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Abstract. This paper addresses the problem of determining when coordination is benefi-
cial. I describe a negative externality game containing a “worsening parameter and develop
a framework linearizing this parameter for tractable examination. The worsening parame-
ter can be classified according to “own effect” – changing the marginal utility of a players
own action, “opponent effect” – altering the marginal externality, or “submodular effect”
strengthening the games submodularity. Using this framework, I examine the sufficient con-
ditions for parameter changes to move non-cooperative and cooperative solutions in opposite
directions. In a symmetric game, an increase in own effect will increase the distance between
utility and action level of the non-cooperative and cooperative solutions. In a non-symmetric
game, there are sufficient conditions on the second derivatives which give this pattern as
well. I argue that situations behaving in this manner have more benefit to coordination
through the increased range in actions.
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1. Introduction

As with most other resources studied in economics, international cooperation may be con-

sidered scarce. There is only so much national effort to expend in the pursuit of negotiation

with other countries, whether measured in diplomats’ man-hours, dollars spent on transfers,

or implementation costs. Thus, a framework is desired for determining which situations are

best, most important, or most beneficial to entertain for negotiation. There is an abundance

of global externality situations that could benefit from an international treaty, but if there

is a cost to cooperation – for instance, even the opportunity cost of other things that cannot

be negotiated over – then it is vital to know when a situation is more valuable cooperatively.

What does it mean to say an externality is “worse” in one situation than in another? This

may be an easy question if social marginal cost is directly estimable. On the other hand, the
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question may be more difficult to answer if the externality is affected by another parameter

more deeply embedded in the model.

For example, the severity of overfishing’s international externality depends on a multitude

of parameters, from biological descriptions of the fish species (fecundity, probability of tran-

sition between growth stages, current population size) to international impact (geographic

location, proportion of diet) to technology of procurement (aquaculture, net size) to many

others. While it may be clear how some of the parameters affect the species stock or fishing

incentives, their impact on the benefit to coordination – in other words, the expected gains

from a treaty – are murkier.

This paper presents a framework for the analysis of embedded parameters, which alter the

incentives surrounding an externality-causing action, and how the gains to coordination are

impacted. Linearization results in sufficient conditions for a situation in which externalities

are worse, based on an increasing disparity in actions between coordination and lack thereof.

As a preview, this paper finds that an acceleration in the benefit of reduction, quantified by a

large positive opponent-directed second derivative, will increase the likelihood of coordination

to reduce an externality.

Section 2 describes the literature surrounding international coordination to reduce negative

externalities and further details the complexities of overfishing. In Section 3, I examine how

to simplify a severity parameter in a one-stage game, first in a symmetric game and then a

non-symmetric game. Section 4 concludes.

2. Literature

The environmental economics literature has long examined international coordination on

reducing negative externalities. Many externality problems, including most environmental

situations, go beyond the simple explanation of the tragedy of the commons. Analysis often

predicates upon modeling particular situations with some detail, such as location and travel

hindering resource extraction (Fischer and Mirman, 1992), the development of technology

with complementarities driving economic growth (Carlaw and Lipsey, 2002), the market

power concentration of resource sale (Datta and Mirman, 1999), managerial risk preferences

under catastrophe (Motoh, 2004), or positive spillover effects increasing efficiency after in-

creases in environmental regulation (Galloway and Johnson, 2015). In each of these situa-

tions, it is desirable to describe and compare differing environmental details, such as level of

hindrance or magnitude of complementarities, and attempt to determine the situation that

calls for intervention more urgently.

For example, overfishing is a general environmental externality affecting almost all regions

and numerous species. Between 1970 and 2012, the population sizes for marine species have

on average declined 49 percent, almost halving over a period of 42 years (World Wildlife
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Foundation and Zoological Society of London, 2015). This great depletion in ocean stocks is

further exacerbated by the growth pattern of aquatic species, which often require a certain

minimum population level to guarantee recurrence. Unlike land animals, the actual stock of

a marine species can be extremely difficult to assess. Hence, “[u]nless the rate of harvesting

can be controlled somehow, the fish population may eventually be reduced (at a profit) to a

low level. This in turn may affect the productivity of the resource and greatly reduce future

catches” (Clark, 2006). Furthermore, there is evidence that humans are “fishing down the

food web,” seen in a declining mean trophic level of worldwide catches (Pauly and Palomares,

2005), which is a sign of unsustainable fishing strategies.

Though the problem is widespread, the aggregation hides some of the nuance of which

species are most affected. Numbers of species, as well as the number of species, in northern

regions have seen some increase, while populations in tropical climes have been declining

(Brunel and Boucher, 2007; World Wildlife Foundation and Zoological Society of London,

2015). Apart from region, the biological relationship of fish species can alter the severity

of overfishing. Fischer and Mirman (1992) examine the sources of externalities in a model

with two national fisheries and find that in a non-cooperative equilibrium, an increase in

the reproductive capacity of a country’s own fish species leads to a lower catch ratio due

to investment value, while the effect of an increase in reproductive capacity of the other

country’s species depends on the species cross-effects. If the species have a symbiotic or

negative interaction (i.e. both prey upon each other), then this causes a lower catch ratio as

well, but if the species have a predator-prey relationship, then the increase in reproductive

capacity of the other country’s fish results in a higher catch ratio. Furthermore, making

the species more symbiotic by increasing a positive cross-effect leads to a lower catch ratio;

decreasing a negative cross-effect leads to a higher catch ratio; and if there is a predator-prey

relationship, it results in a lower catch ratio for the predator, a higher ratio for the prey.

Clearly, understanding the relationship of the two species of fish gives insight into how the

negative externality works and how to coordinate to reduce it.

As with this fish species interaction term, in many externality situations there are pa-

rameters that change the story which then cause a drastic effect on the externality, such as

the threshold effects in an environmental stock externality model (Farzin, 1996) or the tail

shape of a distribution in a climate-change model (Weitzman, 2009). To track the effect of

such parameters through a coordination, I discuss an approach that resembles those study-

ing inheritable properties, such as those of monotone comparative statics Athey (2002) or

dynamic programs Smith and McCardle (2002). I present a negative externality model in

the next section which allows for “worsening” of an externality through a parameter, θ. I

also describe and then solve for how changes in this parameter affect the difference between

non-coordination and coordination.
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3. Model

In developing a whole new framework of analysis, the first setting to examine is the

simplest, and it will give basic intuition to guide further study. I define a one-shot, two

player game in which players take an action which exerts a negative externality.Formally,

the game Γ = {I, {Ai}i∈I , {wi}i∈I , θ} is defined by the following:

(1) agents I = {1, 2};
(2) actions ai ∈ Ai;
(3) utility functions wi(ai, aj; θ) ∈ W , which have the properties of

(a) twice-differentiable continuity, wi ∈ C2,

(b) concavity with respect to own action, ∂2wi

∂a2i
< 0,

(c) negative externality, ∂wi

∂aj
< 0,

(d) submodularity, ∂2wi

∂ai∂aj
< 0, and

(e) unique Nash equilibrium; and

(4) a “worsening parameter” θ ∈ Θ.

Submodularity is for convenience of the analysis, though it can be relaxed, and unique

Nash equilibrium allows for ease of examination. I leave the exact story, timing, and utility

outcomes vague at the moment, since the goal is to describe the most general setting first

and investigate individual examples afterward. However, a few guiding examples follow.

3.1. Examples of Worsening Parameters. The final object specified by the game, Γ,

is the worsening parameter, θ. To understand what such a parameter represents and func-

tionally entails, this section presents a few examples of possible functions with worsening

parameters:

(1) Fishing Boat 1. Consider a model of a fishing boat, where ai is effort that yields

a marginal benefit depending on total actions exerted and which has a constant

marginal cost:

wi = ai(1 + θ)v(ai + aj)− c · ai.

