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Abstract
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comments and remarks.
†Faculty of Economics and Business, University of Groningen, e-mail: l.dam@rug.nl

1



1 Introduction

The two main economic questions regarding climate change are (i) which policy measures

should be taken to combat the negative effects of climate change and (ii) how do we design

international environmental agreements to implement these policy measures? In this pa-

per, our focus is on the latter question. We develop a parsimonious model of international

environmental agreements. We argue that the three key issues that shape the form of inter-

national environmental agreements are that climate change is catastrophic, that countries

are sovereign, and that countries differ in their exposure to climate change. In this setting,

we characterize the optimal stable environmental agreement and show that it can be close

to the social planner outcome.

By catastrophic we mean an abrupt change in the climate. For instance, the rise in global

temperatures could trigger the melting of the Siberian permafrost. The subsequent release

of methane would lead to a further increase in temperature, leading to the release of more

methane and even further increase in temperature. This example is just one possible sce-

nario, but catastrophic shifts in ecological systems are a well-documented phenomenon

(Scheffer et al., 2001). Because catastrophes involve a great deal of uncertainty, both in

when it will happen and what precisely will happen, the economic cost will be large com-

pared to the cost due to any gradual change. For tractability, we focus on the case where

the only cost of climate change is the cost of a catastrophic shift. Moreover, the catastrophe

is a random event and the probability that the catastrophe occurs decreases if resources

are allocated to abatement. The recent literature (see Polasky et al. (2011) and the ref-

erences therein) has devoted much attention to this aspect of climate change, focusing on

the optimal choice of one decision maker. However, it is the joint (or aggregate) level of

abatement that determines by how much this probability decreases, and our contribution

is to extend the analysis to multiple decision makers, i.e. countries.

Climate change is global in scale, so limiting the negative effects requires international

cooperation. The Kyoto protocol shows that the world is aware of the necessity for coop-
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eration. Unfortunately, as the failure of the USA to ratify the Kyoto protocol illustrates,

it also shows that any international environmental agreement needs to entice countries to

participate: given that all other countries join, it should be optimal for a country to join as

well. This imposes constraints on the form an international environmental agreement can

take (see Barrett (1994, 2003) for an analysis of the deterministic case).

Participation constraints will differ between countries, since some countries will be more

severely affected by a climate catastrophe. For instance, a rise in sea level is a serious issue

for a low-lying country like the Netherlands, whereas the direct cost for a country without

coastal areas, like Switzerland, will be zero.

These three features are modeled in the following way.1 There are two states of the world:

pre-catastrophe and post-catastrophe. Pre-catastrophe, all countries have the same level of

net production. The catastrophe permanently destroys a fraction of net production, where

the fraction differs between countries. In each period of time a catastrophic shift happens

with some probability. Countries can allocate resources to abatement: the higher aggregate

abatement, the lower the probability of a catastrophe.

First, we compare the social optimum to the stationary Nash equilibrium. As expected, the

Nash equilibrium is inefficient. The first source of inefficiency is that there is not enough

abatement in the Nash equilibrium. The second source of inefficiency is more subtle. In

general, in our framework, welfare decreases if prior to the catastrophe some countries

abate more than others, i.e. given an aggregate level of abatement, welfare is highest when

all countries abate the same amount. Since the incentive to abate is stronger if a country

is hurt more by the catastrophe, in the Nash equilibrium the level of abatement will differ

between countries and this is an additional cause for welfare to decrease.

Second, we examine stable international environmental agreements, i.e. an international

1Interestingly, Dutta and Radner (2006, 2009) claim to address the same three features in their model
of international environmental agreements. However their model is deterministic and abatement enters
both the objective function and the state equation in a linear fashion. While this allows them to fully
characterize the set of Nash-equilibria even when countries are heterogeneous, none of the features of a
catastrophic shift appear in their approach.
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environmental agreement in which every country joins and cooperation is sustained by

trigger strategies. Since the outside option for some countries is more attractive than for

others, the distribution of abatement among countries tends to be unbalanced. This im-

balance implies that in general the social optimum cannot be implemented by a stable

international environmental agreement. However, in most circumstances, it is feasible to

implement an abatement scheme with the same level of aggregate abatement as the so-

cial optimum. The difficulty is to persuade all countries to join this abatement scheme.

Countries with little exposure to the negative effects of climate change will only join an in-

ternational environmental agreement if their abatement requirements are low. The burden

than falls disproportionally on countries that are severely impacted by the catastrophe.

As discussed in the previous paragraph, welfare decreases if abatement is less evenly dis-

tributed among countries. Therefore, in the optimal stable international environmental

agreement aggregate abatement will be (slightly) less than in the social optimum (but

substantially higher than in the Nash equilibrium).

Third, most of the literature on international environmental agreements focuses on (in-

finitely) repeated games. Our model is a stochastic game with an absorbing state. In this

setting the usual folk theorems do not apply and we show that very patient players may

actually cause lower levels of abatement in the optimal stable international environmen-

tal agreement. Note that one critique of the Stern report (Stern, 2007) has been that it

overemphasizes the cost of climate change by choosing a very low discount rate (Nordhaus

(2007) is the most vocal critic). We provide one reason why this critique may not be valid:

if abatement is mainly an instrument to prevent catastrophes, then its benefits are not

long-run, but rather the benefits occur before the catastrophe takes place. This encourages

a somewhat impatient decision maker to invest in abatement, but a very patient decision

maker will disregard it.

