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Abstract

Mean growth of wealth (or GDP) is generally defined as the growth rate of average wealth, but

it can alternatively be defined as the average growth rate of wealth. While this raises an important

conceptual issue, we argue that stochastic stability should be used as a guide to safely discriminate

between the two notions of mean growth. Our discussion is illustrated on the class of continuous time

AK-type models subject to geometric Brownian motions. First, stability concepts are introduced

and applied to stochastic linear homogenous differential equations. Second, a preliminary application

to the canonical AK model is provided. It is readily shown that in this case exponential balanced

paths are not robust to uncertainty. Third, and more importantly, we evaluate the quantitative

implications of the alternative definition of mean growth on the seminal global diversification model

due to Obstfeld (1994).
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1 Introduction

In stochastic growth modelling, the concepts of mean growth and growth volatility are of course

central, and there exists a huge related empirical and theoretical literature (see Ramey and Ramey,

1995, for example). This paper is concerned with a key conceptual issue: the definition of mean

growth. As growth volatility is nothing more than the measurement of deviations from mean

growth, the latter conceptual question is essential. To make our arguments mathematically clear,

we shall illustrate our arguments on the class of continuous timeAK-type stochastic models, which

feature the benchmark endogenous growth structure, a widely chosen framework in the literature

(Obstfeld, 1994, Jones and Manuelli, 2005, Steger, 2005, or Boucekkine et al., 2014). It should be

recalled here that the AK structure is the reduced form of a bunch of fundamental endogenous

one-sector growth models ranging from learning-by-doing models to R&D-based growth models,

including those with human capital or public capital accumulation (see Barro and Sala-i-Martin,

1995, chapters 4, 6 and 7). Last but not least, because of the edge of knife property of endogenous

growth, even though the models do not have AK as a reduced form, they generally converge to

this form after transitional dynamics, see for example Jones and Manuelli (1990). Therefore,

studying stochastic stability of this class of models is key.

To formulate accurately our research question, suppose we are concerned with the growth of an

economic variable, say wealth, in an AK-economy subject to external shocks, typically modelled

as geometric brownian motions in the literature. In such a setting, how should we define mean

growth? Is it the growth rate of average (or expected) wealth, as it is generally the case in the

economic literature cited just above? Or alternatively the average (or expected) growth rate of

wealth? It’s important to note that in general there is no degree of freedom behind the questions

above, one cannot choose freely between the two definitions. For example if wealth were log-

normally distributed, it follows by Jensen’s inequality that the average growth rate of wealth -

second notion - is lower than the growth rate of average wealth - first notion.

In this paper, we claim that we can safely discriminate between the two definitions using the

concept of stochastic stability, which is easily operational in the class of models used in endogenous

growth theory: AK type models usually deliver linear stochastic differential equations for which

a large set of mathematical tools is available. It’s worth pointing out at this stage that while

neoclassical stochastic growth models have been the subject of a quite visible literature (see
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Brock and Mirman, 1972, Mirman and Zilcha, 1975, or Merton, 1975), no such a literature exists

for endogenous growth models. This is partly due to the fact that many of these models rely

on zero aggregate uncertainty as in the early R&D based models (see for example, Barro and

Sala-i-Martin, 1995, chapters 6 and 7). When uncertainty does not vanish by aggregation as in

de Hek (1999), the usual treatment consists in applying Merton’s portfolio choice methodology

(Merton, 1969 and 1971) to track mean growth and growth volatility as in Obstfeld (1994) and

Steger (2005) or more recently Boucekkine et al. (2014). Within this methodology, stochastic

stability is not an issue, and as in Obstfeld (1994), the analysis of mean growth usually relies on

the traditional latter definition (as growth rate of average (or expected) magnitudes).

