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Abstract

Health expenditures are on the rise in developed countries.
This paper analytically studies how they affect capital accumu-
lation in a Diamond model in which individuals can spend re-
sources to live longer in second period. We first derive the de-
mand for health and show that the income share spent on health
is an inverted U-shaped function of income. Second, we fully
characterize the dynamic general equilibrium and determine the
growth impacts of the health expenditures. Several cases can oc-
cur. Health expenditures can speed up or slow down economic
growth. They can be a barrier to growth or they can be a neces-
sity for growth to take place. A simple calibration of the model
to OECD countries suggests that the latter case is the most likely
one.

Keywords: Endogenous longevity, economic growth, overlapping gen-
erations and health expenditures
JEL classification: O41, I15, E13

1 Introduction

The share of health expenditures in GDP is on the rise in developed
countries. In US, which is presently the country with the highest share
of total health expenditures in GDP, the ratio has increased from 3,2%
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in 1950 to 17,6% in 2015 (Chernew and Newhouse 2011). The same
trend is observed in all other OECD countries (see Figure 1). Over the
period 2000-2013, the income per capita of the OECD area grew at an
average annual rate of 2.9%, while the total level of health expendi-
tures per capita grew at an average annual rate of 4.75%.1 Concerns
have been raised according to which devoting so much resources to the
health sector could endanger economic growth (see Kuhn and Prettner
(2016)). This paper proposes a simple theoretical framework to assess
such concerns. In a standard growth model augmented with endogenous
health expenditures, we determine if individuals can voluntarily choose
to spend a level of resources on health that harms or even impedes long-
run economic growth.

Figure 1: Ratio of total health expenditures to GDP in 10 OECD coun-
tries

More precisely, let us consider first a Diamond model with a AK tech-
nology. Because of constant returns to reproductible factors, there exists
a mild condition on the parameters under which the economy perpetu-
ally grows. Second, let us add to this standard framework the possibility
for young agents to make expenditures to live longer in second period.
Does this economy perpetually grow under the mild condition of the
AK model? In other words, can the possibility to spend resources to live
longer impede long-run economic growth? If the economy perpetually

1These numbers and Figure 1 are obtained from the OECD database.
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grows, then does it grow faster than the AK economy? Conversely, if
the mild condition fails, can the economy grow? These questions are not
trivial because health expenditures produce both positive and negative
effects on economic growth. In a AK framework, the growth engine is
the physical capital accumulation.2 When agents increase their level of
health expenditures, this creates two opposite effects on savings, hence
on economic growth. On the one hand, this increases their longevity
which positively impacts their propensity to save (Bloom et al. 2003;
Chakraborty 2004). On the other hand, in a previous work, Brembilla
(2016), we underline that health expenditures also decrease their dis-
posable income which negatively impacts their savings. Particularly, if
young agents were to spend all their resources on health, then there
would be no capital stock for the next period and the economy would be
trapped to a null income perpetually. Thus, when young agents spend
a too large fraction of their income on health, they force a growing
economy to stop its expansion. Otherwise said, a high level of health
expenditures can be optimal for the current generation, while exerting
strong negative intergenerational externalities on future generations who
could be trapped to a constant income level. This paper focuses on this
trade-off that health expenditures create on economic growth and omits
other possible channels, such as the impact of health on productivity,
to analyze analytically the occurrence of such an event. This enables to
shed light on key parameters to take into account for the introduction
of a health system to be a growth success.

Doing this, the paper connects two strands of the literature. The first
one is a rich theoretical literature on the health-growth nexus, which has
investigated the role of longevity in various dynamic general equilibrium
settings. This literature first focused on the causal impact of longevity
on economic growth by applying shocks on the longevity parameter in
different growth models. For example, Boucekkine et al. (2002) and de
la Croix and Licandro (1999) study the effect of a longevity increase on
economic growth in a model with human capital investments. On the one
hand, the human capital supply is stimulated through the Ben-Porath
effect following a longevity increase. On the other hand, this creates
more retirees and more people educated a long time before, leaving the
total impact on economic growth ambiguous. This type of analysis has
also been performed in models with a different growth engine. Pret-
tner (2013) examines the consequences of an exogenous longevity shift

2It could be argued that human capital is also an important growth engine to take
into account to study the health-growth nexus. However, as we consider longevity
improvements in retirement period, the Ben-Porath mechanism does not operate
(Cervellati and Sunde 2013).
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in a R&D based growth model, while Chakraborty (2004) shows that
the higher the longevity in retirement period, the higher the propensity
to save and then economic growth when it is driven by physical capital
accumulation. Second, this literature has studied the joint dynamics of
income and longevity, when the latter is determined by health expendi-
tures.3 In an infuential paper, Chakraborty (2004) proposes a Diamond
model in which the survival probability into second period depends on
public health expenditures. Bhattacharya and Qiao (2007) propose an
OLG model in which there are public and private health expenditures
that affect the longevity. Kuhn and Prettner (2016) introduce a health
sector into an endogenous growth model and examine the impact of its
size on the growth rate and on the welfare of the individuals. However,
in these papers, individuals do not control completely the level of their
health expenditures. Indeed, the tax rate that finances the public health
expenditures is exogenously fixed in these papers.4 To rationalize the
upward trend of the ratio of health expenditures to GDP and to ana-
lyze its consequences in terms of economic growth, we need a framework
in which total health expenditures arise from the maximization of life-
time utility by agents. To achieve this, we abstract from the financing
source of health and we follow Chakraborty (2004) and Bhattacharya
and Qiao (2007) by letting second period longevity to depend on health
expenditures, where, contrary to these two papers, the level of these
expenditures is chosen by the agent by maximizing his lifetime utility
under the budget constraints.

Thus, the paper also sheds light on the determinants of the demand
for health.5 This literature pioneered by Grossman (1972) has proposed
various modelling strategies to incorporate health decisions into life-cycle
models. In Grossman (1972) or Ehrlich and Chuma (1990), individuals
live until their health capital, that depreciates each period and that can
be increased through investment, falls under a threshold value. Dal-
gaard and Strulik (2014), criticize the possibility for individuals to in-
crease their health stock and propose a framework based on research

3Some authors also study growth models in which longevity is determined by
various externalities. Cipriani and Blackburn (2002) and Cervellati and Sunde (2005)
both examine a model in which investments in education exert a positive externality
on the longevity of individuals. In Mariani et al. (2010) and Raffin and Seegmuller
(2014), pollution exerts a negative effect on the individuals’longevity. In Ponthiere
(2011), good consumption influences the longevity.

4In Chakraborty and Das (2005), individuals fully control their longevity. Yet the
authors focus on the transmission of inequalities in a small open economy framework
that does not allow to study the growth consequences of these health expenditures.

5In line with this literature, we do not study supply side effects of the health
sector.
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in natural sciences, in which individuals make expenditures to slow the
accumulation of deficits caused by aging. Here, we do not follow these
approaches as they are not suitable for dynamic general equilibrium. We
rather consider a framework in which health expenditures only allow to
live longer to enjoy consumption utility.6 In addition to its analytical
convenience for the study of the dynamics of the economy, the formu-
lation allows to establish new results on the income elasticity of health
expenditures. Following Jones and Hall (2007), this elasticity is believed
to be positively driven by the ratio of health elasticity to consumption
elasticity (see also Acemoglu et al. 2013). The first contribution of the
paper is to prove and explain why the ratio of these two elasticities is an
imperfect picture of the income elasticity of health expenditures. The
second one is to provide a complete characterization of the dynamics of
the economy to assess the growth impacts of health expenditures.

The rest of the paper is as follows. Section 2 presents the model
and characterizes the level of health expenditures. Section 3 studies the
dynamics of the economy. Section 4 discusses alternative preferences
and proposes a numerical illustration for OECD countries. Section 5
concludes.

2 The model

2.1 Outline

Individuals live for two periods. The young work while the old are
retired. For a cohort-t individual, the length of the first and the second
period are respectively 1 and pt, with pt ≤ 1. There is a single good in the
economy which is produced competitively. This good can be consumed
or invested in physical capital or used to increase pt. The size of each
new cohort is constant and normalized to 1.

2.2 Firms

Here we introduce a AK technology for the production sector. There is
a representative firm which uses labor and capital to produce the unique
good of this economy. The production function F is homogeneous of
degree 1 and satisfies Inada conditions:

Yt = F (Kt, BtLt) (1)

Where Yt is output at time t, Kt the capital stock, Lt labor and
Bt is the labor augmenting technological progress. There are positive

6See Azomahou et al. (2015) for a discussion on the inclusion of health in indi-
viduals’preferences.
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externalities in the use of capital that linearly increase the productivity
of workers: Bt = Kt. Factors are paid at their marginal productivity.
At the equilibrium,

1 + rt = F1(1, 1) (2)

wt = KtF2(1, 1) (3)

Where we have assumed that the capital fully depreciates at each
period. It is convenient to define, as in Raffin and Seegmuller (2014),

A = F (1, 1) and α = F1(1,1)
F (1,1)

to write (2) and (3) as:

1 + rt = Aα = 1 + r (4)

wt = Kt(1− α)A (5)

2.3 Preferences

Individuals choose their consumption levels for both periods. They can
also spend resources during their first period to increase their longevity
pt in second period. More precisely, each cohort-t member maximizes
the following lifetime utility function:

Ut = u(ct,t) + p(et)u(ct,t+1) (6)

With respect to ct,t, ct,t+1 and et subject to the budget constraints:

ct,t + st + et = wt (7)

p(et)ct,t+1 = (1 + r)st (8)

Where ct,t is the consumption level per unit of time in first period of a
cohort-t member, ct,t+1 the consumption level per unit of time in second
period, et the level of health expenditures, st the savings. The function p
specifies the relationship between the level of health expenditures and the
longevity: pt = p(et). The function p is twice differentiable, increasing
and strictly concave with:

p(0) = p ≥ 0, lim
e→∞

p(e) = p ≤ 1, p′(0) = γ ∈ (0,+∞] (9)

The set of survival functions p includes the ones that satisfy Inada
conditions (this happens if p(0) = 0 and γ = ∞). Assuming that p is
increasing and strictly concave is usual in the literature, however there
is no consensus on the values of p(0) (null or positive) and p′(0) (finite
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or not). In Chakraborty (2004), p(0) is null and p′(0) is finite. In
Boucekkine and Laffargue (2010), p(0) is positive and p′(0) is finite.
Finally, in Chakraborty and Das (2005), p(0) is null and p′(0) is non-
finite. We will consider both possibilities for p(0) and p′(0) in the analysis
to determine how these assumptions change the results.