In this example, θ multiplies the value of the action. In particular, v(a) is decreasing,

while ai and aj are perfect substitutes, so they enter the valuation function as a sum;

increasing either action decreases the marginal benefit of all action. A larger θ means

that action is more valuable, and so intuitively, both players would increase actions

and thus further diminish v(·).
(2) Fishing Boat 2. Another possibility is:

wi = aiv(ai, (1 + θ)aj)− c · ai.
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This is example is similar to the previous one, with two small changes: the players’

actions are now longer perfect substitutes, and θ now directly magnifies the effect of

the opponent’s action, decreasing v(·, ·). However, unlike the example above, there

is no compensating benefit from θ, and it appears that both players will lower their

actions, which then gives room for compensation.

(3) Variance Spread 1. Now consider a dynamic utility function where θ determines

the entrance and effect of shocks:

wi = (1− β)ai[v(ai + aj)− c] + βV ((s− ai − aj)((1− θ)r + θht)).

In this example, there is a dynamic stock which affects value next period, as well

as a parameter ht carried around which affects the variability of next period’s input.

As θ gets larger, there is less weight on the static growth rate r and more weight on

the series of ht.

(4) Variance Spread 2. Another possibility is:

wi = (1− β)ai[v(ai + aj)− c] + βE [V ((s− ai − aj)((1− θ)r + θht+1))|ht] .

where ht+1 ∼ f(ht). This example is similar to the one above, except that ht is not

a known sequence. Agents can no longer perfectly prepare for what will happen, and

as θ gets larger, more weight is put toward uncertainty.

(5) Time Correlation 1. A final example is:

wi = (1− β)ui(ai, aj, s) + βE [V (ai, aj, s, ht+1)|ht, θ] .

where ht+1 ∼ f(ht, θ). In this final example, which is a further extension of the ones

before, θ is not even in the utility function directly, but rather governs the distribution

of some shock. If this is a correlation parameter, then this could enhance a dynamic

externality.

For now, the problem will remain general. The next section defines the solution concept

as Nash Equilibrium and discusses the proposed framework for assessing the benefits to

coordination.

3.2. Nash Equilibrium. An individual player’s Nash optimization problem, which has the

unique solution aNi (θ), can be written as follows:

max
ai∈Ai

wi
(
ai, a

N
j (θ); θ

)
(1)

Because of the negative externality, the Nash equilibrium is not optimal. A social planner

putting equal weight on each player would choose aP (θ) =
(
aPi (θ), aPj (θ)

)
, which is the unique
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solution to the following problem:

max
ai∈Ai,aj∈Aj

wi(ai, aj; θ) + wj(aj, ai; θ) (2)

For both of these problems,1 there needs to be a baseline of what occurs when the param-

eter is zero. Only with an understanding of a baseline can a change be measured.

Definition. The baseline utility function of a game Γ is evaluated at θ = 0, and is

formally written as:

wi(ai, aj; 0) = ui(ai, aj) (3)

The baseline optima are as follows:

(1) The non-cooperative Nash equilibrium is denoted as aN(0), abbreviated as aN, with

components
(
aNi (0), aNj (0)

)
, which may also be abbreviated to

(
aN
i , a

N
j

)
. This is the

unique solution to the simultaneous maximization problems for all i in I:

max
ai∈Ai

ui
(
ai, a

N
j

)
(2) The cooperative Nash equilibrium, or Social Planner’s solution, is denoted as aP (0),

or shortened to aP, with components
(
aPi (0), aPj (0)

)
, which may also be abbreviated

to
(
aP
i , a

P
j

)
. This is the unique solution to the social planner’s maximization problem:

max
ai∈Ai,aj∈Aj

ui(ai, aj) + uj(aj, ai)

The existence of negative externalities means that coordination, if possible, would be

Pareto-improving. One of the main interests is when coordination will happen and its re-

sulting value. It is possible that when value is higher, coordination is more likely. However,

what does it mean for value to be higher? To answer this question, I examine the differ-

ence between non-coordination and coordination, taking into account gaps in utilities and

in actions. The possible objects of interest to pursue are:

(1) Direct value to coordination: This seems to be the clear measure of benefit:

how much extra total surplus can be created by moving from non-coordination to

coordination in situations with varying degrees of externality? If θ characterizes the

externality, then of interest is how increases in θ, which make the externality worse,

will affect the gap between coordination and non-coordination:

d

dθ

[
wP (θ)−

(
wN1 (θ) + wN2 (θ)

)]
1Observe that the first order conditions to both of these problems could be summarized as the following set
of equations, where the Nash condition is at t = 0, while the social planner’s condition is at t = 1:

∂wi

∂ai
+ t

∂wj

∂aj
= 0, t

∂wi

∂ai
+
∂wj

∂aj
= 0.
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where the wP (θ) is the total utility evaluated at aP (θ), wN1 (θ) is the utility to agent

one evaluated at aN(θ), while wN2 (θ) is the utility to agent two evaluated at aN(θ).

The difference between the Pareto value and the summed Nash utilities should

always be weakly positive, because of the definitions of the two problems. However,

the gap could stay the same as θ increases, or could even shrink. Therefore, it is of

non-trivial interest to characterize when this gap is strictly increasing with θ.

Unfortunately without careful attention to the structure of the problem, this object

could capture changes purely in levels. It appears this “value to coordination” can

be arbitrarily manipulated via magnitude of the gap. This leads to a second object

of interest.

(2) Increase in range of coordination: In the presence of a negative externality,

a social planner’s actions are generally smaller than the Nash actions. Rather than

pursuing changes in utility, one way to think of an externality getting worse would be

if the social planner’s recommended actions are decreasing as the worsening parameter

increases, while agents acting on their own are inclined to do the opposite. An

increasing gap between actions taken under coordination and non-coordination can

be another sign that an externality is getting worse. Therefore, of interest is how

the difference between the Nash equilibrium actions and the Pareto optimal actions

changes with respect to the parameter:

d

dθ

[
aNi (θ)− aPi (θ)

]
.

If the actions are moving further apart from one another, there may be more benefit

to coordination. The scope of possible agreements is increased, and there are more

reductions that can be made, so this may be another notion of when a treaty is more

likely.

The above can also be written as:

∆aNi (θ)−∆aPi (θ)

∆θ

Moving from an original utility function, the change in the parameter is simply the value

assigned, that is

∆θ = θ − 0 = θ.

The changes in the Nash and Pareto optimal actions can be written as:

∆aNi (θ) = aNi (θ)− aNi (0)

∆aPi (θ) = aPi (θ)− aPi (0)

Observe that when multiplied by θ, these look like pieces of a first order Taylor expansion

around the Nash equilibrium and the social optimum.
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For certain problems, even if it is possible to determine how the parameter θ affects

actions, the relative changes between coordination and non-coordination may be difficult to

characterize. Furthermore, if θ is of a difficult nature to derive, linearization may assist in

answering the questions of interest.

In the following subsection, I describe a symmetric game within the basic assumptions

described earlier in order to gain some intuition in a simple case. I modify the original

utility functions with three different linearized worsening parameters – an “own effect,” an

“opponent effect,” and a “submodular effect” – in order to represent more complicated utility

functions. I then derive general conclusions for such parameters in a one-stage symmetric

game.

3.3. Symmetric Game. There are many ways to model the severity of an externality,

depending on the type of influence the action has upon it. For instance, the simplest notion

of worsening could consist of “pure hurt,” a multiplying factor on the opponent’s action

which does not affect marginal utility of own action but which lowers utility unambiguously.

A more complicated version of worsening could involve a story of correlation in time shocks

of a resource stock, and as more information is available, the resource stock is exploited even

more and the tragedy of the commons worsens.

As mentioned earlier, this section models the worsening of externalities using three paths:

changing how the opponent’s action affects utility, changing how the agent’s own action

affects utility, and changing how the cross-effect of actions affects utility. These three paths

offer representation of more complicated stories on their own or through combinations.

With regard to the earlier discussion of utility gaps versus action gaps, there are a few ways

to go about adding a linearized term to the utility function. One possibility is to simply add

a linear term multiplied by θ. This will change the derivative with respect to that variable in

a linear manner. A “pure hurt” term would be represented as subtracting off θ · aj from the

baseline utility function. This approach will give the correct intuition for the action gaps,

but will necessarily affect utility as well. There is some worry that an increase in the utility

gaps between non-coordination and coordination is somehow “built in” through this term,

so increasing utility gaps should remain circumspect.

