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Abstract

By means of stochastic optimal control, this paper aims at studying the shadow pric-

ing of renewable natural resources in uncertainty. Two cases are considered, respectively

centralized and decentralized control processes. The latter is in the form of a stochastic

control of the state vector distributed between several agents. In both cases, the optimal

control path that minimizes the cost function, which is a decreasing function of time, cor-

responds to the real option valuation as a cost-effective optional investment in the resource

stock preservation in uncertainty. The results obtained from numerical simulations show

coherence with those encountered in the literature on option pricing.
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1 Introduction

Managers of natural resource systems are accustomed to uncertainty (Nichols et al., 2011).

For example, adaptive management, as a process of system monitoring, was developed

to deal with uncertainty in recurrent decision making (Williams et al., 2002). The four

types of uncertainty listed by Johnson et al. (1997), which can be found in adaptive

resource management, are environmental variation – through the changes in the state

variables –, partial controllability – in form of imprecision in the management actions –,

partial observability – by means of a series of estimates within the natural systems – and

structural uncertainty – as imperfect understanding of the managed systems.

Sectors of renewable natural resources, such as agriculture, aquaculture and forestry,

are highly exposed to uncertainty, provided the combination of natural hazards and of

levels of depletion that can jeopardize the ability of resources to renew themselves. Sus-

tainable management of renewable natural resources then consists in maintaining suffi-

cient stocks of resources, through pluriannual management plans, while satisfying various

economic and social needs over a given horizon of time (De Lara and Doyen, 2008). Nev-

ertheless, the adaptive management of natural resources, the growth dynamics of which

depend on biotic and abiotic factors, is contingent on the future climate mitigation ac-

complishments, which are known to be unknown (FAO, 2013). Indeed, the other aspect

of management in uncertainty deals with the problem of climate change, which exacer-

bates uncertainty (Joyce et al., 2006). Accordingly, the experts on climate change alert

against the importance of uncertainty while measuring their confidence in key findings

(IPCC, 2010), such that, in the face of climate-induced problems, adaptive management

found itself to shape the existing management programs to climate change (Nichols et al.,

2011).1

Renewable natural resource management is usually considered as a bioeconomic prob-

lem in dynamic optimization in which the the resource in question is not only subject

to harvesting plans but also capable of regeneration (Conrad, 1986). Resource problems

thus need to be placed in a dynamic perspective due to the dynamics of resource depletion

and to the ecological process of regeneration (Bretschger and Smulders, 2007). Thereby,

1For example, in forestry, climate change is expected to alter the growth of trees in a way that is
far from being fully understood (Millar et al., 2007). On one side, the increase of the CO2 atmospheric
concentration may lead to the carbon fertilization effect, according to which the growth rate of tree
species should increase (Knapp et al., 2001; Soulé and Knapp, 2006). On the other side, climate change
may accentuate the risk of tree mortality (Dale et al., 2000; Allen et al., 2010; Lindner et al., 2010).

2



sustainability of renewable natural resources, achievable through adaptive management

plans, requires a pricing regime, built on shadow prices (van Soest et al., 2006), obtained

from dynamic optimization models (Le Bel, 2005; Williams and Johnson, 2013). The

shadow pricing of the resource, or its sustainability price, is then the cost of conserving

a sufficient level of stock for an additional unit of time; it corresponds to the willingness

to undertake control of the resource level by accepting the cost to be incurred for that

purpose (Lyon, 1999).

Nevertheless, environmental management based on optimal control simplified com-

plex socio-ecological systems by pushing toward some theoretical equilibrium (Erickson,

2009). Indeed, the optimal control method (Feenstra et al., 2000), usually encountered

in the economic literature, does not take into account the conjunction of different types

of uncertainty over the level of stock (Hambusch, 2008), so that the deterministic op-

timal control yields levels of prices which do not reflect the lack of knowledge on the

upcoming state distribution. However, when the sources of uncertainty can be described

in terms of probability distributions, maximizing the expected objective return can be

an effective mechanism for coping with uncertainty (Williams and Johnson, 2013). In

order to take into account the uncertainty that drives the evolution of the system (Sethi

and Thompson, 2000), stochastic optimal control, where the state of a system is repre-

sented by a controlled stochastic process, has been introduced. It has become the main

approach for dealing with most forms of uncertainty (Williams, 1985; Williams, 1989).