Our paper brings together two strands of the literature.2 There is an extensive literature

2Due to the inherent dynamics of the problem, we focus on the part of the literature, which the dy-
namics is explicit. Another approach is Barrett (2013), who models the climate catastrophe as a (static)
threshold public good game, where passing the (potentially unknown) threshold is interpreted as a cli-
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on the stability of international environmental cooperation (van der Ploeg & de Zeeuw,

1992; Fuentes-Albero & Rubio, 2010; Breton, Sbragia, & Zaccour, 2010). In this literature,

there are usually immediate benefits of abatement, since abatement marginally improves

the state of the environment. We focus on non-marginal improvements, since one of the

benefit of abatement is that it might postpone (or even avoid) a catastrophe. We are not the

first to investigate catastrophic shifts: see for instance Tahvonen and Salo (1996); Nævdal

(2001); Mäler, Xepapedeas, and de Zeeuw (2003); Wagener (2003); Heijdra and Heijnen

(2013). However, most of these papers focus on a single decision maker or, occasionally,

multiple decision makers. But when this literature considers the case of multiple decision

makers they do not focus on the question whether the cooperative outcome can be sustained

in a Nash-equilibrium.3 This paper is an attempt to investigate these issues in a simple

framework.

The outline of the paper is as follows. Section 2 introduces the model. Theoretical results are

presented in section 3. A numerical example is presented in section 4 and we discuss the role

of the discount factor and country heterogeneity. In Section 5, the effect of irreversibility

is analyzed. Section 6 concludes. All proofs are in the appendix.

2 Model

2.1 The environment

In order to get tractable results, the representation of the environmental catastrophe will

be extremely parsimonious, i.e. we only distinguish between a pre-catastrophe state of the

world and a post-catastrophe state of the world. While there are differences in environ-

mental quality within each of these states, these are unimportant compared to the huge

mate catastrophe. While this captures the idea that improvements (or deteriorations) are non-marginal,
it disregards the fact that it is more costly to reverse climate change.

3A good, recent example of this is van der Ploeg and de Zeeuw (2014): their modeling framework can
be seen as a more general version of our model. However, they only compare the cooperative and the
noncooperative outcome without addressing the question whether cooperation is stable.
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deterioration of environmental quality as a result of the catastrophe. Moreover, the timing

of the catastrophe is uncertain.

Formally, the state of the environment at time t = 0, 1, 2, . . . is denoted by Ωt. The envi-

ronment is either in a good state (Ωt = G) or the environment is in a bad state (Ωt = B).

The good state is pre-catastrophe and the bad state is post-catastrophe. We start in the

pre-catastrophe world: Ω0 = G. In each period there is a probability p of staying in the

good state, the bad state is irreversible. 4

2.2 The economy

There are n countries, indexed by i = 1, . . . n. Each country internally follows the Golden

Rule and maximizes net production. The catastrophe reduces net production because it

reduces the marginal productivity of capital. Net production in country i is y (if Ωt = G)

and αiy (if Ωt = B), where αi ∈ (0, 1).5 The effect of a catastrophe is a decrease in net

production and αi is a measure of how much country i is hit by the catastrophe. Countries

are labeled such that α1 ≥ α2 ≥ · · · ≥ αn, i.e. we rank countries from least to most hit.

Country i invests mi ≥ 0 in abatement. The remainder of net production is consumed

and gives country i an instantaneous utility of u(y − mi) (if Ωt = G) or u(αiy − mi) (if

Ωt = B), where the utility function u(·) is increasing, strictly concave and satisfies the

4One example to motivate this reduced form approach is the Allee effect. The normal growth model for
the population of a species is the logistic growth model, enriched with an Allee effect. The Allee effect is
the phenomenon that if the population falls below a certain critical size, then the population is no longer
sustainable and will go extinct. Suppose that the population is not extinct and at the steady state level.
In addition, suppose that there are random events that influence the population size, such as droughts or
a decreased presence of predators. As long as the impact of these random events is small, population size
will quickly return to the steady state level. However, a severe negative shock could push the population
level below the minimum threshold and cause extinction. In terms of our model, this is a catastrophic shift
from G to B which happens with probability p, i.e. the probability of a sufficiently large negative shock.

5Net production is production minus investment in capital. For example, suppose that the production
function is f(k) =

√
αk, where α = 1 pre-catastrophe and α = αi post-catastrophe. Moreover, let ψ

denote the depreciation rate. Then net production is f(k)− ψk. Under the golden rule, net production is
maximized: maxk f(k)−ψk = α

4ψ . Define y = 1
4ψ and we see that net production is y before the catastrophe

and αiy after.
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Inada conditions. Moreover, the countries are prudent: u′′′ ≥ 0.6 Countries maximize the

discounted sum of instantaneous utility, which is referred to as the welfare of country i.

Welfare is normalized by multiplication with a factor (1− δ).

Let

Yi(Ωt) =

{
y if Ωt = G

αiy if Ωt = B

denote net production and let mit denote abatement of country i at time t. Then the

welfare of country i at time t is

Vi(Ωt) = (1− δ)E
∞∑
s=t

δt−su(Yi(Ωt)−mit),

where δ ∈ (0, 1) is the discount factor. Welfare can be written recursively as

Vi(Ωt) = (1− δ)u(Yi(Ωt)−mit) + δEt[Vi(Ωt+1) | m1t, · · · ,mnt]. (1)

In principle, country i may choose a different level of abatement each period. However,

our focus will be on stationary behavior, where abatement only depends on the state.

Consequently, the time subscript is frequently dropped.

2.3 Abatement and welfare

Let M =
∑

imi denote aggregate abatement. We assume that the transition probability

depends on aggregate abatement: p(M), where p(·) is increasing, concave and p < 1.