As argued by Hall and Jones (2007), the shape of the function u is
crucial for the health spending decision. We will pursue the analysis
with the following functional form:

Assumption 1 u(c) = c1−σ

1−σ , σ < 1.

Assumption 1 is a standard assumption in growth models incorpo-
rating health decisions. It can be found in Chakraborty and Das (2005)
and Bhattacharya and Qiao (2007). It has the advantage to insure a
positive flow utility and hence a positive marginal utility of longevity.
We will also discuss and study numerically the utility function popular-
ized by Hall and Jones (2007), u(c) = c1−σ

1−σ + b, σ > 1, b > 0 in section
4.

2.4 Partial equilibrium results

In this subsection, we study the solution to the maximization problem
of the consumer. We use (7) and (8) to eliminate the consumption levels
in (6). Then the problem is reduced to maximize (6) with respect to st
and et. The First-Order-Condition (FOC) on st yields:

st =
p(et)

p(et) + (1 + r)
σ−1
σ

(wt − et) (10)

From (10), we can observe the trade-off that health expenditures

create on savings: the propensity to save p(et)

p(et)+(1+r)
σ−1
σ

increases with et,

while the disposable income wt − et decreases with et.
For an interior solution, the FOC on et yields:

c−σt,t + p′(et)c
1−σ
t,t+1 = p′(et)

c1−σ
t,t+1

1− σ
(11)

The Left-Hand-Side (LHS) of (11) is the marginal cost of health
expenditures. It is composed of two terms. The first one is the loss
of first period utility from foregone consumption. The second one is
the loss of second period utility from diminishing per period resources
due to longevity extension. The Right-Hand-Side (RHS), the marginal
benefit of health expenditures, is the total second period utility gain due
to longevity extension. At the optimal level of health expenditures, the
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marginal cost of health expenditures must equate its marginal benefit.
It is useful to rewrite (11) as:

c−σt,t = σp′(et)
c1−σ
t,t+1

1− σ
(12)

Where the RHS of (12) is the net marginal benefit of longevity extension,
which is positive. This means that despite the reduction of per period
resources in retirement period, a longevity extension always increases
welfare. Finally, (10) and (11) imply that an interior solution for the
level of health expenditures must solve the following equation:

σ

1− σ
p′(et)

p(et) + (1 + r)
σ−1
σ

(wt − et) = 1 (13)

The following proposition characterizes the solution of (13):

Proposition 1 The optimal level of health expenditures is unique. Note
it e(wt).

(i) If wt ≤ 1−σ
σ

p+(1+r)
σ−1
σ

γ
, then e(wt) = 0.

(ii) If wt >
1−σ
σ

p+(1+r)
σ−1
σ

γ
, then 0 < e(wt) < wt.

(iii) wt −→ e(wt) is increasing on [1−σ
σ

p+(1+r)
σ−1
σ

γ
,∞).7

Proof. See Appendix A
When the initial marginal productivity of health expenditures γ is

finite, Proposition 1 shows that individuals spend resources on health
only if their income is above a certain threshold. As the marginal pro-
ductivity of health expenditures in 0 is finite, the marginal utility of
health expenditures in 0 is finite. On the contrary, the marginal utility
of consumption is non-finite in 0. Thus, low-income individuals choose
to spend their resources only on consumption.

When γ is non-finite, the corner solution for health expenditures
disappears and individuals spend resources on health for all positive
income levels.

Remark 2 Consider the alternative assumption found in the literature
according to which pt is the probability to reach the second period. As-
sume as in Yaari (1965) that there is a perfect annuity market. If agents
internalize the effect of health expenditures on the return of annuities,
then the problem of the consumer is identical to the one studied in this

7When γ =∞, [ 1−σσ
p+(1+r)

σ−1
σ

γ ,∞) is simply read as [0,∞).

8



section. If agents do not internalize the effect of health expenditures on
the return of annuities, then the optimal level of health expenditures, eYt ,
would be the solution of the following equation:

p′(eYt )

p(eYt ) + (1 + r)
σ−1
σ

(wt − eYt ) = 1 (14)

Thus, et < eYt if and only if σ < 1
2
. And all the propositions of

the paper can be adapted to this alternative assumption on pt given the
similarity of the equations (13) and (14).

Proposition 1 also states that health is a normal good. We now
sharpen this result by studying the income share spent on health, x(wt) :=
e(wt)
wt

. To get the exact shape of the function x(.), we will need an addi-
tional assumption on the function p which is motivated by the following
result:

Lemma 3 e → (−p′′(e))e
p′(e)

is initially strictly smaller than 1 and ends
strictly greater than 1.

Proof. This follows from the fact that the function p is bounded
Then, for the rest of the paper we will assume that:

Assumption 2 e→ (−p′′(e))e
p′(e)

is increasing while it is smaller than 1.

There are several reasons to believe that Assumption 2 is harmless.
First, the survival functions used in the literature satisfy the condi-
tion that e → (−p′′(e))e

p′(e)
is increasing, which is a stronger condition than

that of Assumption 2. Following an example given by Chakraborty
(2004), Raffin and Seegmuller (2014) use a survival function of the form:

p(e) =
p+pe

1+e
. This function is such that e→ (−p′′(e))e

p′(e)
is increasing. This

is also true for p(e) =
p+peβ

1+eβ
with β ∈ (0, 1]. Consider the following

logistic function: p(e) = p
p

p−p

e−ke+
p

p−p
with k > 0. For this function to be

an admissible survival function,
p

p
must be greater than 1

2
. Then, it also

satisfies the condition that e → (−p′′(e))e
p′(e)

is increasing. A simple way to

build survival functions is to consider a probability density, f , on [0,∞)
and to define p(e) = p

∫ e
0
f(a)da + p. Then, p is an admissible survival

function if and only if f is decreasing. For usual decreasing density dis-
tributions (Gaussian, exponential, Weibull), the condition e → (−p′′(e))e

p′(e)

is increasing is also satisfied. We impose Assumption 2 which is weaker
than imposing that e → (−p′′(e))e

p′(e)
is increasing because in our empirical
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illustration in section 4 we find that the function p(e) =
p+p ln(1+ e

C
)

1+ln(1+ e
C

)
pro-

duces the best fit of the model to the data. In this case e→ (−p′′(e))e
p′(e)

is not
increasing, yet Assumption 2 is satisfied. It is possible to build survival
functions that violate Assumption 2, however they will have unconven-
tional shapes. Generalizing our results to such functions is possible, yet
it would drastically complicate the exposition of the results. We are now
able to prove the first main result of the paper.

Proposition 4 (i) wt → x(wt) is inverted U-shaped on [1−σ
σ

p+(1+r)
σ−1
σ

γ
,∞).

(ii) lim

wt→ 1−σ
σ

p+(1+r)
σ−1
σ

γ

x(wt) = lim
wt→∞

x(wt) = 0.

Proof. See Appendix B
Proposition 4 can be restated as follows:

Corollary 5 The ratio of health expenditures to GDP can be written as
a function of GDP, Yt → g(Yt), which is as follows:

(i) g(Yt ) = 0 for all Yt in [0, 1−σ
σ

p+(1+r)
σ−1
σ

(1−α)γ
]

(ii) Yt → g(Yt) increases on [1−σ
σ

p+(1+r)
σ−1
σ

(1−α)γ
, w∗

1−α ], where w∗ = arg max
w≥0

(x(w)).

(iii) Yt → g(Yt) decreases on [ w
∗

1−α ,∞).

Proof. Note that wt = (1−α)Yt. Then g(Yt) = x((1−α)Yt)
1−α and the result

follows from Proposition 4
Proposition 4 shows that health is a luxury good as individuals start

spending resources on health. Thus, our simple framework is consistent
with the joint increase of income and income share of health expenditures
that OECD countries have known over the last forty years.8 It also
predicts that this income share should not keep rising perpetually with
income. Before interpreting the result, notice that consumption in first
and second periods are both normal goods so that the result is not driven
by an undesirable feature of the preferences.9 Note also that the result
is not driven by the finiteness of γ. When γ is finite, the income share
spent on health is equal to 0 for an income smaller than the threshold
w∗ and positive otherwise. Thus the income share spent on health must

8In section 4, we plot the cross-sectional relationship between income and income
share of health expenditures for OECD countries for 2012. The curve is upward-
sloping (see Figure 5).

