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Abstract

In this paper, I study dynamic common-value contests. Agents arrive over time
and expend efforts to compete for prizes that are allocated proportionally according
to efforts exerted. This model can be applied to a number of examples, including
rent-seeking, lobbying, advertising, and R&D competitions. I provide a full char-
acterization of equilibria in dynamic common-value contests and use it to study
their properties, including comparative statics, earlier-mover advantage, and large
contests. I show that information about other players’ efforts plays an important
role in determining the total effort and that the total effort is strictly increasing
with the information that becomes available.

JEL: C72, C73, D72, D82
Keywords: contests, sequential games, contest design, rent-seeking, R&D, advertising

1 Introduction

Many economic interactions, including rent-seeking, R&D competitions, advertising, and
litigation, have a contest structure. The agents choose costly efforts to compete for prizes
that are allocated proportionally according to the amount of effort exerted. For example,
in rent-seeking contests firms spend resources lobbying to achieve market power. As rent-
seeking efforts are considered socially wasteful, the important policy question is how to
limit this wasteful spending. In research and development the probability of a scientific
breakthrough may be proportional to research efforts, which are typically considered
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socially desirable. The literature has largely focused on the simultaneous case, where
players choose efforts simultaneously. In many situations, however, the players make
their choices over time and may have information about the choices of other players.

I study dynamic common-value contests, where players arrive over time and – either
exogenously or by the choice of the contest designer – some players observe the choices of
earlier players before making their decisions. I show that information about other players’
behavior has a significant impact on equilibrium outcomes and more information makes
the total effort unambiguously larger.

Static common-value contests have well-known equilibrium properties: the equilibrium
is unique and in pure strategies. Very little is known about dynamic contests. Using
backward induction requires finding best-response functions recursively and this approach
is not tractable with contests. I introduce an alternative method in which, instead of
finding best responses, I pool all the best-response relationships for all players before
solving the resulting equation. Using this approach, instead of finding roots of polynomials
and inserting them into the next problems recursively, I can solve the problem by finding
roots for a polynomial just once.

I show that the equilibrium in all dynamic common-value contests is still unique and
still in pure strategies; using this new approach, equilibria are also straightforward to
compute.1Using the characterization result, I show that the total effort increases with
the values of the prizes, decreases with the cost of effort, and increases with the number
of players. Moreover, as the number of players becomes large, the total cost of effort
converges to the total value of prizes (full dissipation).

The main result of the paper is that information about other players’ efforts strictly
increases the total effort of all players. This answers a contest design question: how much
information should the contest designer disclose to the later players? When efforts are de-
sirable (as in R&D competitions) the optimal contest would be one with full transparency,
whereas when the efforts are undesirable (as in rent-seeking), the optimal contest would
be one with hidden efforts.

The basic intuition behind the result is that earlier players exerting higher efforts
discourages later players, but this discouragement effect is not strong enough—earlier
players increase their efforts more than later players decrease theirs. If the efforts are
high, then they are strategic substitutes, i.e., higher levels of effort by other players
reduce the incentive to exert effort. Therefore, making efforts observable provides an
incentive to earlier players to exert more effort to discourage the followers. How does the
discouragement effect change the total effort? Players’ payoffs are decreasing in the total

1The program that computes the equilibrium for any dynamic common-value contest is available at
http://toomas.hinnosaar.net/contests/.
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effort and increasing in their own efforts. In equilibrium, discouragement cannot be so
strong that increasing individual efforts decreases the total effort because otherwise players
would continue increasing their efforts. This means that in equilibrium the discouragement
effect is not strong enough and information increases the total effort.

The contest design result is even stronger. In fact, contests that are more homoge-
neous lead to higher total effort. This answers another contest design question: if the
information about previous efforts can only be revealed a limited number of times, then
when is it optimal to disclose it? The answer is that to maximize the total effort, it is
best to reveal the information at regular intervals. For example, if the contest designer
wants to maximize the total effort invested in a contest with four players and can only
reveal information once, it is optimal to reveal the information after the first two players
have acted. This divides the four players into two equal groups, whereas disclosing the
information earlier or later would make the groups less equal.

Next, I generalize the first-mover advantage result from Dixit (1987). Dixit showed
that a player who can pre-commit chooses higher effort and ensures higher payoff than the
followers. In this scenario, the leader has two advantages: he moves earlier than the other
players and he does not have any direct competitors. With the new characterization, I
am able to explore this idea further and compare players’ payoffs, depending on their
position and the number of competitors more generally. I show that there is always an
earlier-mover advantage: players who move earlier choose higher efforts and ensure higher
payoffs than later players.

The final part of the paper studies contests with large numbers of players. It answers
two questions. The first is the computational question of how to compute equilibria in
large contests. Although the characterization result holds for an arbitrary number of
players, it is not computationally reliable with very large number of players. I show that,
in this case, there is a simple approximation method. The second question concerns how
quickly the total cost of effort converges to the total value of prizes. I show that the
convergence is much faster in the case of sequential contests than simultaneous contests.
This points to a conclusion that the information provided to players may be even more
important than the number of players participating in the contest.

Literature: Contests allocate a limited number of prizes among participants who make
costly efforts. There are three main models of contests, which differ in terms of the contest
success function, i.e., the criteria for allocating prizes. First, the type of contests I am
studying in this paper are called Tullock contests (or simply contests), and they allocate
the prizes proportionally based on effort. In the static framework, they typically give
unique equilibria, which is in pure strategies. This model is often used to study rent-
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seeking, R&D races, advertising, and elections. The literature was initiated by Tullock
(1967, 1974) and motivated by rent-seeking (Krueger, 1974; Posner, 1975).2 I extend
this literature to arbitrary dynamic common-value contests and study their equilibrium
properties. There have been relatively few attempts to study sequential contests in this
framework. Linster (1993) proved that in the two-player case, sequential and simultaneous
games give the same equilibrium efforts and Dixit (1987) showed that there is first-mover
advantage with at least three players. Glazer and Hassin (2000) extended the analysis to
three sequential players and provided some conjectures on the equilibria in contests with
four or more sequential players.

The second class of contests includes all-pay auction and war of attrition, where the
player with the highest effort always wins. These models are often used to study lobbying,
military activities, and auctions. The equilibria in these auctions are typically in mixed
strategies. The characterization of equilibria in static common-value (first-price) all-pay
auction is due to Baye, Kovenock, and de Vries (1996) and in second-price all-pay auction
(also called war of attrition) is due to Hendricks, Weiss, and Wilson (1988). Siegel (2009)
provides a general payoff characterization for static all-pay contest. In a broader sense,
Tullock contest and all-pay auction are two members of the same family: generalized
Tullock contest that allocates prizes proportionally on efforts to the power r > 0. If this
power r = 1, then we get the standard Tullock contest, whereas if r → ∞, we get an
all-pay auction.

The third class of contests is rank-order tournaments that allocate prizes according
to the highest output rather than the highest effort. The output is a noisy measure of
effort. Tournaments were introduced by Lazear and Rosen (1981) and Rosen (1986), and
they are most often used to model principal-agent relationships and contract design in
personnel economics and labor economics.

This paper also contributes to the theory of contest design. Previous papers on contest
design have mostly focused on the all-pay auction specification with asymmetric informa-
tion about the effort costs (abilities). Examples include Glazer and Hassin (1988); Che
and Gale (2003); Moldovanu and Sela (2001, 2006). In a recent paper, Olszewski and
Siegel (2016) studied a general class of contests in this setting with an infinite number of
players. An exception is Taylor (1995) who studied tournament games and showed that
free entry is not optimal, since it decreases the effort of all contestants. I am not aware
of papers studying contest design of common-value (Tullock) contests. In this paper, I
show that prizes and the cost of effort have very little impact on the outcomes of these
contests. In contrast, the information provided to the players about the previous players’
efforts plays a crucial role.

2See Tullock (2001) and Konrad (2009) for literature reviews.
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The paper is organized as follows. Section 2 introduces the general model of dynamic
common-value contests and provides a useful normalization result that allows me to focus
on contests where the values of prizes and the cost of effort are normalized. Section 3
characterizes equilibria in dynamic common-value contests. Section 4 studies the com-
parative statics. Section 5 provides the main result—it shows that total effort in contests
is strictly increasing in information and homogeneity. Section 6 proves earlier-mover ad-
vantage and section 7 studies contests with a large number of players. Finally, section 8
concludes and discusses potential avenues for future research.

2 Model

2.1 Set up

A set3 of prizes V is allocated at some fixed deadline. There are n players who arrive
sequentially over time.4 Each player i chooses effort xi ≥ 0 at arrival at marginal cost c.
Prizes are allocated randomly with probabilities proportional to efforts. Both the values
of prizes and the marginal cost are common to all players. In particular, with efforts
x = (x1, . . . , xn), player i’s expected payoff is

ui(x) =
∑
v∈V

v
xi∑n
j=1 xj

− cxi = V
xi∑n
j=1 xj

− cxi, (1)

where V = ∑
v∈V v is the sum of the values of all prizes.