Another approach is to model the parameter effects as if they were Taylor expansions

around the Nash equilibrium or the Pareto optimal solution, so these changes in externalities

can be thought of as affecting the derivatives of a symmetric utility function. These would

not affect utility through the additive term unless actions changed. However, while taking

a derivative at two different points is a mathematically sound idea, the economic intuition

is somewhat murkier. This exercise also captures the correct directional changes in actions,
8



but may cause concern that the utility function under coordination is different than that

under non-coordination.

Because of these concerns, I use the simple linearization to study only the action gaps. I

ignore the direct value to coordination, because of the limitations mentioned earlier. I do

present the alternative Taylor expansion structures in the Appendix, and initial analysis for

them appears to be similar.

The opponent effect is the most intuitive of the three linearizations. This is where the

worsening of the externality rotates the first derivative with respect to the opponent’s action.

The linearization for the individual problem is:

wNi (θJ) = ui(ai, aj)− θJaj,

wNj (θJ) = uj(aj, ai)− θJai.
(4)

The own effect linearization for the Social Planner’s problem is:

wP (θJ) = ui(ai, aj) + uj(aj, ai)− θJ (ai + aj) . (5)

As θJ increases there is more room for an increase in the opponent’s action to harm the

player. Thus, as θJ increases, the externality is worsening, particularly compared to level of

θJ = 0.

The own effect improves the value of one’s own action, incentivizing agents to take larger

actions. With a submodular utility function, this enhanced activity decreases the marginal

benefit of the opponent, thereby increasing the negative externality. Here, the worsening

of the externality is the rotation of the first derivative with respect to own action. The

linearization for the individual problem is:

wNi (θI) = ui(ai, aj) + θIai,

wNj (θI) = uj(aj, ai) + θIaj.
(6)

The own effect linearization for the Social Planner’s problem is:

wP (θI) = ui(ai, aj) + uj(aj, ai) + θI (ai + aj) . (7)

This equation is very similar to Equation (5); the main difference is that the sign on the

worsening parameter is opposite. When linearizing the parameter, the determination of own

or opponent effect in the social planner’s problem is reduced to the sign on the coefficient.

The increase of the parameter θI increases the value of acting, which may in fact override

the externality at some point, when individual benefit outweighs social cost. Thus it can be

expected that changes of this kind eliminate the need for coordination at high levels, though

at low parameter values there might still be benefit.
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The submodular effect changes the cross-partial of both actions, making the utility function

more submodular than before and enhancing the negative externality in this manner. The

linearization for the individual problem is:

wNi (θIJ) = ui(ai, aj)− θIJaiaj,

wNj (θIJ) = uj(aj, ai)− θIJaiaj.
(8)

The submodular effect linearization for the Social Planner’s problem is:

wPi (θIJ) = ui(ai, aj) + uj(aj, ai)− 2θIJaiaj. (9)

The effect of each separate modification can be found by comparing the first order con-

ditions of the altered coordination and non-coordination problems. The following theorem

gives the direction of the action gap for each effect in a symmetric game.

Theorem 1. For a symmetric game Γ, an increase in the parameter multiplying the added

linearizations has the following effect for each:

(1) Increasing the opponent effect increases the distance in the actions under non-coordination

and coordination, that is, for all i:

d

dθJ
[aNi (θJ)− aPi (θJ)] > 0;

(2) Increasing the own effect has ambiguous results on the distance in actions under

non-coordination and coordination; and

(3) Increasing the submodular effect also has ambiguous results on the distance in actions

under non-coordination and coordination.

The proof of Theorem 1 is the Appendix, though its intuition is discussed briefly here. As

mentioned earlier, the opponent effect is perhaps the most intuitive, and it is easy to see why

its effect is unambiguous. Adding the linearized term to the problem of non-coordination does

not change the player’s own incentives, so the Nash actions are unchanged. However, this

term changes the incentives facing a social planner, and coordinated actions decrease. The

opponent effect could model a story where there is simply a larger harm from the opponent’s

action, or a more complicated story where harm from the opponent’s action prevails.

The own effect is ambiguous, at least in attempting to describe it for the whole range.

At small increases, it can result in a positive gap, due to the submodularity in the problem.

However, the enhanced benefit from an increase in one’s action at some point outweighs

the increased negative externality caused by the other player doing the same. A social

planner would also increase actions, but more slowly because of the negative externality and

submodularity. An example of this would be an improved technology that increases the

marginal benefit of own action.
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The submodular linearization is also ambiguous unless curvature is examined, but for

another reason. While the own effect caused increases in actions under both coordination

and non-coordination, the submodular effect causes decreases in both. The direction of

change in the distance of action gaps depends on the comparative speeds of reduction.

For this symmetric analysis, the three effects were examined separately, in order to dis-

tinctly characterize each. In translating an externality situation into this linearized parame-

ter, the three effects may need to be combined to correctly capture the circumstances. This

idea requires further examination.

3.4. Non-symmetric Game. The symmetric game places assumptions on the direction

that the responses to θ can take. For instance, cases where the same change in θ affects

the players differently are not permitted. Thus, in examining the many ways an externality

could be worse, non-symmetric games are important as well. Moving to a non-symmetric

game opens up more possible outcomes with regard to direction of the players’ reactions,

and the directions derived in Theorem 1 may no longer hold.

Because there are fewer restrictions, this section will ignore the submodular effect in order

to keep the analysis tractable. Using both the own effect and the opponent effect allows for

the agents to affect each other asymmetrically. The parameter θxy represents a deepening of

player x’s effect on player y. With this adjusted linearization, the agent’s utility functions

are now:
wNi (θ) = ui(ai, aj) + θiiai − θjiaj,

wNj (θ) = uj(aj, ai)− θijai + θjjaj.
(10)

The non-symmetric linearization for the social planner is:

wP (θ) = ui(ai, aj) + uj(aj, ai) + (θii − θij)ai + (θjj − θji)aj. (11)

As briefly alluded to earlier, the expansions of interest have a linear combination of coef-

ficients in front of them. However, while the symmetric game assured that both coefficients

collapsed into only one, here there are two distinct coefficient. Therefore, two composite

coefficients can be defined as allows:

γi = θii − θij
γj = θjj − θji

(12)

With these coefficients, the social planner’s problem can be rewritten as:

max
ai,aj

ui(ai, aj) + uj(aj, ai) + γiai + γjaj (13)

Because the two effects linearly combine, whether there is an own effect or an opponent

effect for each agent is given by the signs of γi and γj. There are five main regions of interest:
11



both γi and γj are positive, both are negative, they are of opposite signs, one is zero while

the other is positive, and one is zero while the other is negative.

If both coefficients are negative, then there is an opponent effect only. From the previous

section, it is safe to say that coordination will reduce actions, while the non-coordination

actions are constant or increasing. If they are of opposite signs, or one is negative while the

other is zero, then it is likely that the agent causing an opponent effect will have his action

reduced, while the other agent’s action may be increased. Also from the previous section

came the result that the own effect is ambiguous and depending on curvature. This is of

great interest and will now be somewhat resolved for the non-symmetric case. The following

analysis will characterize sufficient conditions for diverging actions under own effect, or in

areas where θii > θij and θjj > θji.

The Nash equilibrium, aN , uniquely solves the following simultaneous best response prob-

lems:
max
ai

ui(ai, aj) + θiiai − θjiaj

max
aj

uj(aj, ai)− θijai + θjjaj

The Nash first order conditions are:

∂ui(ai, aj)

∂ai
+ θii ≡ 0,

∂uj(aj, ai)

∂aj
+ θjj ≡ 0.