Furthermore, modeling option values through stochastic processes should help improving

decision-making under uncertainty (Erickson, 2009).

Following the literature on stochastic control, we consider the renewable natural re-

source dynamics to take the form of a stochastic differential equation. In order to obtain

the co-state distribution of shadow prices, the equation is then submitted to the opti-

mal control. We find that the optimal shadow price distribution that minimizes the cost

function corresponds to the real option valuation. Two cases are considered, respectively

centralized and decentralized control processes. The latter is in the form of a stochastic

control of the state vector distributed between several agents and corresponds, for exam-

ple, to the cooperative conservation management plans (U.S. Department of the Interior,

2004). The numerical simulations show that, in both cases, the optimal path of the ex-

pected willingness to undertake the resource management, observed from the mean value
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of the co-state distribution, is achievable through higher pricing in the launch of the con-

trol processes and lower pricing at the terminal time-steps. In the first case, the latitude

in pricing, measured via the level of standard deviation, is large throughout the time-line

and narrow in the end. In the second case, the latitude is narrow at the cardinal points

of the time-line and large in between.

After this starting section, the stochastic optimal control model, studied through the

cases of centralized and decentralized controls, is presented in Section 2. Section 3 is

devoted to illustrating simulation examples. Section 4 concludes.

2 Model

Stochastic differential equations, where the resource stock becomes an Itô variable, such

that a random process influences the evolution of the resource stock, are now used in

modeling the dynamics of natural resources (Conrad, 2010). For example, a stochastic

environment, accentuated by climate change, makes the resource growth a random vari-

able. Therefore, consider random state X(t) to be the unknown level of renewable natural

resources, subject to a management plan, at time t. Following Palmer and Milutinovic

(2011), the continuous state dynamics dX(t), belonging to domain D ⊂ R, obeys the Itô

stochastic differential equation in form of

dX(t) = b(X(t), u(t))dt+ L(X(t), u(t))dW (t) (1)

where X(t) = {x1(t), ..., xn(t)} is an n-dimensional state vector subject to a time-

evolving stochastic process and W (t) is an m-dimensional Wiener process, illustrating

the standard Brownian motion.

In detail, the first term on the right-hand side, that is, vector b(X(t), u(t)) : D ×

[0, T ] × U ⊂ Rn, corresponds to the diffusion process with local drift. It depends on the

relative rates of growth and harvest and can be understood, as in the ordinary differential

equations, as a net level of change in the resource stock dependent on the biological rate

of growth and on the rate of exploitation. The control vector u(t), which belongs to the

set U of dimension k, or u(t) : D × [0, T ] × U ⊂ Rk, denotes the level of harvest of

the resource. We thus define the first term to be the benefits at period t from having a
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resource stock of size X(t) and harvest at rate u(t).

The second term, that is, a positive-definite matrix L(X(t), u(t)) : D × [0, T ] × U ⊂

Rn,m represents the local volatility, or standard deviation rate, through the diffusion

tensor.2 As a matter of fact, the standard deviation rate will cause the harvested stock to

fluctuate, which, in turn, will cause harvest to fluctuate as well. The stochastic differential

equation can be interpreted as showing that in a small time interval, the change in X(t) or

in the resource stock is an amount distributed with expectation b(X(t), u(t)) and variance

L(X(t), u(t)). This change is considered to be independent from the past process behavior

(Xepapadeas, 2011).

The probability density function of the random state X(t), ρ(X(t)) : D× [0, T ] ⊂ R+,

evolves according to the Fokker-Planck equation of order two, which is the following

parabolic equation (Sabelfeld and Simonov, 2013)

∂ρ(X(t))

∂t
= −

n∑
i,j=1

bi(X, u)
∂ρ(X)

∂xi
+

1

2
[LLT ]ij(X, u)

∂2ρ(X)

∂xi∂xj
(2)

= F (u)ρ(X)

where xi ≥ 0 and xj ≤ 0 are ith and jth components of the state vector X.3 By

considering two distinguished elements of the state vector, we put emphasis on the fact

that the state is uncertain, which could result either in increase or in fall of the resource

level. Furthermore, whereas in option pricing, xi and xj are constrained to be nonnegative,

we allow their levels to be both positive and negative. Indeed, the natural resource is

considered to be renewable, or in capacity to regenerate, with respect to a threshold level

of depletion or degradation. Should the threshold be exceeded, the resource is at risk

of not being replenished. We normalize this threshold by setting it equal to zero. The

second part of the equation can be written in form of a differential operator F (u), as a

function of the differentiation operator, which will serve to obtain the average property

of dynamics by adjusting the rate of harvest.

