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Abstract

This paper investigates how the presence of social capital affects status externality in

a dynamic economy. It is assumed that the stock of social capital is accumulating jointly

through jointly social interactions among individuals who are forward looking. In this

setting, the presence of social capital mitigates the tendency of overconsumption over

time, and hence makes the resulting allocation closer to the Pareto efficient one.
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1 Introduction

Social capital: those persistent and shared beliefs and values that help a group overcome the

free rider problem in the pursuit of socially valuable activities. Guiso, Sapienza and Zingales

(2011).

This concept is argued to pass Solow’s (xxx) 4 tests for it to be a proper definition:

- To be distinct from others, in particular human capital;

- To be in principle measurable, even imperfectly;

- To have an own rate of return/payoff, in principle;

- To have a clear process of accumulation and decumulation/depreciation.

GSZ argue that this concept, termed by them ‘civic capital’, passes these tests.

We use this concept in relation to the status externality and the problem of free-riding

that arises there.

GSZ: ‘Since we consider as civic capital only values and beliefs that help a group overcome

the free rider problem in the pursuit of socially valuable activities, by definition civic capital

has a non-negative economic payoff. In other words, civic capital purposefully excludes from

the definitions those values that favor cooperation in socially deviant activities, such as gangs.’

GSZ: ‘As [. . . ] in the Tabellini (2007b) model, investment in civic capital is the amount

of resources that parents spend to teach more cooperative values to their children.’

Problem for us: we do not have an OLG model. But we can adopt/adapt the Varvarigos

model?

Key aspect of social/civic capital: It’s development by one individual depends on the

amount others have or exhibit. GSZ: ‘Second, these values and beliefs [NB: those underlying

and supporting social/civic capital] do not represent civic capital if they are not shared by

other members of the community.’

[It is this interaction that seems fundamental that is missed by the Varvarigos-Xin (2015)

model of trust.]
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2 The Model

There are n (≥ 2) individuals. The instantaneous utility of individual i depends positively on

consumption, ci, and social status ci/C. The objective function of individual i is a discounted-

sum of utilities over an infinite-time horizon:

ui =

∫ ∞

0

[

log ci + (1− θi (S)) log
(ci
c̄

)]

e−ρtdt, ρ > 0, i = 1, 2, ..., n, (1)

where the function log (ci/C) captures the status externality and C and c̄ = (Σn
i=1ci)/n =

C/n, respectively, represent the aggregate amount of consumption and average consumption.

The variable θi (S) represents the perception of social capital by individual i: θi (S) : R+ �→
[0, 1); that is, the extent to which the status externality is internalized due to the spirit of

social capital.

Individuals decide at each point in time how much they engage in social interaction as well

as how much to consume. Their choices are constrained by a time (or budget) constraint.

Consumption is constrained by income, which is earned from working at a wage rate w

according to the following flow budget constraint for individual i at each point in time:

ci = w(n̄− ai),

where ai is the time allocated to accumulation activities for the stock of social capital and n̄

is the total available time which is fixed through time. For notational simplicity, we assume

that the relative price between private consumption and leisure (i.e., the wage rate), which

is set equal to 1. As a result, we have

ci = 1− ai, (2)

Each individual maximizes ui in (1) by selecting the sequences of ci and ai subject to (2)

and the initial level of social capital, S0 (> 0).

The aggregate stock of social capital will continuously change over time according to

Ṡ = Sγ(Σn
i=1ai)− δS, (3)

where δ is a constant depreciation rate of social capital (0 < δ < 1). For analytical simplicity,

we also assume that γ ∈ (0, 1).
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The model described above is a differential game in which each player’s strategies are its

consumption and social interaction, which is measured by the time devoted to social activities,

while the state variable of the game is the aggregate stock of social capital S. Following the

existing studies, we focus on the Markov-perfect Nash (feedback Nash) equilibrium. That

is, we assume that each agent’s strategies, ci and ai, are functions of the current level of

the aggregate capital, S, alone. This means that the value function of the i-th agent’s

optimization problem at time t can be written as

Vi (St) ≡ max

∫ ∞

t

e−ρ(τ−t)ui (cτ , aτ , St) dτ.

This function satisfies the Hamilton-Jacobi-Bellman (HJB) equation such as

ρVi (S) = max
{ci,ai}

{

log ci + (1− θi (S)) log

(

ci
C/n

)

+ V ′
i (S)

[

Sγ(Σn
j=1 (1− cj))− δS

]

}

(4)

for all t ≥ 0. In solving the maximization problem defined in the right-hand-side of (4) at each

moment in time, the i-th agent takes the other players’ strategies, {cj, aj}j �=i
(j = 1, 2, .., n) ,

as given. The first-order conditions for maximization are given by

1

ci
+ (1− θi (S))

1

ci/C

Σn
j=1, j �=icj

C2
− V ′

i (S)S
γ = 0. (5)

To get a closed-form solution, we have to impose a special form on the function θi (S) such

as

θi (S) =











θiS if S < S̄,

1 if S̄ ≤ S,

(6)

where S̄ = 1/θi. With this formulation, we can rewrite the above first order conditions as

follows:

SγV ′
i (S) =

1

ci

[

1 + (1− θiS)
Σn
j=1, j �=icj

C

]

. (7)

Equation (7) gives the Markov-perfect Nash solutions expressed as {ci (S) , ai (S)} for

i = 1.2., ..., n. Substituting these optimal solutions back into the HJB equation (4) associated

with agent i, together with (6), we obtain

ρVi (S) = log ci (S) + (1− θiS) log

(

ci (S)

C (S) /n

)

+ V ′
i (S)

[

SγΣn
j=1(1− cj (S))− δS

]

, (8)
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where C (S) ≡ Σn
j=1cj (S). By the use of the envelop theorem, we find that differentiating

both sides of (4) with respect to S gives

ρV ′
i (S) =

c′i (S)

ci (S)
− θi log

(

nci (S)

C (S)

)

+ (1− θiS)
C (S)

ci (S)

c′i (S)C (S)− ci (S)Σ
n
j=1c

′
j (S)

[C (S)]2

+V
′′

i (S)
[

SγΣn
j=1(1− cj (S))− δS

]

+ V
′

i (S)
[

γSγ−1Σn
j=1(1− cj (S))− SγΣn

j=1c
′
j (S)− δ

]

,

ρV ′
i (S) =

c′i (S)

ci (S)
− θi log

(

nci (S)

C (S)

)

+ (1− θiS)
c′i (S)C (S)− ci (S)Σ

n
j=1c

′
j (S)

ci (S)C (S)

+V
′′

i (S)
[

SγΣn
j=1(1− cj (S))− δS

]

+ V
′

i (S)
[

γSγ−1Σn
j=1(1− cj (S))− SγΣn

j=1c
′
j (S)− δ

]

.

Assuming symmetry

ρV ′ (S) =
c′ (S)

c (S)
− θ log

(

nc (S)

nc (S)

)

+ (1− θS)
c′ (S)nc (S)− c (S)nc′ (S)

c (S)nc (S)

+V ′′ (S) [Sγn(1− c (S))− δS] + V ′ (S)
[

γSγ−1n(1− c (S))− Sγnc′ (S)− δ
]

,

Since log
(

nc(S)
nc(S)

)

= log (1) = 0 and c′ (S)nc (S)− c (S)nc′ (S) = 0,

ρV ′ (S) =
c′ (S)

c (S)
+ V ′′ (S) [Sγn(1− c (S))− δS]

+V ′ (S)
[

γSγ−1n(1− c (S))− Sγnc′ (S)− δ
]

,

ρV ′ (S) =
c′ (S)

c (S)
− V ′ (S)Sγc′ (S) + V ′′ (S) [Sγn(1− c (S))− δS]

+V ′ (S)
[

γSγ−1n(1− c (S))− Sγ(n− 1)c′ (S)− δ
]

. (9)

On the other hand, under the assumption of symmetry, we can rewrite (7) as follows:

SγV ′ (S) =
1

c (S)

[

1 + (1− θS)
(n− 1)c (S)

nc (S)

]

,

∴ SγV ′ (S)− 1

c (S)
=

1

c (S)
(1− θS)

n− 1

n
.