The players observe the efforts of previous players only at some specific points in time,
which could be exogenous or chosen by a contest designer. Let there be T − 1 points in
time where the previous efforts are made public. These points of disclosure partition the
n players into T groups, where all players inside the group have the same information,
whereas players prior to a disclosure have less information than players after a disclosure.

It is convenient to denote the sizes of these groups in reverse order. In particular,
let nT be the number of players arriving before the first disclosure, nT−1 the number of
players between the first and the second disclosure, and so on, until n1, which is the
number of players after the last time that efforts were disclosed. Notice that the number
of players n = ∑T

t=1 nt and the exact arrival times of players do not affect the payoffs and
therefore the equilibria.

3It may be just one prize, which could be the value of becoming a monopolist (in rent-seeking) or the
value of a scientific breakthrough (R&D). But the model also allows for multiple different prizes or even
a continuum of prizes, as in a market share in advertising.

4To simplify the exposition, I assume that two players never arrive at the same time. As will become
apparent in the later sections, it is straightforward to extend the analysis to allow simultaneous arrivals.
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A general contest is a triple (V , c,n), where the information disclosure is characterized
by a vector n = (nT , . . . , n1). For example, when n = (n) (see Figure 1(a)), the players
do not receive any information about the efforts of other players and therefore play a
simultaneous game. In the other extreme, when n = (1, 1, . . . , 1) (Figure 1(b)), all efforts
are made public right after they are made, so that the game is fully sequential. When
n = (1, n − 1) (Figure 1(c)), the initial player is the first mover and all other players
observe only this first player’s effort, and when n = (n−1, 1) (Figure 1(d)) the last-mover
observes the efforts of all other players, whereas all other players choose simultaneously
without observing any efforts.

ta b c d f g h

(a) n = (n), no information is disclosed, players
make simultaneous decisions (Simultaneous contest).

ta b c d f g h

(b) n = (1, . . . , 1), information is disclosed after each
arrival (Sequential contest).

ta b c d f g h

(c) n = (1, n − 1), all players observe a’s effort, but
not the other players’ efforts (First-mover).

ta b c d f g h

(d) n = (n−1, 1), all players except h make their de-
cisions without observing the efforts of other players,
but h observes all efforts (Last-mover)

Figure 1: Examples of different information disclosure scenarios.

As all players between two disclosures have the same information, it is convenient to
call the time intervals between disclosures periods (there are T periods), and use slightly
different notation to address the players. As I am solving the game backwards, period
1 is the time interval after the last information T − 1st disclosure, where the final n1

players choose their efforts essentially simultaneously. Let me denote their efforts by xi,1
for i = 1, . . . , n1. Similarly, let period t be the period between information disclosures
number t − 1 and t. In this interval, nt players simultaneously choose their efforts xi,t,
knowing all efforts from players in periods T, . . . , t + 1 and anticipating the responses of
all players from periods t− 1, . . . , 1. There are nT players who make their choices of xi,t
before the first disclosure, in period T .

Finally, let Xt = ∑T
s=t+1

∑ns
i=1 xi,s denote the total effort prior to period t. This is the

only relevant state variable available in the decisions of players in period t. For brevity
of notation, X0 = X is the total effort at the end of the contest (i.e., 0 periods before the
end) and XT = 0 is the total effort in the beginning of the contest (T periods before the
end). Moreover, by the argument above, it is clear that Xt ∈ [0, 1] in equilibrium. The
notation is illustrated in Table 1.

6



Players First Second Third Fourth Fifth
Periods Period 3 Period 2 Period 1
Number of players n3 = 1 n2 = 2 n1 = 2
Individual efforts x1,3 x1,2 x2,2 x1,1 x2,1
Total effort prior to period X3 = 0 X2 = X3 + x1,3 = x1,3 X1 = X2 + x1,2 + x2,2

Table 1: Example of the notational change with n = 5 players such that the efforts are
disclosed twice: between players 1 and 2 and then again between players 3 and 4.

2.2 Normalized contests

The first result (Lemma 1) shows that we can without loss focus on a normalized con-
test where the set of prizes is V = {1} and the marginal cost of effort is c = 1. The
equilibria under all other parameter values are linear transformations of the equilibria in
this normalized game ({1}, 1,n), which I denote briefly by n. The result comes from risk
neutrality and the contest success function, which is proportional to efforts.

For a fixed n, let x−i denote the vector of efforts of other players observable to player i.
For example, in the simultaneous contests n = (n), this means that x−i = ∅, since players
do not see efforts of any other players, whereas in the sequential contests n = (1, 1, . . . , 1),
x−i = (x1, . . . , xi−1), since players observe the efforts of all previous players. Let x∗ denote
an equilibrium strategy profile, where x∗i (x−i) is the strategy of player i, as a function
of the information available to him, i.e., where x−i. Finally, for α > 0, let αx∗ denote a
re-scaled strategy profile such that xi(x−i) = αx∗i (αx−i).

Lemma 1 (Linearity in V/c). Strategy profile x∗ is an equilibrium in a contest (V , c,n) if
and only if c

V
x∗ is an equilibrium in a normalized contest n.

Proof. Suppose x∗ is an equilibrium in (V , c,n). This means that each player i, x∗i (x−i)
solves the maximization problem

max
xi

V
xi

X∗(x,x−i))
− cxi = V max

xi

∑
v∈V

c
V
xi

c
V
X∗(xi,t,xt))

− c

V
xi,t, (2)

where X∗(xi,x−i) is the total effort, given that player i chooses xi, the profile of efforts
prior to i is x−i, and all players except i are behaving according to their equilibrium
strategies.

From the second representation, it is clear that if x∗ is an equilibrium for contest
(V , c,n), then rescaled strategy profile c

V
xi is an equilibrium for the normalized contest

n.

Using this result, I focus on normalized contests in the rest of the paper. For any
other games (V , c,n), the equilibrium strategies are simply linear transformations with
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parameters V/c. Clearly, the total effort is also linear in V/c and the payoffs are linear
transformations with parameter V .

3 Characterization of equilibria

In this section, I characterize all subgame-perfect Nash equilibria in dynamic common-
value contests. The standard backward-induction approach is not tractable with three
or more periods (see Appendix A for examples that illustrate why). Instead of using
backward induction directly, it is useful to characterize the responses of the following
players via their inverted best-response functions and then pool all these functions. The
advantage of this approach is tractability: instead of solving for the roots of polynomials
recursively I aggregate the best-responses into one polynomial and then study its roots.
I show that the equilibrium is unique, in pure strategies, easy to compute5, and has some
useful properties that I will explore further in the following sections.

Theorem 1 (Characterization theorem). Each contest n has a unique equilibrium. The
total equilibrium effort X∗ is the highest root of fT (X) = 0, where ft is defined recursively
by

f0(X) = X and ft(X) = ft−1(X)− ntf ′t−1(X)X(1−X),∀t = 1, . . . , T. (3)

The Individual equilibrium effort of a buyer from period t is

x∗i,t = 1
nt

[ft−1(X∗)− ft(X∗)] = f ′t−1(X∗)X∗(1−X∗). (4)

Before proving the result, let me contrast the approach I’m taking with the standard
backward induction. At period t, there are nt players who observe the total effort prior to
period t, denoted by Xt, and simultaneously choose their optimal efforts xi,t. Therefore,
the best-response functions would be x∗i,t(Xt). However, as this approach becomes quickly
non-tractable, I am taking an alternative approach here. Instead of characterizing best
responses as individual efforts x∗i,t(Xt), we can equivalently characterize the best responses
of the preceding players as the total effort induced by Xt, i.e., function6 X(Xt). Finally,
it is instead convenient to keep track their inverse functions ft(X), which I call inverted
best-response functions. For a given total effort X, the inverted best-response Xt = ft(X)

5The program is available at http://toomas.hinnosaar.net/contests/.
6That is,

X(Xt) = Xt +
nt∑

i=1
x∗i,t(Xt) +

nt−1∑
i=1

x∗i,t−1

(
Xt +

nt∑
i=1

x∗i,t(Xt)
)

+ . . . .
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gives the total effort prior to period t that is consistent with the total effort X, given that
the players in periods t, . . . , 1 choose efforts optimally.

As we will see in the proof, optimality conditions are complex functions of Xt and
therefore solving for best-response functions x∗i,t(Xt) or X(Xt) recursively would not be
tractable. On the other hand, the optimality conditions are linear in Xt, so finding
the inverted best-response functions ft(X) is relatively straightforward. Appendix A
illustrates this point with a few simple examples.