It’s important to stress at this stage that one cannot address the issue of stochastic stability

of endogenous growth simply by adapting the available proofs in Brock and Mirman (1972)

or Merton (1975). For example, strict concavity of the production function is needed in the

latter in order to build up the probability measure for stability in distribution, so the strategy

cannot be applied to the benchmark stochastic endogenous growth model, the AK model with

random output technology. Rather, we simply rely on the specialized mathematical literature

on linear stochastic differential equations (Mao, 2011, or Khasminskii, 2012), and we are able to

straightforwardly state stochastic stability theorems. We then start illustrating these theorems

on the standard stochastic AK model (Steger, 2005). Strikingly enough, we ultimately show that

the typical (deterministic) balanced growth paths are hardly stochastically stable in our simple

framework. Even more, we show that the trivial equilibrium, k∗ = 0, is globally stochastically

asymptotically stable in the large and almost surely exponentially stable (that is, the optimal

paths almost surely collapse at exponential speed) even when productivity is arbitrarily high.

Kamihigashi (2006) states a similar convergence result for discrete time stochastic growth models.

However, as it transpires from the main result of this paper (Theorem 2.1, page 233), this discrete

time setting requires a bunch of nontrivial conditions. Our continuous time framework allows to

reach the same conclusion at a definitely much lower analytical cost. This said, Kamihigashi’s

work is extremely worthwhile in that it shows that the methodological problems outlined in this

note are not specific to continuous time frameworks.

More importantly, we claim that choosing this or that definition of mean growth is decisive in

the economic outcomes generated. To give an example, we revisit Obstfeld (1994)’s model on

the virtues of global diversification. Not surprisingly, stochastic stability holds if and only if the
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average growth rate is positive, a condition that is stronger than the requirement that the growth

rate of average wealth be positive. More importantly, we show that very different comparative

statics results obtain when one uses the second definition of mean growth, as one should in

view of stability conditions. More precisely, mean growth happens to be enhanced by financial

integration under conditions that would possibly lead to the opposite conclusion if one were to

use the definition of mean growth advocated in Obstfeld (1994). This property is most striking

in a specialized economy, where for example a fall in exogenous risk results in larger growth even

if the intertemporal substitution elasticity is smaller than one, despite the fact that a portfolio

shift does not happen.

This paper is organized as follows. Section 2 presents the mathematical background needed, and

a preliminary application to the stochastic AK model. Section 3 is the application to the global

diversification model. Section 4 concludes.

2 Stochastic Stability of Linear Stochastic Differential Equations

with an Application to the Canonical Stochastic AK model

2.1 Basic Mathematical Concepts and Properties

Consider the typical linear Ito stochastic differential equation

dx(t) = ax(t)dt+ bx(t)dB(t), t ≥ 0

with initial condition x(0) = x0 given, B(t) standard Brownian Motion, a and b constants. The

general solution takes the form

x(t) = x0 exp

{(
a− b2

2

)
t+ bB(t)

}
. (1)

Compared to the pure deterministic case (case b = 0), an extra negative term, − b2

2 shows up in the

deterministic part of the solution . It’s therefore easy to figure out why the noise term, bx(t)dB(t),

is indeed stabilizing. Incidentally, introducing some specific white noises is one common way to

“stabilize” dynamics systems. The pioneering work belongs to Khasminskii (2012) and some more

recent results can be found in Appleby et al. (2008) and references therein. Thus, the stability
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conditions under stochastic environments may well differ from the case with certainty. To tackle

seriously this issue, we display some useful preliminary definitions.

For simplicity, we only present results for scalar stochastic differential equations. First let us

consider a general stochastic differential equation of the form

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), t ≥ t0 (2)

with initial condition x(t0) = x0 given and B(t) standard Brownian Motion. Functions f(x(t), t)

and g(x(t), t) check

f(0, t) = 0 and g(0, t) = 0, ∀t ≥ t0.

Thus, solution x∗ = 0 is a solution corresponding to initial condition x0 = 0. This solution is

also called trivial solution or equilibrium solution.Then for the stability concept1, we take the

following definitions from the Definition 4.2.1 and 4.3.1, Mao (2011).2

Definition 1 (i) The equilibrium (or trivial ) solution (x∗ = 0) of equation (2) is said to be

stochastically stable or stable in probability if for every pair of ε ∈ (0, 1) and r > 0, there exists a

δ = δ(ε, r) > 0, such that, probability checks

P{| x(t;x0, t0) |< r for all t ≥ t0} ≥ 1− ε

whenever | x0 |< δ. Otherwise, it is said to be stochastically unstable.