Substituting this expression into (9) yields

ρV ′ (S) = −c
′ (S)

c (S)
(1− θS)

n− 1

n
+ V ′′ (S) [Sγn(1− c (S))− δS]

+V ′ (S)
[

γSγ−1n(1− c (S))− Sγ(n− 1)c′ (S)− δ
]

.
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Rewriting the above HJB equation as follows:

ρV ′ (S)− V ′ (S)
[

γSγ−1n(1− c (S))− Sγ(n− 1)c′ (S)− δ
]

= −c
′ (S)

c (S)
(1− θS)

n− 1

n
+ V ′′ (S) [Sγn(1− c (S))− δS] ,

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)c′ (S)
]

V ′ (S)

= −c
′ (S)

c (S)
(1− θS)

n− 1

n
+ V ′′ (S) [Sγn(1− c (S))− δS] . (10)

We once again differentiae (7) (i.e., V ′
i (S) =

1

Sγci(S)

[

1 + (1− θiS)
Σn
j=1, j �=icj(S)

C(S)

]

)

with respect to S to get

V
′′

i (S) =
1

[ci(S)Sγ ]2

[(

−θi
Σn
j=1, j �=icj(S)

C(S)
+ (1− θiS) ·

(

Σn
j=1, j �=ic

′
j(S)C(S)− Σn

j=1, j �=icj(S)C
′(S)

(C(S))2

)

ci(S)S
γ

−
(

1 + (1− θiS)
Σn
j=1, j �=icj(S)

C(S)

)

(

c′i(S)S
γ + ci(S)γS

γ−1
)

]

By symmetry

V ′′(S) =
1

[c(S)Sγ ]2

[(

−θ (n− 1)c(S)

nc(S)
+ (1− θS) ·

(

(n− 1)c′(S)nc(S)− (n− 1)c(S)nc′(S)

(nc(S))2

))

c(S)Sγ

−
(

1 + (1− θS)
(n− 1)c(S)

nc(S)

)

(

c′(S)Sγ + c(S)γSγ−1
)

]

Since (n− 1)c′(S)nc(S)− (n− 1)c(S)nc′(S) = 0,

V ′′(S) =
1

[c(S)Sγ ]2

[(

−θn− 1

n

)

c(S)Sγ

−
(

1 + (1− θS)
n− 1

n

)

(

c′(S)Sγ + c(S)γSγ−1
)

]

V ′′(S) =
1

c(S)Sγ

[(

−θn− 1

n

)

−
(

1 + (1− θS)
n− 1

n

)(

c′(S)

c(S)
+ γS−1

)]

,

∴ V ′′(S) =
1

c(S)Sγ

n− 1

n

[

−θ −
(

n

n− 1
+ (1− θS)

)(

c′(S)

c(S)
+ γS−1

)]

. (11)
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Substituting V ′ (S) =
1

cSγ

[

1 + (1− θS)
n− 1

n

]

and (11) into (10) yields

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)c′ (S)
] 1

c (S)Sγ

[

1 + (1− θS)
n− 1

n

]

= −c
′ (S)

c (S)
(1− θS)

n− 1

n
+

1

c(S)Sγ

n− 1

n

[

−θ −
(

n

n− 1
+ (1− θS)

)(

c′(S)

c(S)
+ γS−1

)]

[Sγn(1− c (S))− δS] .

Multiplying both sides by c (S)Sγ yields

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)c′ (S)
]

[

1 + (1− θS)
n− 1

n

]

= −c′ (S) (1− θS)
n− 1

n
Sγ+

n− 1

n

[

−θ −
(

n

n− 1
+ (1− θS)

)(

c′(S)

c(S)
+ γS−1

)]

[Sγn(1− c (S))− δS] .

Multiplying both sides n/(n− 1) yields

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)c′ (S)
]

[

n

n− 1
+ (1− θS)

]

= −c′ (S) (1− θS)Sγ+
[

−θ −
(

n

n− 1
+ (1− θS)

)(

c′(S)

c(S)
+ γS−1

)]

[Sγn(1− c (S))− δS] .

Moreover,

[

ρ+ δ − γSγ−1n(1− c (S))
]

[

n

n− 1
+ (1− θS)

]

+Sγ(n− 1)c′ (S)

[

n

n− 1
+ (1− θS)

]

+ c′ (S) (1− θS)Sγ

= −θ [Sγn(1− c (S))− δS]

−
[

n

n− 1
+ (1− θS)

]

c′(S)

c(S)
[Sγn(1− c (S))− δS]

−
[

n

n− 1
+ (1− θS)

]

γS−1 [Sγn(1− c (S))− δS] ,
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[

n

n− 1
+ (1− θS)

]

c′(S)

c(S)
[Sγn(1− c (S))− δS]

+Sγ(n− 1)c′ (S)

[

n

n− 1
+ (1− θS)

]

+ c′ (S) (1− θS)Sγ

= −θ [Sγn(1− c (S))− δS]

−
[

n

n− 1
+ (1− θS)

]

γS−1 [Sγn(1− c (S))− δS]

−
[

ρ+ δ − γSγ−1n(1− c (S))
]

[

n

n− 1
+ (1− θS)

]

,

c′(S)

[(

n

n− 1
+ (1− θS)

)

1

c(S)
(Sγn(1− c (S))− δS)

+Sγ(n− 1)

(

n

n− 1
+ (1− θS)

)

+ (1− θS)Sγ

]

=

[

−θ − n

n− 1
γS−1 − (1− θS) γS−1

]

[Sγn(1− c (S))− δS]

−
[

ρ+ δ − γSγ−1n(1− c (S))
]

(

n

n− 1
+ (1− θS)

)

,

c′(S)

[(

n

n− 1
+ (1− θS)

)(

1

c(S)
(Sγn(1− c (S))− δS) + Sγ(n− 1)

)

+ (1− θS)Sγ

]

=

[

−θ − n

n− 1
γS−1 − (1− θS) γS−1

]

[Sγn(1− c (S))− δS]

−
[

ρ+ δ − γSγ−1n(1− c (S))
]

[

n

n− 1
+ (1− θS)

]

,

c′(S)

[(

n

n− 1
+ (1− θS)

)(

Sγn
1

c(S)
− Sγn− δS

c(S)
+ Sγ(n− 1)

)

+ (1− θS)Sγ

]

= −θ [Sγn(1− c (S))− δS]−
[

n

n− 1
+ (1− θS)

]

γS−1 [Sγn(1− c (S))− δS]

−
[

ρ+ δ − γSγ−1n(1− c (S)
]

[

n

n− 1
+ (1− θS)

]

,

c′(S)

[(

n

n− 1
+ (1− θS)

)(

Sγn

c(S)
− δS

c(S)
− Sγ

)

+ (1− θS)Sγ

]

= −
[

n

n− 1
+ (1− θS)

]

[

ρ+ δ − γSγ−1n(1− c (S)) + γS−1 (Sγn(1− c (S))− δS)
]

−θ [Sγn(1− c (S))− δS] ,
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c′(S)

[

n

n− 1

(

Sγn

c(S)
− δS

c(S)
− Sγ

)

+ (1− θS)

(

Sγn

c(S)
− δS

c(S)
− Sγ

)

+ (1− θS)Sγ

]

=

[

n

n− 1
+ (1− θS)

]

[

ρ+ δ − γS−1δS
]

− θ [Sγn(1− c (S))− δS] ,

c′(S)

[

n

n− 1

(

Sγn

c(S)
− δS

c(S)
− Sγ

)

+ (1− θS)

(

Sγn

c(S)
− δS

c(S)

)]

= −
[

n

n− 1
+ (1− θS)

]

[ρ+ δ − γδ]− θ [Sγn(1− c (S))− δS] ,

c′(S)

[(

n

n− 1
+ (1− θS)

)

1

c(S)
(Sγn− δS)− n

n− 1
Sγ

]

= −
[

n

n− 1
+ (1− θS)

]

[ρ+ (1− γ)δ]− θ [Sγn(1− c (S))− δS] .

Denoting the following expression as

n

n− 1
+ (1− θS) =

n

n− 1
+
n− 1

n− 1
− θS =

2n− 1

n− 1
− θS = A− θS,

c′(S)

[

(A− θS)
1

c(S)
(Sγn− δS)− n

n− 1
Sγ

]

= − [A− θS]R− θ [Sγn(1− c (S))− δS] .

where R ≡ ρ+ (1− γ)δ and A = (2n− 1)/(n− 1).

c′ (S) =
− (A− θS)R− θ [Sγn(1− c (S))− δS]

A− θS

c(S)
(Sγn− δS)− n

n− 1
Sγ

,

= −(A− θS)R+ θ [Sγn(1− c (S))− δS]

A− θS

c(S)
(Sγn− δS)− n

n− 1
Sγ

. (12)

Furthermore, since c (S) = 1− a (S), c′ (S) = −a′ (S) ,

a′ (S) = −c′ (S) = (A− θS)R+ θ [Sγn(1− c (S))− δS]

A− θS

c(S)
(Sγn− δS)− n

n− 1
Sγ

,

∴ a′ (S) =
(A− θS)R+ θ [Sγna (S)− δS]

A− θS

1− a (S)
(Sγn− δS)− n

n− 1
Sγ

. (13)
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3 Dynamics and Steady State

We will draw the representatives of Markov strategies in a control and state space in order

to characterize qualitative solutions to the nonlinear differential equation (13).