Finally, under the Fokker-Planck equation, the total probability is conserved for t ∈
2A diffusion process, as a continuous-time Markov process, is a solution to a stochastic differential

equation. Brownian motion is one example of it.
3The Brownian motion in the dynamics of xi is the same as that in the dynamics of xj . Therefore,

the probability density function of the random state X(t) defines the probability of the paths of xi(t)
and xj(t).
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[0, T ], that is

∂

∂t

∫
D

ρ(X(t))dX = 0 (3)

2.1 Centralized stochastic optimal control

Stochastic optimal control seeks to find the time-path of the control vector with minimum

cost. Following Zvan et al. (2001), we solve the optimization program backwards in time

from the terminal time-step to the initial one. We have

J(u) = 〈φ(X(T )), ρ(X(T ))〉e−rT +

∫ T

0

〈f0 (X(t), u(t)) , ρ(X(t))〉e−r(T−t)dt (4)

where the first term is the expected final cost, discounted at rate r, in form of an

inner product between a weighting function φ(X(T )), reflecting the co-state distribution

of shadow prices for sustaining the resource stock through the optimal control, and the

probability density function ρ(X(T )) of the random state X at time T . The second term

describes the expected costs, discounted at r, recorded during the stochastic process of

the state trajectory under control u(t). In this way, the present value at time t of X

at time T is equal to the discounted expected future value (Allen and Ilic, 1999). The

above equation is thus a two-dimensional convection-diffusion equation with diffusion

matrix [LLT ]ij(X, u) and velocity vector bi(X, u), with exponential decay terms due to

discounting (Petrosyan and Yeung, 2007).

The optimal control problem is formulated as the minimization of the cost function

subject to the state dynamics, that is

min
u(t)

J(u) s.t. dX(t) (5)

Thereby, the optimal control consists in finding the open-loop control sequence u(t)

that minimizes the cost function, which consists of a cost of the final state and of a cost

that is integrated over finite time. We thus attempt to find an adaptive harvest policy

that will stabilize the resource level by minimizing the cost functional, with respect to
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the resource stochastic laws, penalizing deviations from this level (Pereira et al. 2013).

A necessary condition for optimality is that, for t ∈ [0, T ], the optimal control value

u?(t) minimizes the Hamiltonian, which, according to the infinite dimensional minimum

principle (Milutinovic, 2013), is defined as

H(ρ(X(t)), u(t), π(X(t))) = 〈ρ(X(t)), f0(u(t)) + F ′(u(t))π(X(t))〉 (6)

The Hamiltonian includes integral terms that depend on the solution of two systems

of partial differential equations. The first system describes the state probability density

function ρ(X(t)), while F ′(u(t))π(X(t)) corresponds to the co-state distribution evolution,

where F ′(u(t)) is the adjoint operator of F (u(t)) satisfying the Green’s identity

〈F (u(t))ρ(X(t)), π(X(t))〉 = 〈ρ(X(t)), F ′(u(t))π(X(t))〉 (7)

The first-order optimality condition involves the partial derivative of H(ρ, u, π), that

is

∂H(ρ, u, π)

∂u(t)
=

∂J(u)

∂u(t)
(8)

= f0(u(t)) + F ′(u(t))π(X(t)) +

〈
ρ(X(t)),

∂f0(u(t))

∂u(t)

〉

If H(ρ, u, π) is convex in u(t), it can be shown that the minimized Hamiltonian is

convex in X(t), a necessary and sufficient condition for the Hamiltonian to be minimized.

Indeed, according to the Arrow-Mangasarian condition, if H(ρ, u, π) is continuous in u(t),

has continuous first partial derivatives with respect to u(t) and is convex in u(t), then

H(ρ, u, π) is convex in X(t), and u(t) is a global minimizer of the functional (Framstad,

2006).