Proof. First, observe that there cannot be any equilibria where the total effort X > 1,
because this means one or more players get strictly negative utilities and they could
instead ensure zero utility by making no effort.

Fix any period t. There are nt ≥ 1 players who simultaneously choose their efforts xi,t,
knowing that the total effort by previous players is Xt, and if the total effort after period
t is Xt−1 = Xt +∑nt

i=1 xi,t, then the optimal effort choices of all the following players lead
to the total effort X(Xt−1).

Player i’s maximization problem is

max
xi,t

xi,t
X(Xt +∑nt

j=1 xj,t)
− xi,t ⇒

1
X(Xt−1)

− xi,t
[X(Xt−1)]2

X ′(Xt−1) = 1.

Adding up the conditions for all players in period t and observing that ft−1(X) = Xt−1 =
Xt +∑nt

i=1 xi,t gives
nt

X(Xt−1)
− Xt−1 −Xt

[X(Xt−1)]2
X ′(Xt−1) = nt.

As discussed above,X(Xt−1) is characterized by its inverse ft−1(X) and thereforeX ′(Xt) =
f ′t−1(X)−1, which gives7

nt
X
− ft−1(X)−Xt

X2
1

f ′t−1(X) = nt.

Therefore, the inverted best-response function for period t is

ft(X) = ft−1(X)− ntf ′t−1(X)X(1−X). (5)

Note that after the final period, the total effort is X. If we define f0(X) = X, then
Equation (5) characterizes functions f1, . . . , fT recursively.

7This condition also illustrates why the standard approach fails and the inverted best-response ap-
proach is tractable: the condition is nonlinear in the choices of players in period t (i.e., Xt−1 −Xt), so
the best-response functions are complex expressions, especially in contests with many periods. However,
the conditions are linear in the total effort prior to period t (i.e., Xt).
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The individual optimality condition implies that the effort chosen by player i in period
t, consistent with the total effort X, is

xi,t(X) = 1
nt

[Xt−1 −Xt] = 1
nt

[ft−1(X)− ft(X)]. (6)

The equilibrium efforts have to satisfy two conditions. First, the total effort must be
such that the implied total effort prior to the game is XT = fT (X) = 0. Second, all
individual efforts must be non-negative, i.e., xi,t(X) ≥ 0 for each i and t. Proposition 7
in Appendix B shows that the highest root of fT (X) = 0, is the only value that satisfies
these conditions. As the total effort X determines all individual efforts, this completes
the proof.

Note that the proof relies on a technical result (Proposition 7), which is proven in
the appendix, so let me give brief sketch of the proof here. It relies on the properties
of functions f1, . . . , fT . Namely, I show that ft is a polynomial of degree t + 1, with all
roots in [0, 1], ft(0) = 0, ft(1) = 1, and the polynomials are interlaced, i.e., the t roots
of ft−1(X) = 0 are between the roots of ft(X) = 0. This means that the highest root
of fT , denoted by X∗, is between [0, 1] and ft(X∗) is decreasing in t (see Figure 2 for
illustration), which implies that X∗ is indeed an equilibrium. Moreover, the only other
candidates for equilibria are the other T roots of polynomial fT , but I can exclude them,
because at the second-highest root and all points below it, at ft(X) > ft−1(X) for at
least one t. This implies that at least one player chooses negative effort, and this is a
contradiction.

4 Comparative statics

Using the characterization result from the previous section, we can now examine how
changes in parameter values affect efforts and in particular how they impact the total
effort. The first result is a straightforward corollary from the uniqueness of equilibria and
normalization Lemma 1. It gives the natural conclusion that the total effort increases
proportionally with the values of prizes and decreases proportionally with the marginal
cost of effort.

Corollary 1 (Comparative statics of V and c). The total effort X∗ as well as individual
efforts x∗ in contest (V , c,n) are proportional on V

c
. The payoffs are proportional on

V = ∑
v∈V v.

Proof. By Theorem 1, the equilibrium in normalized contest ({1}, 1,n) is unique. Let
the total effort in this equilibrium be X1 and individual efforts x1. By Lemma 1, any
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X

ft(X)

X2,5 X3,5 X4,5 X5,5

Figure 2: Illustration for n = (1, 1, 1, 1, 1). At X∗ = X5,5 all ft(X) is strictly decreasing
in t, so that each xi,t > 0. At any other root Xi,T one of ft−1(Xi,T ) < ft(Xi,T ) for some t.

equilibrium in a general contest (V , c,n) must have a corresponding equilibrium in the
normalized contest (1, 1,n) with all efforts scaled by c

V
. Since there is a unique equilibrium

in (1, 1,n), the equilibrium in (V , c,n) is also unique and has a property that X∗ = V
c
X1

and x∗ = V
c
x1. Therefore, the equilibrium efforts must be proportional on V

c
.

The next Proposition 1 provides an interesting implication, as well as a useful in-
termediary result for the following analysis. Namely, the total equilibrium effort X∗ is
unchanged when we change the order of nt’s in n. For example, a contest with n = (1, 2, 3)
must therefore give the same total effort as n̂ = (3, 2, 1).8

Proposition 1 (Independence of permutations). Total equilibrium effort X∗ of contest
n is independent of permutations of n.

Proof. I show by induction that functions ft(X) are independent of permutations of re-
spective nt = (nt, . . . , n1). Then, as fT (X) is independent of permutations of nT = n,
the highest root X∗ is also independent of permutations of n.

First, f0(X) does not depend on n. Suppose now that ft(X) is independent of permu-
tations of nt. By construction, nt only enters to ft+1 through ft and thus permutations
of nt do not change ft+1. It suffices to verify that swapping nt and nt+1 in nt+1 does not

8Note that the result does not say anything about games that are not permutations; for example,
n = (1, 1, 4).
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affect ft+1. Define n̂t+1 = (nt, nt+1,nt−1). Then ft−1(X) is the same function for both
nt+1 and n̂t+1. To shorten the notation, let φt−1(X) = f ′t−1(X)X(1−X). Note that φt−1

is also the same function for both sequences. Therefore

ft+1(X) = ft−1(X)− (nt + nt+1)φt−1(X) + nt+1ntφ
′
t−1(X)X(1−X)

Notice that since functions ft−1 and φt−1 are the same for both sequences nt+1 and
n̂t+1, the expression for ft+1(X) is the same for both sequences. Therefore, indeed ft+1 is
independent of permutations in nt+1.

We can now use this result to understand how increasing the number of players affects
the total effort. The following Proposition 2 shows that X∗ is strictly increasing in the
number of players (in any period) and in the limit, when the total number of players
becomes infinitely large, the total effort converges to 1 (or more generally, the total cost
of effort converges to the total value of prizes).

Proposition 2 (Comparative statics of n). The equilibrium X∗ of a contest (V , c,n) is
strictly increasing in each nt and limn→∞X

∗ = V
c
.

Proof. By Lemma 1, it suffices to prove the claims in the normalized contest n.
First note that it suffices to show that X∗ is increasing in nT , because by Proposition 1

we can rearrange vector n without changingX∗. Consider n and n̂ = (nT+1, nT−1, . . . , n1)
(i.e., a game with one more player in the initial period T ). In both cases, fT−1(X) is the
same, since the sequence (nT−1, . . . , n1) in unchanged. Then, X∗ is the highest root of

fT (X) = fT−1(X)− nTf ′T−1(X)X(1−X).

Now, in the case of n̂, we have that the new equilibrium X̂∗ is the highest root of

f̂T (X) = fT−1(X)− (nT + 1)f ′T−1(X)X(1−X).

By the proof of Theorem 1, both X∗ and X̂∗ are strictly higher than XT−1,T−1, the
highest root of fT−1(X). Moreover, in the interval [XT−1,T−1, 1], the function fT−1(X) is
strictly increasing.

Now, we have f̂T (X∗)− fT (X∗) = −f ′T−1(X∗)X∗(1−X∗) < 0. Therefore, X̂∗ > X∗.
Remark: as the characterization allows nT = 0, the same argument also implies that

increasing the number of periods with positive numbers of participants strictly increases
the total effort X∗.

Remember that in the simultaneous case, i.e., n = (n), the equilibrium X∗ = n−1
n

.
Therefore, in this case limn→∞X

∗ = 1. Theorem 2 below will show that the total equi-

12



librium effort for any other n is strictly higher than in the simultaneous case, which
completes the proof.

In Section 7, I explore the limit further and compare large contests with different types
of disclosure rules.

5 Contest design

In this section, I present the main result of this paper. I show that if we take any contest
n and make it more informative, then the total equilibrium effort is strictly higher in the
new contest. Contest n̂ is more informative than n if whenever a player observes the effort
of another player in n, he also observes the effort of this player in n̂, but the opposite is
not true. In other words, if we start with n, such that nt ≥ 2 at some period t, and create
a modified game n̂ where the nt players are split into two groups of one or more players,
then in equilibrium the effort increases.