We will draw the representatives of Markov strategies in a control and state space in

order to characterize qualitative solutions to the nonlinear differential equation (13). To do

this, let us denote by C2 the loci where φ′ (S) goes to plus/minus infinity, and by C3 the loci

where φ′ (S) equals zero in the (S, a) space:

C1 := {(S, a) : Ṡ = Sγnφ (S)− δS = 0},

C2 := {(S, a) : φ′ (S) → ±∞}, (14)

C3 := {(S, a) : φ′ (S) = 0}.

First, we identify the steady state locus where Ṡ = 0 in (3), called C1 in the following.

0 = Sγna− δS,

Sγ−1na = δ,

∴ a =
δ

n
S1−γ .

noting that a = 0 at S = 0. Moreover, since the slope of the steady state line C1 is

characterized by

da(S)

dS
=

δ

n
(1− γ)S−γ > 0,

d2a(S)

dS2
= − δ

n
(1− γ)γS−γ−1 < 0. (15)

These facts together imply that the steady-state line C1 is a upward-sloping, concave line in

the (S, a) space. It starts from the origin and is monotonically increasing in S. Moreover,

it immediately follows from (15) not only that the slope of the steady-state line C1 at the

origin becomes plus infinity and goes to zero as S becomes indefinitely larger, but also that it

crosses the budget line a = 1 at point
(

(n/δ)
1

1−γ , 1
)

. Moreover, it follows from (3) that any

strategy φ (S) above C1 implies that S declines in time, while any strategy φ (S) below C1

entails an increase of Z over time. Taken together, we can draw the graph of the steady-state

line C1 in Figure 1.

9



Figure 1: Steady State Curve

Let us consider C2 the loci where φ′ (S) goes to plus/minus infinity, and by C3 the loci

where φ′ (S) equals zero in the (S, c) space. First, setting the denominator in (13) equal to

zero, we obtain the locus of the curve C2:

A− θS

1− a(S)
(Sγn− δS)− n

n− 1
Sγ = 0,

A− θS

1− a(S)
(Sγn− δS) =

n

n− 1
Sγ ,

(A− θS) (Sγn− δS) =
n

n− 1
[1− a(S)]Sγ ,

n

n− 1
[1− a(S)]Sγ = (A− θS) (Sγn− δS) ,

1− a(S) =
n− 1

n
(A− θS)

(

n− δS1−γ
)

,

∴ a(S) = 1− n− 1

n
(A− θS)

(

n− δS1−γ
)

,
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Furthermore,

a(S) = 1− n− 1

n

[

A
(

n− δS1−γ
)

− θS
(

n− δS1−γ
)]

,

= 1− n− 1

n

[

An−AδS1−γ − θSn+ θδS2−γ
]

,

= 1− n− 1

n

[

An−AδS1−γ − θSn+ θδS2−γ
]

,

= 1−A (n− 1)− n− 1

n

[

−AδS1−γ − θSn+ θδS2−γ
]

,

= 1− 2n− 1

n− 1
(n− 1) +

n− 1

n

[

AδS1−γ + θSn− θδS2−γ
]

,

= 1− (2n− 1) +
n− 1

n

[

2n− 1

n− 1
δS1−γ + θSn− θδS2−γ

]

,

= 2 (−n+ 1) +

[

2n− 1

n
δS1−γ +

n− 1

n
θSn− n− 1

n
θδS2−γ

]

,

= 2 (1− n) +
2n− 1

n
δS1−γ + (n− 1) θS − n− 1

n
θδS2−γ ,

∴ a(S) = 2 (1− n) +
2n− 1

n
δS1−γ + (n− 1) θS − n− 1

n
θδS2−γ . (16)

which we call ‘the non-invertibility locus’ following Rowat (2007).

It follows from (16) that as S −→ 0, a(S) −→ 2 (1− n) < 0, while as S −→ ∞, a(S) →
−∞.

Substituting (n/δ)
1

1−γ into (16) yields

a(S) = 2 (1− n) +
2n− 1

n
δ
[

(n/δ)
1

1−γ

]1−γ

+ (n− 1) θ(n/δ)
1

1−γ − n− 1

n
θδ

(

(n/δ)
1

1−γ

)2−γ

,

= 2 (1− n) +
2n− 1

n
δ(n/δ) + (n− 1) θ(n/δ)

1

1−γ − n− 1

n
θδ

(

(n/δ)
1

1−γ

)1−γ

(n/δ)
1

1−γ ,

= 2 (1− n) + (2n− 1) + (n− 1) θ(n/δ)
1

1−γ − n− 1

n
θδ(n/δ)(n/δ)

1

1−γ ,

= 2 (1− n) + (2n− 1) + (n− 1) θ(n/δ)
1

1−γ − (n− 1) θ(n/δ)
1

1−γ

= 2 (1− n) + (2n− 1) = 2− 2n+ 2n− 1 = 1,

which implies that the curve C2 crosses the budget line a = 1 at point ((n/δ)
1

1−γ , 1). Moreover,

since there are two intersection points between the curveC2 and the budget line a = 1, because

a(S) = 1− n− 1

n
(A− θS)

(

n− δS1−γ
)

,

1 = 1− n− 1

n
(A− θS)

(

n− δS1−γ
)

,

0 = (A− θS)
(

n− δS1−γ
)

,

11



which yields

S = A/θ =
2n− 1

θ (n− 1)
,

S = (n/δ)
1

1−γ .

Moreover, since the intersection point between the curve C2 and the horizontal axis (i.e.,

a = 0) is given by

0 = 2 (1− n) +
2n− 1

n
δS1−γ + (n− 1) θS − n− 1

n
θδS2−γ ,

−2 (1− n) =
2n− 1

n
δS1−γ + (n− 1) θS − n− 1

n
θδS2−γ ,

2n =
2n− 1

n− 1
δS1−γ + nθS − θδS2−γ ,

it is difficult to get an explicit solution in terms of S. Instead, substitute S =
2n− 1

n− 1
ρ+(1−γ)δ

θ(ρ+(2−γ)δ)

into the curve C2 yields

a = 2 (1− n) +
2n− 1

n
δS1−γ + (n− 1) θS − n− 1

n
θδS2−γ

= 2 (1− n) +
2n− 1

n
δ

[

2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

]

S−γ

+(n− 1) θ
2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)
− n− 1

n
θδ

[

2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

]2

S−γ

= 2 (1− n) +
2n− 1

n
δ

[

2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

]

S−γ + θ (2n− 1)
ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

−2n− 1

n
δ

[

1

n− 1

ρ+ (1− γ)δ

ρ+ (2− γ)δ

][

2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

]

S−γ

= 2 (1− n) + θ (2n− 1)
ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

+
2n− 1

n
δ

[

2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)

]

S−γ

[

1− 1

n− 1

ρ+ (1− γ)δ

ρ+ (2− γ)δ

]

> 0

since

1− 1

n− 1

ρ+ (1− γ)δ

ρ+ (2− γ)δ
=

(n− 1)(ρ+ (2− γ)δ)− (ρ+ (1− γ)δ)

(n− 1)(ρ+ (2− γ)δ)
> 0.