Remark that due to the irreversibility of the bad state, there will be no abatement post-

catastrophe. Furthermore, in all cases we examine abatement is time-invariant. Therefore,

mi will denote the level of abatement of country i pre-catastrophe. An abatement scheme

is a vector (m1,m2, . . . ,mn,M), where M =
∑

imi. Using the recursive formulation in (1),

6Given that in our model countries abate to minimize the probability of a catastrophe, we have this
assumption in common with the literature on optimal loss prevention (Eeckhoudt & Gollier, 2005). However
that literature deals with static loss prevention with a single decision maker whereas we study dynamic
loss prevention with multiple decision makers.

7



welfare in the good state for country i in this abatement scheme is denoted by Vi(mi,M)

and is implicitly given by

Vi(mi,M) = (1− δ)u(y −mi) + δp(M)Vi(mi,M) + δ(1− p(M))u(αiy),

where the last term is the discounted welfare of being in the bad state. Hence:

Vi(mi,M) =
(1− δ)u(y −mi) + δ(1− p(M))u(αiy)

1− δp(M)
.

It can easily be shown that Vi is decreasing in mi and increasing in M .

2.4 Comparison to other models

When formulated in this manner, we appear to have a standard public good game where the

welfare of country i depends negatively on its own level of abatement and positively on the

aggregate level of abatement. However, this is only true if all countries abate at a constant

level when Ωt = G. The Nash equilibria we discuss in Section 3 are shaped primarily by

dynamic consideration (what is the gain of deviating from a certain abatement scheme?).

Even the social planner solution (which effectively maximizes the sum of the welfare of the

countries) has some unusual features such as the fact that the benefit (which depend on M)

and the cost of abatement (which depend on mi) enter the welfare function non-separably.

For instance, an increase in total abatement leads to a decrease in the marginal cost of

abatement for each country. This is effect is usually absent in public good games.

To be able to highlight some of the differences between our approach and the approach as

taken by Barrett (1994) and the subsequent literature, let us briefly sketch a model without

catastrophic shifts. Suppose that aggregate abatement yields immediate benefits B(M,α),

which is an increasing, concave function (in M) that satisfies the Inada-conditions. Coun-

tries are still heterogeneous: the benefit of country i is B(M,αi), where ∂B
∂αi

< 0, and country

1 is still affected least by environmental problems, or phrased alternatively, receives the

largest benefits. Then the welfare of each country in each period is:

Wi(mi,M) = u(y −mi) +B(M,αi)
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The stage game is one where each country simultaneously sets abatement. The stage game

is infinitely repeated. From the Folk Theorem we know that if for each country welfare in

the socially optimal outcome exceeds welfare in the Nash equilibrium of the stage game

and the discount factor is sufficiently close to 1, then the socially optimal outcome can be

enforced.

As Dutta (1995) and Levine (2000) show, these results do not generalize to stochastic

games with absorbing states.7 In the game presented here, due to the absorbing state it

becomes difficult to punish very patient players. Note that punishment is only possible in

the good state (in the bad state utility is always equal to u(αiy)). Since very patient players

put little weight on the present (good) state, it may not be possible to set punishments at

an appropriately high level. Both in terms of interpretation and in terms of the structure of

the set of equilibria, a stochastic game differs from the standard infinitely repeated game.

3 Theoretical results

In this section, we derive the equilibrium conditions for three different scenarios and charac-

terize their properties. The benchmark is the social planner solution (SP), where abatement

levels are chosen such that joint welfare is maximized. Then we examine a stationary Nash

equilibrium (NE), where all countries chose abatement independently. Finally, we examine

the joint welfare maximizing Nash-equilibrium that can be sustained using trigger strate-

gies. We will refer to the final scenario as a stable international environmental agreement

(SA).

7Note that if we fix the player’s strategies in a stochastic game, then this induces a Markov chain over
the state space. Dutta (1995) shows that if this Markov chain is irreducible for any choice of the player’s
strategies, then the set of equilibrium payoffs approaches the entire individually rational set of payoffs as
the discount factor approaches one (which is a version of the Folk Theorem). Levine (2000) shows that
this result does not hold when the Markov chain is reducible.
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3.1 Social planner

The social planner solution is to maximize∑
i

Vi(mi,M)

subject to ∑
i

mi = M and mi ≥ 0 for all i

Before we present the solution, note that if the social planner want to implement a desired

level of aggregate abatement, then the efficient way to do achieve this is by setting the

same level of abatement in each country. Basically, this is the equimarginal principle in

action: the social planner allocates abatement to the country with the lowest marginal cost

of abatement. In the optimum, the marginal cost of abatement needs to be the same. But

since the countries are identical before the catastrophe, this means that abatement is the

same in all countries. Let m1 = m2 = . . . = mn ≡ µ. Define MSP = nµ as the level of

aggregate abatement in the social planner solution. We make the following assumption:

Assumption 1. There is an interior social planner solution: µ > 0.

This is obviously the interesting case to examine: the divergence between the socially

optimal outcome and the competitive outcome arises because usually in the latter case

there is underabatement. This situation only occurs if the social planner abates a strictly

positive amount.