Informativeness here is a partial order on contests n. For example, contest (1, 2) is
more informative than simultaneous contest (3) because the two followers in the second
period now see what the leader does. On the other hand, I am not comparing contests
(1, 2) and (2, 1) because, in both cases, there are players who have more information
and players who have less information than in the other contest.9 In particular, among
all n-player contests, the simultaneous contest (n) is the least informative, and the fully
sequential contest n = (1, 1, . . . , 1) is the most informative.

Theorem 2 (Informativeness increases the total effort). Suppose X∗ is the total equi-
librium effort in a contest n with n > 2. Suppose X̂∗ is the total equilibrium effort in
another contest n̂ = (nT , . . . , nt+1, nt, nt, nt−1, . . . , n1), such that nt + nt = nt, nt > 0 ,
and nt > 0. Then X∗ < X̂∗.

Theorem 2 is a special case of the following Proposition 3, which states that homo-
geneity increases the total effort. When we take any contest n with n > 2 and reallocate
players in any two periods t and t′ in a way that their sum nt + nt′ is unchanged by the
product ntnt′ increases, then I say the new contest is more homogeneous than the initial
one. Again, homogeneity is partial order on contests n̂. Theorem 2 is then a corollary, as
we can always pick period t with nt > 1 and a period with nt′ = 0, so that the product is
0. Splitting nt into two positive parts therefore makes the game more homogeneous and
thus strictly increases the total effort.

9In fact, by Proposition 1, the total effort in contests (1, 2) and (2, 1) must be the same.
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Proposition 3 (Homogeneity increases the total effort). Suppose X∗ is total equilibrium
effort in a contest n with n > 2. Suppose X̂∗ is total equilibrium effort in another n-player
contest n̂, such that for some t and t′, n̂tn̂t′ > ntnt′ and n̂s = ns for all s /∈ {t, t′}. Then
X̂∗ > X∗.

Proof. By Proposition 1, we can always reorder periods so that t = T and t′ = T −1, and
therefore we need only compare n and n̂ = (n̂T , n̂T−1, nT−2, . . . , n1). Then fT−2(X) =
f̂T−2(X), as the subsequence (nT−2, . . . , n1) is identical.

It suffices to show that f̂T (X∗) < 0 = fT (X∗), because this implies that the highest
root X̂∗ of f̂T (X), and since f̂T (X) is strictly increasing in [X̂∗, 1], this means that X̂∗

must be strictly above X∗. First consider the contest with n. Then, denoting φT−2(X) =
f ′T−2(X)X(1−X) for brevity, we get

fT−1(X) = fT−2(X)− nT−1φT−2(X)

fT (X) = fT−2(X)− [nT + nT−1]φT−2(X) + nTnT−1φ
′
T−2(X)X(1−X). (7)

Analogously, for contest n̂, the corresponding function will be

f̂T (X) = f̂T−2(X)− [n̂T + n̂T−1]φ̂T−2(X) + n̂T n̂T−1φ̂
′
T−2(X)X(1−X). (8)

Now, by assumptions n̂T + n̂T−1 = nT + nT−1, and since f̂T−2(X) = fT−2(X), we also
have φ̂T−2(X) = f ′T−2(X)X(1−X) = φT−2(X). Combining Equations (7) and (8) gives

f̂T (X∗)− fT (X∗) = [n̂T n̂T−1 − nTnT−1]φ′T−2(X∗)X∗(1−X∗).

Note that n̂T n̂T−1 > nTnT−1 by assumption and X∗(1 − X∗) > 0 as X∗ ∈ (0, 1);
therefore, it remains to show that φ′T−2(X∗) < 0. This is shown in Appendix C. Namely,
by Proposition 8, the highest root Zt of polynomial φ′T−2(X) is strictly below X∗, and by
Lemma 3 φ′T−2(X) < 0 for all X > Zt, which includes X∗.

6 Earlier-mover advantage

In this section, I revisit Dixit’s first-mover advantage result. He showed that in a contest
with at least three players, when one player could pre-commit, it would be optimal to do
so. The first mover chooses a strictly higher effort and achieves a strictly higher payoff
than the followers. Using the tools developed above, I can explore this idea further.
Namely, in the model studied by Dixit, the first-mover has two advantages compared to
the followers. First, he moves earlier and his action may impact the followers. Second, he
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does not have any direct competitors in the same period.
I can now distinguish these two aspects. For example, what would happen if n − 1

players chose simultaneously first and the remaining player chose after observing their
efforts? Or more generally, in an arbitrary sequence of players, which players choose the
highest efforts and which ones get the highest payoffs? The answer to all such questions
turns out to be unambiguous. As Proposition 4 shows, it is always preferable to choose
earlier.

Proposition 4 (Earlier mover advantage). At any contest (V , c,n), efforts and payoffs of
earlier players are higher than for later players. If the later player has more information,
the comparisons are strict.

Proof. For any contest, total equilibrium effort X∗ and individual efforts x∗i,t are deter-
mined by Theorem 1. For a fixed X∗, the individual payoffs are linear in individual efforts,

u∗i,t = x∗i,t

[ 1
X∗
− 1

]
. (9)

Therefore, it suffices to show that efforts of earlier players are strictly higher. Moreover,
it suffices to prove that x∗i,t > x∗j,t−1 for each t = T, . . . , 2 (and i, j). By Theorem 1, we
have

x∗i,t = 1
nt

[ft−1(X∗)− ft(X∗)] = φt−1(X∗),

xj,t−1 = 1
nt−1

[ft−2(X∗)− ft−1(X∗)] = φt−2(X∗),

where φt(X) = f ′t(X)X(1−X) for brevity. In Appendix C, Lemma 2 shows that φt(X)
can be written recursively. In particular,

x∗j,t−1 − x∗i,t = φt−2(X∗)− φt−1(X∗) = nt−1φ
′
t−2(X∗)X∗(1−X∗).

Finally, by Proposition 8 and Lemma 4, the highest root of φ′t−2(X) is strictly below X∗,
and by Lemma 3, φ′t−2(X∗) < 0. Therefore, indeed x∗j,t−1 − x∗i,t < 0.

7 Large contests

In this section, I study contests with a large number of players and focus on two questions.
The first is computational: how to compute equilibria with large n. The equilibrium
effort is the highest root of a polynomial fT (X) of degree T + 1, with leading coefficient
T !∏T

t=1 nt. Numeric analysis becomes difficult with large n and especially with large T
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because it is difficult to find a root of a polynomial with very large coefficients. The second
question is, how does the rate of convergence depend on the information provided to the
players? Proposition 2 shows that as n increases, X∗ converges to 1. I show that the rate
of convergence is much larger with sequential contests (i.e., with more information) than
with simultaneous contests.

7.1 Approximation result

Proposition 5 provides a simple approximation for equilibria with large n. For example,
in the simultaneous contest 1 − X∗ = 1

n
and x∗i,1 = 1

n
− 1

n2 ≈ 1
n
, whereas in the fully

sequential contest 1−X∗ ≈ 1
2n and x∗ ≈

(
1
2 ,

1
4 , . . . ,

1
2n

)
.

Proposition 5 (Approximation). If n is large enough, then

1−X∗ ≈ 1∏T
t=1(1 + nt)

and x∗i,t ≈
1∏T

s=t(1 + ns)
, ∀t = 1, . . . , T. (10)

Proof. Remember that φt−1(X) = f ′t−1(X)X(1−X) is the individual effort of a player in
period t that is consistent with total effort X. Lemma 2 (in Appendix C) shows that it can
be recursively written as φ0(X) = X(1−X) and φt(X) = φt−1(X)−ntφ′t−1(X)X(1−X).

I first show by induction that if X∗ ≈ 1, then φt(X∗) ≈ X∗(1 − X∗)∏t
s=1(1 + ns).

Clearly, it holds for φ0(X∗) = X∗(1−X∗). By Lemma 3, φ′t(1) = −∏t
s=1(1 + ns). Since

φ′t(X) is a polynomial, it is continuous and therefore, for X∗ ≈ 1, we have φ′t(X∗) ≈ φ′t(1).
Using this fact and assuming that the claim holds for φt(X∗), we get

φt+1(X∗) = φt(X∗)− nt+1φ
′
t(X∗)X∗(1−X∗) ≈

t+1∏
s=1

(1 + ns)X∗(1−X∗).

Now, notice that 1 +∑T
t=1 nt

∏t−1
s=1(1 + ns) = ∏T

t=1(1 + nt), so that

X∗ =
T∑
t=1

nt∑
i=1

x∗i,t =
T∑
t=1

ntφt−1(X∗) ≈ X∗(1−X∗)
[
T∏
t=1

(1 + nt)− 1
]
.