This implies that the curve C2 is located above the horizontal axis at S =
2n− 1

n− 1
ρ+(1−γ)δ

θ(ρ+(2−γ)δ) ,

as ilusarated in Figure 2.
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On the other hand, the slope of the curve C2 is given by

da(S)

dS
=

2n− 1

n
δ (1− γ)S−γ + (n− 1) θ − n− 1

n
θδ (2− γ)S1−γ,

= (2n− 1)
δ

n
(1− γ)S−γ + (n− 1) θ

[

1− δ

n
(2− γ)S1−γ

]

,

= [(2n− 1) (1− γ)− (n− 1) θ (2− γ)S]
δ

n
S−γ + (n− 1) θ,

which has the following slope at (n/δ)
1

1−γ :

da(S)

dS
=

[

(2n− 1) (1− γ)− (n− 1) θ (2− γ) (n/δ)
1

1−γ

] δ

n
S−γ + (n− 1) θ,

= (n− 1) θ

[

2n− 1

(n− 1) θ
(1− γ)− (2− γ) (n/δ)

1

1−γ

]

δ

n
S−γ + (n− 1) θ � 0,

⇐⇒ (1− γ)

[

2n− 1

(n− 1) θ
− 2− γ

1− γ
(n/δ)

1

1−γ

]

δ

n
(n/δ)

−γ

1−γ + 1 � 0

=⇒
[

2n− 1

(n− 1) θ
− 2− γ

1− γ
(n/δ)

1

1−γ

]

(n/δ)
1−2γ

1−γ +
1

1− γ
> 0 iff

2n− 1

(n− 1) θ
> (n/δ)

1

1−γ .

whose slope may be positive or ambiguous, while the curve C2 has the following slope at

S =
2n− 1

(n− 1) θ
:

da(S)

dS
=

[

(2n− 1) (1− γ)− (n− 1) θ (2− γ)
2n− 1

(n− 1) θ

]

δ

n

[

2n− 1

(n− 1) θ

]−γ

+ (n− 1) θ,

= [(2n− 1) (1− γ)− (2− γ) (2n− 1)]
δ

n

[

2n− 1

(n− 1) θ

]−γ

+ (n− 1) θ,

= (2n− 1) [(1− γ)− (2− γ)]

[

2n− 1

(n− 1) θ

]−γ

+ (n− 1) θ,

= (2n− 1) [−1]

[

(n− 1) θ

2n− 1

]γ

+ (n− 1) θ,

= − (2n− 1)

[

(n− 1) θ

2n− 1

]γ

+ (n− 1) θ,

which implies that

When γ = 1,
da(S)

dS
= − (2n− 1)

[

(n− 1) θ

2n− 1

]

+ (n− 1) θ,

= − (n− 1) θ + (n− 1) θ = 0,

When γ = 0,
da(S)

dS
= − (2n− 1) + (n− 1) θ < 0.

Moreover,
d2a(S)

dSdγ
< 0 because

(n− 1) θ

2n− 1
< 1.
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Taken together, the slope of the curve C2 at S =
2n− 1

(n− 1) θ
is negative (see Figure 2). This

implies that the curve C2 crosses the budget line a = 1 at the left point of interesection
(

2n− 1

(n− 1) θ
, 1

)

from the below, whereas it crosses the budget line a = 1 at the right point of

interesection

(

2n− 1

(n− 1) θ
, 1

)

from the above. Moroever,

d2a(S)

dS2
= −2n− 1

n
δ (1− γ) γS−γ−1 − n− 1

n
θδ (2− γ) (1− γ)S−γ < 0.

As S −→ 0, da(S)/dS −→ ∞, whereas as S −→ ∞, da(S)/dS −→ −∞. This implies that

its slope is positive when S is small, then its slope becomes negative when S is large.

Taken together, the nonlinear curve C2 displays an inverse U-shape, which intersects

the vertical axis at (0, 2 (1− n)). The curve C2 increases for smaller values of S and then

decreases and crosses the horizontal axis at S = (n/δ)
1

1−γ and
2n− 1

θ (n− 1)
.

The locus C3 is obtained by setting the numerator in (12) equal to zero. Solving for a

gives the following locus:

AR− θ (ρ+ (2− γ)δ)S + θSγna = 0,

−AR+ θ (ρ+ (2− γ)δ)S = θSγna,

θSγna = −AR+ θ (ρ+ (2− γ)δ)S,

a = − AR

θSγn
+
θ (ρ+ (2− γ)δ)S

θSγn
,

∴ a = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ .

As S −→ 0, a −→ −∞, while as S −→ ∞, a −→ ∞. In particular, it crosses the horizontal

axis at point

(

2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)
, 0

)

, since

0 = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ ,

0 = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
+
ρ+ (2− γ)δ

n
S,

0 = −2n− 1

n− 1

ρ+ (1− γ)δ

θ
+ [ρ+ (2− γ)δ]S,

2n− 1

n− 1

ρ+ (1− γ)δ

θ
= [ρ+ (2− γ)δ]S,

∴ S =

2n− 1

n− 1

ρ+ (1− γ)δ

θ
ρ+ (2− γ)δ

=
2n− 1

n− 1

ρ+ (1− γ)δ

θ (ρ+ (2− γ)δ)
> 0.
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Moreover, the intersection between the curve C3 and the budget line a = 1 is given by

1 = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ ,

n = −2n− 1

n− 1

ρ+ (1− γ)δ

θ
S−γ + [ρ+ (2− γ)δ]S1−γ ,

nSγ − (ρ+ (2− γ)δ)S +
2n− 1

n− 1

ρ+ (1− γ)δ

θ
= 0,

it is difficult to solve the above equation for S. Instead of it, we substitute S = (n/δ)
1

1−γ into

S on the right-hand side of C3, thus yielding

a = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ,

a((n/δ)
1

1−γ ) = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
(n/δ)

−γ

1−γ +
ρ+ (2− γ)δ

n

[

(n/δ)
1

1−γ

]1−γ

,

= −2n− 1

n− 1

ρ+ (1− γ)δ

θn
(n/δ)

1−γ

1−γ (n/δ)
−1

1−γ +
ρ+ (2− γ)δ

n
(n/δ),

= −2n− 1

n− 1

ρ+ (1− γ)δ

θn
(n/δ)(n/δ)

−1

1−γ +
ρ+ (2− γ)δ

δ
,

= −2n− 1

n− 1

ρ+ (1− γ)δ

θδ
(n/δ)

−1

1−γ +
ρ+ (2− γ)δ

δ
,

=
1

δ

[

−2n− 1

n− 1

ρ+ (1− γ)δ

θ
+ (ρ+ (2− γ)δ) (n/δ)

1

1−γ

]

(n/δ)
−1

1−γ

=
1

δ
(ρ+ (2− γ)δ)

[

−2n− 1

n− 1

ρ+ (1− γ)δ

θ(ρ+ (2− γ)δ)
+ (n/δ)

1

1−γ

]

(n/δ)
−1

1−γ � 0,

if
2n− 1

n− 1

ρ+ (1− γ)δ

θ(ρ+ (2− γ)δ)
⋚ (n/δ)

1

1−γ ,

which implies that the curve C3 may or may not be located above the horizontal axis at

S = (n/δ)
1

1−γ depending on the relative size of
2n− 1

n− 1

ρ+ (1− γ)δ

θ(ρ+ (2− γ)δ)
and (n/δ)

1

1−γ .

When γ = 1, it is clear that a > 0.

When γ = 0,

2n− 1

n− 1

ρ+ δ

θ(ρ+ 2δ)
= (n/δ),

(2n− 1)
ρ+ δ

θ(ρ+ 2δ)
=

1

δ
n(n− 1),

whose solutions are 1
4θδ+2θρ

(

2δ2 + 2θδ + θρ+ 2δρ−
√

4δ4 + 4θ2δ2 + θ2ρ2 + 4δ2ρ2 + 8δ3ρ+ 4θ2δρ
)
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and 1
4θδ+2θρ

(

2δ2 + 2θδ + θρ+ 2δρ+
√

4δ4 + 4θ2δ2 + θ2ρ2 + 4δ2ρ2 + 8δ3ρ+ 4θ2δρ
)

.

If
1

4θδ + 2θρ

(

2δ2 + 2θδ + θρ+ 2δρ+

√

4δ4 + 4θ2δ2 + θ2ρ2 + 4δ2ρ2 + 8δ3ρ+ 4θ2δρ

)

< n,

2n− 1

n− 1

ρ+ (1− γ)δ

θ(ρ+ (2− γ)δ)
> (n/δ)

1

1−γ ,

If
1

4θδ + 2θρ

(

2δ2 + 2θδ + θρ+ 2δρ+

√

4δ4 + 4θ2δ2 + θ2ρ2 + 4δ2ρ2 + 8δ3ρ+ 4θ2δρ

)

> n,

2n− 1

n− 1

ρ+ (1− γ)δ

θ(ρ+ (2− γ)δ)
< (n/δ)

1

1−γ .

On the other hand,

da(S)

dS
= γ

AR

θn
S−γ + (1− γ)

ρ+ (2− γ)δ

n
S−γ > 0,

and
d2a(S)

dS2
= −γ2AR

θn
S−γ−1 + (1− γ) (−γ) (ρ+ (2− γ)δ)

n
S−γ−1 < 0.

which shows that the nonlinear curve C3 is a upward-sloping, concave line in the (S, c) space.