9To see this, note that ct,t = wt−e(wt)

p(e(wt))+(1+r)
σ−1
σ

. Using (13), ct,t = 1−σ
σ

1
p′(e(wt))

.

As wt → e(wt) is increasing, ct,t is increasing with wt. The same proof applies for
second period consumption.
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increase with income for a range of income levels. However, when γ is
non-finite, the corner solution for health expenditures vanishes, yet the
income share spent on health is still initially increasing with income.

To understand, the result of Proposition 4, it is useful to rewrite
equation (12) as follows:

Health expenditures

Income
= g(

2nd period utility

1st period marginal utility
)

1

Income
(15)

Where g(x) = (p′)−1( 1
x

1
σ
) is an increasing function. This shows that

the level of health expenditures increases with the second period utility
level and decreases with the first period marginal utility. Indeed, the
higher the second period utility level, the longer individuals want to live
in second period, the higher their health expenditures. The health ex-
penditures require a decrease of first period consumption, which implies
a welfare loss equal to first period marginal utility. Thus, the higher the
first period marginal utility, the higher the welfare costs of health ex-
penditures, the lower the health expenditures. Therefore, to understand
how the income share spent on health evolves with income, we need to
understand how the second period utility and the first period marginal
utility vary with income. For low income levels, the concavity of the
utility function implies that the second period utility level increases a
lot with income. The marginal utility is convex, which implies that for
low income levels, it decreases a lot with income. Thus the ratio of sec-
ond period utility to first period marginal utility increases by a large
amount for low income levels. This implies that health expenditures
increase by a large amount, superior to income. For large income levels,
the concavity of the utility function implies that it does not increase by
much with income. The convexity of the marginal utility also implies
that the first period marginal utility does not increase by much with
income for large income levels. Thus, the ratio of second period utility
to first period marginal utility increases by a small amount for large in-
come levels. This implies that health expenditures increase by a small
amount, smaller than income.

One could argue that even a small increase of the ratio of second
period utility to first period utility could be compatible with an increase
of the income share spent on health. Indeed, as longevity is bounded, the
marginal impact of health expenditures on longevity rapidly falls, which
means that the function g can be very steep. Hence a small increase of
the ratio of second period utility to first period utility can increase health
expenditures by much. However, in our case, we show that this never
suffices for health expenditures to increase faster than income for large
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income levels. The ratio of second period utility to first period utility
behaves as 1

w
for large income levels, and we show that g(w)

w
always tends

to 0 with w.
To which extent do the results depend on the utility per period spec-

ification? For low income levels, the convexity of the marginal utility
and the concavity of the utility function apply for more general utility
specifications. This is the case for example with the specification of Hall
and Jones (2007): u(c) = c1−σ

1−σ + b, σ > 1, b > 0. Hence, the result
that health is a luxury good for low income levels should extend to more
general utility specifications. For high income levels, our result relies on
the asymptotic behavior of the ratio of utility to marginal utility. In
our specification, this ratio behaves as 1

w
, and the income share spent on

health behaves as g(w)
w

which always tends to 0 with w. In the specifica-
tion of Hall and Jones (2007), the ratio behaves as 1

wσ
, and the income

share spent on health behaves as g(wσ)
w

, which leaves the possibility for
the income share spent on health to perpetually increase with income
even though longevity is bounded.10

To complete the discussion, we compare our result with respect to the
findings of Hall and Jones (2007). In their framework, individuals live for
one period, whose length depends on the level of health expenditures.
They choose their consumption level as well as their health spending.
Hall and Jones show that the income share spent on health can be written
as an increasing function of the ratio of consumption elasticity to health
elasticity. Hence the income share spent on health is driven by the ratio
of these two elasticities. For large income levels w, our discussion is
indeed equivalent to a discussion on the ratio of the two elasticities.
With u(c) = c1−σ

1−σ , σ < 1, the ratio of the two elasticities behaves as

wp′(w), while with u(c) = c1−σ

1−σ + b, σ > 1, b > 0, this ratio behaves as
wσp′(w) . However, in our two-period framework, the ratio of the two
elasticities does not completely governe the income share spent on health
for all income levels. In Figures 2 and 3, we plot, for the survival function
p(e) = e0.5

1+e0.5
, the ratio of the two elasticities, which is decreasing in this

case, and w → x(w) which is inverted U-shaped according to Proposition
4. Hence, the ratio of the two elasticities is an imperfect picture of the
income share spent on health.

For the next section, we will maintain Assumption 1. Despite the
existence of income levels for which health is a luxury good, there is
no perpetual growth of the share of resources spent on health to 1.
Otherwise, we could have concluded from the partial equilibrium analysis
that the economy would not grow perpetually. Thus, in the next section,

10The result is stated formally in section 4.
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Figure 2: Health elasticity to
consumption elasticity ratio (i.e.

e→ p′(e)e
p(e)

(1− σ)). p(e) = e0.5

1+e0.5
,

σ = 0.5.

Figure 3: Income share spent on
health as a function of income
(i.e. w → x(w)). p(e) = e0.5

1+e0.5
,

σ = 0.5, R = 4.801.

we study the dynamic general equilibrium to answer this question. In
section 4, we rediscuss the alternative specification u(c) = c1−σ

1−σ + b,
σ > 1, b > 0.

3 The dynamic general equilibrium

In this section, we study the dynamics of the economy of section 2, which
is obtained by imposing the capital market clearing condition:

Kt+1 = st (16)

Using (10) and (5), (16) is equivalent to:

wt+1 =
p(e(wt))

p(e(wt)) + (αA)
σ−1
σ

(wt − e(wt))A(1− α) (17)

It is useful to study equation (17) separetely according to the value
of p.

3.1 Dynamics in the case p = 0.

In this case, health expenditures are necessary for the economy not to
collapse to a null income. Otherwise, without health expenditures, in-
dividuals do not live in second period, which implies that they do not
save. As capital is an essential input, there is no production. There
remains to determine how the economy behaves when individuals spend
a positive amount of resources on health. The result is in the following
proposition:
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Proposition 6 (i) If p

p+(1+r)
σ−1
σ
A(1 − α) ≤ 1, then for all w0 ≥ 0, the

economy converges to a null income.
(ii) If p

p+(1+r)
σ−1
σ
A(1−α) > 1, then (17) has a unique positive steady

state, w∗ > 1−σ
σ

p+(1+r)
σ−1
σ

γ
, which is unstable. Hence, if w0 > w∗, then

the economy perpetually grows, while if w0 < w∗, then the economy con-
verges to a null income.

(iii) If the economy perpetually grows, hence if p

p+(1+r)
σ−1
σ
A(1−α) > 1

and w0 > w∗, then the growth rate monotonically increases along the
trajectory.

Proof. See Appendix C
Proposition 6 shows that the possibility to spend resources on health

can have large benefits in terms of economic growth as it can allow the
economy to perpetually grow instead of being trapped to a null income.
For this to happen, the maximal longevity and the initial income must
be high enough. These conditions yield a large enough initial longevity
for the individuals to save a level of resources that allows the economy
to grow. In this case, according to point (iii), health expenditures create
a virtuous cycle: as income increases, health expenditures and then
longevity increase, and the propensity to save increases more than the
possible disposable income reduction due to greater health expenditures.
According to Proposition 6, this happens when the maximal longevity p
is large. This implies that health expenditures can increase longevity by
a large amount and so that the benefits of health expenditures are large
and larger than their costs. Thus, savings and the growth rate increase
with income.

3.2 Dynamics in the case p > 0.

In this case, health expenditures are no more necessary for this economy
to grow. Consider the same economy as the one outlined in section 2
without the possibility for the individuals to spend resources on health.
It is a standard AK economy, whose dynamics is governed by the fol-
lowing equation:

wt+1 =
p

p+ (αA)
σ−1
σ

A(1− α)wt (18)

We easily get that the solution to (18) perpetually grows if and only
if

p

p+(αA)
σ−1
σ
A(1 − α) > 1. We will write this condition as A > A where

A satisfies
p

p+(αA)
σ−1
σ
A(1 − α) = 1. In the first part of this section, we

will maintain this condition and we will determine if it is sufficient for
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the economy governed by (17) to perpetually grow. Alternatively, we
can formulate the problem as follows. The economy perpetually grows if
and only if G(e(wt), wt) := p(e(wt))

p(e(wt))+(αA)
σ−1
σ

(wt− e(wt))A(1−α) > wt for

all income levels. Under the condition A > A, e → G(e, wt) is decreas-
ing or inverted U-shaped and the equation G(e, wt) = wt has a unique
root ê(wt) such that if for some income levels e(wt) > ê(wt), then the
economy does not perpetually grow. Otherwise said, if health expen-
ditures are too large, then the disposable income reduction is greater
than the increase of the propensity to save and savings become too low
for economic growth to occur. The following proposition, which is the
main result of the paper, gives necessary and sufficient conditions for
this scenario to happen:

Proposition 7 Note a := lim
e→0

( (−p′′(e))e
p′(e)

) < 1. The three following state-

ments are equivalent:
(i) A > A and the solution to (17) does not perpetually grow.