Therefore, we get an approximation for the total effort

1−X∗ ≈ 1∏T
t=1(1 + nt)− 1

≈ 1∏T
t=1(1 + nt)

.

Using this approximation, we get an approximation for individual efforts

x∗i,t = φt−1(X∗) ≈ X∗(1−X∗)
t−1∏
s=1

(1 + ns) ≈
∏t−1
s=1(1 + ns)∏T
s=1(1 + ns)

= 1∏T
s=t(1 + ns)

.
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7.2 Rate of convergence

This approximation result allow us to study the rate of the convergence ofX∗ as n becomes
large. Figure 3 illustrates that although with all contest types X∗ converges to 1, the rate
of convergence depends significantly on the type of contest—in the fully sequential contest
the convergence seems to be much faster than in the simultaneous contest.

n

X∗

Figure 3: The total equilibrium effort in different contests: Sequential n = (1, . . . , 1), Half
& Half n = (dn/2e, bn/2c), Single leader n = (1, n− 1), and Simultaneous n = (n).

The following Proposition 6 formalizes this observation. The rate of convergence is
always at least n−1 (simultaneous contest) and at most 2−n (fully sequential contest).
Moreover, when the number of announcements, T , is bounded, the growth rate is at most
n−T . Therefore, indeed, the convergence in the fully sequential case is much faster than
in the simultaneous case. The main increase in the rate of convergence comes from the
increase in the number of periods rather than the increase in the number of players in a
particular period.

This result has two interesting implications. First, it highlights the importance of
information in contest design. When maximizing the total effort, the information provided
is more important than the exact number of players. For example, in a simultaneous
contest with 20 players, the total effort is 0.95, whereas in fully sequential contests it
suffices to have five players to achieve higher total effort (≈ 0.9587).

The result also sheds some light on the debate concerning rent dissipation. Namely,
one concern with using linear Tullock contests for rent-seeking is rent under-dissipation,
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i.e., the fact that the total rent-seeking efforts are perhaps surprisingly low. As the result
shows, this may be an implication of the fact that the literature has mainly focused on
simultaneous rent-seeking contests, whereas in practice players might have more informa-
tion.

Proposition 6 (Rate of convergence). Let {nn}∞n=2 be a sequence of contests, such that
nn = (nnTn

, . . . , nn1 ) and ∑Tn
t=1 n

n
t = n for each n. Let Xn∗ be the total equilibrium effort in

contest nn.

1. Rate of convergence is at least n−1. In particular, for nn = (n) it is exactly n−1.

2. Rate of convergence is at most 2−n. In particular, for nn = (1, 1, . . . , 1) it is exactly
2−n.

3. If Tn ≤ T for some T for all n, then the rate of convergence is at most n−T . In
particular, if all nt are equal10, then it is exactly n−T .

Proof.

1. In the simultaneous contest nn = (n) we have 1−Xn∗ = n−1, and therefore the rate
of convergence is n−1. By Theorem 2, the total effort Xn∗ in all other contests is
strictly higher; therefore, the rate of convergence must be at least as high.

2. In the fully sequential contest nn = (1, 1, . . . , 1), nt = 1 for all t and Tn = n.
Therefore, by Proposition 5, we have 1 − Xn∗ ≈ 2−n, and therefore the rate of
convergence is 2−n. By Theorem 2, the total effort Xn∗ in all other contests is
strictly lower; therefore the rate of convergence cannot be higher.

3. Consider first the case when Tn = T (for n large enough) and each nt is equal (up
to an integer constraint). Then nt ≈ n/T . By Proposition 5, 1−Xn∗ ≈ n−TT T , so
that the rate of convergence is indeed n−T . By Proposition 3, Xn∗ of any other (less
homogeneous) sequence with Tn ≤ T is strictly lower; therefore the convergence rate
is lower.

7.3 Connection to other forms of strategic interaction

It is straightforward to verify that the approximation formulas derived in Proposition 5
are in fact exact equilibrium quantities in a modified game, where the payoff of player

10Up to an integer constraint.
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i in period t is xi,t(1 − X) instead of xi,t(1 − X)/X, and the rest of the definitions are
unchanged. Moreover, all the results derived in this paper continue to hold in the limit.
Therefore, comparative statics, contest design, earlier-mover advantage, and convergence
results extend to the modified game as well.11

The modified game with payoff function xi,t(1 − X) corresponds to at least two
well-known forms of strategic interaction. First, can represent the profit function of an
oligopolistic firm, where xi,t is the quantity that the firm produces, X is the total quantity
produced by all firms, P (X) = 1−X is the inverse demand function, and the production
costs are zero.12 Then n = (n) gives the Cournot oligopoly, n = (1, 1) gives the Stack-
elberg leadership model, and generally more informative n means the firms choose their
quantities with more information about the other firms’ quantities. The dead-weight loss
is (1 − X)2/2, so that the social planner would be interested in maximizing the total
equilibrium production X∗.13

Second, xi,t(1 − X) is also a standard payoff function to model the tragedy of the
commons, where xi,t is the individual use of resources and X is the total use of resources.
It captures the idea that each player individually would prefer to use more, whereas higher
depletion of resources is bad for all players. In this setting, players would jointly like to
maximize X(1−X), which would lead to the optimal resource use of 1

2 . Whenever n > 2,
the total use of resource in equilibrium is X∗ > 1

2 ; therefore, a social planner is interested
in minimizing X∗.

8 Discussion

In this paper, I characterize equilibria in dynamic common-value contests and study their
properties. There is a unique equilibrium; it is in pure strategies and can be computed
by finding the highest root of a recursively defined polynomial.

The main result of the paper answers a contest design question: how much information
should be provided to the players to maximize or minimize the total effort? The answer
is unambiguous: providing more information always increases the total effort. Moreover,
information disclosures that are more evenly allocated increase the total effort. There-
fore, the fully sequential contest maximizes the total effort and the simultaneous contest
minimizes the total effort.

I also revisit the first-mover advantage result and show that the idea is much more
11Formal proofs are in Appendix D.
12Analogous to Lemma 1, this is generalizable to any linear demand function and constant marginal

costs.
13The total profit is P (X)X = X(1 −X), which is decreasing when X ≥ 1

2 , so the goal of a collusive
arrangement would be to keep X∗ as close to 1

2 as possible. The consumer surplus is X2/2.
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general. The earlier players always exert greater effort and get higher payoffs, regardless
of the number of players in any period.

Finally, I study large contests. I provide an approximation result to compute equilibria
when the number of players is large and to study the rate of convergence. The rate of
convergence of total cost of effort to total value of prizes is much faster with sequential
contests than with simultaneous contests. This implies the information provided to the
players may play an even more important role in determining the total effort than the
number of players participating the contest.

The results are perhaps surprisingly strong, so it would be interesting to determine how
robust they are to changes in the assumptions. The results in the paper already provide
a partial answer to this. All the results provide comparisons with strict inequalities (with
the one exception of Proposition 1, i.e., Independence of permutations). Therefore, these
results are robust at least within some small range of parameter values. Moreover, the
results also hold for an alternative specification for payoffs, which I interpreted as oligopoly
or commons game.
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A Examples

In this appendix, I provide a few examples to show how to find the equilibria in some
simple cases with the standard backward-induction approach, and why the approach fails
in general dynamic contests. At the end of the appendix, I also show how to apply the
characterization result (Theorem 1) in these cases. All the examples in this subsection
are special cases of the general model.
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A.1 Simultaneous contest

In the first example, n = (n), i.e,. players do not get any information about the efforts of
other players.14 This means they are essentially making their choices simultaneously. This
will serve as a benchmark for later analysis. Each player solves the same maximization
problem

max
xi

xi∑n
j=1 xj

− xi ⇒ 1
X
− xi
X2 − 1 = 0,

where X = ∑n1
i=1 xj. Adding up the first-order conditions gives a unique equilibrium,

where the total effort is X∗ = n−1
n

and the individual efforts are x∗i = n−1
n2 .

A.2 Two-player sequential contest

To see how the analysis changes with sequential players, let us start with the simplest
case: two-players, i.e., n = (1, 1). First note that if the effort by the first player x1 > 1,
then the payoff is negative. This means that in equilibrium x1 ≤ 1. The second player
observes the effort choice of the first player and chooses his own effort x2 such that

max
x2

x2

x1 + x2
− x2 ⇒

1
x1 + x2

− x2

(x1 + x2)2 − 1 = 0 ⇐⇒ x∗2(x1) = √x1 − x1.

Now, the first player chooses x1, knowing the best-response function x∗2(x1), so that

max
x1

x1

x1 + x∗2(x1)
− x1 = max

x1

√
x1 − x1 ⇒ x∗1 = x∗2 = 1

4 , X
∗ = 1

2 .