We do not know ρ(X(t)), so the inner product will be computed by evaluating the

derivative of the co-state distribution. When computing the optimal control, the difficulty

thus consists in evaluating the co-state distribution. With respect to the Feynman-Kac

formula, the dynamics is defined by
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−∂π(X(t))

∂t
=

∂H(ρ, u, π)

∂X(t)
(9)

= f0(u) +
n∑

i,j=1

bi(X, u)
∂π(X)

∂xi
+

1

2
[LLT ]ij(X, u)

∂2π(X)

∂xi∂xj

= f0(u) + F ′(u)π(X)

such that

π(X(T )) = φ(X(T )) (10)

where φ(X(T )) is the terminal condition at the terminal time. By linearity of the

inner product with respect to π(X(t)), given that ρ(X(t)) corresponds to the expected

value of φ(X(T )), and because the differential operator is defined when its coefficients are

equal to zero (Albeverio and Kurasov, 2000), the co-state distribution from the optimal

control amounts to

π?(X(t)) = φ(X(T ))e−rT +

∫ T

0

f0 (X(t), u?(t)) e−r(T−t)dt (11)

By the transversality conditon, which is required for the integral to converge and for

the optimization problem to be well-defined, we have

lim
t→T

f0 (X(t), u?(t)) e−r(T−t) = 0 (12)

such that

lim
t→T

π?(X(t)) = φ(X(T ))e−rT (13)

Given the nature of the underlying asset, which can be thought of as an investment

in renewable natural resources, we are in presence of real option valuation (Brennan and
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Schwartz, 1985; Cortazar et al., 1998). In that case, the value of the underlying asset

is based upon an uncertain level of the resource stock. Indeed, a closed look enables us

to make a parallel with the binomial options pricing model (Cox et al., 1979), where the

expected value is calculated using the option values up and down – which illustrate two

possible trends of evolution of the underlying asset value –, weighted by their respective

probabilities and discounted, at the risk free rate, during the option lifetime.4 In our

framework, φ(X(T )) encompasses the weighting function, with respect to the upward and

downward trends of the state prone to stochastic processes, satisfying the total probability

condition, while e−rT portrays the discounting of the option value up to the terminal time.

In such an optional investment, costs relative to the resource development or preser-

vation arise. They correspond to the exercise price of the option, where the expiration of

the option occurs at the accomplishment of the management plan. At last, the variability

in the resource stock corresponds to the standard variance in the value of the underlying

asset. The option value thus depends on the likelihood to achieve sustainability of the

natural resource stock through an optional cost-effective control.

Real options can then be interpreted as the willingness, but not the obligation, to

undertake, at a certain cost, the stabilization of the natural resource for an additional

unit of time, the state of which is governed by a random process. Despite the fact that,

in financial options, underlying stock values are also assumed to evolve according to a

Brownian motion, real options differ from conventional financial options in that they

are not traded as securities. Likewise, through optimal control, the option holders or

resource managers can influence the value of the investment, which cannot be achieved

with financial underlying assets.5

The stochastic optimal path of π?(X(t)), that minimizes the cost function, can now

be obtained as

−dX(t)
∂2π?(X(t))

∂t2
= dX(t)

[
f0(u) +

n∑
i,j=1

bi(X, u)
∂2π?(X)

∂x2i
+

1

2
[LLT ]ij(X, u)

∂4π?(X)

∂x2i∂x
2
j

]
(14)

= dX(t)
[
f0(u) + F ′2(u)π?(X)

]
4In detail, we have Ct−∆t,i = e−r∆t [pCt,i+1 + (1− p)Ct,i−1], with Ct−∆t,i the binomial value, Ct,i+1

and Ct,i−1 the option values from the last two nodes, p and (1− p) the weighting probabilities of moving
up and down, and r the risk free rate.

5By considering several components of the state vector X, our framework can be compared to the real
option valuation of multiple species preservation (Kassar and Lasserre, 2004).
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where F ′2(u) is the second-order differential operator, defined over the control vector,

applied to π?(X), that is, the measure of sensitivity of the option price distribution (Cont

and Voltchkova, 2005) yielded by the control of the stochastic process. Thereby, we have

a bounded subset of values that π?(X) can take, with limt→T π
?(X(t)) = φ(X(T ))e−rT

being the price when the option is exercised.

In stationarity, where −dX(t)∂
2π?(X(t))
∂t2

= 0, the second-order optimality condition

yields −f0(u(t)) = F ′2(u)π?(X). Therefore, the distribution of shadow prices, or that of

real option values, equals the cost of control along the optimal time-path. This brings us

to the following proposition.