(ii) The equilibrium solution, x∗ = 0, of equation (2) is said to be stochastically asymptotically

stable if it is stochastically stable and, moreover, for every ε ∈ (0, 1), there exists a δ = δ(ε) > 0,

such that,

P{ lim
t→+∞

| x(t;x0, t0) |= 0} ≥ 1− ε

whenever x0 < δ.

1Noticing, it should not be confused with the convergence to an invariant distribution, see for example the

setting of Brock and Mirman (1972) or Merton (1975). A non-degenerate distribution would never survive the

stability test of our Definition 1.
2See also Khasminskii (2012), section 5.3, page 152, section 5.4, page 155, and Definition 1 in section 5.4, page

157.
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(iii) The equilibrium solution, x∗ = 0, of equation (2) is said to be stochastically asymptotically

stable in the large if it is stochastically stable and, moreover, for all x0

P{ lim
t→+∞

| x(t;x0, t0) |= 0} = 1.

(iv) The equilibrium solution, x∗ = 0, of equation (2) is said to be almost surely exponential stable

if

lim
t→+∞

sup
log | x(t;x0, t0) |

t
< 0 a.s.

for all x0.

We show now how the definitions above give rise to neat stability theorems when applied to

homogenous linear stochastic differential equations like those arising from endogenous growth

theory. Precisely, consider the equation

dx(t) = a(t)x(t)dt+ b(t)x(t)dB(t), t ≥ t0 (3)

with initial condition x(t0) = x0 given, B(t) standard Brownian Motion, a(t) and b(t) known

functions, we have solution as

x(t) = x0 exp

{∫ t

t0

(
a(s)− b2(s)

2

)
ds+

∫ t

t0
b(s)dB(s)

}
(4)

Then the following stability results can be demonstrated for the general linear stochastic equation

(3). The proof can be found in Mao (2011), examples 4.2.7 and 4.3.8, pages 117-119 and 126-127,

respectively.3

Proposition 1 Consider homogenous linear stochastic equation (3) and denote σ(t) =

∫ t

t0
b2(s)ds,

we have

• (i) σ(∞) < +∞, then the equilibrium solution, x∗ = 0, of equation (3) is stochastically

stable if and only if

lim
t→+∞

sup

∫ t

t0
a(s)ds < +∞.

3See also Khasminskii (2012), section 5.3, page 154, and section 5.5, page 159-160.
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While the equilibrium solution is stochastically asymptotically stable in the large if and only

if

lim
t→+∞

∫ t

t0
a(s)ds = −∞.

• (ii) σ(∞) = +∞, then the equilibrium solution, x∗ = 0, of equation (3) is stochastically

asymptotically stable in the large if

lim
t→+∞

sup

∫ t
t0

(
a(s)− b2(s)

2

)
ds√

2σ(t) log log(σ(t))
< −1, a.s. (5)

• (iii) Specially, if both a(t) = a and b(t) = b are constants, (5) holds if and only if

a <
b2

2
.

That is, equilibrium solution, x∗ = 0, of (3) is stochastically asymptotically stable in the

large if a < b2

2 .

• (iv) The equilibrium solution, x∗ = 0, of (3) is almost surely exponentially stable if a < b2

2 .

The last two results read that if a < b2

2 , then almost all sample paths of the solution will tend

to the equilibrium solution x∗ = 0 and the this convergence is exponentially fast. This is not

obviously the case in the deterministic case if a > 0. This is the key point behind the striking

results on the stochastic stability of balanced growth paths in the AK model shown here below.

2.2 Application to the Stochastic AK Growth Model

2.2.1 The Stochastic AK Model

Consider strictly increasing and strictly concave utility U and

max
c

E0

∫ ∞

0
U(c)e−ρtdt, (6)

subject to

dk(t) = (Ak(t)− c(t)− δk)dt+ bAkdW (t), ∀t ≥ 0 (7)
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where initial condition k(0) = k0 is given, positive constants δ and ρ measure depreciation and

time preference, b is volatility and W (t) is one-dimensional Brownian motion. Define Bellman’s

value-function as

V (k, t) = max
c

Et

∫ ∞

t
u(c)e−ρtdt.