(ii) (17) has two steady states w∗1 and w∗2, with 1−σ
σ

p+(αA)
σ−1
σ

γ
< w∗1 <

w∗2. w
∗
1 is stable, while w∗2 is unstable.

(iii) α >
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

and A ∈ (A,A∗), where A∗ > A and

w0 ≤ w∗2.

Proof. See Appendix D
Proposition 7 states that the mild condition that insures perpetual

growth in the standard AK model (A > A) is not sufficient to insure
perpetual growth when individuals can spend resources to increase their
longevity. This means that implementing a health system can have im-
portant repercussions on the long-term development of an economy. As-
sume that γ is finite and consider an economy that does not initially

spend resources on health (hence w0 < 1−σ
σ

p+(αA)
σ−1
σ

γ
). Its trajectory

is initially governed by the evolution equation of the AK model (18).
Hence, under the condition A > A, the economy grows at a positive

rate. When income exceeds the threshold 1−σ
σ

p+(αA)
σ−1
σ

γ
, individuals start

spending resources on health. Under the conditions (iii), the economy
still grows at a positive rate, yet the growth rate declines until income is
trapped to the middle-income level w1. Otherwise said, health expendi-
tures create a strong negative intergenerational externality in this case,
as they impede any possibility of growth for future generations.

According to conditions (iii), this scenario occurs in economies with
a not too large technology level A and a high initial longevity p. A
high initial longevity implies that health expenditures cannot increase
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longevity by much since it is already large. This implies that the benefits
of health expenditures, a greater propensity to save, are not important in
this case. A influences the growth rate through three channels. First, the
greater A, the greater the interest rate, which increases both savings and
health expenditures because the inverse of the intertemporal elasticity of
substitution (IES) is strictly smaller than 1. Second, an increase of A also
acts as an increase of the disposable income (see the linear term in A in
G(e(w), w)). The increase of savings and of the disposable income both
increase the growth rate. The increase of health expenditures has the
two opposite consequences on economic growth previously mentioned: it
increases the propensity to save and it decreases the disposable income.
In appendix D, we prove that the total effect of an increase of A on
the growth rate is always positive. Hence a greater A can compensate
negative growth effects of health expenditures. This means that once
A is large enough (strictly greater than A∗), the economy perpetually
grows.

To gain intuition, we reconsider the alternative formulation of the
problem: are there income levels for which G(e(wt), wt) < wt? We use

(13) to rewrite this inequality as 1−σ
σ
A(1 − α) < p′(e(wt))wt

p(e(wt))
and we note

that it is sufficient to have 1−σ
σ
A(1 − α) < p′(wt)wt

p(wt)
for this inequality

to be true. Hence when the elasticity of the survival function is high
(greater than 1−σ

σ
A(1−α)), individuals choose to devote a large share of

their resources to their health because health expenditures have a strong
positive impact on their longevity and so on their welfare.

We now study the dynamics of the economy when it perpetually
grows. Does this economy grow faster than the economy that does not
spend resources on health? The following proposition gives necessary
and sufficient conditions for the economy to grow perpetually under the
condition A > A and examines if the growth rate is greater than the
AK-growth rate:

Proposition 8 Note g(wt) the growth rate of the economy governed by

(17) and gAK =
p

p+(1+r)
σ−1
σ
A(1 − α) − 1. Note also Â =

(p( 1−aσ
1−σ −1))

σ
σ−1

α
.

Assume A > A.

(i) The economy perpetually grows if and only if α <
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

or A > A∗.

(ii) If α <
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

and if A ∈ [A, Â], then:

g(wt)

= gAK while wt ≤ 1−σ
σ

p+(αA)
σ−1
σ

γ

> gAK and dg(wt)
dt

> 0 for wt >
1−σ
σ

p+(αA)
σ−1
σ

γ
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(iii) If α <
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

and if A > Â or if A > A∗ and

α >
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

, then there exists w̃ > 1−σ
σ

p+(αA)
σ−1
σ

γ
such that:

g(wt)


= gAK while wt ≤ 1−σ

σ

p+(αA)
σ−1
σ

γ

< gAK for wt ∈ (1−σ
σ

p+(αA)
σ−1
σ

γ
, w̃)

> gAK and dg(wt)
dt

> 0 for wt > w̃

Proof. See Appendix E
Proposition 8 states that there are two types of trajectories for an

economy that perpetually grows. Along the first one, health expen-
ditures create a virtuous cycle: as income grows, health expenditures
increase and they have a positive impact on the growth rate. Then, at
each period, the economy grows faster than the AK-economy. Along the
second one, as individuals start spending resources on health, the growth
rate is reduced compared to the one of the AK-economy. Yet, after an
income threshold is reached, the growth rate increases and eventually
exceeds the one of the AK-economy.

The reason why the economy finally grows faster than the AK-economy
in all cases is that the income share spent on health ends decreasing and
tends to 0 for large income levels. Thus, the negative effects of health
expenditures, a reduced disposable income, vanish, while the positive
effects of health expenditures, a higher propensity to save, increase be-
cause health expenditures keep rising.

There are two combinations of parameters under which the economy
initially grows more slowly than the AK-economy. The first one requires
that the initial longevity is high enough and the technology level is high
enough to avoid the middle income trap. As previously explained, a
high initial longevity implies that health expenditures cannot increase
by much the longevity. Then, the benefits of health expenditures are
low and are smaller than their costs. The second combination of param-
eters shows that a high initial longevity is sufficient but not necessary
for the economy to initially grow more slowly than the AK-economy. In-
deed, this happens also if the initial longevity is low and the technology
level is large enough. As previously said, the growth rate of the econ-
omy increases with the technology level, however the growth rate of the
AK-economy increases too. Recall that there are four channels through
which A impacts the growth rate (interest rate, linear term, longevity,
disposable income). The first two are common to both economies, while
the last two are absent in the AK-economy. Hence the result is driven by
an inverted U-shaped relationship between health expenditures and the
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growth rate. The increase of A initially increases more the propensity
to save (which is concave in health expenditures) than it reduces the
disposable income (which is linear in health expenditures). This implies
that the increase of A initially increases more the growth rate of the
economy than the one of the AK economy. Then the contrary happens.

Finally, we determine the dynamics of the economy under the con-
dition A < A. Can the economy perpetually grow under this condition?
The following proposition provides the answer:

Proposition 9 Assume A < A.
(i) If A(1 − α) p

p+(αA)
σ−1
σ
≤ 1, then the economy converges to a null

income.
(ii) If A(1− α) p

p+(αA)
σ−1
σ

> 1, then the dynamical system (17) has a

unique unstable steady state, w∗. If w0 < w∗, then the economy converges
to a null income. If w0 > w∗, then the economy perpetually grows and
its growth rate increases along the trajectory.

Proof. See Appendix F
Proposition 9 shows that health expenditures can be necessary for

economic growth to take place. Indeed, when the condition that insures
perpetual growth in the AK model fails, it is possible for the economy
to perpetually grow. For this to happen, the survival function must not
take too small values, otherwise the propensity to save is too low for
the economy to grow. Moreover, the initial income level must be high
enough. When γ is finite, this poverty trap is due to the fact that in-
dividuals initially choose not to spend on health, which means that the
economy behaves exactly as the AK economy, which cannot grow by as-
sumption. Overall, my characterization of the dynamics of the economy
shows that the introduction of health expenditures in the AK model
yields completely different trajectories depending on the values of the
parameters. Indeed, as suggested by Proposition 9, health expenditures
can be necessary to perpetual growth, while as suggested by Proposition
7, health expenditures can annihilate the perpetual growth of the AK
economy. This motivates the following section in which we provide a
simple calibration of the model.

4 Discussion and numerical illustration

4.1 Alternative preferences

In the previous sections, utility per period is such that for any survival
function, the income share spent on health falls to 0 for large income
levels. As previously argued, this is a consequence of assuming an inverse
of the IES strictly smaller than 1. There are both types of empirical
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evidence suggesting values above or below 1 for the IES. Thus, in this
section, we briefly discuss our results when utility per period is u(c) =
c1−σ

1−σ + b, σ > 1, b > 0. In this case, the positive intercept b is required to
avoid that agents unrealistically choose not to spend resources on health
for any income level.

With the same notations as before, the FOC on health expenditures
now writes:

c−σt,t + p′(et)c
1−σ
t,t+1 = p′(et)(

c1−σ
t,t+1

1− σ
+ b) (19)

The LHS of (19) is the marginal cost of health expenditures: first
period utility loss plus second period utility loss due to diminishing per
period resources. The RHS of (19) is the marginal benefit of health ex-
penditures, which is the total second period utility gain due to longevity
extension. Note first that the marginal benefit of health expenditures is
negative for low income levels. Hence, the marginal utility of longevity
is negative for poor individuals, which implies that they do not spend
resources on health. This means that contrary to the case σ < 1, the
corner solution for health expenditures is unrelated to the finiteness of
the initial marginal productivity of health expenditures γ. Rewrite (19)
as:

c−σt,t = p′(et)(
σc1−σ

t,t+1

1− σ
+ b)

For low income levels, as income increases, the first period marginal
utility decreases and the second period utility increases by a large amount
due to the convexity of the marginal utility and the concavity of the util-
ity per period function. This requires health expenditures to increase
by a large amount, more than income, for the marginal cost and the
marginal benefit to equate. For large income levels, the second period
utility is equivalent to the intercept b, which does not depend on in-
come. The first period marginal utility decreases by a small amount.
Then, the adjustment of health expenditures to equal the marginal cost
and the marginal benefit depends on how the maginal productivity of
health expenditures behaves asymptotically. The result is in the follow-
ing proposition:

Proposition 10 The problem of the consumer has a unique solution.
There exists w > 0 such that e(w) = 0 for w ≤ w, while w → e(w) is
increasing on [w,∞).