Proposition 1 Under centralized stochastic optimal control of the renewable natural re-

source, the optimal control path that minimizes the cost function, which is a decreasing

function of time, corresponds to the real option valuation as a cost-effective optional in-

vestment in the resource stock preservation in uncertainty.

2.2 Decentralized stochastic optimal control

Now consider the case where the stochastic optimal control is distributed between multiple

agents, such that a collective of resource managers decide to jointly sustain the resource

stock. Let ui(t) and u−i(t), where i 6= −i, be respectively the controls of agents i and

−i at time t. The control distribution is weighted by parameter α ∈ [0, 1], such that

α + (1− α) = 1. The aggregated cost function is represented as

J(ui,−i) = 〈φ(X(T )), ρ(X(T ))〉e−rT +

∫ T

0

〈f0 (X(t), αui(t)) , ρ(X(t))〉e−r(T−t)dt(15)

+

∫ T

0

〈f0 (X(t), (1− α)u−i(t)) , ρ(X(t))〉e−r(T−t)dt

= 〈φ(X(T )), ρ(X(T ))〉e−rT

+

∫ T

0

〈f0 (X(t), αui(t) + (1− α)u−i(t)) , ρ(X(t))〉e−r(T−t)dt

Once again, the necessary condition for optimality is that, for t ∈ [0, T ], the optimal

control values u?i (t) and u?−i(t) minimize the Hamiltonian, which is now in form of
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H(ρ(X(t)), ui,−i(t), πi,−i(X(t))) = 〈ρ(X(t)), f0(αui(t)) + F ′(αui(t))πi(X(t))〉 (16)

+ 〈ρ(X(t)), f0((1− α)u−i(t)) + F ′((1− α)u−i(t))π−i(X(t))〉

= 〈ρ(X(t)), f0(αui(t) + (1− α)u−i(t))〉

+ 〈ρ(X(t)), αF ′(ui(t))πi(X(t)) + (1− α)F ′(u−i(t))π−i(X(t))〉

The dynamics of the joint co-state distribution equals to

−∂πi,−i(X(t))

∂t
=

∂H(ρ, ui,−i, πi,−i)

∂X(t)
(17)

= f0(αui) +
n∑

i,j=1

bi(X, ui)
∂πi(X)

∂xi
+

1

2
[LLT ]ij(X, ui)

∂2πi(X)

∂xi∂xj

+ f0((1− α)u−i) +
n∑

i,j=1

bi(X, u−i)
∂π−i(X)

∂xi
+

1

2
[LLT ]ij(X, u−i)

∂2π−i(X)

∂xi∂xj

= f0(αui + (1− α)u−i) + αF ′(ui)πi(X) + (1− α)F ′(u−i)π−i(X)

From the foregoing, the joint co-state distribution issued from the decentralized opti-

mal control amounts to

π?i,−i(X(t)) = φ(X(T ))e−rT +

∫ T

0

f0
(
X(t), αu?i (t) + (1− α)u?−i(t)

)
e−r(T−t)dt (18)

Finally, the stochastic optimal path of π?i,−i(X(t)) is in form of

−dX(t)
∂2π?i,−i(X(t))

∂t2
= dX(t) [f0(αui) + f0((1− α)u−i)] (19)

+ dX(t)

[
n∑

i,j=1

bi(X, ui)
∂2π?i (X)

∂x2i
+

n∑
i,j=1

bi(X, u−i)
∂2π?−i(X)

∂x2i

]

+ dX(t)

[
1

2
[LLT ]ij(X, ui)

∂4π?i (X)

∂x2i∂x
2
j

+
1

2
[LLT ]ij(X, u−i)

∂4π?−i(X)

∂x2i∂x
2
j

]
= dX(t) [f0(αui + (1− α)u−i)]

+ dX(t)
[
αF ′2(ui)π

?
i (X) + (1− α)F ′2(u−i)π

?
−i(X)

]
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We have a bounded subset of values that π?i,−i(X) can take. In stationarity, −f0(αui(t)+

(1−α)u−i(t)) = αF ′2(ui)π
?
i (X)+(1−α)F ′2(u−i)π

?
−i(X). Thereby, along the optimal path,

the joint distribution of shadow prices of i and −i, or their joint distribution of option

prices, equals their joint cost of control. The following proposition ensues.