In the symmetric case, the direction of movement of actions could be determined because

of the extra assumptions symmetricity imposed. Now, however, the actions could be moving

in separate directions, as the parameters θii and θjj can also move around separately. One

similarity to the symmetric case is that the opponent effect coefficients wash out, no longer

appearing in the first order conditions. Any effect from the opponent will come from their

own adjustment of action. The directions of changes can be analyzed with a second order

expansion. This process can be found in the Appendix. The comparative statics that result

can be summarized as follows:

UN =

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j


Dθiia

N =

[
∂aNi
∂θii
∂aNj
∂θii

]
, Dθjja

N =

∂aNi∂θjj
∂aNj
∂θjj

 , DaN =
[
Dθiia

N Dθjja
N
]

U ·DaN =

[
−1 0

0 −1

]
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All of the entries in U are negative due to concavity and submodularity. This means that

the entries in Dθiia
N need to be opposite signs, as do the entries in Dθjja

N , in order to obtain

the negative identity matrix when multiplied with UN .

Since θii is not in player j’s first order conditions, the effect of θii on j’s action can be

described as follows:
∂aNj
∂θii

=
∂aNj
∂ai
· ∂a

N
i

∂θii

Because of the submodularity,
∂aNj
∂ai

< 0, and because of the own effect,
∂aNi
∂θii

> 0. Hence,
∂aNj
∂θii

< 0, so the two are of opposite signs and the story can hold under proper curvature

assumptions. This idea is similar to Huang and Smith’s discussion of congestion versus

agglomeration and determining the direction of externalities in shrimp fishing Huang and

Smith (2014).

For the cooperative problem a social planner chooses unique aP (θ) to solve:

max
a

ui(ai, aj) + uj(aj, ai) + γiai + γjaj

The first order conditions are:

∂ui(ai, aj)

∂ai
+
∂uj(aj, ai)

∂ai
+ γi ≡ 0,

∂ui(ai, aj)

∂aj
+
∂uj(aj, ai)

∂aj
+ γj ≡ 0.

Once again, the second order expansions are in the Appendix. The summary of the

comparative statics is:

UP =

∂2ui(ai,aj)∂a2i
+

∂2uj(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
+

∂2uj(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj
+

∂2ui(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j
+

∂2ui(ai,aj)

∂a2j


UP = UN + V, V ≡

∂2uj(ai,aj)∂a2i

∂2uj(ai,aj)

∂ai∂aj
∂2ui(ai,aj)

∂ai∂aj

∂2ui(ai,aj)

∂a2j


Dγia

P =

[
∂aPi
∂γi
∂aPj
∂γi

]
, Dγja

P =

∂aPi∂γj
∂aPj
∂γj

 , DaP =
[
Dγia

P Dγja
P
]

UP ·DaP = (UN + V ) ·DaP =

[
−1 0

0 −1

]
Because of submodularity and concavity, all the entries in UN are negative, and the off-

diagonal entries in V are negative as well. As of yet, however, this paper has placed no

assumptions on the diagonal entries in V . The diagonals are second derivative with respect

to opponent’s action, an aspect which is not commonly modeled.
13



In many common utility functions, the opponent-directed second derivative is zero. Once

the opponent’s initial effect is known, externality or not, rarely is the “speed” of that effect

explicitly described as being central to the problem. If the second derivative is zero, ∂
2ui
∂a2j

= 0,

this means that the opponent’s effect is constant, and that regardless of the opponent’s

action, their marginal externality will be the same. For a negative externality, if the second

derivative is negative, ∂
2ui
∂a2j

< 0, then the opponent’s effect on utility is “accelerating” – as the

opponent’s action is increasing, the marginal externality is becoming more negative. If the

second derivative is positive, ∂
2ui
∂a2j

> 0, this means a negative externality is “decelerating.” As

the opponent’s action is increasing, the marginal negative effect on the player is becoming less

negative.2 Borrowing the term from physics, the second derivative of distance with respect

to time is acceleration; this concept gives an idea to the incentives of reduction of a negative

externality or promotion of a positive externality. When the benefits to coordination are not

only increasing but accelerating, negotiation is warranted.

In order to determine the worsening parameter effect on the gap between actions, the D

matrices need to be understood. It can be shown that DaN = −U−1 and DaP = −(U+V )−1.

The main questions are how these behave and where DaN−DaP has a definite positive sign.

First, some standardization is called for. The derivatives in DaN are in fact with respect

to θii and θjj, while those in DaP are with respect to γi and γj, which are the composite

coefficients defined earlier. In order to compare the two, it needs to be shown that the

hypothetical derivative of aN with respect to γi and γj is the same as already taken for θii

and θjj.

Lemma 1. The derivative of aN with respect to θii and θjj is equal to the derivative of aN

with respect to γi and γj, i.e. ∂aNi∂θii

∂aNi
∂θjj

∂aNj
∂θii

∂aNj
∂θjj

 =

[
∂aNi
∂γi

∂aNi
∂γi

∂aNj
∂γj

∂aNj
∂γj

]

Proof. Recall the definition of the composite coefficients:

γi = θii − θij
γj = θjj − θji

When taking the total derivative of ai with respect to γi, the following is obtained:

∂aNi
∂γi

=
∂aNi
∂θii
− ∂aNi
∂θij

2For a positive externality, a negative second derivative is decelerating the effect of the externality, while a
positive second derivative is accelerating.
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It has already been obtained that
∂aNi
∂θij

= 0, hence we have
∂aNi
∂γi

=
∂aNi
∂θii

. This can be

repeated for γj, and then for aNj . Thus, the two matrices are equivalent. �

In such a general setting, it is difficult to say where the derivatives are positive or negative.

Therefore, instead of looking for necessity, one possible approach is to look for sufficient cases

of possible direction. The action gap is certainly increasing if aPi decreases while aNi grows

or remains constant, or if aPi remains constant while aNi grows. More difficult situations

would involve relative speeds of the two and will remain unaddressed in this paper. Thus,

this means it is of interest to figure out when DaN is positive in both entries while DaP is

negative in both entries when both parameters are changed in the same direction, if not by

the same magnitude.

First, I examine the Nash actions to find when DaN is positive. Then, I examine the social

planner’s actions to find when DaP is negative. The matrix UP is a bit more complicated

than UN , so I will use two different approaches.

To find the responses of the Nash actions when the non-symmetric own effects are both

increasing, I look for sufficient conditions for the following to be positive in both entries:

U ·DaN =

[
−1 0

0 −1

]

DaN = U−1

[
−1 0

0 −1

]
= −U−1 · I = −U−1

= −

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j

−1

When DaN is written as
[
Dθiia

N Dθjja
N
]
, if both entries are positive, then DaN is

positive as well. This method of writing DaN will be a linearization and can be found by

the following procedure:

[
Dθiia

N Dθjja
N
]

= −
[
1 1

]
·

 ∂2ui(ai,aj)

∂a2i

∂2ui(ai,aj)

∂ai∂aj
∂2uj(ai,aj)

∂ai∂aj

∂2uj(ai,aj)

∂a2j

−1

If the linearized inverse is negative, then the whole expression will be positive.

Lemma 2. For DaN to be positive and for the Nash actions to be increasing in response to

an increase in θ, it is sufficient for the own second derivatives to be the same direction in

comparison to the cross-partials for both agents. That is, the own second derivative can be
15



more negative than the cross partial for both agents:

∂2ui(ai, aj)

∂a2i
<
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
<
∂2uj(ai, aj)

∂ai∂aj

or, the own second derivative can be less negative than the cross partial for both agents:

∂2ui(ai, aj)

∂a2i
>
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
>
∂2uj(ai, aj)

∂ai∂aj

The proof of Lemma 2 is in the Appendix. Having found sufficient conditions for DaN

to be increasing, I now examine the movement of DaP , the actions under coordination. As

before, observe that:

DaP = −(U + V )−1

= −

 ∂2ui
∂a2i

+
∂2uj
∂a2i

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

∂2ui
∂a2j

+
∂2uj
∂a2j

−1

Since (U + V ) is symmetric, its inverse is also symmetric. Furthermore, a symmetric

matrix is diagonalizable, so the eigenvalues of the inverse matrix can be used to figure out

the sign of its determinant. Since the matrix is diagonalizable, there is some Q such that:

(U + V )−1 = QTΛQ

The sign of this quadratic form is determined by Λ, the matrix of eigenvalues. If the

eigenvalues of (U + V ) are positive, then the eigenvalues of its inverse will be as well. When

multiplied by the outside negative, DaP will be negative, providing the decreasing effect

desired.