(i) w → x(w) is initially increasing on [w,∞).
(ii) If lim

w→∞
p′(w)wσ = 0, then lim

w→∞
x(w) = 0.
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(iii) If lim
w→∞

p′(w)wσ = l <∞, then lim
w→∞

x(w) =

(bl)
1
σ

(1+r)
1−σ
σ p+1

1+
(bl)

1
σ

(1+r)
1−σ
σ p+1

.

(iv) If lim
w→∞

p′(w)wσ =∞, then lim
w→∞

x(w) = 1.

Proof. See Appendix G
Point (i) of Proposition 10 confirms our intuition that health is ini-

tially a luxury good. The proposition also shows that the parametric
specification of the survival function is crucial to determine the shape
of the function w → x(w), which can perpetually increase with income
towards 1 or falls to 0. This justifies to have worked with a general

survival function. For example, with p(e) =
p+peε

1+eε
, ε ∈ (0, 1], case (ii)

occurs if σ < 1 + ε, case (iii) occurs if σ = 1 + ε, while case (iv) occurs

if σ > 1 + ε. With p(e) = 2√
Π
p
∫
0

e
e
−u2
2 du+ p, only case (ii) occurs.

As an immediate corollary, we see that in case (iv) the economy does
not perpetually grow under the mild condition that insures perpetual
growth in the AK model. With this utility specification, we cannot
provide a complete characterization of the dynamics of the economy as
in section 3, so we calibrate the model to study the dynamical general
equilibrium.

4.2 Numerical application

In this subsection, we propose a numerical calibration of the model for
OECD countries, when u(c) = c1−σ

1−σ + b, σ > 1, b > 0, to answer two
questions: Will the income share spent on health continue to increase?
How do health expenditures modify the trajectory of these economies?

We consider that a period is equal to 40 years and that individuals
enter first period at the age of 25. r and α and σ are first set to standard
values. The annual interest is 4%, which yields a value of 4.801 for R.
α is set to 0.3. σ is set to 1.5, which yields a risk aversion coefficient in
line with empirical estimates (Chetty 2006). The remaining unknowns
are b and the survival function.

Usually in such models, the unknown parameters are calibrated from
the equation that governes the dynamics of the economy (equation (17))
to match time series data. However, the two-period framework requires
long time series to have a sufficient number of points to match. Here
we rather notice that all the remaining unknowns enter the equation
that determines the income share spent on health x(w).11 This equation
links health expenditures to income, thus it can be estimated from cross-
sectional data. We then choose our unknowns by minimizing the distance

11When u(c) = c1−σ

1−σ + b, σ > 1, b > 0, this is the equation (33) in Appendix G.
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between the income share spent on health generated by the model and
the true ones. Regarding first the survival function, we have tried all
the examples cited in the paper, yet the best fit of the model is obtained
with the following specification:

p(e) =
p+ p ln(1 + e

C
)

1 + ln(1 + e
C

)
(20)

Where C is a positive constant to be estimated. A bounded and con-
cave function becomes rapidly flat. The parameter C allows not to have
our health expenditures levels on the flat part of the curve, which could
not yield a good fit of the cross-sectional variation of longevity. However,
the higher the scaling parameter C, the lower the dispersion of the ei

C
,

which also impedes a good fit of the cross-sectional variation of longevity.
Thus, we need a survival function that does not become flat too fast in
order not to have to use a too large scaling parameter. This explains
why we obtain our best fit with the function (20). Thus, there are four
parameters to be estimated: (b, C, p, p). Note (wi, xi, pi)i=1..33 our data,
where wi is wage in country i, xi the income share of health expenditures
and pi the longevity.12 Then, our parameters choice (b∗, C∗, p∗, p∗) is:

arg min
(b,C,p,p)

(
33∑
i=1

(x(wi)− xi)2 + (pm − p(wmx(wm))2 + (pM − p(wMx(wM))2)

(21)
Wherem = arg min

i=1..33
(pi) andM = arg max

i=1..33
(pi). We obtain (b∗, C∗, p∗, p∗) =

(0.0206, 39991.876, 0.02, 0.65). Figure 5 plots (wi, xi)i=1..33 and (wi, x(wi))i=1..33.
Figure 4 plots (wixi, pi)i=1..33 and (wix(wi), p(wix(wi)))i=1..33. The two
graphs suggest that the model can replicate reasonably well the rela-
tionship between income and income share spent on health and health
expenditures and longevity. There is one country, US, which is not well
captured by the model: its income share on health is much larger than
other countries, while its life expectancy is only in the middle of the
distribution.

My calibration parameters have two direct consequences. First, with-
out health expenditures, the economy does not grow, hence the condition

12The data are obtained from the OECD database for the year 2012. The sample
includes all OECD members except Luxembourg (33 countries). We use GDP per
capita in current US dollars to compute the corresponding GDP per worker and
then the wage. Total health expenditures are also in current US dollars. For the
estimation, we multiply these quantities by 40 to get their value on the model period.
When reporting the results, we use annual values. pi is computed from life expectancy
at birth, Ei: Ei = 65 + 40pi.
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Figure 4: Health expenditures-
Life expectancy

Figure 5: Income-Income
share spent on health

that insures perpetual growth in the AK model fails. This means that
there is a poverty trap. Second, the economy is in the case (iv) of Propo-
sition 10, hence the income share spent on health tends to 1 for large
income levels. This means that there is a positive stable steady state.
We first compute the values of these steady states to assess the posi-
tion of our sample with respect to these points. We find that the first
steady-state income level is worth 12149. Two countries of the sample
are below this level, which means that they are trapped. This suggests
that health expenditures could be a barrier to convergence in income
levels across countries. The second steady-state income level is greater
than 1.109, which is well above the income levels of the sample. This
means that the growing income share spent on health should not be an
obstacle to economic growth in a not too far future for the countries
which are not trapped. We now simulate the trajectory over 10 periods
for the economy with the median income. Figure 6 reports the dynamics
of the wage, while Figure 7 reports the dynamics of the income share
spent on health. Over this period, the economy grows at an accelerat-
ing rate and its income share spent on health is increasing. After 10
periods, the income share spent on health reaches 0.33, which is more
than the triple of its initial value. This does not prevent the economy
from growing. This means that economic growth can take place despite
a large amount of resources spent for health. The overall conclusion of
this numerical analysis is that health expenditures are more necessary
than detrimental to economic growth and that health expenditures en-
danger economic growth only if their level becomes much larger than
their current level in OECD countries.
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Figure 6: Wage dynamics over
10 periods

Figure 7: Income share spent on
health dynamics over 10 periods

5 Conclusion

In a two-period OLG model with endogenous growth, we studied the
consequences of allowing individuals to choose the level of health expen-
ditures that increase their longevity in retirement period. We presented
several results. With a CES utility function, with an IES strictly greater
than 1, and a general survival function, we proved that the income share
spent on health is an inverted U-shaped function of income. This implies
that an increasing ratio of health elasticity to consumption elasticity is
neither necessary nor sufficient for health to be a luxury good. Then, we
gave a complete characterization of the dynamics of the economy. Under
the condition that insures perpetual growth in the same AK economy
except that health expenditures are constrained to be null, there are
three types of trajectories. Along the first one, the economy perpetually
grows and grows at each period faster than the AK economy. Along the
second one, the economy perpetually grows, however its growth rate is
initially reduced compared to the one of the AK economy, before grow-
ing faster than the AK economy. Finally, along the third trajectory, the
economy is trapped to a middle income level and does not experience
perpetual growth. This means that health expenditures create a strong
negative intergenerational externality in this case by impeding any pos-
sibility of growth for future generations. We also found that when the
condition that insures perpetual growth in the AK model fails, the econ-
omy can all the same experience perpetual growth. A simple calibration
of the model to OECD countries suggests that this case might be the
most likely one, hence that health expenditures are more necessary than
detrimental to growth.