The curve C3 never intersects the vertical axis and thus goes to minus infinity as S approaches

zero, while it goes to plus infinity as S becomes indefinitely large.

Since the intersection point between the curve C2 and the curve C3 is given by

a(S) = 2 (1− n) +
2n− 1

n
δS1−γ + (n− 1) θS − n− 1

n
θδS2−γ ,

a(S) = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ .

2 (1− n) +

[

2n− 1

n
δ − ρ+ (2− γ)δ

n

]

S1−γ + (n− 1) θS − n− 1

n
θδS2−γ

= −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ

2 (1− n)n+ [(2n− 1) δ − (ρ+ (2− γ)δ)]S1−γ + n (n− 1) θS − (n− 1) θδS2−γ

+
2n− 1

n− 1

ρ+ (1− γ)δ

θ
S−γ = 0,

it is difficult to get an explicit solution for S.

On the other hand, the intersection point between the curve C3 and the steady state line

is given by

a(S) =
δ

n
S1−γ ,

a(S) = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ .
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δ

n
S1−γ = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (2− γ)δ

n
S1−γ ,

0 = −2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ +

ρ+ (1− γ)δ

n
S1−γ ,

2n− 1

n− 1

ρ+ (1− γ)δ

θn
S−γ =

ρ+ (1− γ)δ

n
S1−γ ,

∴
2n− 1

n− 1
= S,

which implies

a(S) =
δ

n

(

2n− 1

n− 1

)1−γ

.

Taking natutal algarithm yields

lna(S) = ln
δ

n
+ (1− γ) [ln (2n− 1)− ln (n− 1)]

When γ = 1,

lna(S) = ln
δ

n
< 0,

which implies a(S) < 1, whereas when γ = 0,

ln a(S) = ln
δ

n
+ [ln (2n− 1)− ln (n− 1)] ,

ln a(S) = ln
δ

n
− ln (n− 1) + ln (2n− 1) ,

ln a(S) = ln
δ

n (n− 1)
+ ln (2n− 1) ,

= ln
δ (2n− 1)

n (n− 1)
> 0 if

δ (2n− 1)

n (n− 1)
> 1,

In order to focus on the maximum value for
δ (2n− 1)

n (n− 1)
, setting δ = 1 yields

(2n− 1)

n (n− 1)
� 1,

Suppose that

(2n− 1)

n (n− 1)
< 1,

2n− 1 < n2 − n,

n2 − 3n+ 1 > 0

n2 − 3n+ 1 = 0
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Figure 2:

whose solutions are

n =
3

2
+

1

2

√
5 = 2. 618

=
3

2
− 1

2

√
5 = 0.381 97

which implies that if n ≥ 3,
(2n− 1)

n (n− 1)
< 1 and thus lna(S) < 0 thus a(S) < 1.

As a result, we can illustrate Figure 2. Moreover, the point of intersection between

C2 and C3, labelled E, will be situated in the nonnegative quadrant of the (S, a) plane:

(SE , aE) = (, ),which is called ‘a singular point’. Note, however, that point E may be located

below or above the resource constraint (2), since the value of aE should be less than 1. as

illustrated in Figure 2. Moreover, the point of intersection between C2 and C3, labelled E,

will be situated in the nonnegative quadrant of the (S, a) plane:

(SE, aE) = (, ) , (17)

which is called ‘a singular point’. Moreover, it follows from (3) that any strategy φ (S) above

C1 implies that S declines in time, while any strategy φ (S) below C1 entails an increase of S

over time.
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Figure 3:

Furthermore, by direct integration of (13) and manipulating we can obtain a general

solution to the differential equation (13):

φ (S) =, (18)

where c1 represents an arbitrary constant of integration and may take a positive, zero or

negative value. When c1 = 0, (18) simplifies to1

φL (S) =, (19)

It is seen form Figs 2 and 3 that the left branch of the linear strategy φL to the steady state

line C1 starts from the origin, and then reaches point S on C1, while its right branch starts

from any S ≥ S̃, then reaching point S also. The right branch of φL goes through the singular

point E.

1Long and Shimomura (1998) show that in the class of differential games if the integrand of the objective

function is homogeneous of degree α and if constraints that are homogeneous of degree one, then the best

replies to linear homogenous Markov strategies played the rivals are linear homogenous. The resulting linear

strategy in our model is consistent with their characterization.
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Collecting the arguments, we can illustrate an uncountable number of the curves corre-

sponding to the (interior) solutions satisfying the HJB equation (4) in Figs. 1 and 2. These

figures display representatives of those integral curves that are divided into five types of the

families of strategies. Arrows on the families of integral curves φj, j = 1, . . . , 4, and φL

illustrate the evolution of S over time.

Furthermore, by direct integration of (13) and manipulating we can obtain a general

solution to the differential equation (13):

φ (S) =, (20)

where c1 represents an arbitrary constant of integration and may take a positive, zero or

negative value. When c1 = 0, (18) simplifies to2

φL (S) =, (21)

It is seen form Figs 1 and 2 that the left branch of the linear strategy φL to the steady state

line C1 starts from the origin, and then reaches point S on C1, while its right branch starts

from any S ≥ S̃, then reaching point S also. The right branch of φL goes through the singular

point E.

4 The Alternative Model

In this section, we assume that the utility weight of each player has the following form:

θi (S) = e−S. The steady state locus locus C1 is the same as before. The first-order conditions

for maximization are modified as follows:

1

ci
+ (1− e−S)

Σn
j=1, j �=icj

ciC
− V ′

i (S)S
γ = 0, i = 1, 2., ..., n,

∴ SγV ′
i (S) =

1

ci

[

1 + (1− e−S)
Σn
j=1, j �=icj

C

]

, i = 1.2., ..., n, (22)

2Long and Shimomura (1998) show that in the class of differential games if the integrand of the objective

function is homogeneous of degree α and if constraints that are homogeneous of degree one, then the best

replies to linear homogenous Markov strategies played the rivals are linear homogenous. The resulting linear

strategy in our model is consistent with their characterization.
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Equation (5) gives the Markov-perfect Nash solutions expressed as {ci (S) , ai (S)} . Sub-
stituting these optimal solutions into the HJB equation (4), we obtain

ρVi (S) = log ci (S) + (1− e−S) log

(

ci (S)

C (S) /n

)

+ V ′
i (S)

[

SγΣn
j=1(1− cj (S))− δS

]

, (23)

where C (S) ≡ Σn
j=1cj (S). By use of the envelop theorem, we find that differentiation of

both sides of (23) with respect to S gives

ρV ′
i (S) =

c′i (S)

ci (S)
− e−S log

(

ci (S)

C (S) /n

)

+ (1− e−S)
C (S)

nci (S)
n
c′i (S)C (S)− ci (S)Σ

n
j=1c

′
j (S)

[C (S)]2

+V
′′

i (S)
[

SγΣn
j=1(1− cj (S))− δS

]

+ V
′

i (S)
[

γSγ−1Σn
j=1(1− cj (S))− SγΣn

j=1c
′
j (S)− δ

]

,

ρV ′
i (S) =

c′i (S)

ci (S)
− e−S log

(

ci (S)

C (S) /n

)

+ (1− e−S)
c′i (S)C (S)− ci (S)Σ

n
j=1c

′
j (S)

ci (S)C (S)

+V
′′

i (S)
[

SγΣn
j=1(1− cj (S))− δS

]

+ V
′

i (S)
[

γSγ−1Σn
j=1(1− cj (S))− SγΣn

j=1c
′
j (S)− δ

]

.

Assuming symmetry

ρV ′ (S) =
c′i (S)

ci (S)
− e−S log

(

nc (S)

nc (S)

)

+ (1− e−S)
c′ (S)nc (S)− c (S)nc′ (S)

c (S)nc (S)

+V ′′ (S) [Sγn(1− c (S))− δS] + V ′ (S)
[

γSγ−1n(1− c (S))− Sγnc′ (S)− δ
]

,

Since log
(

nc(S)
nc(S)

)

= log (1) = 0,

ρV ′
i (S) =

c′i (S)

ci (S)
+V ′′ (S) [Sγn(1− c (S))− δS]+V ′ (S)

[

γSγ−1n(1− c (S))− Sγnc′ (S)− δ
]

.