Note that if W is the maximum aggregate welfare (i.e. welfare in the social planner solu-

tion), then by the principle of optimality:

W = max
µ

n(1− δ)u(y − µ) + δp(nµ)W + δ(1− p(nµ))
∑
i

u(αiy)

Hence, the optimal level of abatement in each country is determined by

−n(1− δ)u′(y − µ) + nδp′(nµ)[W −
∑
i

u(αiy)] = 0. (2)
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Substituting W =
∑

i Vi(µ, nµ) yields, after some tedious algebra, an implicit expression

for abatement per country in the social planner solution:[
nu(y − µ)−

∑
i

u(αiy)

]
f(nµ) = u′(y − µ), (3)

where f(M) ≡ δp′(M)/(1− δp(M)).8

3.2 Stationary Nash equilibrium

In the Nash-equilibrium, in each period every country independently sets its abatement

level. Note that this is a stochastic game with a finite state space. A common equilibrium

concept is a stationary equilibrium, where the strategy does not depend on history or

time. In our setting, this means that we have to determine the level of abatement for

each country when the environment is in the good state. Note that an abatement scheme

(m1,m2, . . . ,mn,M) will yield welfare Vi(mi,M) to country i. Then we apply the one-

stage deviation principle to find the equilibrium level: for each country, it should not be

welfare-improving to deviate from mi at any single stage of the game.9 Formally:

Definition 1. An abatement scheme (mNE
1 ,mNE

2 , . . . ,mNE
n ,MNE) is a stationary Nash

equilibrium when, for all i,

mNE
i ∈ arg max

m≥0
(1− δ)u(y −m) + δp(MNE

−i +m)V NE
i + δ(1− p(MNE

−i +m))u(αiy),

where V NE
i = Vi(m

NE
i ,MNE) and MNE

−i =
∑

j 6=im
NE
j .

Using the definition, we see that mNE
i is determined by

−(1− δ)u′(y −mNE
i ) + δp′(MNE)

[
V NE
i − u(αiy)

]
≤ 0, (4)

where the inequality holds if mNE
i > 0.10 Substituting

V NE
i =

(1− δ)u(y −mNE
i ) + δ(1− p(MNE))u(αiy)

1− δp(MNE)
,

8Note that due to concavity of u and p, the first-order condition in (2) is a necessary and sufficient for
a maximizer. In the appendix, we show that (3) has a unique solution.

9Observe that although each country selects a single abatement level, this level is determined by dynamic
considerations.

10Note that due to concavity of u and p, the first-order condition in (4) is a necessary and sufficient for
a maximizer.
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we get

−(1−δ)u′(y−mNE
i )+δp′(MNE)

[
(1− δ)u(y −mNE

i ) + δ(1− p(MNE))u(αiy)

1− δp(MNE)
− u(αiy)

]
≤ 0

which simplifies to

[
u(y −mNE

i )− u(αiy)
] δp′(MNE)

1− δp(MNE)
≤ u′(y −mNE

i ),

or [
u(y −mNE

i )− u(αiy)
]
f(MNE) ≤ u′(y −mNE

i ) for all i. (5)

Compared to (3) we see that in the Nash equilibrium country i only takes into account

its own benefit of abatement (i.e.
[
u(y −mNE

i )− u(αiy)
]
). This is the classic freeriding

problem.

In general it is hard to proof existence of equilibria in stochastic games, especially when

the action space is not finite or countable infinite.11 Therefore, we present the following

condition under which the Nash-equilibrium does not only exist, but is also unique.

Proposition 1. If f is decreasing, then there is a unique stationary Nash-equilibrium.

Note that when f is decreasing, abatement is a strategic substitute and, therefore, a country

will abate less if other countries abate more. Formally:

Assumption 2. Abatement is a strategic substitute, i.e. f is decreasing.

The stationary Nash-equilibrium has the following properties:

Proposition 2. Abatement is weakly increasing: 0 ≤ mNE
1 ≤ · · · ≤ mNE

n . Moreover:

1. Suppose j < k. Then mNE
k = 0 implies mNE

j = 0.

2. mNE
k = mNE

j > 0 if and only if αk = αj.

Countries, that are more severely affected by the catastrophe, will abatement more. More-

over, it is possible that the least affected countries do not abate at all.

11Stochastic games were introduced by Shapley (1953), who shows that Markov perfect equilibria exist
when the action and state space are finite. Although similar theorems now exist for more general games,
existence theorems do not exist for the most general case. See the discussion in Fudenberg and Tirole
(1991, pp. 503–505).
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Proposition 3. In the stationary Nash equilibrium the aggregate level of abatement is less

than in the social planner solution: MNE < MSP .

This shows that the Nash equilibrium is inefficient in two ways. There is not enough

abatement and the abatement is not distributed efficiently among countries.

3.3 Stable international environmental agreements

In an international environmental agreement, the countries jointly agree on an abatement

scheme. The agreement is supported by trigger strategies, i.e. if any country deviates

from the agreement, then from that period onward we enter a punishment regime. For the

moment, we will assume that if country i deviates, then it will be punished in such a manner

that its welfare after deviation is at most the welfare it would receive in the stationary

Nash-equilibrium i.e. Ṽi ≤ V NE
i . In the next section, where we present a numerical example,

different punishment regimes are discussed.

The incentive constraints have two peculiar features. First, incentive constraints are not

independent: overabatement by one country changes the incentives for the other countries.

In particular, it makes it more attractive for other countries to deviate. Therefore, if one

country voluntarily abates more, other countries may deviate from the optimal scheme. It

is tempting to argue that if a country wants to abate more, then welfare can be increased by

letting this country abate more and reducing the levels for the other countries. In general

this is not true, since a greater spread in the abatement levels will decrease joint welfare.

Hence, any deviation from the abatement scheme, including upward deviations, need to

be punished. Second, it is not necessarily true that more patient players have less strict

incentive constraints (for reasons outlined at the end of Section 2.4). Therefore, we expect

that there is an optimal discount rate that is most conducive to cooperation.

An abatement scheme (m1, · · · ,mn,M) leads to an incentive constraint for each country. If

country i does not deviate, then it receives welfare Vi(mi,M). The most attractive deviation
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gives welfare:

max
m≥0

(1− δ)u(y −m) + δp(M−i +m)Ṽi + δ(1− p(M−i +m))u(αiy).