Acemoglu and Johnson (2007) conclude their study by noting that
the decision to implement a health system in a country can be consid-
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ered as orthogonal to its development policy given the weak impacts
of longevity on economic growth they find. In this paper, we reach a
different conclusion as we have shown theoretically that the implemen-
tation of a health system is not neutral for economic growth. Indeed, in
the framework used, a standard Diamond model with health expendi-
tures, there are economies in which the presence of these health expendi-
tures produce drastic negative consequences by impeding any possibility
of long-run economic growth. This should stimulate future empirical
research on the health-growth nexus. Given its theoretical focus, the
present analysis has omitted possibly important channels through which
health expenditures can modify the growth path of an economy such
as the impact of health on productivity or the introduction of a social
security system. They could be included in future simulation studies.
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6 Appendix A

Assume first that p > 0 and γ < ∞. The problem of the consumer is
equivalent to maximize:

V (st, et) =
(wt − st − et)1−σ

1− σ
+ p(et)

σ s
1−σ
t (1 + r)1−σ

1− σ

Subject to the constraints st + et ≤ wt and 0 ≤ et and 0 ≤ st. Note
that these constraints are linear, which implies that any solution must
satisfy the KKT conditions. The Lagrangian associated to this problem
writes:

L(st, et, χ1, χ2, χ3) = V (st, et) + χ1(wt − st − et) + χ2et + χ3st

Where χ1 to χ3 are the Lagrange multipliers. Note first that ∂V
∂s

(0, et) =
∞ for all et ∈ [0, wt). Thus, st = 0 is never optimal and χ3 = 0. Third,
∂V
∂s

(wt − et, et) = −∞ for all et ∈ [0, wt). Thus, χ1 is equal to 0 and the
KKT conditions for a point (st, et) to be an optimum can be written as:

(i)
∂V

∂s
(st, et) = −(wt − et − st)−σ + p(et)

σs−σt (1 + r)1−σ = 0

(ii)
∂V

∂e
(st, et) = −(wt−et−st)−σ+σp′(et)p(et)

σ−1 s
1−σ
t (1 + r)1−σ

1− σ
= −χ2

(iii) min(χ2, et) = 0

Consider now the possibility that et = 0. From (i), we get the op-
timal saving, st =

p

p+(1+r)
σ−1
σ
wt. And χ2 must be non-negative. Thus, (ii)

writes ∂V
∂e

(
p

p+(1+r)
σ−1
σ
wt, 0) ≤ 0 which is equivalent to wt ≤ 1−σ

σ

p+(1+r)
σ−1
σ

γ
.

Thus, for wt ≤ 1−σ
σ

p+(1+r)
σ−1
σ

γ
, (

p

p+(1+r)
σ−1
σ
wt, 0) satisfies the KKT con-

ditions and is a possible solution. Consider now the case et > 0. Then,
χ2 = 0 and the conditions (i) and (ii) imply the equations (10) and
(13) of the text. Note that the left-hand-side (LHS) of (13) decreases
and is worth 0 at et = wt. Thus, (13) has a unique positive solution
if and only if the LHS of (13) takes a value strictly greater than 1 at

et = 0. This condition is equivalent to wt >
1−σ
σ

p+(1+r)
σ−1
σ

γ
. Thus, for
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wt >
1−σ
σ

p+(1+r)
σ−1
σ

γ
, there exists a unique pair (st, et) that satisfies the

KKT conditions. Note finally that the problem of the consumer has
always at least one solution because (s, e) → V (s, e) is continuous on
the maximization domain, which is compact. Consequently, the unique

pair satisfying the KKT conditions in the two cases wt ≤ 1−σ
σ

p+(1+r)
σ−1
σ

γ

and wt >
1−σ
σ

p+(1+r)
σ−1
σ

γ
is the unique solution to the problem of the

consumer. In the first case, the optimal level of health expenditures is
equal to 0, while it is positive in the second case. The case p = 0 fol-
lows by continuity. When γ =∞, notice that the KKT conditions for a
corner solution to exist cannot be satisfied. This completes the proof of
Proposition 1.

7 Appendix B

Set w = 1−σ
σ

p+(1+r)
σ−1
σ

γ
, which is possibly equal to 0 when γ = ∞. We

first need to compute lim
w→w

x(w). If γ <∞, then e(w) = x(w)w = 0, then

lim
w→w

x(w) = 0. If γ =∞, then w = 0. We will need the following lemma:

Lemma 11 lim
w→0

(wp′(w)) = 0

Proof. The first derivative of w → wp′(w) is p′(w)(1− (−p′′(w))w
p′(w)

). The

properties of the function p imply that a := lim
w→0

( (−p′′(w))w
p′(w)

) < 1. This im-

plies that w → wp′(w) increases in the neighborhood of 0. Consequently
lim
w→0

(wp′(w)) exists. It must be finite because w → wp′(w) is initially

increasing. Assume lim
w→0

(wp′(w)) = l > 0. Then there must exists W > 0

such that:

u < W ⇒ up′(u) >
l

2
(22)

Consider w < W . Divide by u both terms of the previous inequality
and integrate it from w to W to get:

l

2
ln(

W

w
) < p(W )− p(w)

⇐⇒ p(w) +
l

2
ln(W ) < p(W ) +

l

2
ln(w)

This contradicts the fact that lim
w→0

p(w) > −∞. Then, it must be that

lim
w→0

(wp′(w)) = 0
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Then use (13):

σ

1− σ
p′(e(w))e(w)

p(e(w)) + (1 + r)
σ−1
σ

=
x(w)

1− x(w)

Thus, lim
w→0

( x(w)
1−x(w)

) = lim
w→0

( σ
1−σ

p′(e(w))e(w)

p(e(w))+(1+r)
σ−1
σ

) = σ
1−σ

lim
w→0

(wp′(w))

p+(1+r)
σ−1
σ

= 0

according to Lemma 11. This implies that lim
w→0

(x(w)) exists and is equal

to 0.
Apply now the implicit function theorem to (13) to get that:

x′(wt) =
1

wt

p′(x(wt)wt)(σ − x(wt)) + x(wt)p
′′(x(wt)wt)σwt(1− x(wt))

p′(x(wt)wt) + (−p′′(x(wt)wt))σwt(1− x(wt))
(23)

Thus, x′(wt) > 0 is equivalent to:

(−p′′(x(wt)wt))x(wt)wt)

p′(x(wt)wt)
<

σ − x(wt)

σ(1− x(wt))
(24)

Define m(x,wt) ≡ (−p′′(xwt))xwt)
p′(xwt)

and g(x) ≡ σ−x
σ(1−x)

.

By Assumption 2, x → m(x,wt) increases from a value strictly
smaller than 1 while the function is smaller than 1. x→ g(x) decreases
from 1 to −∞ on [0, 1]. Thus, for any wt there exists a unique root
on [0, 1] to the equation m(x,wt) = g(x). Note it Σ(wt). wt → Σ(wt)
decreases because ∂m

∂wt
(x,wt) > 0 and lim(Σ(wt)) = 0

wt→∞
. Draw the curve

wt → Σ(wt) on [w,∞). Note that x′(wt) > 0 if and ony if x(wt) ∈ {y ≥ 0,
y < Σ(wt)} = ∆. Initially x(wt) ∈ ∆ because lim

wt→w
x(wt) = 0. There

necessarily exists w∗ such that x(w∗) = Σ(w∗) because Σ decreases to-
wards 0. By definition of Σ, x′(w∗) = 0, while Σ′(w∗) < 0. Thus,
wt → x(wt) enters ∆ at w∗ and x(wt) is trapped in ∆ because wherever
it hits the boundary of ∆, it has a greater slope than the boundary.
Thus w → x(w) is inverted U-shaped.

There remains to compute the limit of x(wt) as wt tends towards∞.
This limit exists as wt → x(wt) ends decreasing.

Lemma 12 lim
w→∞

(wp′(w)) = 0

Proof. We first show that w → wp′(w) ends decreasing. Its first deriva-

tive is p′(w)(1 − (−p′′(w))w
p′(w)

) which is non-positive when w gets large as

lim
w→∞

(−p′′(w))w
p′(w)

> 1. Therefore, lim
w→∞

(wp′(w)) exists and it must be finite

because w → wp′(w) ends decreasing. Note this limit l and assume that
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l is positive. Then, there exists M > 0 such that wp′(w) > l
2

for all w
greater than M . Integrate the previous inequality from M to a > M to
get:

p(a)− p(M) >
l

2
ln(

a

M
) (25)

As a tends towards ∞, the RHS of (25) tends towards ∞. This con-
tradicts the fact that p is upper-bounded. Thus, l = 0

From (13):

lim
w→∞

(
x(w)

1− x(w)
) = lim

w→∞
(

σ

1− σ
p′(e(w))e(w)

p(e(w)) + (1 + r)
σ−1
σ

) =
σ

1− σ

lim
w→∞

(wp′(w))

p+ (1 + r)
σ−1
σ

= 0

(26)
This implies that lim

w→∞
(x(w)) = 0. This completes the proof of Propo-

sition 4.

8 Appendix C

If p

p+(1+r)
σ−1
σ
A(1 − α) < 1, then G(e(w),w)

w
= p(e(w))

p(e(w))+(αA)
σ−1
σ

(w−e(w))
w

A(1 −

α) < p

p+(1+r)
σ−1
σ
A(1 − α) < 1. Hence, the propagator of (17) is strictly

below the 45◦ line for any income levels, which implies that the economy
converges to 0.

If p

p+(1+r)
σ−1
σ
A(1− α) > 1 :

p = 0 implies that
G(e( 1−σ

σ
(αA)

σ−1
σ

γ
), 1−σ

σ
(αA)

σ−1
σ

γ
)

1−σ
σ

(αA)
σ−1
σ

γ

= 0 for all γ ∈ (0,∞].