Differentiating (22) (i.e., V ′
i (S) =

1

ciSγ

[

1 + (1− e−S)Σn
j=1, j �=icj

]

) with respect to S yields

V ′′
i (S) =

1

[ci(S)Sγ]2
[(

e−SΣn
j=1, j �=icj(S) + (1− e−S)Σn

j=1, j �=ic
′
j(S)

)

ci(S)S
γ

−
(

1 + (1− e−S)Σn
j=1, j �=icj

) (

c′i(S)S
γ + ci(S)γS

γ−1
)]

By symmetry

V ′′ (S) =
1

[c(S)Sγ ]2
[(

e−S(n− 1)c(S) + (1− e−S)(n− 1)c′(S)
)

c(S)Sγ

−
(

1 + (1− e−S)(n− 1)c(S)
) (

c′(S)Sγ + c(S)γSγ−1
)]
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V ′′ (S) =
(n− 1)

c(S)Sγ

[(

e−Sc(S) + (1− e−S)c′(S)
)

−
(

1

n− 1
+ (1− e−S)c(S)

)(

c′(S)

c(S)
+ γS−1

)]

V ′′ (S) =
n− 1

Sγ

[(

e−S + (1− e−S)
c′(S)

c(S)

)

−
(

1

c(S)(n− 1)
+ (1− e−S)

)(

c′(S)

c(S)
+ γS−1

)]

V ′′ (S) =
(n− 1)

Sγ

[

e−S + (1− e−S)
c′(S)

c(S)

− 1

c(S)(n− 1)

(

c′(S)

c(S)
+ γS−1

)

− (1− e−S)

(

c′(S)

c(S)
+ γS−1

)]

V ′′ (S) =
(n− 1)

Sγ

[

e−S − 1

c(S)(n− 1)

(

c′(S)

c(S)
+ γS−1

)

− (1− e−S)γS−1

]

.

Moreover, under symmetry the first order condition is given by

V ′ (S) =
1

cSγ

[

1 +
(

1− e−S
) n− 1

n

]

.

Substituting these terms yields

ρV ′ (S) =

[

1

c (S)
− V ′ (S)Sγ

]

c′ (S) + V ′′ (S) [Sγn(1− c (S))− δS]

+V ′ (S)
[

γSγ−1n(1− c (S))− Sγ(n− 1)c′ (S)− δ
]

,

ρV ′ (S) = −
(

1− e−S
) n− 1

n
+ V ′′ (S) [Sγn(1− c (S))− δS]

+V ′ (S)
[

γSγ−1n(1− c (S))− Sγ(n− 1)c′ (S)− δ
]

,

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

V ′ (S) =

−
(

1− e−S
) n− 1

n
+ V ′′ (S) [Sγn(1− c (S))− δS] .

Since

V
′′

i (S) =
(n− 1)

Sγ

[

e−S − 1

c(S)(n− 1)

(

c′(S)

c(S)
+ γS−1

)

−(1− e−S)γS−1
]
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[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

·
1

c (S)Sγ

[

1 +
(

1− e−S
) n− 1

n

]

=

−
(

1− e−S
) n− 1

n
+ [Sγn(1− c (S))− δS]

(n− 1)

Sγ
·

[

e−S − 1

c(S)(n− 1)

(

c′(S)

c(S)
+ γS−1

)

− (1− e−S)γS−1

]

Multiplying both sides by Sγc (S) , we have

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

[

1 +
(

1− e−S
) n− 1

n

]

= −
(

1− e−S
) n− 1

n
Sγc (S) + [Sγn(1− c (S))− δS] (n− 1)·

[

c(S)e−S − 1

(n− 1)

(

c′(S)

c(S)
+ γS−1

)

− c(S)(1− e−S)γS−1

]

Multiplying both sides by
n

n− 1
, we have

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

[

n

n− 1
+
(

1− e−S
)

]

= −
(

1− e−S
)

Sγc (S) + n [Sγn(1− c (S))− δS] ·
[

c(S)e−S − 1

(n− 1)

(

c′(S)

c(S)
+ γS−1

)

− c(S)(1− e−S)γS−1

]

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

[

n

n− 1
+
(

1− e−S
)

]

=

−
(

1− e−S
)

Sγc (S) + n [Sγn(1− c (S))− δS] ·
[

c(S)
(

e−S − (1− e−S)γS−1
)

− 1

(n− 1)

(

c′(S)

c(S)
+ γS−1

)]

−n [Sγn(1− c (S))− δS]
1

(n− 1)

(

c′(S)

c(S)
+ γS−1

)

= −
[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

[

n

n− 1
+
(

1− e−S
)

]

−
(

1− e−S
)

Sγc (S) + n [Sγn(1− c (S))− δS] c(S)
[

e−S − (1− e−S)γS−1
]

n [Sγn(1− c (S))− δS]
1

(n− 1)

(

c′(S)

c(S)
+ γS−1

)

=
[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

[

n

n− 1
+
(

1− e−S
)

]

+
(

1− e−S
)

Sγc (S) + n [Sγn(1− c (S))− δS] c(S)
[

e−S − (1− e−S)γS−1
]
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n [Sγn(1− c (S))− δS]
1

(n− 1)

c′(S)

c(S)

= −n [Sγn(1− c (S))− δS]
1

(n− 1)
γS−1

[

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)
]

[

n

n− 1
+
(

1− e−S
)

]

+
(

1− e−S
)

Sγc (S) + n [Sγn(1− c (S))− δS] c(S)
[

e−S − (1− e−S)γS−1
]

Dividing both sides by n [Sγn(1− c (S))− δS]

1

(n− 1)

c′(S)

c(S)
= − 1

(n− 1)
γS−1

ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)

n [Sγn(1− c (S))− δS]

[

n

n− 1
+
(

1− e−S
)

]

+

(

1− e−S
)

Sγc (S)

n [Sγn(1− c (S))− δS]
+ c(S)

[

e−S − (1− e−S)γS−1
]

Multiplying both sides by (n− 1)

c′(S)

c(S)
= −γS−1ρ+ δ − γSγ−1n(1− c (S)) + Sγ(n− 1)

n [Sγn(1− c (S))− δS]

[

n+ (n− 1)
(

1− e−S
)]

+
(n− 1)

(

1− e−S
)

Sγc (S)

n [Sγn(1− c (S))− δS]
+ (n− 1)c(S)

[

e−S − (1− e−S)γS−1
]

5 Competitive Statics

6 Concluding Remarks

The first message of this paper is that completely aggressive behavior is not necessarily a

rational strategy for a contender in anarchic situations. Rather, every contender will individ-

ually and voluntarily choose “partial cooperation”, in which each contender devotes individual

resources both to productive and appropriation activities at the same time, even though con-

tenders act fully rational and are guided by their self-interest. The primary driving force is

the durability of the common-pool stock in conjunction with the forward looking behavior

of patient contenders. These intrinsically dynamic ingredients induce every contender to

behave cooperatively to some extent, even without punishments and threats. In other words,

unless the stock of common-accessible goods depreciates completely each period, contenders

are completely myopic or the initial stock level is huge, contenders are always motivated to

follow a cooperative behavior in producing that good.
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The second major finding is that even if nonlinear Markov strategies are available, there

is a unique MPE strategy in the class of continuos, globally defined strategies. This result

is in sharp contrast with the results of Dockner and van Long (1993), and Rowat (2007)

which provide multiplicity of equilibrium strategies and uncountable many long run equi-

libria including the better outcomes supported by the nonlinear MPE strategies. However,

it remains an open question as to the extent to which the uniqueness result of our model

may be model-specific or robust under different contest success, production or/and objective

functions.

The model presented in this paper should be developed further in several directions. In

particular, introducing asymmetric agents into the present model enables us to compare the

results of the present model with those of the static conflict model played by asymmetric

agents. Another interesting research agenda is to investigate non-Markovian equilibria sup-

ported by history-dependent strategies such as trigger ones in the present model, which would

support multiple and more efficient, peaceful equilibria (see Benhabib and Radner, 1992).

Appendix A

Setting γ = 1 in (13) leads to

a′ (S) =
(A− θS)R+ θ [Sna (S)− δS]

A− θS

1− a (S)
(Sn− δS)− n

n− 1
S

,

=
(A− θS)

ρ

S
+ θ [na (S)− δ]

A− θS

1− a (S)
(n− δ)− n

n− 1

, (A.1)

where R ≡ ρ and A = (2n− 1)/(n− 1).

In this case, the steady state curve Ṡ = 0 is reduced to

a =
δ

n
S1−γ =

δ

n
> 0.