Then this value function must satisfy the following stochastic Hamilton-Jacobi-Bellman equation

ρV (k) = max
c

{
U(c(t)) + Vk · (Ak(t)− c(t)− δk) +

1

2
b2A2k2Vkk

}
(8)

with Vk the first order derivative with respect to k. First order condition on the right hand side

of (8) yields

U ′(c) = Vk(k). (9)

Due to the strictly concave utility, the implicit function theorem gives the solution of (9), c∗(t) =

c∗(k(t)), which is optimal to the right hand side of (8). Substituting this optimal choice into (8),

it follows

ρV (k) = U(c∗(t)) + Vk · (Ak(t)− c∗(t)− δk) +
1

2
b2A2k2Vkk. (10)

To find an explicit solution, we take CRRA–Constant Relative Risk Aversion utility:

U(c) =
cγ

γ
, 0 < γ < 1.

It’s worth pointing out here that such a range of values for γ implies that U(0) = 0, that is

instantaneous utility is bounded from below. Therefore, consumption going to zero is not ruled

out from the beginning. Moreover, the assumed γ-values imply that the intertemporal elasticity

of substitution (equal to 1
1−γ ) is above unity, which has the typical economic implications on the

relative size of the income vs substitution effects. This will reveal important for the stochastic

stability results obtainedhere below. The first-order condition yields the optimal choice

c∗ = V
1

γ−1

k .

Substituting into the HJB equation (10), we have

ρV (k) = Vk · (A− δ)k +
1− γ

γ
V

γ
γ−1

k +
1

2
b2A2k2Vkk. (11)
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Parameterizing the solution as

V (k) = H1−γ k
γ

γ
,

with constant H undetermined, and substituting into (6), it is easy to obtain

1

H
=

ρ

1− γ
+

b2A2γ

2
− γ(A− δ)

1− γ
. (12)

Thus, the optimal choice is

c∗ =
k

H
.

Then the dynamics of optimal capital accumulation follow

dk(t) =

(
A− δ − 1

H

)
k(t)dt+ bAkdW (t) (13)

which is a linear stochastic differential equation and the explicit solution is

k(t) = k(0) exp

{[(
A− δ − 1

H

)
− b2A2

2

]
t+ bAW (t)

}
. (14)

Two observations are in order here. First of all, it is worth pointing out that in the absence of

uncertainty, that is when b = 0, one gets the typical results: in particular, for any initial condition

k(0) > 0, the economy jumps on the optimal path given by (14) under b = 0, and the growth

rate is exactly A−δ−ρ
1−γ . The growth rate is strictly positive if and only if A > δ + ρ given that

0 < γ < 1. Since there are no transitional dynamics, the convergence speed to the balanced

growth path is infinite. Second, as already mentioned earlier, it is easy to see from the explicit

solution above that due to the extra negative term, − b2A2

2 , the stability conditions may differ

from the deterministic case.

2.2.2 Stochastic Stability of the AK Model

It is easy to check in AK−model, σ(t) =

∫ t

0
bAds = bAt. Therefore, σ(∞) = +∞.

From Proposition 1, the capital stock tends to equilibrium k∗ = 0 if

A− δ − 1

H
<

b2A2

2
.

Substituting 1
H from (12) into the above inequality, we have

A− δ − ρ

1− γ
− b2A2γ

2
+

γ(A− δ)

1− γ
<

b2A2

2
,
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which is equivalent to

F (A) ≡ b2(1− γ2)A2

2
−A+ (ρ+ δ) > 0, with 1− γ2 > 0. (15)

Obviously, F (A) is a second degree polynomial in term of A and opens upward. Denote ∆ =

1− 2b2 (1− γ2)(ρ+ δ).

Thus, (a) if ∆ < 0, that is, b2 > 1
2(1−γ2)(ρ+δ)

, we have F (A) > 0, for any A; (b) if ∆ ≥ 0, i.e.,
1

2(1−γ2)(ρ+δ)
≥ b2 then F (A) > 0 for A ∈ (0, A1)∪(A2,+∞), with Ai, i = 1, 2, are the two positive

roots of F (A) = 0.