Use (13) to write G(e(w),w)
w

as:

G(e(w), w)

w
=

1− σ
σ

p(e(w))

wp′(e(w))
A(1− α) (27)

Note first from (23) that:

e′(w) =
σp′(e(w))

p′(e(w)) + (−p′′(e(w)))σ(w − e(w))
(28)

Then we can compute the derivative of G(e(w),w)
w

with respect to w.
We find that:

d(G(e(w),w)
w

)

dw
=

(1− σ)

σ

A(1− α)p(e(w))

w2(p′(e(w)) + (−p′′(e(w)))σ(w − e(w)))
[
(1− σ)A(1− α)

G(e(w),w)
w

− 1 + σ
(−p′′(e(w))e(w)

p′(e(w))
] (29)
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Thus, we get that:

d(G(e(w),w)
w

)

dw
> 0⇔ A(1− α)

G(e(w),w)
w

>
1− σ (−p′′(e(w))e(w)

p′(e(w))

1− σ
(30)

At w = 1−σ
σ

(αA)
σ−1
σ

γ
, this condition writes:

∞ >
1− σa
1− σ

As this condition holds, it must be that w → A(1−α)
G(e(w),w)

w

is initially

decreasing. This function is also lower-bounded by 1. Consider now the
RHS of the inequality (30). It is initially decreasing with w. It can
increase with w, yet under Assumption 2 this can only happen when
(−p′′(e(w))e(w)

p′(e(w))
is greater than 1. When (−p′′(e(w))e(w)

p′(e(w))
is greater than 1, the

RHS of (30) is smaller than 1. Therefore, the LHS and the RHS of (30)

can only be equal when both are decreasing with w. If A(1−α)
G(e(w),w)

w

always

stays above
1−σ (−p′′(e(w))e(w)

p′(e(w))

1−σ , then w → A(1−α)
G(e(w),w)

w

is always decreasing.

If for some y > 1−σ
σ

(αA)
σ−1
σ

γ
, A(1−α)

G(e(y),y)
y

is equal to
(1−σ (−p′′(e(y))e(y)

p′(e(y)) )

1−σ , then

d( 1
G(e(w),w)

w

)

dw
)w=y = 0, while the derivative of

(1−σ (−p′′(e(w))e(w)

p′(e(w))
)

1−σ at w = y is

negative. Thus, A(1−α)
G(e(w),w)

w

>
(1−σ (−p′′(e(w))e(w)

p′(e(w))
)

1−σ in the right neighborhood of

y. This proves that
d
G(e(w),w)

w

dw
≥ 0 for all w > 1−σ

σ
(αA)

σ−1
σ

γ
.

Finally, recall that lim
w→∞

(x(w)) = 0, which implies that lim
w→∞

(G(e(w),w)
w

) =
p

p+(1+r)
σ−1
σ
A(1−α) > 1. This proves that the propagator of (17) is equal

to 0 while w ≤ 1−σ
σ

(αA)
σ−1
σ

γ
, then increases and crosses the 45◦ line exactly

one time. This completes the proof of the point (ii).

Point (iii) follows from the fact that w → G(e(w),w)
w

increases on

[1−σ
σ

(αA)
σ−1
σ

γ
,∞).

For the rest of the paper it will be useful to get the variations of

w → G(e(w),w)
w

when p > 0. Use first (30) at w = 1−σ
σ

p+(αA)
σ−1
σ

γ
to see that

w → G(e(w),w)
w

is initially increasing if and only if 1−σ
σ

p+(αA)
σ−1
σ

p
> 1−σa

σ
.

Use the same argument as in the case p = 0 to get that w → G(e(w),w)
w

is increasing in this case. If 1−σ
σ

p+(αA)
σ−1
σ

p
< 1−σa

σ
, then w → G(e(w),w)

w
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is initially decreasing. Hence w → A(1−α)
G(e(w),w)

w

is initially increasing and is

still lower-bounded by 1. w →
(1−σ (−p′′(e(w))e(w)

p′(e(w))
)

1−σ is decreasing as long

as (−p′′(e(w))e(w)
p′(e(w))

is smaller than 1. Moreover, w →
(1−σ (−p′′(e(w))e(w)

p′(e(w))
)

1−σ

ends smaller than 1. Thus, there exists y > 1−σ
σ

p+(αA)
σ−1
σ

γ
, such that

A(1−α)
G(e(y),y)

y

=
(1−σ (−p′′(e(y))e(y)

p′(e(y)) )

1−σ . Then,
d(

A(1−α)
G(e(w),w)

w

)

dw
)w=y = 0, while the deriva-

tive of
(1−σ (−p′′(e(w))e(w)

p′(e(w))
)

1−σ at w = y is negative. Thus, A(1−α)
G(e(w),w)

w

>
(1−σ (−p′′(e(w))e(w)

p′(e(w))
)

1−σ

in the right neighborhood of y and w → G(e(w),w)
w

remains increasing ac-

cording to the previous argument. Thus, w → G(e(w),w)
w

is U-shaped if

1−σ
σ

p+(αA)
σ−1
σ

p
< 1−σa

σ
.

9 Appendix D

We will assume that γ is positive, yet by following the same steps, the
proof can be adapted to the case γ =∞.

It will be necessary here to write explicitly the dependence of e(wt)
with respect to A, due to the dependence of the interest rate on A. Then
define:

H(A,w) =
p(e(A,w))

p(e(A,w)) + (αA)
σ−1
σ

(w − e(A,w))

w
A(1− α) (31)

Step 1: We prove that ∂H
∂A

(A,w) > 0 for any pair (A,w) ∈ (0,∞)2.

For (A,w) ∈ (0,∞)2 such that w ≤ 1−σ
σ

p+(αA)
σ−1
σ

γ
, H(A,w) =

p

p+(αA))
σ−1
σ
A(1−

α) and the result follows.

For (A,w) ∈ (0,∞)2 such that w > 1−σ
σ

p+(αA)
σ−1
σ

γ
, apply the implicit

function theorem to (13) to get that ∂e
∂A

(A,w) > 0.
Rewrite (31) as:

H(A,w) =
1− σ
σ

p(e(A,w))

wp′(e(A,w))
A(1− α) (32)

Thus, ∂H
∂A

> 0.
Step 2: We prove that for any w > 0, there exists a unique Z(w) > 0

such that: A < Z(w)⇐⇒ H(A,w) < 1.
This follows from the fact that A→ H(A,w) increases (step 1) from

0 to ∞ on [0,∞).
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Define now for each w > 1−σ
σ

p

γ
, A(w) as w = 1−σ

σ

p+(αA(w))
σ−1
σ

γ
and

reciprocally for each A > 0, w(A) as w(A) = 1−σ
σ

p+(αA)
σ−1
σ

γ
.

Step 3: We prove that for w ≤ w(A), Z(w) = A.
By definition, H(A,w(A)) = 1. Thus, Z(w(A)) = A.
If w < w(A), thenA(w) > A. ThusH(A(w), w) =

p

p+(αA(w))
σ−1
σ
A(w)(1−

α) is strictly greater than 1.Thus, Z(w) < A(w).
So, H(Z(w), w) =

p

p+(αZ(w)))
σ−1
σ
Z(w)(1 − α). As H(Z(w), w) = 1, it

must be that Z(w) = A.
This means that under the condition A > A, the propagator of (17)

is strictly above the 45◦ line for w < w(A). Thus, any steady state of
(17) is necessarily greater than w(A) under the condition A > A.

Step 4: We prove that max(
w≥w(A)

Z(w)) exists. And max(
w≥w(A)

Z(w)) > A

⇔ 1−aσ
σ

> 1−σ
σ

p+(αA)
σ−1
σ

p
.

The continuity of (A,w) → H(A,w) implies the one of w → Z(w).
Moreover, Z(w(A)) = A. Z(w) has also a limit in ∞, noted Z(∞),
which satisfies:

p

p+ (αZ(∞))
σ−1
σ

Z(∞)(1− α) = 1

The fact that p < p implies that Z(∞) < A. This proves that
w → Z(w) has a maximum on [w(A),∞).

Consider now the function w → H(A,w) on [w(A),∞). From the
proof of Proposition 6. (Appendix C), this function is increasing (if

1−aσ
σ

< w(A)p′(e(w(A)))
p(e(w(A)))

= 1−σ
σ

p+(αA)
σ−1
σ

p
) or U-shaped (otherwise).

If w → H(A,w) is increasing, then H(A,w) > 1 for all w ≥ w(A).
Thus, Z(w) < A for all w ≥ w(A). Hence, max(

w≥w(A)

Z(w)) is exactly A in

this case.
If w → H(A,w) is U-shaped, then there exists z(A) > w(A) such

that H(A,w) < 1 for all w ∈ (w(A), z(A)). Thus, Z(w) > A for all
w ∈ (w(A), z(A)). Hence, max(

w≥w(A)

Z(w)) is strictly greater than A in this

case.

Thus, it must be that max(
w≥w(A)

Z(w)) > A ⇔ 1−aσ
σ

< 1−σ
σ

p+(αA)
σ−1
σ

p
.

Write A∗ = max(
w≥w(A)

Z(w)).

Step 5: We prove that A < A∗ and A ∈ (A,A∗)⇔ (17) has exactly
two positive steady states under the condition A > A.
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Assume first that (17) has exactly two positive steady states and
A > A. It means that Z(w) takes values strictly greater than A on
(w(A),∞). Thus, A < A∗. Note also that A < A∗ otherwise H(A,w)
would be strictly greater than 1 for all w ≥ 0 which would contradict
the fact that (17) has two steady states.

Assume now that A < A∗ and A ∈ (A,A∗). Then, w → H(A,w)
takes values strictly smaller than 1 on (w(A),∞), H(A,w) > 1 if w ≤
w(A) and lim(

w→∞
H(A,w)) > 1 because A > A. Thus, (17) has at least

two steady states. Denote w1(A) the smallest one, which is necessarily
stable, and w2(A), the highest one, which is necessarily unstable.