Then the incentive constraint for country i is

ICi : Vi(mi,M) ≥ max
m≥0

(1− δ)u(y −m) + δp(M−i +m)Ṽi + δ(1− p(M−i +m))u(αiy).

Observe that the RHS of the incentive constraint is a function of M−i, i.e. abatement by

all countries except i. It turns out that in the analysis, it is convenient to first investigate if

a certain level of aggregate abatement can be sustained by an international environmental

agreement. We say that an international environmental agreement is stable if the incentive

constraint for all countries is satisfied. Conditional on M , we have M−i = M − mi and

both the LHS and the RHS of ICi are functions of mi and M .

Since it is trivial to enforce an abatement scheme in which M = MNE, and since welfare

can be increased by abating more, we focus on abatement schemes where M > MNE. We

can show the following.

Lemma 1. Conditional on the aggregate level of abatement M , there exist a bound on

abatement zi such that country i will join an environmental agreement when its contribution

mi does not exceed zi, i.e. ICi =⇒ 0 ≤ mi ≤ zi(M).

Therefore, countries maximize joint welfare under the following constraints:

max
mi,M

∑
i

Vi(mi,M)

such that ∑
i

mi = M

0 ≤ mi ≤ zi(M) for all i

Conditional on the aggregate level of abatement, we can characterize how the burden will

be shared among the countries. Note that conditional on M , maximizing
∑

i Vi is equivalent

to maximizing
∑

i u(y −mi). To find the optimal allocation, we make use of the following

lemma:
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Lemma 2. Let m̃ be a feasible vector of abatement levels. Suppose that for some j and k,

0 ≤ m̃j < m̃k ≤ zk. Let m̂ = m̃ + εν, where ν is a vector such that νj = 1, νk = −1 and

all remaining entries are zero. Then there exists ε > 0 such that m̂ will strictly improve

welfare and m̂ is feasible.

The lemma implies the following

1. All countries for which the upper bound is not binding (mi < zi) have the same level

of abatement.

2. If for country i the upper boundary is binding (mi = zi), then this level of abatement

is smaller than the level of abatement for the countries for which the upper bound is

not binding.

Roughly speaking, in an optimal international environmental agreement the burden will

be shared equally. However, the requirement that the agreement is stable may lead to

deviations from this principle. In particular, countries with a binding incentive constraint

are allowed to abate less to ensure that they will not deviate from the environmental

agreement. Formally stated:

Proposition 4. Suppose MNE < M <
∑

i zi. The solution to the maximization problem

max
mi

Vi(mi,M)

such that ∑
i

mi = M

and

0 ≤ mi ≤ zi for all i

is unique and can be determined as follows. Construct the function

F(γ) = γ
∑
i/∈U(γ)

1 +
∑
i∈U(γ)

zi −M,

where

U(γ) = {i | zi ≤ γ}.
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There exists a unique γ∗ > 0 such that F(γ∗) = 0. The solution is given by

mi = zi for all i ∈ U(γ∗),

mi = γ∗ otherwise.

It is possible for the social planner solution and the optimal stable agreement to coincide.

Observe that if

µ ≤ min
i
zi(M

SP ), (6)

then the social optimum is a stable agreement and must therefore be the optimal agreement.

When (6) does not hold, stable agreements can still reach the same level of aggregate

abatement as the social optimum. This is feasible if

MSP ≤
∑
i

zi(M
SP ). (7)

However this may not be the optimal agreement, since in general it will require some coun-

tries to abate less than other countries. Ceteris paribus, a greater divergence of abatement

among countries leads to a loss in welfare (in the sense of Lemma 2). By lowering the ag-

gregate level of abatement, abatement per country can be more homogeneous. This leads

to a tradeoff between the optimal amount of aggregate abatement and the efficient imple-

mentation of such a scheme. We expect that at the socially optimal level of abatement, the

latter effect dominates the first, as the numerical results in the next section confirm.12

4 Numerical example

In this section, we discuss how the three different scenarios behave with the aid of a

numerical example.13 The parameter values and functional forms are as follows. For the

12We have assumed that the utility function is strictly concave. Most of our results hold when the utility
function is linear with the notable exception of Lemma 2. With linear utility, the social welfare function
only depends on aggregate abatement, i.e. the distribution of abatement is not of importance. Social welfare
has a unique maximum at M = MSP and in the optimal stable agreement, aggregate abatement is as close
to MSP as the incentive constraints allow. Then (7) is the condition under which the social optimum and
the optimal stable agreement coincide.

13Matlab-code for all computations are available on request.
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transition probability, we use:

p(m) =
τm+ ϕ

τm+ 1
,

where τ = 100 and ϕ = 0.1. Note that without abatement the probability of staying in the

good state is ϕ. The utility function is u(c) =
√
c. Moreover y = 1 and δ = 0.8. We set n = 5

and αi = 0.95−0.0375(i−1). Country 1 loses 5% of net production due to the catastrophe

and country 5 loses 20%. We consider two punishment regimes. In the Nash-punishment

scenario after deviation countries will play the stationary Nash-equilibrium. In the maxmin-

punishment, all countries (except the deviator) will stop abatement completely. These two

punishment regimes represent the two extremes with maxmin is the harshest punishment

that the countries can inflict upon a deviator, while Nash-punishment is the most lenient

one (without actually rewarding deviators).

The aggregate level of abatement in the social planner solution is 0.1116, and hence the

abatement level per country is 0.0223. See Table 1 for the incentive constraints at this level

of aggregate abatement. We see that under Nash-punishment the social planner solution is

not feasible, since country 1, 2 and 3’s maximum abatement level is below 0.0223. However,

since
∑

i zi = 0.1326, it is feasible to have the same level of aggregate abatement in the

SEA. Under maxmin-punishment, the social planner solution is feasible. This shows that

if punishment is severe enough then the social planner solution can be enforced by a stable

environmental agreement. To see what shape the optimal agreement takes, we now focus

our attention on the Nash-punishment scenario.