Lemma 3. For UP to have only positive eigenvalues, it is sufficient that:

∂2ui
∂a2j

> 0 (14)

∂2uj
∂a2j

> 0 (15)(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
>

(
∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

(16)

Lemma 3 is proven in the Appendix. Combining it with Lemma 2, the following theorem

is obtained.

Theorem 2. For a symmetric or non-symmetric game Γ, it is sufficient for a utility function

to satisfy Lemmas 2 and 3 in order for an increase in the parameters multiplying the added

linearizations to increase the distance in actions under non-coordination and coordination.
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Proof. If Γ satisfies Lemma 2, then DaN is positive, so aN is increasing in θii and θjj and

unresponsive to θij and θji. If Γ satisfies 3, then DaP is negative, so aP is decreasing in

γi and γj, while γi is increasing in θii and decreasing in θij and γj is increasing in θjj and

decreasing in θji. �

Theorems 1 and 2 establish two interesting cases of sufficiency of increasing action gap:

the opponent effect only in a symmetric game, and the own effect in a non-symmetric game

under certain curvature assumptions.

4. Conclusion

With the number of possibilities for coordination to reduce an externality problem, there

must be some method to determine which situations merit that coordination. This paper

examines a novel framework for pursuing the answer to how an externality changes given a

certain parameter and when the benefit to coordination increases. Since many externality

stories can be difficult to analyze, I propose a method of linearization based on three possible

effects and analyzed two notable cases of increasing action gaps between coordination and

non-coordination. The first effect was a sole opponent effect in a symmetric game, where

the optimal action under coordination unambiguously diverges from the non-coordination

action. The second was an own effect in a potentially non-symmetric game, where sufficient

conditions for divergence include accelerating benefits to reduction of the action that causes

the negative externality.

The main extension to pursue is that of centered parameterizations, which are briefly

described in Appendix A. Unlike the simple linear parameterization, a centered term can give

better insight into the utility gap as well. However, there must be careful understanding of

how the separate centerings affect economic intuition. In early analysis, the centered Taylor

expansion form suggests that the submodular effect is null. In comparison to the ambiguous

decreases under the linear parameterization, this departure suggests that the framework

should be checked for robustness to parameterization.

Future work includes applying and testing the framework in a particular externality set-

ting, such as overfishing. Possible parameters enumerated in the introduction included bi-

ological, technological, and human determinants; each of these should be classified as an

own effect, an opponent effect, a submodular effect, or some combination. Any difficul-

ties in applying the framework may suggest an even more complicated problem is at hand

than originally thought, but will give some initial validity to the framework. Finally, the

framework can very much be incorporated into data analysis of the numerous environmen-

tal externalities under study. Further work can assess the efficiency of existing treaties or

ascertain which new areas are ripe for coordination.
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Appendix A. Alternative Parametrization with Centered Taylor Expansions

In this paper, simple linear parameters are used. However, an alternative similar to Taylor

expansions was suggested. Here are the respective set ups for the three different effects.

(1) Opponent effect:
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(a) Non-coordination:

wNi (θJ) = ui(ai, aj)− θJ(aj − aNj (0))

wNj (θJ) = uj(aj , ai)− θJ(ai − aNi (0))

(b) Coordination:

wP (θJ) = ui(ai, aj) + uj(aj , ai)− θJ
[
(ai − aPi (0)) + (aj − aPj (0))

]
(2) Own effect:

(a) Non-coordination:

wNi (θI) = ui(ai, aj) + θI(ai − aNi (0))

wNj (θI) = uj(aj , ai) + θI(aj − aNj (0))

(b) Coordination:

wP (θI) = ui(ai, aj) + uj(aj , ai) + θI
[
(ai − aPi (0)) + (aj − aPj (0))

]
(3) Submodular effect:

(a) Non-coordination:

wNi (θIJ) = ui(ai, aj)− θIJ
(
ai − aNi (0)

) (
aj − aNj (0)

)
wNj (θIJ) = uj(aj , ai)− θIJ

(
ai − aNi (0)

) (
aj − aNj (0)

)
(b) Coordination:

wPi (θIJ) = ui(ai, aj) + uj(aj , ai)− 2θIJ
(
ai − aPi (0)

) (
aj − aPj (0)

)
Appendix B. Expanded Results from Section 3.3

Proof of Theorem 1

Restatement of Theorem 1 from Section 3.3. For a symmetric game Γ, an increase in the

parameter multiplying the added linearizations has the following effect for each:

(1) Increasing the opponent effect increases the distance in the actions under non-coordination

and coordination, that is, for all i:

d

dθJ
[aNi (θJ)− aPi (θJ)] > 0;

(2) Increasing the own effect has ambiguous results on the distance in actions under non-

coordination and coordination; and

(3) Increasing the submodular effect also has ambiguous results on the distance in actions under

non-coordination and coordination.

Proof. For each type of effect, this proof examines the first order conditions to determine the

directions of change in the action gaps. Each effect has separate analysis.

(1) Opponent Effect
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The opponent effect is set-up in the paper in Equations (4) and (5). First, I examine the

Nash first order conditions, and then I examine the social planner’s first order conditions.

(a) Non-coordination: The maximization problem for agent i, given the Nash equilibrium

action of agent j, is:

max
ai∈Ai

ui(ai, a
N
j (θJ))− θJaNj (θJ)

aN (0) solves the following:

∂wi
∂ai

=
∂ui(·, aNj (0))

∂ai
≡ 0

∂wj
∂aj

=
∂uj(·, aNi (0))

∂aj
≡ 0

aN (θJ) solves the following:

∂wi
∂ai

=
∂ui(·, aNj (θJ))

∂ai
≡ 0

∂wj
∂aj

=
∂uj(·, aNi (θJ))

∂aj
≡ 0

Observe that aN (θJ) = aN (θ′J) = aN (0) for all θJ and θ′J in θJ . Hence,

∂aNi (·)
∂θJ

= 0.

(b) Coordination: The maximization problem for the social planner is:

max
(ai,aj)∈Ai×Aj

ui(ai, aj) + uj(aj , ai)− θJ (ai + aj)

For θJ = 0, aP (0) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), ·)
∂ai

≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θJ))

∂aj
+
∂ui(a

P
i (θJ), ·)
∂aj

≡ 0

For θJ > 0, aP (θJ) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), ·)
∂ai

− θJ ≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θJ))

∂aj
+
∂ui(a

P
i (θJ), ·)
∂aj

− θJ ≡ 0

Since the game is symmetric, if the Social Planner changes any agent’s action, he will

change the other’s action in the same manner (i.e same direction and likely magnitude).

The next lemma looks at the comparative statics of the whole vector.

Lemma B.1. aP (θJ) is decreasing in θJ .

Proof. Suppose not. Suppose that for θ′J > θJ , aP (θ′J) 6< aP (θJ).
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(i) Case i. aP (θ′J) > aP (θJ)

Look at the FOC for
∂(wi+wj)

∂ai
(the FOC for

∂(wi+wj)
∂aj

are symmetric):

∂ui(a
P
i (θJ), aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), aPi (θJ))

∂ai
= θJ

∂ui(a
P
i (θ′J), aPj (θ′J))

∂ai
+
∂uj(a

P
j (θ′J), aPi (θ′J))

∂ai
= θ′J

Subtract the first from the second:[
∂ui(a

P
i (θ′J), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θJ))

∂ai

]

+

[
∂uj(a

P
j (θ′J), aPi (θ′J))

∂ai
−
∂uj(a

P
j (θJ), aPi (θJ))

∂ai

]
= θ′J − θJ

Because θ′J > θJ , RHS is greater than zero. Now look at LHS. Take the first

bracketed term:

∂ui(a
P
i (θ′J), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θJ))

∂ai(
∂ui(a

P
i (θ′J), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θ′J))

∂ai

)

+

(
∂ui(a

P
i (θJ), aPj (θ′J))

∂ai
−
∂ui(a

P
i (θJ), aPj (θJ))

∂ai

)
Since u is concave in own action, if aPi (θ′J) > aPi (θJ), then it must be the case

that for any aj :

∂ui(a
P
i (θ′J), ·)
∂ai

<
∂ui(a

P
i (θJ), ·)
∂ai

Furthermore, since u is submodular in opponent action, if

aPj (θ′J) > aPj (θJ),

then it must be the case that for any ai:

∂ui(·, aPj (θ′J))

∂ai
<
∂ui(·, aPj (θJ))

∂ai

This means that the LHS is negative, so it cannot equal the positive RHS. This

is a contradiction, so this case will not occur.