Turn to C2. Setting the denominator in (A.1) equal to zero yields the following straight line:
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A− θS

1− a (S)
(n− δ)− n

n− 1
= 0,

A− θS

1− a
(n− δ) =

n

n− 1
,

(A− θS) (n− δ) =
n

n− 1
(1− a) ,

1− a =
n− 1

n
(A− θS) (n− δ)

∴ a = 1− n− 1

n
(A− θS) (n− δ) ,

with the following properties:






a �= 1,

a = 1 only when A− θS = 0,

da

dS
=
n− 1

n
θ (n− δ) > 0,

lim
S→0

a = 1− n− 1

n
A (n− δ) = 1− n− 1

n

2n− 1

n− 1
(n− δ)

= 1− 2n− 1

n
(n− δ) = 1− 1

n

(

2n2 − 2nδ − n+ δ
)

,

= 1−
(

2n− 2δ − 1 +
δ

n

)

,

= 2

[

1− n+

(

1− 1

2n

)

δ

]

< 2 [1− n+ δ] < 0, since n ≥ 2 and δ < 1.

lim
S→∞

a = lim
S→∞

[

1− n− 1

n
(A− θS) (n− δ)

]

= ∞,

while when a = 0,

0 = 1− n− 1

n
(A− θS) (n− δ) ,

1 =
n− 1

n
(A− θS) (n− δ),

n

(n− 1)(n− δ)
= A− θS,

θS = A− n

(n− 1)(n− δ)
,

∴ S =
2n− 1

θ(n− 1)
− n

θ(n− 1)(n− δ)
,

S =
1

θ(n− 1)

[

2n− 1− n

n− δ

]

>
1

θ(n− 1)

[

2n− 1− n

n− 1

]

> 0, since δ < 1.
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Indeed,

1

θ(n− 1)

[

2n− 1− n

n− 1

]

=
1

θ(n− 1)

[

(2n− 1) (n− 1)− n

n− 1

]

=
1

θ(n− 1)

[

2n2 − 4n+ 1

n− 1

]

=
2

θ(n− 1)

[

n2 − 2n+ (1/2)

n− 1

]

=
2

θ(n− 1)

[

(n− 1)2 − 1 + (1/2)

n− 1

]

=
2

θ(n− 1)

[

(n− 1)2 − (1/2)

n− 1

]

> 0 since n ≧ 2.

When a = 1,

1 = 1− n− 1

n
(A− θS) (n− δ) > 0,

0 = −n− 1

n
(A− θS) (n− δ)

∴ S = A/θ =
2n− 1

θ(n− 1)
.

When a = δ/n,

δ

n
= 1− n− 1

n
(A− θS) (n− δ) ,

δ = n− (n− 1)

(

2n− 1

n− 1
− θS

)

(n− δ) ,

δ = n− (2n− 1− (n− 1) θS) (n− δ) ,

δ = n− (2n− 1) (n− δ)− (− (n− 1) θS) (n− δ) ,

δ = n− (2n− 1) (n− δ) + (n− 1) θS (n− δ) ,

δ − n+ (2n− 1) (n− δ) = (n− 1) θS (n− δ) ,

(n− δ) [−1 + (2n− 1)] = (n− 1) θS (n− δ) ,

2 (n− δ) (n− 1) = (n− 1) θS (n− δ) ,

2 = θS, since n �= δ,

∴ S = θ/2,
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Taken together, the curve C2 is the straight line starting from point (0, 1− 2n− 1

n
(n− δ))

(note also that 1− 2n− 1

n
(n− δ) < 0) and its slope is given by

n− 1

n
θ (n− δ) > 0. This is

illustrated in Figure 3.

The locus C3 is obtained by setting the numerator in (A.1) equal to zero. Solving for a

gives the following locus:

(A− θS)
ρ

S
+ θ [na (S)− δ] = 0,

θ [na (S)− δ] = −
(

2n− 1

n− 1

ρ

S
− θρ

)

,

na (S)− δ = −1

θ

(

2n− 1

n− 1

ρ

S
− θρ

)

,

na (S) = δ − 1

θ

2n− 1

n− 1

ρ

S
+ ρ,

a (S) = − 1

θn

2n− 1

n− 1

ρ

S
+
ρ+ δ

n
,

∴ a = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

with the following properties:

lim
S→0

a = lim
S→0

[

−2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n

]

= −∞,

lim
S→∞

a = lim
S→∞

[

−2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n

]

=
ρ+ δ

n
,

da

dS
=

2n− 1

n− 1

ρ

θn
S−2 > 0,

and
d2a

dS2
= −2n− 1

n− 1
2
ρ

θn
S−3 < 0.

When a = 0,

0 = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

(2n− 1)
ρ

θ
S−1 = (ρ+ δ) (n− 1) ,

(2n− 1)
ρ

θ
= (ρ+ δ) (n− 1)S,

(ρ+ δ) (n− 1)S = (2n− 1)
ρ

θ
,

∴ S =
(2n− 1) ρ

θ

(ρ+ δ) (n− 1)
=

ρ (2n− 1)

θ (ρ+ δ) (n− 1)
.
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When a = 1,

1 = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

n = −2n− 1

n− 1

ρ

θ
S−1 + ρ+ δ,

nS = −2n− 1

n− 1

ρ

θ
+ (ρ+ δ)S,

2n− 1

n− 1

ρ

θ
= −nS + (ρ+ δ)S,

2n− 1

n− 1

ρ

θ
= [−n+ (ρ+ δ)]S,

whose equality is impossible, because the left-hand side is positive, whereas the right-hand

side is negative. This implies that the curve C3 never crosses the line a = 1. The curve C3

goes to minus infinity as S approaches 0, while it is monotonically increasing in S, and then

approaches the horizontal line
ρ+ δ

n
.

Moreover, in order to compare the intersection point between the horizontal axis and the

straight line C2 with the intersection between the horizontal axis and the curve C3 we take

the difference between the values of S at these two intersections:

2n− 1

θ(n− 1)
− n

θ(n− 1)(n− δ)
− ρ (2n− 1)

θ (ρ+ δ) (n− 1)
,

=
2n− 1

θ(n− 1)

[

1− ρ

ρ+ δ

]

− n

θ(n− 1)(n− δ)
,

=
2n− 1

θ(n− 1)

[

ρ+ δ − ρ

ρ+ δ

]

− n

θ(n− 1)(n− δ)
,

=
2n− 1

θ(n− 1)

δ

ρ+ δ
− n

θ(n− 1)(n− δ)
,

=
1

θ(n− 1)

[

(2n− 1)
δ

ρ+ δ
− n

n− δ

]

� 0.

Furthermore,

(2n− 1)
δ

ρ+ δ
− n

n− δ
= 0,

(2n− 1) (n− δ) δ = n (ρ+ δ) ,

(2n− 1) (n− δ) δ − n (ρ+ δ) = 0,

(2n− 1) (n− δ) δ − n (ρ+ δ) = 0,

2n2δ − 2nδ2 − 2nδ − ρn+ δ2 = 0,
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whose solution is given by







1
2δ

(

δ + 1
2ρ+ δ2 − 1

2

√

4δ2 + 4δ4 + ρ2 + 4δρ+ 4δ2ρ
)

,

1
4δ

(

2δ + ρ+ 2δ2 +
√

4δ2 + 4δ4 + ρ2 + 4δρ+ 4δ2ρ
)







Since n should be positive, there is one solution and thus the positive solution is given by

n =
2δ + ρ+ 2δ2 +

√

4δ2 + 4δ4 + ρ2 + 4δρ+ 4δ2ρ

4δ
,

=
1 + (ρ/2δ) + δ +

√

1 + δ2 + (ρ2/4δ2) + (ρ/δ) + ρ

2
,

which implies

2n− 1

θ(n− 1)
− n

θ(n− 1)(n− δ)
− ρ (2n− 1)

θ (ρ+ δ) (n− 1)
< 0

if n <
1 + (ρ/2δ) + δ +

√

1 + δ2 + (ρ2/4δ2) + (ρ/δ) + ρ

2
,

2n− 1

θ(n− 1)
− n

θ(n− 1)(n− δ)
− ρ (2n− 1)

θ (ρ+ δ) (n− 1)
> 0

if n >
1 + (ρ/2δ) + δ +

√

1 + δ2 + (ρ2/4δ2) + (ρ/δ) + ρ

2
.

In other words, the intersection point between the curve C3 and the horizontal axis is located

at the right of the intersection point between the straight line C2 and the horizontal axis if

1 + (ρ/2δ) + δ +
√

1 + δ2 + (ρ2/4δ2) + (ρ/δ) + ρ

2
< n,

whereas the intersection point between the curve C3 and the horizontal axis is located at the

left of the intersection point between the straight line C2 and the horizontal axis if

1 + (ρ/2δ) + δ +
√

1 + δ2 + (ρ2/4δ2) + (ρ/δ) + ρ

2
> n.