Table 2 shows the abatement level for each country in each different scenario, as well as

aggregate abatement and the probability of staying in the good state. Though it is feasible

to have the same level of aggregate abatement as in the SP, it is optimal to abate a bit less

in the SA. In this case, the incentive constraint for the first four countries is binding and

country 5 provides the remainder of the abatement. In the NE, abatement is considerable

lower with the first three countries not abating at all. In both the SP and the SA, the

probability of staying in the good state is approx. 92.6%. In the NE, this figure is a bit

lower at 85.1%. While this may seem a relatively small difference, it implies that on average
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it takes 13.5 periods to transition to the bad state in both the SP and the SA, but it only

takes 6.7 periods in the NE.14

Table 3 shows the welfare for each country. Strikingly, in the SP countries 1 and 2 receive

lower welfare than in the NE (which of course is compensated by the huge welfare gain of

country 5). This is the reason why (even for small discount rates) the social planner solution

cannot be enforced by a trigger strategy. Hence, country heterogeneity is an obstruction

to reaching the first-best outcome.

In the previous section, we argued that there may be an optimal discount rate that is most

conducive to cooperation. When the discount factor is 0.8 and maxmin-punishments are

used, the social planner solution is a stable environmental agreement. The hypothesis is

then that this ceases to be true when the discount factor is sufficiently close to one. In

the numerical example, this happens at δ = 0.99996. Hence it not true that if the social

planner solution is a stable environmental agreement for a discount rate δ̄, then it is also

stable for all discount rates δ > δ̄. In that sense the effect of the discount rate on the

stability of the social planner solution is non-monotonic.

5 Reversible catastrophes

Finally, we briefly consider reversible catastrophes to investigate to what extent the irre-

versibility matters for the result. We achieve this by introducing a probability ν that the

state moves from B to G, independent of the amount of abatement in the bad state. This

exercise should be regarded as nothing more than a sensitivity analysis. It is not meant to

14Note that the aggregate level of abatement is severely restricted by country 1, 2 and 3, whose willingness
to contribute is much lower than country 4 and 5. Potentially, a partial coalition of country 4 and 5 could
perform better than the “grand coalition” since it faces less strict incentive constraints. However, in the
example, a partial coalition where country 4 and 5 cooperate performs worse than the grand coalition.
Calculation show that if country 4 and 5 cooperate, then in the welfare-maximizing outcome (subject
to the incentive constraint) the levels of abatement of country 4 and 5 are resp. 0.0216 and 0.0552 (and
the associated welfare levels are 0.9675 and 0.9493). The welfare of the participating countries is lower
than when all countries cooperate. Moreover, because aggregate abatement is also substantially lower, the
welfare of the non-participating countries also decreases.
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z
Country Nash Maxmin

1 0.0072 0.0236
2 0.0129 0.0365
3 0.0189 0.0476
4 0.0297 0.0579
5 0.0639 0.0686

Table 1: Incentive constraints when aggregate abatement is at the social planner level. The
column “Nash” is Nash-punishment and the column “Maxmin” is the maxmin-punishment.

Country SP SA NE
1 0.022 0.007 0.000
2 0.022 0.013 0.000
3 0.022 0.019 0.000
4 0.022 0.030 0.006
5 0.022 0.042 0.044

Aggregate 0.112 0.111 0.051
p 0.926 0.926 0.851

Table 2: Abatement in three different scenarios. In the stable environmental agreement
Nash-punishments are used.

Country SP SA NE
1 0.9856 0.9914 0.9906
2 0.9811 0.9848 0.9833
3 0.9766 0.9779 0.9759
4 0.9720 0.9690 0.9664
5 0.9672 0.9592 0.9476

Table 3: Welfare in three different scenarios. In the stable environmental agreement Nash-
punishments are used.
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ν = 0.01 ν = 0.05
mi 0.0539 0.0393
M 0.2696 0.1963

Pr[G] 0.2370 0.5341
V1 0.9742 0.9776
V̄1 0.9752 0.9769

Table 4: Reversible catastrophes, outcomes for different values of ν: mi is abatement per
country, M is aggregate abatement, Pr[G] is probability of being in the good state in the
long run, V1 is optimal average long-run welfare of country 1, V̄1 is the maxmin average
long-run welfare of country 1.

imply that an environmental catastrophe will just resolve without deliberate human action.

Since both B and G are now recurring states, we can use the folk theorem from Dutta

(1995) and therefore we focus on the case where δ = 1.15 Any abatement scheme results in

a long-run distribution over the two states. If countries do not discount future payoffs, then

they should maximize the long-run average payoff. Dutta (1995) shows that any feasible

payoff that is individually rational (i.e. it yields a higher payoff then the maxmin-payoff)

can be sustained by a Nash-equilibrium.

Table 4 shows the numerical results for the case where ν = 0.01 and the case where ν = 0.05.

When ν = 0.01, the catastrophe is more severe in the sense that after moving from G to B

on average the bad state lasts for 100 periods compared to 20 periods when ν = 0.05. This

results in higher abatement in the good state when ν = 0.01. Recall that country 1 has the

least incentive to invest in abatement: we only need to check if the individually rational

constraint holds for country 1. It turns out that the individual rationality constraint holds

for country 1 when ν = 0.05 but not when ν = 0.01.16 Only when the probability that the

catastrophe is reversible is sufficiently high, the social welfare maximizing outcome can be

sustained by a stable environmental agreement.