(ii) Case ii. aP (θ′J) = aP (θJ)
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Look at the FOC for
∂(wi+wj)

∂ai
(the FOC for

∂(wi+wj)
∂aj

are symmetric):

∂ui(a
P
i (θJ), aPj (θJ))

∂ai
+
∂uj(a

P
j (θJ), aPi (θJ))

∂ai
= θJ

∂ui(a
P
i (θ′J), aPj (θ′J))

∂ai
+
∂uj(a

P
j (θ′J), aPi (θ′J))

∂ai
= θ′J

If aP (θ′J) = aP (θJ), that means that the two LHS are equal as well. This

implies that the two RHS should be equal, so θJ = θ′J . This is a contradiction

of θJ < θ′J , so this case cannot occur.

Since both cases are contradictions, it must be that for θ′J > θJ , then aPi (θ′J) < aPi (θJ),

so the social planner’s chosen action is decreasing in θJ . �

By Lemma B.1, it is seen that:

∂aPi (·)
∂θJ

< 0.

Combining this result with that of non-coordination, it has been obtained that for all

agents i:
d

dθJ

[
aNi (θJ)− aPi (θJ)

]
> 0.

(2) Own Effect

The own effect is set-up in the paper in Equations (6) and (7). First, I examine the Nash

first order conditions, and then I examine the social planner’s first order conditions.

(a) Non-coordination: The maximization problem for agent i, given the Nash equilibrium

action of agent j, is:

max
ai∈Ai

ui(ai, a
N
j (θI)) + θIai

aN (θI) solves the following:

∂wi
∂ai

=
∂ui(·, aNj (θI))

∂ai
+ θI ≡ 0

∂wj
∂aj

=
∂uj(·, aNi (θI))

∂aj
+ θI ≡ 0

The intuition is that this action is increasing, due to the increased own benefit.3

Lemma B.2. aNi (θI) is increasing in θI .

Proof. Suppose not. Suppose that for θ′I > θI , a
N
i (θ′I) 6> aNi (θI).

(i) Case i. aNi (θ′I) < aNi (θI)

3In the non-symmetric game, there are cross-partials to check to determine the direction of change, but the
symmetric game imposes additional assumptions that assist in making this straightforward.
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Look at the FOC for ∂wi
∂ai

:

∂ui(a
N
i (θI), a

N
j (θI))

∂ai
= −θI

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
= −θ′I

Subtract the first from the second:

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θI))

∂ai
= −θ′I + θI

The RHS is negative. Look at the LHS and add/subtract some terms:

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θI))

∂ai

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θ′I))

∂ai

+
∂ui(a

N
i (θI), a

N
j (θ′I))

∂ai
−
∂ui(a

N
i (θI), a

N
j (θI))

∂ai

If aNi (θ′I) < aNi (θI), then because of concavity in own action, the first subtrac-

tion pair is positive. Since the agents are symmetric, agent j’s action must

follow the same pattern. If aNj (θ′I) < aNj (θI), then because of submodularity,

the second subtraction pair is also positive. Thus the LHS is positive, which

contradicts the RHS being negative. Thus, this case cannot occur.

(ii) Case ii. aNi (θ′I) = aNi (θI)

Look at the FOC for ∂wi
∂ai

:

∂ui(a
N
i (θI), a

N
j (θI))

∂ai
= −θI

∂ui(a
N
i (θ′I), a

N
j (θ′I))

∂ai
= −θ′I

If aNi (θ′I) = aNi (θI) and aNj (θ′I) = aNj (θI), then the LHS of both of these are

equal. This means the RHS should be equal too. This is a contradiction of the

assumption that θ′I > θI . Therefore, this case cannot occur.

Since both cases cannot occur, it must be the case that aNi (θ) is increasing in θ. This

holds symmetrically for aNJ (θ). �

By Lemma B.2, it is obtained that:

∂aNi (·)
∂θI

> 0.

(b) Coordination: The maximization problem for the social planner is:

max
(ai,aj)∈Ai×Aj

ui(ai, aj) + uj(aj , ai) + θI (ai + aj)
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For θI ≥ 0, aP (θI) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θI))

∂ai
+
∂uj(a

P
j (θI), ·)
∂ai

+ θI ≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θI))

∂aj
+
∂ui(a

P
i (θI), ·)
∂aj

+ θI ≡ 0

The Social Planner may also want to increase actions, because of the increased benefit,

but will be wary of the submodularity’s effect as well. Recall here, because this is a

symmetric game, the action changes will go in the same direction for both agents. The

next lemma posits that the SP’s actions are also increasing.

Lemma B.3. aP (θI) is increasing in θI .

Proof. Suppose not. Suppose that for θ′I > θI , a
P (θ′I) 6> aP (θI).

(i) Case i. aP (θ′I) < aP (θI)

Look at the FOC for
∂(wi+wj)

∂ai
(the FOC for

∂(wi+wj)
∂aj

are symmetric):

∂ui(a
P
i (θI), a

P
j (θI))

∂ai
+
∂uj(a

P
j (θI), a

P
i (θI))

∂ai
= −θI

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
+
∂uj(a

P
j (θ′I), a

P
i (θ′I))

∂ai
= −θ′I

Subtract the second from the first:

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θI))

∂ai
+
∂uj(a

P
j (θ′I), a

P
i (θ′I))

∂ai

−
∂uj(a

P
j (θI), a

P
i (θI))

∂ai
= −θ′I + θI

The RHS is negative. Examine the first subtraction pair of the LHS:

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θI))

∂ai(
∂ui(a

P
i (θ′I), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θ′I))

∂ai

)

+

(
∂ui(a

P
i (θI), a

P
j (θ′I))

∂ai
−
∂ui(a

P
i (θI), a

P
j (θI))

∂ai

)
If aP (θ′I) < aP (θI), then by concavity wrt own action, the first subtraction

pair is positive, and by submodularity, the second pair is positive. This holds

for agent j’s first derivatives as well, so the LHS of the previous statement is

positive. This contradicts the negative LHS, so this case cannot occur.

(ii) Case ii. aP (θ′I) = aP (θI)
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Look at the FOC for
∂(wi+wj)

∂ai
(the FOC for

∂(wi+wj)
∂aj

are symmetric):

∂ui(a
P
i (θI), a

P
j (θI))

∂ai
+
∂uj(a

P
j (θI), a

P
i (θI))

∂ai
= −θI

∂ui(a
P
i (θ′I), a

P
j (θ′I))

∂ai
+
∂uj(a

P
j (θ′I), a

P
i (θ′I))

∂ai
= −θ′I

If aP (θ′I) = aP (θI), then the LHS of both functions must be the same. This

means the RHS must be the same, i.e. θ′I = θI , but this is a contradiction.

Therefore, this case cannot occur.

Since both of these cases cannot occur, it must be that aPi is increasing in θI . �

By Lemma B.3, it is obtained that:

∂aPi (·)
∂θI

> 0.

Both the Nash actions and the efficient actions are increasing in θI . At each θI , it should

be that the efficient actions are smaller than the Nash actions because of the negative

externality. Intuition says that the Nash increases are larger, because the agents ignore

the externality, but this really depends on the curvature of the utility function. Therefore,

though the directions actions take are known, as is the increase in utility for social planner

problem, the ambiguity in utility for the Nash problem makes it difficult to say whether the

Nash increases are larger or smaller than the efficient increases, rendering the comparison

ambiguous.

Thus, the own effect is the confusing type of externality. One the one hand, the direct

benefit increases utility, but on the other hand, the agents then exert more of the externality

on each other.

(3) Submodular Effect

The submodular effect is set-up in the paper in Equations (8) and (9). First, I exam-

ine the Nash first order conditions, and then I examine the social planner’s first order

conditions.