Note the following fact: when δ = 0.1and ρ = 0.03

0.2 + 0.03 + 2(0.1)2 +
√

4(0.1)2 + 4(0.1)4 + (0.03)2 + 4(0.1)(0.03) + 4(0.1)20.03

0.4

whose solution is given by 1. 208 6, which implies that when n ≥ 2, it always holds that

2n− 1

θ(n− 1)
− n

θ(n− 1)(n− δ)
− ρ (2n− 1)

θ (ρ+ δ) (n− 1)
< 0 .

When δ = 0.1, the function of ρ is given by the following form:

0.2 + ρ+ 2(0.1)2 +
√

4(0.1)2 + 4(0.1)4 + ρ2 + 4(0.1)ρ+ 4(0.1)2ρ

0.4
< n.
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Since the maximum of δ is given by 1,

2δ + 0.03 + 2δ2 +
√

4δ2 + 4δ4 + (0.03)2 + 0.12δ + 0.12δ2

4δ
< 2 when δ ∈ [0, 1]

We investigate how the curves C2 and C3 intersect each other. To this end, we compute

the intersection point:
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a = 1− n− 1

n
(A− θS) (n− δ) ,

a = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
.

1− n− 1

n
(A− θS) (n− δ) = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

nS − (n− 1)
(

AS − θS2
)

(n− δ) = −2n− 1

n− 1

ρ

θ
+ S (ρ+ δ) ,

nS − (n− 1)AS (n− δ) + (n− 1) θS2 (n− δ)− S (ρ+ δ) +
2n− 1

n− 1

ρ

θ
= 0,

(n− 1) θS2 (n− δ) +

[

n− (n− 1)
2n− 1

n− 1
(n− δ)− (ρ+ δ)

]

S +
2n− 1

n− 1

ρ

θ
= 0,

(n− 1) θ (n− δ)S2 + [n− (2n− 1) (n− δ)− (ρ+ δ)]S +
2n− 1

n− 1

ρ

θ
= 0,

When S = 1/θ

(n− 1) (n− δ)
1

θ
+ (n− (2n− 1) (n− δ)− (ρ+ δ))

1

θ
+

2n− 1

n− 1

ρ

θ
= 0,

(n− 1) (n− δ) + (n− (2n− 1) (n− δ)− (ρ+ δ)) +
2n− 1

n− 1
ρ = 0,

(n− 1)2 (n− δ) + (n− (2n− 1) (n− δ)− (ρ+ δ)) (n− 1) + (2n− 1) ρ = 0,

f(n) = δ − n− 2nδ + nρ+ n2δ + 2n2 − n3 = 0,

f(2) = δ − n− 4δ + 2ρ+ 4δ + 6− 8

= δ − n+ 2ρ− 2 < 0,

df

dn
= −1− 2δ + ρ+ 2nδ + 4n− 3n2

= −1− 2δ + ρ+ n(2δ + 4− 3n) < 0 for n ≥ 2,

which implies that 1− n− 1

n
(A− θS) (n− δ) < −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
at S = 1/θ.

∴ PS2 +QS +R = 0,
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where

P = (n− 1) θ (n− δ) > 0,

Q = n− (2n− 1) (n− δ)− (ρ+ δ) ,

= 2n− δ + 2nδ − 2n2 − (ρ+ δ) ,

= 2n (−n+ 1 + δ)− (ρ+ 2δ) < 0, since n ≥ 2 and δ < 1

R =
2n− 1

n− 1

ρ

θ
> 0.

The solution is given by

S =
−Q±

√

Q2 − 4PR

2P

The discriminant is given by

Q2 − 4PR = (n− (2n− 1) (n− δ)− (ρ+ δ))2 − 4 (n− 1) θ (n− δ)
2n− 1

n− 1

ρ

θ
,

= (n− (2n− 1) (n− δ)− (ρ+ δ))2 − 4 (n− δ) (2n− 1) ρ,

= ((n− δ)− (2n− 1) (n− δ)− ρ)2 − 4 (n− δ) (2n− 1) ρ, ,

= [(n− δ) (1− 2n+ 1)− ρ]2 − 4 (n− δ) (2n− 1) ρ,

= [2 (n− δ) (1− n)− ρ]2 − 4 (n− δ) (2n− 1) ρ,

= [−2 (n− δ) (n− 1)− ρ]2 − 4 (n− δ) (2n− 1) ρ,

= [2 (n− δ) (n− 1) + ρ]2 − 4 (n− δ) (2n− 1) ρ,

= 4 (n− 1)2 (n− δ)2 + 4 (n− δ) (n− 1) ρ+ ρ2 − 4 (n− δ) (2n− 1) ρ,

= 4 (n− 1)2 (n− δ)2 − 4 (n− δ)nρ+ ρ2,

= 4 (n− δ)
[

(n− 1)2 (n− δ)− nρ
]

+ ρ2,

= 4 (n− δ)
[

n− δ + 2nδ − nρ− n2δ − 2n2 + n3
]

+ ρ2,

= 4 (n− δ)
[

n− δ
(

n2 − 2n+ 1
)

− nρ+ n3
]

+ ρ2,

= 4 (n− δ)
[

n− δ (n− 1)2 − nρ+ n3
]

+ ρ2,

= 4 (n− δ)
[

n(1− ρ)− δ (n− 1)2 + n3
]

+ ρ2 > 0,

because −δ (n− 1)2+n3 > 0. Since the discriminate is always positive, this equation has two

real roots. In other words, the lines C2 and C3 have two intersection points. Since −Q > 0,

these two real roots of S are positive. Nevertheless, in order to more precisely identify how
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the curve C3 intersect with the straight line C2, we first identify the intersection between the

steady state line and the line C2. To do this, we substitute δ/n into the curve C3 to get

a = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

δ

n
= −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

δS = −2n− 1

n− 1

ρ

θ
+ (ρ+ δ)S,

2n− 1

n− 1

ρ

θ
= [(ρ+ δ)− δ]S,

∴ S =
1

ρ

2n− 1

n− 1

ρ

θ
=

2n− 1

n− 1

1

θ
.

which implies that the curve C3 at point

(

2n− 1

n− 1

1

θ
,
δ

n

)

crosses the steady state line Ṡ = 0

as illustrated in Figure 3.

Taken together, it turns out that the nonlinear curve C3 is a upward-sloping, concave line

in the (S, c) space. Moreover, the curve C3 does not intersect the vertical axis and diverges

to minus infinity, while it approaches asymptotically the line
ρ+ δ

n
. Note that there are two

possibilities as to the relative size depending on

2n− 1

θ(n− 1)
− n

θ(n− 1)(n− δ)
− ρ (2n− 1)

θ (ρ+ δ) (n− 1)
� 0.

Appendix B

The comparative statics effects can be captured by the effects on point E.

a = 1− n− 1

n
(A− θS) (n− δ) ,

a = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
.
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Figure 4:

Figure 5:
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1− n− 1

n
(A− θS) (n− δ) = −2n− 1

n− 1

ρ

θn
S−1 +

ρ+ δ

n
,

nS − (n− 1)
(

AS − θS2
)

(n− δ) = −2n− 1

n− 1

ρ

θ
+ S (ρ+ δ) ,

nS − (n− 1)AS (n− δ) + (n− 1) θS2 (n− δ)− S (ρ+ δ) +
2n− 1

n− 1

ρ

θ
= 0,

(n− 1) θS2 (n− δ) +

[

n− (n− 1)
2n− 1

n− 1
(n− δ)− (ρ+ δ)

]

S +
2n− 1

n− 1

ρ

θ
= 0,

F (S;n, θ, δ) = (n− 1) θ (n− δ)S2 + [n− (2n− 1) (n− δ)− (ρ+ δ)]S +
2n− 1

n− 1

ρ

θ
= 0,

dS

dn
= −∂F/∂n

∂F/∂S
= −∂F/∂n

∂F/∂S

where

∂F

∂n
= (n− 1) θ (n− δ)S2 + [n− (2n− 1) (n− δ)− (ρ+ δ)]S +

2n− 1

n− 1

ρ

θ

dS

dθ
= − ∂F/∂θ

∂F/∂S
= −∂F/∂n

∂F/∂S

where
∂F

∂θ
= (n− 1) (n− δ)S2 − ρ

θ2

dS

dδ
= − ∂F/∂δ

∂F/∂S
= −∂F/∂n

∂F/∂S

where
∂F

∂S
= (n− 1) θ (n− δ) 2S + [n− (2n− 1) (n− δ)− (ρ+ δ)]
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