂)−wH)− (w̃n−wH) in order to derive after some

rearrangement the following expression

ε(d− λ∗s(β̂))
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
(w̃s(β̂)− wH) = (w̃n − wH)·

·

δω
β − 1− βδ((1−d)+(1−β̂)λ∗s(β̂))

β̂

1− δ(1− d)

+ ε(d− λ∗s(β̂))
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

) .
(E.3)

Next we use Equations (B.2) and (E.2) in order to show the following relation:

(w̃s(β̂)− wH) =
(γ − εdw̃s(β̂)− p̃)

[
1− δ

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
β̂δω

=
(γ − εdw̃n − p̃− εd(w̃s(β̂)− w̃n))

[
1− δ

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
β̂δω

=

[
δω(w̃n − wH)

1− δ(1− d)
− εd(w̃s(β̂)− w̃n)

] [1− δ ((1− d) + (1− β̂)λ∗s(β̂)
)]

β̂δω
.

(E.4)

Using Equation (E.4) to substitute for (w̃s(β̂) − wH) in (E.3), we get after some rear-

rangement

ε2(d− λ∗s(β̂))
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

) [1− δ ((1− d) + (1− β̂)λ∗s(β̂)
)]
d

β̂δω
(w̃n − w̃s(β̂))
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= (w̃n − wH)

δω
β − 1− βδ((1−d)+(1−β̂)λ∗s(β̂))

β̂

1− δ(1− d)

+ ε(d− λ∗s(β̂))
βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)
·

·

1−

[
1− δ

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
β̂(1− δ(1− d))

 . (E.5)

Equations (B.4) and (B.6) show that if w̃n − wH > 0, then the right-hand side of (E.5)

is negative, while its left-hand side is positive, i.e. this case cannot be a solution. If

w̃n − wH < 0, then the right-hand side of (E.5) is positive, while its left-hand side is

negative, i.e. this case also cannot be a solution. Lastly, w̃n = wH makes both sides of

(E.5) equal to zero and is the unique solution of the steady state. Using this last equality

and Equation (E.2), we derive p̃ = γ − εdwH . Hence, this is the unique price level, which

solves the social planner’s optimization problem in steady state.

In order to prove that ∆̃i equals zero, note that w̃s(β̂) = w̃n = wH . Thus, x̃s(β̂) =

λ∗s(β̂) + w̃s(β̂)(d − λ∗s(β̂)) = dwH = x̃n. Hence, (v′(x̃s(β̂)) − p̃) = (v′(x̃n) − p̃) = 0 and

from the definition of ∆̃n, we immediately see that it also equals zero.

The optimal trajectory to the steady state is determine by Equations (1) and (31).

They define the following system of first-order linear difference equations:(
wit+1

pt+1

)
=

(
a11 a12

a21 a22

)
︸ ︷︷ ︸

=J

(
wit

pt

)
+

(
b1

b2

)
, (E.6)

where

a11 ≡ 1− d+ λ∗i > 0, (E.7a)

a12 ≡
dµ∗it
dpt

=
dµ∗i

dp
< 0, (E.7b)

a21 ≡

 (1− d+ λ∗i)
[
−δ(1− d)ελ∗i + δ(1− β)ω + βδ

β̂
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
+λ∗i[1−δ(1−d+λ∗i)2]

dµ∗i/dp


δ(1− d)

(
1 + εdµ

∗i

dp

)
− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
+ δ(1− d+ λ∗i)

> 0,

(E.7c)
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a22 ≡
1− δλ∗i(1− d+ λ∗i)− dµ∗i

dp

[
δ(1− d)ελ∗i − δ(1− β)ω − βδ

β̂
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)]
δ(1− d)

(
1 + εdµ

∗i

dp

)
− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
+ δ(1− d+ λ∗i)

.

(E.7d)

The terms b1, b2 are constants. The system of difference equations (E.6) has two eigen-

values denoted by νi, i = 1, 2. The trace and determinant of the matrix J are given

by:

Tr(J) = a11 + a22

=

 1 + (1− d+ λ∗i)
[
2δ(1− d) + βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)]
+dµ∗i

dp

[
δ(1− d)2ε+ δ(1− β)ω + βδ

β̂
ελ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

)] 
δ(1− d)

(
1 + εdµ

∗i

dp

)
− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
+ δ(1− d+ λ∗i)

,

(E.8)

Det(J) = a11a22 − a12a21

=
1− d

δ(1− d)
(

1 + εdµ
∗i

dp

)
− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
+ δ(1− d+ λ∗i)

> 0.

(E.9)

Using Equation (D.9), we can show that the trace is greater than zero:

Tr(J) =


1 + dµ∗i

dp
δ(1− β)ω + δ(1− d+ λ∗i)

[
(1− d)− β

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)]
+(1− d+ λ∗i)βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
aδ·

·
[
(1− d) + λ∗s(β̂)β

(1−d)β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)]


δ(1− d)− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
(1− aδ(1− d+ λ∗i))

> 0.

(E.10)

Note that the denominator is unambiguously positive and all the terms in the numerator

are positive expect for the term involving dµ∗i/dp. However, it can be shown that the

sum of the first two terms is positive for β ≥ 1/2:

1 +
dµ∗i

dp
δ(1− β)ω = 1 +

dµ∗i

dp

1− β
β

δβω

= 1 +
dµ∗i

dp

1− β
β

[
(1− d)ε

1− d+ λ∗i
− ε

(
1− βδ

β̂
λ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

))]
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= 1− 1− β
β

[
1− aβδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + ε

dµ∗s(β̂)

dp

)]

− dµ∗i

dp

1− β
β

ε

(
1− βδ

β̂
λ∗s(β̂)

(
(1− d) + (1− β̂)λ∗s(β̂)

))
> 0, if β ≥ 1/2.

In deriving the second row of the above equation, we used Equation (A.11) and in deriving

the third row we used (D.9).

Moreover, the determinant is greater than one:

Det(J) =
1− d

δ(1− d)− βδ

β̂

(
(1− d) + (1− β̂)λ∗s(β̂)

)(
1 + εdµ

∗s(β̂)
dp

)
(1− aδ(1− d+ λ∗i))

> 1.

(E.11)

Equations (E.10) and (E.11) show that the sum of the two eigenvalues is positive and

their product is greater than one. Therefore, both are positive and at least one of them

is greater than one. The system is a saddle-path if the other eigenvalue is smaller than

one and unstable otherwise. In the first case, the eigenvalue which is less than one can

be denoted as ν1 and is determined by

ν1 =
Tr(J)−

√
Tr(J)2 − 4Det(J)

2
. (E.12)

If the system of difference equations (E.6) is a saddle-path, then it can be easily solved

and its solution is given by Equations (32a), (32b). Q.E.D.
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