(a) Non-coordination: The maximization problem for agent i, given the Nash equilibrium

action of agent j, is:

max
ai∈Ai

ui(ai, a
N
j (θIJ)) + θIJaia

N
j (θIJ)

aN (0) solves:

∂wi
∂ai

=
∂ui

(
·, aNj (0)

)
∂ai

≡ 0

∂wj
∂aj

=
∂uj

(
·, aNi (0)

)
∂aj

≡ 0
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aN (θIJ) solves:

∂wi
∂ai

=
∂ui

(
·, aNj (θIJ)

)
∂ai

− θIJaNj (θIJ) ≡ 0

∂wj
∂aj

=
∂uj

(
·, aNi (θIJ)

)
∂aj

− θIJaNi (θIJ) ≡ 0

Going off of the structure above, the next lemma posits that the submodular effect is

rendered Null for the Nash equilibrium.

Lemma B.4. For θ′IJ > θIJ , aNi (θ′IJ) < aNi (θIJ).

Proof. Suppose not. Suppose that for θ′IJ > θIJ , aNi (θIJ) ≥ aNi (θ′IJ). Because of

symmetric utility functions, agents actions go in the same direction.

(i) Case i. aNi (θ′IJ) > aNi (θIJ)∀i. Look at the FOC for ∂wi
∂ai

:

∂ui

(
aNi (θIJ), aNj (θIJ)

)
∂ai

= θIJa
N
j (θIJ)

∂ui

(
aNi (θ′IJ), aNj (θ′IJ)

)
∂ai

= θ′IJa
N
j (θ′IJ)

Subtract the second from the first:

∂ui

(
aNi (θ′IJ), aNj (θ′IJ)

)
∂ai

−
∂ui

(
aNi (θIJ), aNj (θIJ)

)
∂ai

= θ′IJa
N
j (θ′IJ)− θIJaNj (θIJ)

RHS is positive. If both Nash actions are larger, then by concavity and sub-

modularity, LHS is negative. This case cannot occur.

(ii) Case ii. aNi (θ′IJ) = aNi (θIJ)∀i.

∂ui

(
aNi (θ′IJ), aNj (θ′IJ)

)
∂ai

−
∂ui

(
aNi (θIJ), aNj (θIJ)

)
∂ai

= θ′IJa
N
j (θ′IJ)− θIJaNj (θIJ)

If actions are equal, then LHS is equal to zero. The statement can be rewritten

as:

0 =
(
θ′IJ − θIJ

)
aNj (θIJ)

In order for RHS to be zero, need θ′IJ = θIJ . This is a contradiction.

Therefore the only possibility is that aNi (θIJ) to be decreasing in θIJ . �

By Lemma B.4, it is obtained that:

∂aNi (·)
∂θIJ

< 0.
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(b) Coordination: The maximization problem for the social planner is:

max
(ai,aj)∈Ai×Aj

ui(ai, aj) + uj(aj , ai) + 2θIJaiaj

For θIJ ≥ 0, aP (θJ) solves the following:

∂(wi + wj)

∂ai
=
∂ui(·, aPj (θIJ))

∂ai
+
∂uj(a

P
j (θIJ), ·)
∂ai

− 2θIJa
P
j (θIJ) ≡ 0

∂(wi + wj)

∂aj
=
∂uj(·, aPi (θIJ))

∂aj
+
∂ui(a

P
i (θIJ), ·)
∂aj

− 2θIJa
P
i (θIJ) ≡ 0

Lemma B.5. For θ′IJ > θIJ , aPi (θ′IJ) < aPi (θIJ).

Proof. Suppose not. Suppose aP (θ′IJ) ≥ aP (θIJ).

(i) Case i. aPi (θ′IJ) > aPi (θIJ)∀i. Look at the FOC for ∂wi
∂ai

:

∂ui

(
aPi (θIJ), aPj (θIJ)

)
∂ai

+
∂uj

(
aPj (θIJ), aPi (θIJ)

)
∂ai

= 2θIJa
P
j (θIJ)

∂ui

(
aPi (θ′IJ), aPj (θ′IJ)

)
∂ai

+
∂uj

(
aPj (θ′IJ), aPi (θ′IJ)

)
∂ai

= 2θ′IJa
P
j (θ′IJ)

Subtract the second from the first:

∂ui

(
aPi (θ′IJ), aPj (θ′IJ)

)
∂ai

+
∂uj

(
aPj (θ′IJ), aPi (θ′IJ)

)
∂ai

−
∂ui

(
aPi (θIJ), aPj (θIJ)

)
∂ai

−
∂uj

(
aPj (θIJ), aPi (θIJ)

)
∂ai

=2θ′IJa
P
j (θ′IJ)− 2θIJa

P
j (θIJ)

If aPi (θIJ) > aPi (θ′IJ), then RHS is positive.

Because of concavity and submodularity, when both aPi (θ′IJ) > aPi (θIJ) and

aPj (θ′IJ) > aPj (θIJ), we have that:

∂ui(a
P
i (θ′IJ), aPj (θ′IJ))

∂ai
<
∂ui(a

P
j (θIJ), aPj (θIJ))

∂ai

and that:

∂uj(a
P
i (θ′IJ), aPj (θ′IJ))

∂ai
<
∂uj(a

P
j (θIJ), aPj (θIJ))

∂ai

This means that LHS is negative, which is a contradiction. This case cannot

occur.

(ii) Case ii. aPi (θ′IJ) = aPi (θIJ)

If the actions are equal for both agents, then LHS is zero, and the subtracted

FOC can be written as:

0 = 2
(
θ′IJ − θIJ

)
aPj (θIJ)
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The only way for RHS to equal LHS is for θ′IJ = θIJ . This is a contradiction,

so this case cannot occur.

�

By Lemma B.5, it is obtained that:

∂aPi (·)
∂θIJ

< 0.

Both the Nash actions and the efficient actions are decreasing in θIJ . Similar as with

the own effect, the efficient actions should be smaller. From the extra two in the social

planner’s first order conditions, it is suspected that the efficient actions are decreasing

more quickly than the non-coordination actions, but this depends on the curvature of

the utility function. Thus, the submodular effect is ambiguous as well.4

Combined, these three results give Theorem 1. �

Appendix C. Expanded Results from Section 3.4

Derivation of Second-Order Expansions

(1) Non-coordination first order conditions:

Recall the FOC are:
∂ui(ai, aj)

∂ai
+ θii ≡ 0

∂uj(aj , ai)

∂aj
+ θjj ≡ 0

The derivatives of these with respect to agent i’s own effect, θii, are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θii
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θii
+ 1 = 0

∂2uj(aj , ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θii
+
∂2uj(aj , ai)

∂a2j
·
∂aNj (θ)

∂θii
= 0

and with respect to agent i’s opponent effect, θij , are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θij
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θij
= 0

∂2uj(aj , ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θij
+
∂2uj(aj , ai)

∂a2j
·
∂aNj (θ)

∂θij
= 0

In the second set of expansions, those with respect to θij , since the function is concave

and submodular, then in both top and bottom two negative numbers multiplied by the

derivatives. In order for any set of numbers other than zero to solve this set of equations,

this would require the own second derivatives to equal the cross-partials, which is possible,

but a small set of functions. Furthermore, since the parameter θij does not appear in the

4For a centered Taylor expansion version of this problem, the submodular effect would be null, as opposed
to ambiguous.
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first order conditions, this proof will proceed with the case of:

∂aNi (θ)

∂θij
=
∂aNj (θ)

∂θij
= 0.

The derivatives of the FOC with respect to agent j’s opponent effect on i, θji, are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θji
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θji
= 0

∂2uj(aj , ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θji
+
∂2uj(aj , ai)

∂a2j
·
∂aNj (θ)

∂θji
= 0

and with respect to agent j’s own effect , θjj , are:

∂2ui(ai, aj)

∂a2i
· ∂a

N
i (θ)

∂θjj
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aNj (θ)

∂θjj
= 0

∂2uj(aj , ai)

∂aj∂ai
· ∂a

N
i (θ)

∂θjj
+
∂2uj(aj , ai)

∂a2j
·
∂aNj (θ)

∂θjj
+ 1 = 0

The parameter θji displays a similar pattern as did θij , and so the proof will proceed

under the following:

∂aNi (θ)

∂θji
=
∂aNj (θ)

∂θji
= 0.