The above analysis is concluded in the following:

Proposition 2 Consider problem (6) with constraint (7). The equilibrium k∗ = 0 is (globally)

stochastically asymptotically stable in the large and almost surely exponentially stable, if and only

if one of the two following conditions hold: (a) b2 > 1
2(1−γ2)(ρ+δ)

and for any A > 0; or (b)
1

2(1−γ2)(ρ+δ)
≥ b2 and A ∈ (0, A1) ∪ (A2,+∞), with

A1 =
1−

√
1− 2(δ + ρ)b2(1− γ2)

b2(1− γ2)
, A2 =

1 +
√
1− 2(δ + ρ)b2(1− γ2)

b2(1− γ2)
.

The final proposition is striking at first glance. In contrast to the deterministic case, where

the economy will optimally jump on an exponentially increasing path provided A > ρ + δ, it

turns out that under uncertainty, our economy almost surely collapses (at an exponential speed)

for a large class of parameterizations. Two engines are driving this result. First, the size of

uncertainty as captured by parameter b matters: a too large uncertainty in the sense of condition

(a) of Proposition 2 will destroy the usual deterministic growth paths even if productivity is

initially very high (so even if A >> δ + ρ). Second, since 0 < γ < 1, we are in the typical case

where uncertainty boosts contemporaneous consumption at the expense of savings and growth

because the inherent income effects are dominated by the intertemporal substitution effects. In

such a case, even if uncertainty is not large in the sense of condition (b) of Proposition 2, the

usual deterministic growth paths are not robust to uncertainty. To understand more clearly the

associated productivity values, it is interesting to come back to the parametric case considered

by Steger (2005). Steger sets b = 1 and δ = 0. Then, the first part of condition (b) holds for ρ

small enough. Indeed, condition 1
2ρ(1−γ2)

≥ 1 is fulfilled for ρ going to zero and given 0 < γ < 1.
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The second part of condition (b) is more interesting. For ρ close to zero, and using elementary

approximation, one can easily show that A1 ≈ ρ and A2 ≈ 2−ρ(1−γ2)
1−γ2 . Condition (b) states that

the economy collapses almost surely and at an exponential speed either if A < A1 or A > A2.

Condition A < A1, which amounts to A < ρ, is compatible with the deterministic counterpart as

exponentially increasing paths require A > ρ when δ = 0. However, A > A2 is not since A2 > ρ

for ρ small enough: exponentially optimal increasing paths exist in the deterministic case but

not in the stochastic counterpart where the economy optimally almost surely collapses. In such

a case, balanced growth is not robust to uncertainty.4

3 Risk-Taking, Global Diversification and Growth Redux

3.1 Stochastic Stability and the Definition of Mean Growth

Obstfeld (1994) considers an AK version of the optimal portfolio model developed in Merton

(1969). The following equation describes optimal wealth accumulation and is identical to equation

[14] derived in Obstfeld (1994)5:

dW = [ωα+ (1− ω)i− µ]Wdt+ ωσWdz, (17)

4One intuitive way to understand why k(t) converges to zero as t → +∞ is to look at convergence in probability,

which is weaker than almost sure convergence used in this paper. Evidently, k(t) in (14) goes to zero in probability

when {(
A− δ − 1

H

)
− b2A2

2

}
t+ bAW (t) → −∞

in probability. For any t, this random variable has the same distribution as

Y (t) =

{(
A− δ − 1

H

)
− b2A2

2

}
t+ bA

√
tZ; (16)

where Z is standard normal distribution. To show that Y (t) → −∞, it is sufficient to show that Y (t)√
t

→ −∞. This

ratio satisfies
Y (t)√

t
=

{(
A− δ − 1

H

)
− b2A2

2

}√
t+ bAZ.