Observe that in the two-player case, the equilibrium efforts are exactly the same, both in
simultaneous and sequential contests.15 To shed some light on the reason for this result,
note that the reaction function x∗2(x1) = √x1− x1 is strictly increasing for all x1 <

1
4 and

strictly decreasing for x1 >
1
4 . See Figure 4 for graphical illustration.

When deciding how much to effort to exert, player 1 has to take into account how
player 2 responds. With small x1 <

1
4 , efforts are strategic complements and therefore

increasing x1 will induce an aggressive reaction, whereas with large x1 >
1
4 , the efforts are

strategic substitutes, so that increasing x1 discourages effort by player 2. In particular,
in simultaneous equilibrium x∗1 = 1

4 , which is the knife-edge case where efforts are neither
complements nor substitutes. Therefore, small changes in x1 have very little impact on
x2 and player 1 decides as if the decisions were independent.

This argument fails with n > 2, since at the equilibrium of the simultaneous game,
14This is the standard assumption in the literature and the equilibrium is known (Tullock, 2001).
15The equality of payoffs in simultaneous and sequential contests with two players was proved by Linster

(1993).
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Figure 4: Best response of the last player in a two-player sequential contest.

the total quantity before the last player is strictly above 1
4 ; therefore by choosing higher

efforts, earlier players could discourage the last player, and thus would have an incentive
to increase their efforts. I show in Section 5, for any fixed n > 2, the equilibrium has a
property that the total effort is minimized when players choose simultaneously.

A.3 Three-player sequential contest

To illustrate how the analysis changes and why two-player case is not representative,
consider also the three-player case with n = (1, 1, 1). I will first show how the standard
approach of using backward induction is non-tractable, then describe the approach used
in this paper in the general analysis.

Again, x1 ≤ 1 and x1 + x2 ≤ 1 in equilibrium, because otherwise player 1 or player 2
would get negative payoffs, and they can ensure zero payoffs by making no effort. Consider
again the decision of the last player 3, who observes x1 and x2 and chooses

max
x3

x3

x1 + x2 + x3
− x3 ⇒

1
X
− x3

X2 = 1,

where X = x1 + x2 + x3. We get the same reaction function as before,

x∗3(x1 + x2) =
√
x1 + x2 − (x1 + x2). (11)

Now, player 2, who observes x3, knows x∗3(·), and maximizes

max
x2

x2

x1 + x2 +
√
x1 + x2 − (x1 + x2)

− x2 = max
x2

x2√
x1 + x2

− x2.
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Optimality condition
1√

x3 + x2
− x2

2(x1 + x2)
3
2

= 1.

This gives us a relationship between x2 and x1. Taking into account that x1 ≥ 0 and
x2 ≥ 0, it defines unique optimal x∗2 for each x1. In particular,

x∗2(x1) = 1
12 − x1 +

(
8
√

27x3
1(27x1 + 1) + 216x2

1 + 36x1 + 1
) 2

3 + 24x1 + 1

12
(
8
√

27x3
1(27x1 + 1) + 216x2

1 + 36x1 + 1
) 1

3
. (12)

Now, Player 1’s problem is

max
x1

x1

x1 + x∗2(x1) + x∗3(x1 + x∗2(x1))
− x1,

where x∗2(·) and x∗1(·) are defined by Equations (11) and (12). Although the problem is
not complex, it is not very tractable. Moreover, it is obvious that the direct approach is
not generalizable for arbitrary n.16

A.4 Examples revisited

I am now illustrating how the characterization result simplifies the task of finding equi-
libria in the examples above.

Simultaneous contest When n = (n) we have that T = 1 and

fT (X) = f1(X) = X − nX(1−X) = nX
(
X − n− 1

n

)
.

The polynomial f1(X) has two roots and the higher one is the total effort X∗ = n−1
n

.
Individual efforts are x∗i,1 = X∗(1−X∗) = n−1

n2 .

Two-player sequential contest When n = (1, 1), we get

f1(X) = X −X(1−X) = X2,

f2(X) = X2 − 2X2(1−X) = 2X2
(
X − 1

2

)
.

16Glazer and Hassin (2000) characterized the equilibrium in contests with three sequential players. I
am not aware of any papers that have characterized equilibria for sequential contests with four or more
periods.
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Therefore, the total effort is the highest root X∗ = 1
2 and individual efforts x∗1,2 = (X∗)2 =

1
4 and x∗1,1 = X∗(1−X∗) = 1

4 .

Three-player sequential contest When n = (1, 1, 1), we get the same f1(X) and
f2(X), and

f3(X) = 2X3 −X2 −
(
6X2 − 2X

)
X(1−X) = X2

(
6X2 − 6X + 1

)
.

The total effort is the highest root X∗ = 1
2 + 1

2
√

3 ≈ 0.7887 and individual efforts are
x∗1,3 = (X∗)2 (2X∗ − 1) ≈ 0.3591, x∗1,2 = 2(X∗)2(1 − X∗) ≈ 0.2629, and x∗1,1 = X∗(1 −
X∗) ≈ 0.1667.

B The final step of the proof of Theorem 1

In the proof of Theorem 1, I showed that the optimality constraints of all players can be
combined into one expression fT (X) = 0, where fT is a recursively defined function and
X is the total effort. Moreover, all players have to exert non-negative efforts, which is
equivalent to ft(X) decreasing in t at equilibrium X. The following proposition shows
that there is a unique value X∗ that satisfies these conditions. This pins down the total
effort in the equilibrium.

Proposition 7. Suppose that ft’s are recursively defined as in Theorem 1. Then X∗ is
the highest root of fT (X) = 0 if and only if

0 = fT (X∗) < fT−1(X∗) < · · · < f1(X∗) < f0(X∗) = X∗. (13)

Proof. First, I show by induction that ft(1) = 1 for all t. Clearly, f0(1) = 1, so

ft(1) = ft−1(1)︸ ︷︷ ︸
=1

−ntf ′t−1(1)︸ ︷︷ ︸
<∞

1(1− 1)︸ ︷︷ ︸
=0

= 1 ∀t = 1, . . . , T.

Next, I show by induction that for all t = 1, . . . , T , we can express ft(X) as

ft(X) =
[
t!

t∏
s=1

ns

]
(X −X0,t)(X −X1,t) . . . (X −Xt,t),

where 0 = Xt,0 ≤ Xt,1 < Xt,2 < · · · < Xt,t < 1. In other words, ft(X) is a t + 1th order
polynomial, which has t+1 real roots Xi,t in the interval [0, 1). In particular, one or two17

lowest roots are 0 and the remaining roots are distinct and in the interval (0, 1).
17If ns = 1 for some 1 ≤ s ≤ t, then there are two roots at 0; otherwise, there is one.
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The representation holds for f0(X) = X.18 Suppose Appendix B is satisfied for ft,
then for all j > 1,

f ′t(Xj,t) =
[
t!

t∏
s=1

ns

]∏
i 6=j

(Xj,t −Xi,t) 6= 0,

f ′t(Xj+1,t) =
[
t!

t∏
s=1

ns

] ∏
i 6=j+1

(Xj+1,t −Xi,t) 6= 0.

Moreover, f ′t(Xj,t) has j positive terms and T − j negative terms in the product, whereas
f ′t(Xj+1,t) has j + 1 positive and n − j − 1 negative terms in the product, so they have
different signs. Therefore, f ′t(Xj,t) must have alternating signs for all j = 2, . . . , T .

Now, since ft(X) is a polynomial of order t+ 1, f ′t(X) is a polynomial of order t and
therefore continuously differentiable, so f ′t(X) must have a root in Yj+1,t ∈ (Xj,t, Xj+1,t)
for each j = 2, . . . , T . We also know that Y1,t = 0 is a root of f ′t(X). Therefore, we have
found t roots 0 = Y1,t < Y2,t < · · · < Yt,t. Because f ′t(X) is a polynomial of degree t, it
cannot have more roots. Therefore, we can write the derivative as

f ′t(X) =
[
t!

t∏
s=1

ns

]
(X − Y1,t)(X − Y2,t) . . . (X − Yt,t),

such that (1) Y1,t = 0 and (2) Xj−1,t < Yj,t < Xj,t for all k ∈ {2, . . . , t}.
By the argument above, the sign of f ′t(X)X(1 − X) at the points Xj,t alternates

between strictly positive and strictly negative for all j > 2. Moreover, since ft(1) = 1, we
must have that f ′t(Xt,t) > 0, f ′t(Xt−1,t) < 0, and so on.