The results with respect to θii and θjj can be condensed into matrix form: ∂2ui(ai,aj)∂a2i

∂2ui(ai,aj)
∂ai∂aj

∂2uj(ai,aj)
∂ai∂aj

∂2uj(ai,aj)

∂a2j

 ·
∂aNi∂θii

∂aNi
∂θjj

∂aNj
∂θii

∂aNj
∂θjj

 =

[
−1 0

0 −1

]

(2) Coordination first order conditions:

Recall the FOC are:

∂ui(ai, aj)

∂ai
+
∂ui(ai, aj)

∂aj
+
∂uj(aj , ai)

∂ai
+
∂uj(aj , ai)

∂aj
+ γi + γj ≡ 0

The derivatives of these with respect to agent i’s total effect, γi, are:

∂2ui(ai, aj)

∂a2i
· ∂a

P
i

∂γi
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aPj
∂γi

+
∂2uj(aj , ai)

∂a2i
· ∂a

P
i

∂γi
+
∂2uj(aj , ai)

∂ai∂aj
·
∂aPj
∂γi

+ 1 = 0

∂2ui(ai, aj)

∂aj∂ai
· ∂a

P
i

∂γi
+
∂2ui(ai, aj)

∂a2j
·
∂aPj
∂γi

+
∂2uj(aj , ai)

∂aj∂ai
· ∂a

P
i

∂γi
+
∂2uj(aj , ai)

∂a2j
·
∂aPj
∂γi

= 0
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and the derivatives with respect to agent j’s total effect, γj , are:

∂2ui(ai, aj)

∂a2i
· ∂a

P
i

∂γj
+
∂2ui(ai, aj)

∂ai∂aj
·
∂aPj
∂γj

+
∂2uj(aj , ai)

∂a2i
· ∂a

P
i

∂γj
+
∂2uj(aj , ai)

∂ai∂aj
·
∂aPj
∂γj

= 0

∂2ui(ai, aj)

∂aj∂ai
· ∂a

P
i

∂γj
+
∂2ui(ai, aj)

∂a2j
·
∂aPj
∂γj

+
∂2uj(aj , ai)

∂aj∂aj
· ∂a

P
i

∂γj
+
∂2uj(aj , ai)

∂a2j
·
∂aPj
∂γj

+ 1 = 0

The results with respect to γi and γj can be condensed into matrix form:∂2ui(ai,aj)∂a2i
+

∂2uj(ai,aj)

∂a2i

∂2ui(ai,aj)
∂ai∂aj

+
∂2uj(ai,aj)
∂ai∂aj

∂2uj(ai,aj)
∂ai∂aj

+
∂2ui(ai,aj)
∂ai∂aj

∂2uj(ai,aj)

∂a2j
+

∂2ui(ai,aj)

∂a2j

 ·
∂aPi∂γi

∂aPi
∂γj

∂aPj
∂γi

∂aPj
∂γj

 =

[
−1 0

0 −1

]

Proof of Lemma 2

Restatement of Lemma 2. For DaN to be positive and for the Nash actions to be increasing in

response to an increase in θ, it is sufficient for the own second derivatives to be the same direction

in comparison to the cross-partials for both agents. That is, the own second derivative can be more

negative than the cross partial for both agents:

∂2ui(ai, aj)

∂a2i
<
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
<
∂2uj(ai, aj)

∂ai∂aj

or, the own second derivative can be less negative than the cross partial for both agents:

∂2ui(ai, aj)

∂a2i
>
∂2ui(ai, aj)

∂ai∂aj
and

∂2uj(ai, aj)

∂a2j
>
∂2uj(ai, aj)

∂ai∂aj

Proof. Recall the set-up of the linearization:[
a b

c d

]
=

 ∂2ui(ai,aj)∂a2i

∂2ui(ai,aj)
∂ai∂aj

∂2uj(ai,aj)
∂ai∂aj

∂2uj(ai,aj)

∂a2j


ad− bc =

∂2ui(ai, aj)

∂a2i
· ∂

2uj(ai, aj)

∂a2j
− ∂2ui(ai, aj)

∂ai∂aj
· ∂

2uj(ai, aj)

∂ai∂aj[
d− c a− b

]
=
[
∂2uj(ai,aj)

∂a2j
− ∂2uj(ai,aj)

∂ai∂aj

∂2ui(ai,aj)

∂a2i
− ∂2ui(ai,aj)

∂ai∂aj

]
There are two cases to consider:
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(1) ad− bc > 0 while d− c < 0, a− b < 0

ad− bc =
∂2ui(ai, aj)

∂a2i
· ∂

2uj(ai, aj)

∂a2j

− ∂2ui(ai, aj)

∂ai∂aj
· ∂

2uj(ai, aj)

∂ai∂aj

ad− bc > 0⇒

∂2ui(ai, aj)

∂a2i
· ∂

2uj(ai, aj)

∂a2j
>
∂2ui(ai, aj)

∂ai∂aj
· ∂

2uj(ai, aj)

∂ai∂aj

By concavity and submodularity, these are individually negative. So, the above statement

could hold under some sort of dominant effect idea, where the own second derivative is more

negative (“larger”) than the cross partial. Then d− c and a− b would be negative, because

both d and a would be smaller (more negative) than c and b.

(2) ad− bc < 0 and d− c > 0, a− b > 0

On the other hand, with the opposite of dominant effect, or some second order opponent

effect, then ad would be smaller than bc, but c would be smaller from d (as well as b from

a, which would be positive). This would give the same required sign.

�

Proof of Lemma 3

Restatement of Lemma 3. For UP to have only positive eigenvalues, it is sufficient that:

∂2ui
∂a2j

> 0,
∂2uj
∂a2j

> 0, and

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
>

(
∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

Proof. Recall the method for calculating eigenvalues:∂2ui∂a2i
+

∂2uj
∂a2i
− λ ∂2ui

∂ai∂aj
+

∂2uj
∂ai∂aj

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

∂2ui
∂a2j

+
∂2uj
∂a2j
− λ


The characteristic function is:(

∂2ui
∂a2i

+
∂2uj
∂a2i

− λ
)(

∂2ui
∂a2j

+
∂2uj
∂a2j

− λ

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

= 0

Expanding:

λ2 − λ

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
+

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)

−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

= 0
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Using quadratic function, we know that the values for λ are as follows:

λ =
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
±

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

When are both λ positive? First, check under the square root.(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2
?
>

4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

It is known that the eigenvectors of symmetric matrices are real, so the above equation must

hold. Therefore, what is under the square root must be positive. Hence, the following condition

that must be also true:(
∂2ui
∂a2i

+
∂2uj
∂a2i

)2

+

(
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

+

(
∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2

> 2

(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
The two eigenvalues can be denoted as:

λ1 =
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
+

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

λ2 =
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]
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From this, it is is clear that if λ2 > 0 ⇒ λ1 > 0 (adding a positive amount vs. subtracting it).

Hence, for both to be positive, the minimum is to check when λ2 is positive.

0 <
1

2

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]]

0 <

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
>

√√√√(∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

The square root must be positive, so that means(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)
> 0

as well, and since the utility function is concave, need ∂2ui
∂a2j

> 0 and
∂2uj
∂a2j

> 0. With those added

assumptions, square both sides:(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

>

(
∂2ui
∂a2i

+
∂2uj
∂a2i

+
∂2ui
∂a2j

+
∂2uj
∂a2j

)2

−4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

This then becomes:

0 > −4

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

0 <

[(
∂2ui
∂a2i

+
∂2uj
∂a2i

)(
∂2ui
∂a2j

+
∂2uj
∂a2j

)
−
(

∂2ui
∂ai∂aj

+
∂2uj
∂ai∂aj

)2
]

Hence, convex opponent derivative and the above condition are sufficient for positive eigenvalues.
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