From step 4, the condition A < max(
w≥w(A)

Z(w)) is equivalent to 1−aσ
σ

>

1−σ
σ

p+(αA)
σ−1
σ

p
. Then, it must be that 1−aσ

σ
> 1−σ

σ

p+(αA)
σ−1
σ

p
and according

to the proof of Proposition 6, it must be that w → H(A,w) is U-shaped.
Consequently, w1(A) and w2(A) are the two only steady states of (17).

To complete the proof, we rearrange the condition 1−aσ
σ

> 1−σ
σ

p+(αA)
σ−1
σ

p

to obtain condition (ii).

Step 6: We prove that 1−aσ
σ

> 1−σ
σ

p+(αA)
σ−1
σ

p
⇔ α >

(p σ
1−σ (1−a))

σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

.

By definition of A,
pA(1−α)

p+(αA)
σ−1
σ

= 1.

Then, 1−aσ
σ

> 1−σ
σ

p+(αA)
σ−1
σ

p
⇔ p

p+(αA)
σ−1
σ

> 1−σ
1−aσ where

p

p+(αA)
σ−1
σ

=

1
A(1−α)

Set m(A) =
p

p+(αA)
σ−1
σ

and n(A) = 1
A(1−α)

. m increases, while n

decreases.
Then the previous statement is true if and only if m is strictly greater

than n at the point at which n is worth 1−σ
1−aσ . As this point is 1−aσ

(1−α)(1−σ)
,

this condition is
p

p+(α 1−aσ
(1−α)(1−σ) )

σ−1
σ

> 1
1−aσ

(1−α)(1−σ) (1−α)
.

This completes the proof of Proposition 7.

10 Appendix E

(i) is a corollary of Proposition 7.
Recall first from the proof of Proposition 6 that w → G(e(w), w) is

increasing (if 1−aσ
σ

<
1−σ
σ

p+(αA)
σ−1
σ

γ
p′(e( 1−σ

σ

p+(αA)
σ−1
σ

γ
))

p(e( 1−σ
σ

p+(αA)
σ−1
σ

γ
))

= 1−σ
σ

p+(αA)
σ−1
σ

p
) or

U-shaped (otherwise).

If A > A and α <
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

, then according to the proof
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of Proposition 7, 1−aσ
σ

< 1−σ
σ

p+(αA)
σ−1
σ

p
. Thus for A ∈ (A, Â), w →

G(e(w), w) is increasing, while the function is U-shaped for A > Â.

If A > A∗ and α >
(p σ

1−σ (1−a))
σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ
σ−1

, then according to the proof

of Proposition 7,1−aσ
σ

> 1−σ
σ

p+(αA)
σ−1
σ

p
and then for all A > A∗ > A,

1−aσ
σ

> 1−σ
σ

p+(αA)
σ−1
σ

p
and w → G(e(w), w) is U-shaped.

This completes the proof of Proposition 8.

11 Appendix F

w → G(e(w), w) is an increasing or U-shaped function which is below 1

for w ≤ 1−σ
σ

p+(αA(w))
σ−1
σ

γ
. This means that the equation G(e(w), w) = 1

has a unique solution if and only if lim
w→∞

G(e(w), w) = pA(1−α)

p+(αA)
σ−1
σ

> 1. In

this case, the unique solution to the fixed point equation is an unstable
steady state. If pA(1−α)

p+(αA)
σ−1
σ

< 1, then G(e(w), w) is strictly smaller than

1 for all income levels, which implies that the economy converges to a
null income.

12 Appendix G

We follow the proof of Proposition 3. Assume first that p > 0 and
γ <∞. The agent maximizes:

V (st, et) =
(wt − et − st)1−σ

1− σ
+ p(et)

σ s
1−σ
t (1 + r)1−σ

1− σ
+ bp(et)

Subject to the constraints st + et ≤ wt and 0 ≤ et and 0 ≤ st.
The Inada condition of the utility function implies that the Lagrangian
writes:

L(st, et, χ1) = V (st, et) + χ1et

The KKT conditions for a point (st, et) to be an optimum can be
written as:

(i)
∂V

∂s
(st, τt) = 0

(ii)
∂V

∂e
(st, et) = −(wt−et−st)−σ+p′(et)[

σ

1− σ
(
st(1 + r)

p(et)
)1−σ+b] = −χ2
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(iii) min(χ2, et) = 0

Consider now the possibility that et = 0. From (i), we get the op-
timal saving, st =

p

p+(1+r)
σ−1
σ
wt. And χ2 must be non-negative. Thus, (ii)

writes ∂V
∂e

(
p

p+(1+r)
σ−1
σ
wt, 0) ≤ 0 which is equivalent to γ(b− σ

1−σ
w1−σ
t (1+r)1−σ

(p+(1+r)
σ−1
σ )1−σ

) ≤
w−σt (1+r)1−σ

(p+(1+r)
σ−1
σ )−σ

. The LHS of this inequality increases from −∞ to b on

[0,∞), while the RHS decreases from ∞ to 0 on [0,∞). Thus, there ex-
ists w ∈ (0,∞) such that the previous inequality is satisfied if and only if
wt < w. Thus, for wt < w, (

p

p+(1+r)
σ−1
σ
wt, 0) satisfies the KKT conditions

and is a possible solution. Consider now the case et > 0. Then, χ2 = 0
and the conditions (i) and (ii) imply the equation (10) and:

1

p′(et)
= (

wt − et
p(et) + (1 + r)

σ−1
σ

)σRσ−1b− σ

σ − 1

wt − et
p(et) + (1 + r)

σ−1
σ

(33)

Note the RHS of (33) as h( wt−et
p(et)+(1+r)

σ−1
σ

), where h(x) = xσRσ−1b −
σ
σ−1

x. Note that h is increasing where it is non-negative and so et →
h( wt−et

p(et)+(1+r)
σ−1
σ

) is decreasing on [0, wt]. Moreover, the RHS of (33) is

equal to 0 at et = wt. As the LHS of (33) is positive and increasing, (33)
has a solution, which is also unique, if and only if h( wt

p+(1+r)
σ−1
σ

) > 1
γ

which is equivalent to γ(b − σ
1−σ

w1−σ
t (1+r)1−σ

(p+(1+r)
σ−1
σ )1−σ

) >
w−σt (1+r)1−σ

(p+(1+r)
σ−1
σ )−σ

and so

to wt > w. Thus, for wt > w, there exists a unique pair (st, et) that
satisfies the KKT conditions. Note finally that the problem of the con-
sumer has always at least one solution because (s, e) → V (s, e) is con-
tinuous on the maximization domain, which is compact. Consequently,
the unique pair satisfying the KKT conditions in the two cases wt ≤ w
and wt > w is the unique solution to the problem of the consumer.
The case p = 0 follows by continuity. When γ = ∞, the condition

for et = 0 to satisfy the KKT conditions write now st =
p

p+(1+r)
σ−1
σ
wt

and lim
et→0

p′(et)(b − σ
1−σ

w1−σ
t (1+r)1−σ

(p+(1+r)
σ−1
σ )1−σ

) ≤ w−σt (1+r)1−σ

(p+(1+r)
σ−1
σ )−σ

. The second in-

equality is true if and only if wt < (b1−σ
σ

)
1

1−σ (
p+(1+r)

σ−1
σ

1+r
)1−σ. Thus, for

wt < (b1−σ
σ

)
1

1−σ (
p+(1+r)

σ−1
σ

1+r
)1−σ, (

p

p+(1+r)
σ−1
σ
wt, 0) satisfies the KKT con-

ditions. Consider now an interior solution. It satisfies the equations (10)
and (33). For (33) to have a solution, the necessary and sufficient con-
dition is now: lim

et→0

1
p′(et)

< lim
et→0

( wt−et
p(et)+(1+r)

σ−1
σ

)σRσ−1b− σ
σ−1

wt−et
p(et)+(1+r)

σ−1
σ
,
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which is equivalent to wt > (b1−σ
σ

)
1

1−σ (
p+(1+r)

σ−1
σ

1+r
)1−σ. Hence for wt >

(b1−σ
σ

)
1

1−σ (
p+(1+r)

σ−1
σ

1+r
)1−σ, there is a unique pair (st, et) that satisfies the

KKT conditions.
Note that h( wt−et

p(et)+(1+r)
σ−1
σ

) increases with wt, which shows that e(wt)

is increasing.
To see that w → x(w) is initially increasing on [w,∞), note that

x(w) = 0, while x(w) > 0 on [w,∞).
To get lim

wt→∞
x(wt), rewrite first (33) at the optimum:

1

p′(e(wt))
= (

wt − e(wt)
p(e(wt)) + (1 + r)

σ−1
σ

)σRσ−1b− σ

σ − 1

wt − e(wt)
p(e(wt)) + (1 + r)

σ−1
σ

Note that lim
wt→∞

1
p′(e(wt))

=∞, so it must be that lim
wt→∞

wt−e(wt)
p(e(wt))+(1+r)

σ−1
σ

=

∞. Thus, h( wt−et
p(et)+(1+r)

σ−1
σ

) ∼
wt→∞

( wt−e(wt)
p(e(wt))+(1+r)

σ−1
σ

)σRσ−1b. And then

( x(wt)
1−x(wt)

)σ ∼
wt→∞

p′(e(wt))e(wt)σ

(p+(1+r)
σ−1
σ )σ

Rσ−1b. This gives the three possible cases

of Proposition 10.
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