15All other parameters remain at the same value.
16The indifference point is at ν ≈ 0.03386.

20



6 Concluding remarks

In this paper, we develop a parsimonious model of international environmental agreements,

incorporating three key issues: climate change is catastrophic, countries are sovereign (and

hence there are participation constraints in designing international environmental agree-

ment) and countries differ in their exposure to climate change. Technically, this leads to a

stochastic game with an absorbing state whose equilibrium structure is very different from

the infinitely repeated games that are usually studied in the literature on environmental

agreements. Due to the irreversibility of the catastrophe, our intuition on discounting does

not work. Since the catastrophe is irreversible, the payoff of a very patient player will

be mainly determined by the payoff in the bad state. This limits the extent to which a

player can be punished when it deviates from an abatement scheme. Hence, international

environmental agreements could actually be easier to implement if decision makers are a

bit myopic. If catastrophes are reversible, then “folk theorems” again apply and the main

obstacle to implementing the social planner solution is the heterogeneity of countries: in

this case side payments may be essential to foster international cooperation.
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Appendix: Proofs

Proof that the social planner solution is unique We have to show that (3) has a

unique solution. Consider[
nu(y −m)−

∑
i

u(αiy)

]
f(nm) = u′(y −m)
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as a function of m. Observe that the LHS and the RHS of the equation are continuous

and differentiable functions in m. Note that the RHS is increasing in m. We show that

evaluated at any solution the LHS is decreasing in m. Since by assumption 1 a solution

exists, this implies uniqueness. The LHS is decreasing in m if[
nu(y −m)−

∑
i

u(αiy)

]
f ′(nm) < u′(y −m)f(nm). (8)

From (3) we see that for any solution:[
nu(y −m)−

∑
i

u(αiy)

]
=
u′(y − µ)

f(nµ)
(9)

Evaluating (8) at m = µ, substituting (9) and simplifying, we get:

f ′(nµ) < (f(nµ))2

Using the definition of f , this simplifies to δp′′(1− δp′) < 0 which is true.

Proof of Proposition 1 Suppose that the aggregate level of abatement is M . If this is

the aggregate abatement of a stationary Nash-equilibrium, then either mi is the solution

to

[u(y −mi)− u(αiy)] f(M) = u′(y −mi).

or mi = 0 when this solution does not exist. This defines a continuous function mi =

ζi(M). If f is decreasing, then it is straightforward to verify that there exists M̄i such that

ζi(M) = 0 for all M ≥ M̄i, and ζi is decreasing in [0, M̄i].
17 Observe that in any stationary

Nash-equilibrium
∑

i ζi(M) = M . We show that g(M) ≡ M −
∑

i ζi(M) has a unique

non-negative root. Note that g is continuous, g(0) < 0 and g(maxi M̄i) > 0, where the last

claim follows from the bound on ζi. Then by the intermediate value theorem, there g has

a non-negative root. Moreover, g is increasing and therefore the root is unique.

17We assume that maxi M̄i > 0. Note that if maxi M̄i = 0, then trivially there is a unique Nash-
equilibrium in which no country abates.
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Proof of Proposition 2 To prove the first statement, note that mNE
k = 0 implies that

(5) reduces to

[u(y)− u(αky)] f(MNE) ≤ u′(y)

Since αj ≥ αk, we have

[u(y)− u(αjy)] f(MNE) ≤ [u(y)− u(αky)] f(MNE).

Hence

[u(y)− u(αjy)] f(MNE) ≤ u′(y)

and mNE
j = 0.

To prove the second statement, note that abatement is positive and therefore the inequality

in (5) holds: [
u(y −mNE

i )− u(αiy)
]
f(MNE) = u′(y −mNE

i ).

Given, that u(·) is strictly increasing, it is obvious that mNE
k = mNE

j > 0 if and only if

αj = αk.

We prove the main claim by contradiction. Take two countries i and j such that i < j (and

therefore αi > αj) and suppose that mNE
i > mNE

j . Because of the first statement, we can

focus on interior solutions without loss of generality. From (5), we get:

f(MNE) =
u′(y −mNE

i )

u(y −mNE
i )− u(αiy)

=
u′(y −mNE

j )

u(y −mNE
j )− u(αjy)

.

Since mNE
i > mNE

j and u(·) is concave, u′(y −mNE
i ) > u′(y −mNE

j ). This implies:

u(y −mNE
i )− u(αiy) > u(y −mNE

j )− u(αjy)

u(y −mNE
i )− u(y −mNE

j ) > u(αiy)− u(αjy)

Note that the LHS of this inequality is negative and the RHS is positive. This contraction

establishes that mNE
i ≤ mNE

j .
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Proof of Proposition 3 First, suppose that every country abates a strictly positive

amount, i.e. for all i, equation (4) holds with equality. Then summing (4) over i, we get

δp′(MNE)

[∑
i

V NE
i − u(αiy)

]
= (1− δ)

∑
i

u′(y −mNE
i ) (10)

Let m̂ = MNE/n and let V̂i = Vi(m̂,M
NE). Observe that

∑
i V̂i >

∑
i V

NE
i since aggregate

welfare increases when abatement is distributed more equally (for a given level of aggregate

abatement) and, since u′′′ ≥ 0,
∑

i u
′(y−mNE

i ) ≥ nu′(y− m̂) by Jensen’s inequality. From

these observation and (10), we have

δp′(nm̂)

[∑
i

V̂i − u(αiy)

]
≥ (1− δ)nu′(y − m̂). (11)

In the social planner solution, we have

δp′(nµ) [W − u(αiy)] = (1− δ)nu′(y − µ). (12)

Now suppose, contrary to the claim of the Proposition, that m̄ ≥ µ. Then

(1− δ)nu′(y − m̂) ≥ (1− δ)nu′(y − µ) = δp′(nµ) [W − u(αiy)] ,

where the equality follows from (12). Comparing this equation to (11), it must be that

δp′(nm̂)

[∑
i

V̂i − u(αiy)

]
≥ δp′(nµ) [W − u(αiy)]

Note that due to concavity of p, we have p′(nm̂) ≤ p′(nµ). Therefore
∑

i V̂i ≥ W , which

contradicts the fact that W is defined as the (strict) maximum of total welfare. Hence

µ > m̄ and MSP > MNE.