Proposition 2 Under decentralized stochastic optimal control of the renewable natural

resource, the optimal control path that minimizes the cost function, which is a decreasing

function of time, corresponds to the joint real option valuation as a collective cost-effective

optional investment in the resource stock preservation in uncertainty.

3 Simulations

Based on the properties and conditions previously obtained, the aim of this section is to

illustrate, through simplified simulations, the relationship between the cost of stochastic

optimal control and of the willingness to control, in both centralized and decentralized

settings, formulated in form of prices an agent is willing to pay to stabilize the resource

stock for an additional unit of time.

The two-dimensional process under control, or the stock of the renewable natural

resource, is X(t) = {x1(t), x2(t)}, with x1(t) and x2(t) the two possible levels of stock.

The non-linear dynamics of the state vector, which corresponds to the resource growth

in uncertainty and can evolve upward and downward, is formalized as a function of time,

where dx1 =
√
t× rand(·) and dx2 = −

√
t× rand(·), with t ∈ [0, 1] in increments of 0.01.

The drift rate of the stochastic mean being zero, the expressions are summed up to a

Wiener process.

The expected cost is represented by a discounted quadratic function E[f(t)] = f(t)e−r(T−t),

with f(t) = f(0)(T − t) and f(0) = 1
2
Qu(0)2, where Q = 0.5 and r = 0.02. The expected

final cost is in form of a discounted quadratic function such that E[φ(x1(T ), x2(T ))] =

φ(x1(T ), x2(T ))e−rT , with φ(x1(T ), x2(T )) = 1
2
ax1(T )2 + 1

2
bx2(T )2, where a = 5 and b = 5

give uniform weight to the final cost of control of any state component.

The control vector, which exemplifies the rate of harvest of the resource, is defined with

reference to the minimum costs posted in initial time, terminal time and all those which

occurred during the stochastic process of the state trajectory. Therefore, the optimal

control is modeled as u(t) = Q+ψ2 [a(T − t)2 + b] + a(T − t)x1(t) + [a(T − t)2 + b]x2(t),
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where ψ = 0.5 represents the boundary condition on the final cost. The state components

x1(t) and x2(t) are subject to different constraints, for the cost of control is assumed to

be higher in case of continuous shrinking of the resource stock level.

Finally, the state dynamics under the stochastic optimal control is defined as dX(t) =

[x1(t) + x2(t)]u(t), such that the stock dynamics under control ends up as a quadratic

function of the state variable (Trentelman and Willems, 1997).

3.1 Centralized stochastic optimal control

Figs. 1 and 2 depict the mean dynamics, obtained from ten simulated trajectories, of

resource levels x1 and x2 at t ∈ [0, 1]. The visible fluctuations of the states come from the

stochastic processes previously defined.

In Fig. 1, we observe an increasing mean value of x1, represented by the black curve,

starting at 0.05 and reaching a final value of 0.57, which corresponds to a linearized

increase of 0.39. The standard deviation, depicted by the grey curves, is in great rise along

the time-line, starting at 0.03 and ending at 0.38, illustrating the increase in uncertainty

over time, such that the level of stock of the renewable natural resource can either increase

markedly or be placed in status quo.

Figure 1: The distribution of x1(t) along the time-line.

In Fig. 2, the opposite is observed, where the mean value of x2, also represented by the

black curve, commences at −0.06 and closes at −0.70, with a linearized decrease of 0.37.
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Like in the previous case, the standard deviation, illustrated by means of grey curves,

also enlarges in time, ranging from 0.02 to 0.23, which depicts the possibility to observe

an unchanged level of the renewable natural resource as well as its sharp fall.

Figure 2: The distribution of x2(t) along the time-line.

Through the black curve, also in fluctuation due to the stochastic processes, Fig.

3 shows the mean value of the optimal control which starts at 1.20 and ends at 0.32.

The linearized decrease is of 0.86. As for the level of standard deviation or uncertainty,

depicted in grey curves, it is in overall stability, which implies that the variance of control

values remains stable in time. The example also shows that the optimal cost of control

is a decreasing function of time. Indeed, the decrease in the value of control reveals the

decrease in cost.

As depicted in Fig. 4, the state dynamics under centralized stochastic optimal control

is of cyclical nature, where the change in the level of the renewable natural resource

continuously oscillates above and below zero. In detail, we observe a slight linearized fall

of 0.01 or quasi-stability, with a mean value of −0.01 at t = 0 and of −0.06 at t = 1.