If condition
{(

A− δ − 1
H

)
− b2A2

2

}
< 0 holds, the mean of this random variable converges to −∞ as t → +∞

while the variance stays constant. Hence probability mass converges to −∞.
5For clarity, we use square brackets to label equations that appear in Obstfeld (1994) and round brackets for

equations in this paper.
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where α(> 0) and i(> 0) are the mean returns of risky capital and risk-free bonds, respectively,

µ(> 0) is the average propensity to consume out of total wealth, z is a Wiener process and

σ2(≥ 0) is the exogenous variance of the return on risky capital . In equation (17), ω(∈ [0, 1])

denotes the share of wealth invested in risky capital and its expression is given in equation [11],

that is:

ω ≡ α− i

Rσ2
> 0. (18)

Two cases occur, depending on whether ω is smaller than or equal to one. We will refer to the

first case as incomplete specialization - when the economy holds some risk-free bond - and to the

second case as complete specialization - when the economy has all its wealth invested in risky

capital. It is important to notice a major difference between the two configurations: when ω < 1,

Obstfeld (1994) shows that i equals r, the mean return on risk-free capital such that r < α, so

that a fall in exogenous risk σ2 always results in a portfolio shift away from risk-free capital, that

is, ω goes up. This first case occurs when Rσ2 > α − r, that is if (utility adjusted) risk is large

enough to prevent complete specialization. If, however, Rσ2 < α − r, specialization is complete

because risk is small enough to ensure ω = 1. In that case a fall in exogenous risk triggers a rise

in risk-free return i = α−Rσ2 that compensates for the fall in σ2 so that the economy keeps all

its wealth in risky capital and enjoys lower risk.

A straightforward application of Proposition 1 in Section 2 leads to the following lemma:

Lemma 1 (Stochastic Stability of the Balanced-Growth Path) Wealth tends exponentially

to infinity, along a balanced growth path, with probability one when time tends to infinity if and

only if ωα+ (1− ω)i− µ > 1
2ω

2σ2.

Obstfeld (1994) defines mean growth - g in his notation - as the growth rate of average wealth,

which is given in view of equation (17) by ωα + (1 − ω)i − µ or, equivalently after plugging the

expression of the share invested in risky capital, by g(E[W ]) = ε(i− δ) + (1+ ε)(α− i)2/(2Rσ2),

where ε(> 0) is the elasticity of intertemporal substitution in consumption and R(> 0) is relative

risk aversion (see equation [16] in Obstfeld, 1994). Lemma 1 shows that g(E[W ]) > 0 is necessary

but not sufficient for stochastic stability of exponential growth at a positive rate. In other words,

assuming g(E[W ]) > 0 would result in convergence to zero wealth with probability one provided

that g(E[W ]) < ω2σ2

2 . This is an example of the well-known fact that noise, if big enough, can
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significantly alter and sometimes overturn convergence as already shown in the AK case above

(Section 3).

Lemma 1 therefore suggests that mean growth should be defined as the average of the wealth

growth rate6, that is, E[g(W )] ≡ ωα + (1 − ω)i − µ − 1
2ω

2σ2 which can be simplified, using the

expression of ω in (18), to:

E[g(W )] = ε(i− δ) +
(α− i)2

2Rσ2

(
1 + ε− 1

R

)
(19)

where δ > 0 is the subjective rate of time preference. A few comments are in order. Because

wealth is assumed to be log-normally distributed, the property that E[g(W )] < g(E[W ]) follows,

of course, from Jensen’s inequality: the expected value of the log of wealth is smaller than the log

of expected wealth and a similar inequality applies to their derivatives with respect to time. More

importantly, one goes from the first definition of mean growth, used by Obstfeld (1994), to the

second, more appropriate, one by subtracting half of the (endogenous) variance of wealth, that

is, (α − i)2/(2R2σ2), hence the additional term −1/R in equation (19). Therefore, comparative

statics results are expected to be very different, as we show next.

3.2 Comparative Statics of Mean Growth

Straightforward computations lead to the following main result of this note.

Proposition 3 (Comparative Statics of Mean Growth) The dynamics of wealth accumu-

lation defined in equation (17) has two regimes:

(i) if Rσ2 > α − r (incomplete specialization): the average growth rate E[g(W )] is a decreasing

function of exogenous risk σ2 if and only if R(1 + ε) > 1, that is, for large values of either risk

aversion or of the intertemporal substitution elasticity.

(ii) if α − r > Rσ2 (complete specialization): the average growth rate E[g(W )] is a decreasing

function of exogenous risk σ2 if and only if R(1− ε) < 1, that is, for small values of risk aversion

and large values for the intertemporal substitution elasticity.