Second, we examine boundary equilibria. Suppose that mNE
1 = 0, . . . ,mNE

k = 0 and mNE
k+1 >

0, . . . ,mNE
n > 0. If the social planner would only take into account the welfare of country

k + 1 up to n, then the aggregate level of abatement would be more than the aggregate

level of abatement in the stationary Nash equilibrium. When it also takes into account

the welfare of country 1 up to k, the social planner will increase the aggregate level of

abatement. Hence, MNE < nµ a fortiori.
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Proof of Lemma 1 Both the LHS and the RHS of ICi are decreasing in mi. The claim

follows if we can show that the derivative of the LHS is strictly less than the derivative of

the RHS. Suppose that in an abatement scheme country i has to abate mi and aggregate

abatement is M . Let m∗ denote the optimal deviation from the abatement scheme. First

we show that m∗ ≤ mi.

Let m∗ denote country i’s optimal deviation. The aim is to show that m∗ ≤ mi. Since

country i’s welfare from deviation is concave in m (cf. RHS of ICi), it is sufficient to show

that the derivate of welfare evaluated at mi is negative:

δp′(M)[Ṽi − u(αiy)] ≤ (1− δ)u′(y −mi)

Let σ ≡ (u′)−1. Therefore the inequality can be rewritten as:

mi ≥ y − σ

(
δp′(M)[Ṽi − u(αiy)

1− δ

)
,

since σ is decreasing. In general, we need a minimal level of mi to guarantee that the

optimal deviation is downward. Unless

0 ≥ y − σ

(
δp′(M)[Ṽi − u(αiy)]

1− δ

)
,

or equivalently

δp′(M)[Ṽi − u(αiy)] ≤ (1− δ)u′(y).

Observe that

δp′(M)[Ṽi − u(αiy)] ≤ δp′(MNE)[V NE
i − u(αiy)] ≤ (1− δ)u′(y −mNE

i ) ≤ (1− δ)u′(y),

where the first inequality follows from M > MNE, concavity of p and the fact that Ṽi <

V NE, the second inequality from the definition of the stationary Nash-equilibrium, and the

final inequality from the concavity of u. Hence all deviations are downward: m∗ ≤ mi.

Then from the first-order condition, we have:

−(1− δ)u′(y −m∗) + δ
[
Ṽi − u(αiy)

]
p′(M−i +m∗) ≤ 0.
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Consequently:

0 < δ
[
Ṽi − u(αiy)

]
p′(M−i +m∗) ≤ (1− δ)u′(y −m∗). (13)

Remark that the derivative of the LHS of ICi to mi is

−(1− δ)u′(y −mi)

1− δp(M)
< 0

and the derivative of the RHS of ICi to mi is

−δ
[
Ṽi − u(αiy)

]
p′(M−i +m∗) < 0

Using (13), we see that it suffices to show that

−(1− δ)u′(y −mi)

1− δp(M)
< −(1− δ)u′(y −m∗) ≤ −δ

[
Ṽi − u(αiy)

]
p′(M−i +m∗) < 0

The only unproven inequality is

−(1− δ)u′(y −mi)

1− δp(M)
< −(1− δ)u′(y −m∗)

which follows directly from the fact that 1− δp(M) < 1, concavity of the utility function

and m∗ ≤ mi.

Proof of Lemma 2 It is obvious that m̂ is feasible for ε small enough. We have to show

that: ∑
i

u(y − m̃i) <
∑
i

u(y − m̂i).

This is equivalent to showing that

u(y − m̃j) + u(y − m̃k) < u(y − m̃j − ε) + u(y − m̃k + ε)

Then using Taylor expansions, we get

u(y − m̃j) + u(y − m̃k) < u(y − m̃j)− u′(y − m̃j)ε+ u(y − m̃k) + u′(y − m̃k)ε− κεε2

for some κε ≥ 0 (since u(·) is concave). Therefore:

κεε < u′(y − m̃k)− u′(y − m̃j),

where the RHS is strictly positive by the strict concavity of u(·) and the assumption that

m̃j < m̃k. Since limε↓0 κεε = 0, there exists ε > 0 such that the inequality will hold.

27



Proof of Proposition 4 Suppose γ is the proposed level of abatement for each country

whose incentive constraints are satisfies if they abate at this level and the aggregate level of

abatement is M . Let U(γ) be the set of countries for which the upper boundary is binding

at this level of abatement:

U(γ) = {i | zi ≤ γ}.

Note that U is a strict subset of {1, · · · , n} since M <
∑

i zi by assumption. Then, by

Lemma 2, the abatement scheme proposed in the proposition is a welfare-maximizing

outcome if

γ
∑
i/∈U(γ)

1 +
∑
i∈U(γ)

zi = M.

Define

F(γ) = γ
∑
i/∈U(γ)

1 +
∑
i∈U(γ)

zi −M

Note that F(0) = −M < 0, F(maxi zi) =
∑

i zi −M > 0 and F is increasing since U is

a strict subset of {1, · · · , n}. By the intermediate value theorem, we have that there is a

unique value of γ ∈ (0,maxi zi) such that F(γ) = 0.
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