The level of standard deviation is elevated and comparable to the one observed without

optimal control, but is also stable in time. Therefore, engaging in controlled harvest of

the renewable natural resource can stabilize its mean variation in the long-run, but does

not necessarily reduce the uncertainty, which remains of significant level throughout the

control process.

Fig. 5 shows the optimal distribution of the willingness to control, or the price a
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Figure 3: The centralized stochastic optimal control u?(t) along the time-line.

Figure 4: The state dynamics dX(t) under centralized stochastic optimal control u?(t)
along the time-line.
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resource manager is willing to pay to undertake the stabilization of the renewable natural

resource in uncertainty. The mean value is of 0.37 at t = 0 and of 0.21 at t = 1, which

represents a linearized fall of 0.18. The result is thus consistent with the decrease in

control value, and thus in the cost, observed in Fig. 3. Greater variability in the values of

π?(X(t)), as t→ 1, can be observed through the standard deviation, which starts at 0.10

and ends at 0.38. Such as predicted by the model, we observe a mean level of π?(X(t))

equal to that of the expected final cost at t = 1.

Figure 5: The optimal distribution of π?(X(t)) along the time-line.

As for Fig. 6, the stochastic optimal path that enables to achieve controllability,

through management in uncertainty, shows a level of π?(X(t)) of 0.59 at t = 0 and of

0.05 at t = 1, with a linearized decrease of 0.61. The interesting result is related to the

level of standard deviation, which starts at 0.16, reaches 0.30 at t = 0.14 and closes at

0.09, denoting a narrower range of price possibilities in the course of time. Therefore,

despite the increasing variance of the distribution of the willingness to control along the

time-line, the optimal path suggests a greater level of latitude in pricing in the beginning

of the stochastic control and a tight one in the terminal steps of time, which in all cases

heads toward 0. In addition, we observe that the control input through a channel with a

higher variance is less expensive than that through a channel with a lower variance, which

is in accordance with the result obtained by Kappen (2005). The optimal path reveals

that the mean values from the distribution ought to be spread out in time, with higher

pricing in early stages and lower pricing in the end.
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Figure 6: The stochastic optimal path of π?(X(t)) along the time-line.

Result 1 Under centralized stochastic optimal control of the renewable natural resource,

the optimal path of the willingness to undertake the resource stock stabilization in uncer-

tainty is achieved through higher pricing in the launch of the control process and lower

pricing at the terminal time. The latitude in pricing is large throughout the time-line and

narrow in the end.

3.2 Decentralized stochastic optimal control

Figs. 7 and 8 depict the mean dynamics, obtained from ten simulated trajectories, of

resource levels x1 and x2 at t ∈ [0, 1] in increments of 0.01. The stochastic control

is distributed between agents 1 and 2, such that u?1,2(t) = αu?1(t) + (1 − α)u?2(t), with

respective weights of α = 0.3 and 1− α = 0.7.

In Fig. 7, we observe an increasing mean value of x1, represented by the black curve,

starting at 0.05 and reaching a final value of 0.47, implying a linearized increase of 0.40.

The standard deviation, depicted by the grey curves, is in great rise along the time-line,

starting at 0.03 and ending at 0.35, which illustrates once again the increase in uncertainty

of the stock of the renewable natural resource.

In Fig. 8, the mean value of x2, also represented by the black curve, starts at −0.06

and closes at −0.50, with a linearized decrease of 0.42. The standard deviation, depicted

in grey curves, enlarges in time, ranging from 0.02 to 0.16.
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Figure 7: The distribution of x1(t) along the time-line.

Figure 8: The distribution of x2(t) along the time-line.
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The black curve in Fig. 9 shows the mean value of the decentralized optimal control,

which commences at 1.01 and closes at 0.33. The linearized decrease amounts to 0.53.

The standard deviation, illustrated by the grey curves, is once again in overall stability,

signifying that the variance of control values is stable. The example shows that the

optimal cost of distributed control is also a decreasing function of time.

Figure 9: The decentralized stochastic optimal control u?1,2(t) along the time-line.