6In fact, Obstfeld (1994) uses later in his paper this notion for measurement purpose, e.g. in page 1321, although

not for the comparative statics analysis developed at the outset.
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Not surprisingly, comparing Proposition 3 and results in Obstfeld (p. 1315, 1994) shows important

differences. As shown in case (i) of Proposition 3, incomplete specialization results in larger

growth when exogenous risk falls down only for large enough values of either risk aversion or

of the intertemporal substitution elasticity. In contrast, Obstfeld (1994) claims that a portfolio

shift unambiguously improves growth, independent of R and ε. When the correct definition

of mean growth is used, this is no longer true. In addition, case (ii) of Proposition 3 shows

that the results obtained by Obstfeld (1994) for complete specialization can be overturned under

reasonable assumptions on parameters. A striking example is the case of unitary intertemporal

substitution elasticity, that is, ε = 1. Whereas this case implies that the growth rate of average

wealth is independent of exogenous risk in Obstfeld (1994) (see his equation [17]), case (ii) in

Proposition 3 shows that the average growth rate is in fact a decreasing function of exogenous

risk for all values of risk aversion. This property suggests that international financial integration

is likely to boost growth in economies that invest all their wealth in risky capital.

More generally, conditions ensuring that a fall in exogenous risk boosts growth for both com-

plete and incomplete specialization become clearer under the assumption that the intertemporal

substitution elasticity is smaller than one, which seems to accord better with empirical mea-

sures. Remember that in Obstfeld (1994), in this case growth unambiguously goes up under

incomplete specialization whereas growth slows down in specialized economies, following financial

integration. In contrast, Proposition 3 shows that using the correct definition of mean growth

delivers a more contrasted picture: when ε < 1, a fall in exogenous risk leads to an increase in

mean growth provided that relative risk aversion takes on moderate values, that is, if and only if

1/(1− ε) > R > 1/(1+ ε). For example, the latter inequalities are met when R = 1. The bottom

line is that because it leads to smaller exogenous risk, financial integration is expected to improve

mean growth for both complete and incomplete specialization under reasonable parameter values.

So as to clarify the intuition behind the striking differences with results reported in Obstfeld

(1994), we now focus on the case such that ε = 1, which leads to the well-known result that the

average propensity to consume out of total wealth is then given by the impatience rate, that is,

µ = δ. This assumption neutralizes the effect of exogenous risk on the consumption-wealth ratio,

which has been described in earlier papers and in Obstfeld (1994) in particular. We now explain

how a fall in exogenous risk affects mean growth. Again, two cases arise depending on the level

of exogenous risk.
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(i) if Rσ2 > α−r, specialization is incomplete because exogenous risk is so large that the economy

holds some risk-free capital (that is, ω < 1). It follows that the risk-free interest rate i = r and

that the expression for mean growth simplifies to:

E[g(W )] = r − δ +
(α− i)2

Rσ2︸ ︷︷ ︸
mean return effect

− (α− i)2

2R2σ2︸ ︷︷ ︸
variance effect

. (20)

The expression for mean growth in equation (20) reveals that two conflicting effects are at work.

The return effect is such that a fall in exogenous risk σ2 boosts welfare growth because, as shown

by Obstfeld (1994), the portfolio shift away from risk-free capital increases growth under the

assumption that risky capital has a larger mean return than risk-free capital. However, although

ignored by Obstfeld (1994), a variance effect also materializes, essentially because a larger share

in the risky asset implies that the endogenous variance of wealth goes up when exogenous risk

goes down. Stochastic stability of the balanced-growth path requires the variance effect to be

not too large but such a condition does not exclude that mean growth be a decreasing function

of exogenous risk, then overturning Obstfeld’s result, if risk aversion is less than one half.

(ii) if α − r > Rσ2, specialization is complete (ω = 1). It follows that the risk-free interest rate

adjusts to ensure i = α−Rσ2 > r and that the expression for mean growth simplifies to:

E[g(W )] = α− δ − σ2

2︸︷︷︸
variance effect

. (21)

Equation (21) makes clear what happens when specialization is complete. In contrast to case

(i), there is no return effect because the economy already benefits from full specialization so that

a fall in σ2 has no effect on the mean return - there is no portfolio shift. However, a variance

effect still occurs but it now has an opposite effect on mean growth compared to case (i). This

is because the endogenous variance of wealth now goes down when exogenous risk goes down, as

the risk-free return goes up to ensure that specialization remains complete in the face of a fall

in risk. Quite interestingly, an analysis based on the alternative but misleading notion of mean

growth, as in Obstfeld (1994), predicts that growth is not affected by such a fall in risk.