By definition of ft+1(X), we must have

ft+1(Xj,t) = ft(Xj,t)︸ ︷︷ ︸
=0

−f ′t(Xj,t)nt+1Xj,t(1−Xj,t)︸ ︷︷ ︸
>0

,

which also has alternating signs at Xj,t for all j ≥ 2.
Now, since ft+1(1) = 1 > 0 and ft+1(Xt,t) < 0, there must be a root in Xt+1,t+1 ∈

(Xt,t, 1). Similarly, there must be a root Xj+1,t+1 ∈ (Xj,t, Xj+1,t) for j = 2, . . . , t − 1.
Finally, it is easy to see that ft+1 must have two roots at 0 = X0,t+1 = X1,t+1.19 As we
have identified t + 2 roots and ft+1 is a polynomial of degree t + 2, it cannot have any
more roots.

Using the same steps, it is straightforward to verify that when n1 > 1, ft+1 has n+ 2

18It also holds for f1(X) = X − n1X(1−X) = n1X
(

X − n1−1
n1

)
.

19Because ft(x) has two roots at 0 and thus f ′t(X) has one root at 0, but it is multiplied by X in the
definition of ft+1.
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roots in [0, 1), the only difference being that the second lowest root X1,t+1 is strictly
positive, so that all t+ 2 roots are distinct.

Finally, since the multiplier of the term X t+1 was t!∏t
s=1 ns in ft, the term X t+2 comes

from nt+1f
′
t(X)X2 in ft+1 and therefore has a multiplier (t+ 1)!∏t+1

s=1 ns.
Therefore, we can write ft+1 as

ft+1(X) =
[
(t+ 1)!

t+1∏
s=1

ns

]
(X −X0,k+1)(X −X1,k+1) . . . (X −Xt+1,t+1)

such that 0 = X0,t+1 ≤ X1,t+1, Xt+1,t+1 ∈ (Xt,t, 1), and for all j ≥ 2, Xj,t+1 < 1 and

Xj−1,t < Xj,t+1 < Xj,t.

With this representation we can now conclude that XT,T > Xt−1,t−1 > · · · > X1,1.
Therefore, f ′t−1(XT,T ) > 0 for all t, so that ft(XT,T )− ft−1(XT,T ) = ntf

′
t−1(XT,T )XT,T (1−

XT,T ) > 0, which proves that the highest root X∗ = XT,T has the desired properties.
It remains to show XT,T is the unique point. For this, I argue that whenever X ∈

[0, XT−1,T ], we must have ft(X) > ft−1(X) for at least one t at X (monotonicity of ft(X)
with respect to t). Let us start with XT−1,T . By definition, fT (XT−1,T ) = 0. However, we
showed that XT−2,T−1 < XT−1,T < XT−1,T−1. In this interval fT−1(X) < 0 and therefore
fT−1(XT−1,T ) < 0 = fT (XT−1,T ), which violates the monotonicity condition for t = T .
More generally, at any X ∈ (XT−2,T−1 < XT−1,T ], we have fT−1(X) < 0 ≤ fT (X), so all
of these points violate the monotonicity requirement.

For general proof, let us define the interval [0, XT−1,T ] into sub-intervals (Xt−2,t−1, Xt−1,t]
for t = 2, . . . , T (See Figure 2 in the text for an illustration). Take arbitrary t ∈ {2, . . . , T}.
Now observe that X ∈ (Xt−2,t−1, Xt−1,t] ⊂ Xt−2,t−1, Xt−1,t−1) and therefore ft−1(X) < 0,
and also that X ∈ (Xt−2,t−1, Xt−1,t] ⊂ (Xt−2,t, Xt−1,t], therefore ft(X) ≥ 0. This implies
ft−1(X) < 0 ≤ ft(X) and therefore violates the monotonicity condition for t.

C Properties of function φt

In the proofs of Propositions 3 and 4, I defined φt(X) = f ′t(X)X(1−X). By definition

ft+1(X) = ft(X)− nt+1 φt(X)︸ ︷︷ ︸
=f ′t(X)X(1−X)

⇐⇒ φt(X) = 1
nt+1

[ft(X)− ft+1(X)] . (14)
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Thus φt(X∗) is the individual effort of a player from period t+1 that is consistent with the
total effort X∗. I will first characterize some useful properties of φt(X) and its derivative.

Lemma 2 (Properties of φt). φt(X) has the following properties:

1. φt(X) is a polynomial of degree t+ 2 and all its roots are in [0, 1].

2. φ′t(X) is a polynomial of degree t+ 1 and all its roots are in [0, 1].

3. φt(0) = φt(1) = 0 for all t.

4. φt(X) and φ′t(X) are independent of permutations of nt = (nt, . . . , n1).

5. φt(X) can be recursively expressed as φ0(X) = X(1−X) and

φt(X) = φt−1(X)− ntφ′t−1(X)X(1−X). (15)

Proof.

1. In the proof of Theorem 1, I showed that f ′t(X) is a polynomial of degree t, with t
real roots, and all roots in [0, 1]. Therefore φt(X) = f ′t(X)X(1−X) is a polynomial
of degree t + 2 with all roots in [0, 1]. The roots are the t roots of f ′t(X) and two
additional roots at 0 and 1, respectively.

2. Therefore, φ′t(X) is a polynomial of degree t+ 1. By the Gauss-Lucas theorem, all
of its roots are in the convex hull of the roots of φt(X), and therefore also in [0, 1].

3. As f ′t(X) is a polynomial, it has finite values at 0 and 1.

4. This follows from the fact that ft(X) is independent of permutations.

5. By definition, φ0(X) = f ′0(X)X(1 − X) = X(1 − X). Suppose that the recursive
construction is correct for φt(X). Differentiating the recursive expression for ft+1(X)
(see Equation (14) above) and multiplying it by X(1−X) gives

f ′t+1(X)X(1−X)︸ ︷︷ ︸
=φt+1(X)

= f ′t(X)X(1−X)︸ ︷︷ ︸
=φt(X)

−nt+1φ
′
t(X)X(1−X).

Next, let Zt be the highest root of φ′t(X). By Lemma 2, Zt ∈ [0, 1]. Remember that
φ0(X) = X(1 − X), so that φ′0(X) = 1 − 2X and thus has one root at 1/2. Lemmas 3
and 4, presented below, show two properties of the function φ′t(X). First, above its
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highest root φ′t(X) < 0 (thus φt(X) is strictly decreasing in (Zt, 1]) and the highest roots
are monotonically increasing in t. In particular, this means that in (Zt, 1] all functions
φ′s(X) for s ≤ t are strictly decreasing.

Lemma 3 (φ′t near 1). φ′t(1) = −∏t
s=1(1 + ns) < 0 and φ′t(X) < 0 for all X > Zt.

Moreover, φt+1(X) > φt(X) for all X ∈ (Zt, 1).

Proof. I first confirm that φ′t(1) = −∏t
s=1(1 + ns). Clearly, φ′0(1) = 1− 2 = −1. Suppose

that the claim holds for φ′t(1). Then by Equation (15),

φ′t+1(X) = [1− nt+1(1− 2X)]φ′t(X)− nt+1φ
′′
t (X)X(1−X).

Note that φ′′t (X) is a polynomial, therefore finite at X = 1. Thus indeed

φ′t+1(1) = (1 + nt)φ′t(1) = −
t+1∏
s=1

(1 + ns).

Next, by definition Zt is the highest root of φ′t(X), therefore φ′t(X) has the same sign for
all X > Zt. As φ′t(1) < 0, the sign must be negative. Therefore at all X ∈ (Zt, 1)

φt+1(X) = φt(X)− nt φ′t(Zt)︸ ︷︷ ︸
<0

Zt(1− Zt)︸ ︷︷ ︸
>0

> φt(X).

Lemma 4. The highest roots of φ′1(X), . . . , φ′T (X) are such that 1
2 < Z1 < Z2 < . . . ZT <

1.

Proof. As argued above, Z0 = 1
2 . Now, suppose that the claim holds up to t, i.e., 1

2 < Z1 <

· · · < Zt < 1. By Lemma 3, φ′′t (Zt) < 0 because φ′t(X) < 0 for all X > Zt. Therefore,

φ′t+1(Zt) = [1− nt(1− 2Zt)]φ′t(Zt)︸ ︷︷ ︸
=0

−nt φ′′t (Zt)︸ ︷︷ ︸
<0

Zt(1− Zt)︸ ︷︷ ︸
>0

> 0.

This implies that at Zt, the function φ′t+1(Zt) is strictly positive. By Lemma 3, φ′t+1(1) <
0. Therefore, by continuity of φ′t+1(X), there must be at least point in (Zt, 1), where
φ′t+1(X) = 0. The highest such point must be the highest root Zt+1.

The next Lemma 4 shows that Zt is monotone in the vector n = (nt, . . . , n1), i.e.,
if we increase one or more nt’s, the highest root of φ′t(X) moves upwards. The proof is
analogous to Proposition 2 in terms of monotonicity, but not in terms of the limit.

Lemma 5. Zt is strictly increasing in n.