In Fig. 10, we observe that the state dynamics under decentralized stochastic optimal

control is also of cyclical nature, where the change in the renewable natural resource level

continuously oscillates around zero. In detail, we observe a slight linearized fall of 0.00−

or quasi-stability, with a mean value of −0.01 at t = 0 and of 0.00 at t = 1. Once again,

the level of standard deviation is elevated and stable in time. Therefore, without reducing

the uncertainty, engaging in decentralized optimal control stabilizes the variation of the

renewable natural resource in the long-run.

Fig. 11 depicts the optimal distribution of the decentralized willingness to control in

time. The mean value is of 0.28 at t = 0 and of 0.33 at t = 1, be it a linearized fall of 0.03.

Unlike the scenario of centralized optimal control, the result shows that the fall in the

distributed control value does not necessarily imply a proportional decrease in cost which,

in turn, would imply a lower aggregated price of control. The standard deviation starts

at 0.08 and ends at 0.28, which is comparable to the result in centralized control, that

is, the increasing latitude in pricing as t → 1. Once again, the mean level of π?1,2(X(t))

equals that of the expected final cost at t = 1.
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Figure 10: The state dynamics dX(t) under decentralized stochastic optimal control u?1,2(t)
along the time-line.

Figure 11: The optimal distribution of π?1,2(X(t)) along the time-line.
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Fig. 12 shows the stochastic optimal path that enables to achieve controllability in

a decentralized or distributed manner. The level of π?(X(t)) is of 0.41 at t = 0 and of

0.07 at t = 1, with a linearized decrease of 0.38. This time, the standard deviation both

starts and ends with 0.11, with a wider channel in the middle reaching the peak value of

0.28 at t = 0.30. In case of decentralized control, the optimal path reveals similar and

narrower latitudes in pricing at the extreme values of the time-line and a wider variability

in prices in between. The terminal values of prices once again head toward 0. Likewise,

the optimal path suggests the spread of the distribution mean values in time, with higher

pricing in early stages and lower pricing in the end.

Figure 12: The stochastic optimal path of π?1,2(X(t)) along the time-line.

Result 2 Under decentralized stochastic optimal control of the renewable natural re-

source, the optimal path of the willingness to undertake the resource stock stabilization

in uncertainty is achieved through higher pricing in the launch of the control process and

lower pricing at the terminal time. The latitude in pricing is narrow at the cardinal points

of the time-line, and large in between.

4 Conclusion

Such as suggested by Erickson (2009), modeling option values through stochastic pro-

cesses should help improving decision-making under uncertainty in the renewable natural
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resource management. By studying shadow pricing of renewable natural resources in a

stochastic optimal control framework, we find that the control process takes on the allure

of an optional investment, where the co-state distribution comes to resemble the real op-

tion value. We have therefore been able to give an interpretation to the distribution of

shadow prices. In that respect, two key inputs in the option valuation, which are the value

of the underlying asset and its variance, have been derived from the stochastic differential

equation subject to optimal control.

Four of our results are consistent with those encountered in the literature on option

pricing (Hull, 2011). The first relates to the trajectories of state dynamics, as the evolution

of the underlying asset, and of co-state distribution, as the option value, which show

similar patterns throughout the time-line. The second observation is about the increasing

volatility of the mean value of the co-state distribution, that can be seen in option markets,

which aligns with the increasing standard deviation with further expiration date. When

it comes to the optimal path of the real option value, the third output applies to the

decreasing mean value of the co-state distribution along the optimal path, which matches

with the finding that, as the expiration approaches, the time value of the option decreases.

With respect to the optimal path, we also find that the standard deviation decreases

in time, which corresponds to the fact that, through the resource management control

process, the resource stock is intended to be stabilized. In financial markets, this result

suggests that, when the investors believe in a non-bearish market trend, a fall in implied

volatility is noted.

The main difference between the centralized and decentralized control processes lies in

the mean value of the co-state distribution, which is lower in the second case. This signifies

that the collective action, in form of a distributed management of natural resources, is

less onerous than that programmed under a centralized management. Nevertheless, the

greater standard deviation observed in decentralized optimal control also implies higher

uncertainty over the project completion. The greater latitude in pricing thus involves

lower likelihood on the ability of agents to jointly sustain the renewable resource stock.

To conclude on this point, our results ultimately show the presence of a trade-off between

the ability to achieve stabilization of the resource in peril at a degree of uncertainty and

the cost to bear in this endeavor.
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