Relaxing the assumption that ε = 1 delivers similar intuitions. In case (i) the return effect

dominates the variance effect so that a fall in exogenous risk fosters growth if and only if risk
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aversion is large enough. In case (ii) there is no return effect and the variance effect, now

working in opposite direction, implies that growth improves after a fall in exogenous risk only

if risk aversion is not too large when the intertemporal substitution elasticity is smaller than

unity. In other words, our results about specialized economies accord with the well-documented

trade-off between growth and volatility under reasonable assumptions about attitudes toward risk,

for example if relative risk aversion equals one. In contrast, incomplete specialization leads to a

positive relationship between the mean growth and variance of wealth under unitary risk aversion.

Overall these results suggest that taking into account the variance effect on mean growth, which

has been ignored by Obstfeld (1994), yields the prediction that the effects of financial integration

on economies that specialize in risky capital do not qualitatively differ from those on economies

that hold some risk-free capital if reasonable parameter values are assigned to risk aversion and

intertemporal substitution.

To make the comparison even more transparent, we now reproduce and extend in Table 1 a

numerical example given in Obstfeld (1994). More precisely, Table 1 starts with the Example 1

that is presented in pages 1318-1319 of Obstfeld (1994) and that assumes R = 4 and ε = 1/2

in particular. Table 1 compares the magnitudes of both definitions of mean growth under this

parameterization and also, for robustness purpose, when R = 1 while all other parameter values

are unchanged.

Table 1. Numerical Values of E[g(W )] in Left Panel and g(E[W ]) in Right Panel

R = 4 R = 1

Autarky 1.41% 1.25%

Integration 1.75% 1.38%

R = 4 R = 1

Autarky 1.69% 1.75%

Integration 2.00% 1.63%

In line with the analytical characterization outlined above, comparing both panels in Table 1

confirms that the mean growth rate of wealth is lower than the growth rate of mean wealth.

More interestingly, comparing the rightmost columns of both panels reveals that, when R = 1,

the conclusion regarding growth that is obtained by Obstfeld (1994) is overturned when the

appropriate concept of mean growth is adopted. In fact, while the right panel predicts that

growth falls (by about 12 basis points) after integration in the case of full specialization, it turns

out that growth actually goes up (by about 13 basis points) as depicted in the left panel that

uses the appropriate definition of mean growth. Let us stress that although welfare computations
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reported in Obstfeld (1994) are not altered at all by stability considerations, the examples in

Table 1 further confirm that different comparative statics properties obtain when the stability-

related concept of mean growth is used, as it should be. Aside from theoretical concerns, this

is also relevant for empirical research, which typically aims at measuring the growth gains from

international financial integration.

4 Conclusion

The economic literature is extremely scarce on the stability of stochastic endogenous growth

models in contrast to the neoclassical growth model. This paper presents a simple mathematical

apparatus to appraise this task in continuous-time settings. We show why stability of balanced

growth paths inherent in the AK-like growth models need not be robust to uncertainty, the key

mathematical mechanism behind being the stabilizing properties of stochastic noise. We notably

argue that accounting for stochastic stability is most important in practice, and we illustrate

this by revisiting the seminal global diversification model due to Obstfeld (1994). Concretely, we

show, by way of analytical results and numerical examples, that the comparative statics results

derived in Obstfeld (1994) are misleading because they are based on an inappropriate notion of

mean growth: conditions ensuring that the exponential balanced-growth path is stable, in the

stochastic sense, reveal that mean growth should be defined as the average growth rate of wealth,

as opposed to the growth rate of average wealth. With such a definition in hand, we show that

international financial integration leads to very different comparative statics results and that it

is much more likely to boost growth, both for fully specialized economies that invest all their

wealth in risky capital and for economies that hold some risk-free capital.
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