29



Proof. By independence of permutations, it suffices to show the monotonicity in nt. Con-
sider two vectors n = (nt, . . . , n1) and n̂ = (nt + 1, nt−1, . . . , n1). Then φ′t−1(X) are
unchanged. For n, we get

φt(X) = φt−1(X)− ntφ′t−1(X)X(1−X),

φ′t(X) = [1− nt(1− 2X)]φ′t−1(X)− ntφ′′t−1(X)X(1−X).

Analogously, for n̂, we get

φ̂′t(X) = [1− (nt + 1)(1− 2X)]φ′t−1(X)− (nt + 1)φ′′t−1(X)X(1−X).

Therefore at Zt,

φ̂′t(Zt)− φ′t(Zt)︸ ︷︷ ︸
=0

= −(1− 2Zt)︸ ︷︷ ︸
>0

φ′t−1(Zt)︸ ︷︷ ︸
<0

−φ′′t−1(Zt)︸ ︷︷ ︸
<0

Zt(1− Zt)︸ ︷︷ ︸
>0

> 0,

where φ′′t−1(Zt) < 0 comes from the fact that, by the Gauss-Lucas theorem, the roots of
φ′′t−1(X) must be in the convex hull of φ′t−1(X), thus contained in [0, Zt−1], and we already
argued that φ′′t−1(Zt−1) < 0; therefore, also φ′′t−1(Zt) as Zt > Zt−1 by Lemma 4.

Therefore, φ̂′t(Zt) > 0 and since φ̂′t(1) < 0, continuity of φ̂′t(X) implies that there is at
least one root in (Zt, 1). Therefore its highest root is strictly above Zt.

The following Proposition 8 establishes a useful connection between the roots of φ′t(X)
and the original polynomials ft(X), i.e., Zt andX∗, which helps to prove several important
results in the paper. In particular, let us define

Z∞t = lim
n1→∞

lim
n2→∞

. . . lim
nt→∞

Zt. (16)

Then by monotonicity, Z∞t is the upper bound for Zt. Note that since each Zt−1 < Zt < 1,
we must have 1

2 ≤ Z∞1 ≤ · · · ≤ Z∞t ≤ 1.
Let us also defineX1

t as the highest rootXt,t of ft(X) in the case when n = (1, 1, . . . , 1),
i.e., a fully sequential game. Then by Proposition 2, X1

T is a lower bound for X∗, i.e., the
total effort in equilibrium. Again 0 = X1

1 < X1
2 < . . .X1

T < 1.

Proposition 8. For each T ≥ 2, Z∞T−2 = X1
T . For any n, we have ZT−2 < Z∞T−2 = X1

T ≤
XT .

Proof. Let f1, . . . , ft be the sequence of polynomials we get from fully sequential games,
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n = (1, . . . , 1), and let us define another sequence of polynomials, φ
t
(X), as

φ
t
(X) = lim

n1→∞
. . . lim

nt→∞

φt(X)
nt . . . n1

. (17)

For a given n, dividing a polynomial by a constant does not affect its roots. Moreover, n
only affects the coefficients of the polynomials20 and therefore the limiting function φ

t
(X)

has the same highest root as the limit Z∞t .
Then φ

t
’s can be computed recursively as follows. The initial φ0(X) = φ0(X) =

X(1 − X) because it is independent of n. Using the recursive definition of φt+1, it is
straightforward to verify that

φ
t+1(X) = −φ′

t
(X)X(1−X).

To complete the proof, I show by induction that ft(X) = −φ′
t−2(X)X2. Multiplying

by −X2 adds only two roots at 0 and thus does not affect the highest root. Therefore,
ft(X) and φ′

t−2(X) must have the same highest root, which would imply X1
t = Z∞t−2.

Let us start with t = 2. Then φ
t−2(X) = φ0(X) = X(1−X), so that φ′0(X) = 1−2X.

Therefore,
f2(X) = 2X2

(
X − 1

2

)
= −X2φ′0(X).

Now, suppose that the claim holds up to t, i.e., ft(X) = −X2φ′
t−2(X). Then

ft+1(X) = −X2φ′
t−2(X)︸ ︷︷ ︸

=ft(X)

− [−2Xφ′
t−2(X)−X2φ′′

t−2(X)]︸ ︷︷ ︸
=f ′t(X)

X(1−X)

= −X2
[
−(1− 2X)φ′

t−2(X)−X(1−X)φ′′
t−2(X)

]
︸ ︷︷ ︸

= d
dX

[
−φ′

t−2(X)X(1−X)
]

=φ′
t−1(X)

= −X2φ′
t−1(X).

Finally, the inequalities in the proposition follow from the monotonicity of ZT−2 and
XT .

D Equilibrium for oligopoly and commons models

This appendix provides formal proof for the observation made in Section 7.3. Namely, it
shows that the limiting equilibrium characterization in Proposition 5 for large n is also the
unique equilibrium for any n in a modified model, which can be interpreted as oligopoly

20Because the roots of polynomials are continuous functions of coefficients.
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model (with linear demand) or a simple model of commons.
Moreover, all the results derived in the paper continue to hold. That is, conclusions

from Proposition 1, Proposition 2, Theorem 2, Proposition 3, Proposition 4, and Propo-
sition 6 in the modified model are straightforward corollaries of Lemma 6.

I call a modified dynamic game an oligopoly or commons with parameter n, when the
payoff of an individual player is xi,t(1−X), where xi,t is the player’s own effort and X is
the total effort. All the other assumptions about the timing remain unchanged.

As the proofs show, the analysis in oligopoly and commons cases are considerably
simpler. This comes from the fact that the optimality conditions are linear both in
their own efforts and in the efforts of all other players. Therefore, all the best-response
functions are linear and the usual backward induction approach is tractable with an
arbitrary number of players and periods.

To shorten the notation, let xt = ∑nt
i=1 xi,t be the total effort in period t,Xt = ∑T

s=t+1 xs

total effort of players arriving prior to period t, and let X+
t = ∑t

s=1 xs be the total effort
of players arriving at period t or later. With slight abuse of notation, I use the same
notation for best-response functions.

Lemma 6 (Equilibrium in oligopoly and commons games). For any oligopoly or commons
game with parameter n,

1−X∗ = 1∏T
t=1(1 + nt)

and x∗i,t = 1∏T
s=t(1 + ns)

, ∀t = 1, . . . , T. (18)

Proof. I show by induction that the best-response functions xi,t(Xt) and the implied total
proceeding efforts at period t following Xt are respectively

xi,t(Xt) = 1−Xt

nt + 1 and X+
t (Xt) =

(
1− 1∏t

s=1(ns + 1)

)
(1−Xt). (19)

Players in period t = 1 observe X1 and simultaneously choose xi,1 to

max
xi,1

xi,1 (1−X1 − x1)⇒ 1−X1 − x1 − xi,1 = 0.

Combining the optimality conditions gives x1(X1) = n1
n1+1(1 − X1); therefore, indeed

xi,1(X1) = 1−X1
n1+1 and X+

1 (X1) = x1(X1) =
(
1− 1

n1+1

)
(1 − X1). Suppose that Equa-

tion (19) holds for t− 1. Then in period t, players observe Xt, know responses of future
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players X+
t−1(Xt + xt) , and choose xi,t simultaneously, such that

max
xi,t

xi,t
(
1−Xt − xt −X+

t−1(Xt + xt)
)

︸ ︷︷ ︸
= 1−Xt−xt∏t−1

s=1(ns+1)

⇒ 1−Xt − xt − xi,t∏t−1
s=1(ns + 1)

= 0.

Combining the optimality conditions gives xt(Xt) = nt

nt+1(1−Xt) and indeed xi,t(Xt) =
1−Xt

nt+1 and

X+
t (Xt) = xt(Xt) +X+

t−1(Xt + xt(Xt)) =
(

1− 1∏t
s=1(ns + 1)

)
(1−Xt)

As this argument works for any t = 1, . . . , T , it gives us the equilibrium. Namely, at the
initial period T , by definition there are no efforts yet, so XT = 0 and the total effort on
and after period T is equal to total equilibrium effort. Therefore,

1−X∗ = 1−X+
T (0) = 1∏T

t=1(nt + 1)
.

Finally, I show by induction that in equilibrium xi,t = 1 − Xt−1 = 1∏T

s=t+1(ns+1)
for all

t = 1, . . . , T . Consider the initial period T first. Then as XT = 0, by the results above,
xi,T = xi,T (0) = 1

nT +1 and xT = nT

nT +1 . Therefore, 1 − XT−1 = 1
nT +1 . Suppose that the

claim holds for t+ 1. Then indeed,

xi,t = 1
nt + 1(1−Xt) = 1∏T

s=t(ns + 1)
, 1−Xt−1 = 1−Xt

nt + 1 = 1∏T
s=t(ns + 1)

.
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