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Abstract

We consider a preemption game between groups, where one of the members of the group can take a

costly action on behalf of his group. We describe the equilibrium solution of this problem if players differ

in their own costs of action, and if these costs are the players’ private information. The equilibrium is

typically characterized by delay. The nature of the equilibrium depends on key parameters such as the

number of groups and their size. More competition between groups reduces delay, whereas larger groups

make members of a given cost type more reluctant to act but may lead to earlier resolution of the conflict

between the groups.
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1 Introduction

We study preemption between groups of players. One of several competing groups can preempt the other

groups if one of its members volunteers to carry out an individually costly action. This situation is charac-

terized by countervailing incentives. On the group level there is a strong incentive to preempt. However, the
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members inside the group face a free-riding problem. Each player likes that his group acts first and preempts

the other group. But each player prefers an member of his group to act first.

We describe the equilibrium solution of this problem when players differ in their own costs of action and

these costs are the players’ private information. We also show how the nature of the equilibrium depends on

key parameters such as the number of groups and their size.

One could also see the free-riding problem of Bliss and Nalebuff (1984) as a possible starting point of our

analysis. They study the waiting game among members of a single clan or group. All members of the clan

benefit if one of its members takes an individually costly action. We use their framework as a building block

but allow for two or more clans that want to preempt each other. The player who grabs first acquires the

benefit for only himself and his clan. Hence, each player prefers that his own clan preempts the other clans

and can individually achieve this goal by taking costly action early on. But each clan member also has an

incentive to wait, hoping that another member of his own clan takes action.

An example of this general structure is given by competing firms consisting of various divisions. The

firms engage in a preemption game, as it has been discussed in a number of business contexts including the

timing of investment,1 of patent efforts,2 and of strategies to develop land.3 Each division may expend the

effort needed to gain the benefit of preempting the other firms. All divisions within the firm may benefit

from successful preemption. Of course, each division may hope that other divisions within the same firm

expend the cost of this move while fearing being preempted by another firm.

Another example is firms’ early adoption of a particular technology or product with consumer network

externalities. In such a situation, early product innovation may set the industry standard, and a growing

consumer base may make this standard successful, even if a competing standard may have been superior. This

may lead to a race in which firms enter the market phase when the product is still immature. Suppose now

that there are two groups of producers of a good for which a new standard is to be defined. Some producers

prefer to produce according to a possible standard A, the other producers prefer a possible standard B.

At an early stage, there is still considerable uncertainty about the relative merits of the two standards

for consumers, but the network externalities would dominate these differences. Single firms must decide

when to innovate and face the market. If a firm that prefers standard A innovates first, this increases the

likelihood that standard A succeeds, and this benefits all firms in this group. But the innovating firm bears

a considerable risk.

Regional agglomeration benefits, as discussed by Baldwin and Krugman (2004), may also cause a pre-

1See, e.g., Boyarchenko and Levendorskii (2014), Bloch, Fabrizi and Lippert (2015), Nishide and Yagi (2016), and Ruiz-
Aliseda (2016).

2See, e.g., Hopenhayn and Squintani (2011, 2016).
3See, e.g., Heubeck (2009).
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emption problem between groups. Suppose there are two regions and a number of entrepreneurs who are

attached to one or the other region and consider whether to found a company in the region. If the first

firm that invests in a region bears a high cost but also triggers agglomeration benefits to follower firms in

the same region, then the competition between two regions with regionally attached firms can generate a

preemption problem between the two regions and a free-riding problem among the firms.

These examples already allude to the related literature. A large literature considers static problems of

inter-group conflict, focussing on the trade-off between making a contribution to an outcome that favors the

whole group, and the option to free ride and leave these costly activities to other members of the own group.

This literature traces back to Olson and Zeckhauser (1966) and many aspects of this strategic problem

have been studied since then.4 Much of this literature focuses on a technology that allows contributors’

efforts to add linearly to determine the aggregate group effort. Hirshleifer (1983) introduced alternatives

to this public good provision technology—particularly the “best-shot” technology according to which only

the largest contribution of a member of the group matters. Barbieri and Malueg (2014) is based on this

group-contribution technology.

More recently this effort-aggregation technology has been applied in inter-group contests. This includes

work by Barbieri, Malueg and Topolyan (2014), Chowdhury, Lee and Sheremeta (2013), and Barbieri and

Malueg (2016).5 A key problem emerging in static inter-group contests with a best-shot technology and

simultaneous action by all players is coordination and this may lead to a major inefficiency: several players

may expend effort, and all but the largest effort in each group is purely wasted. Information and coordination

become crucial. In our dynamic framework this simultaneity problem is resolved, at least for “interior”

equilibria: those in which agents do not bunch. Only one player expends effort, and it is the one with the

lowest cost. The coordination device is “delay,” as in Bliss and Nalebuff (1984), and also in some of the

games studied in the preemption literature.

Konrad (2012) approached the coordination problem inside a group that competes with other groups

differently. He considers whether players would like to form a group that has the purpose of credible

information exchange. He characterizes the conditions when players may form such information alliances.

This voluntary exchange of information occurs in the equilibrium, reduces fighting activity, and overcomes

the problem of wasteful parallel effort. If players do not have such a costless method to share hard evidence

on their abilities to fight, then the players may rely on other devices to overcome the wasteful duplication

of efforts that may emerge inside a group. In a dynamic framework, delay becomes such a device.6

4Seminal contributions in this field are Katz, Nitzan, and Rosenberg (1990) and Esteban and Ray (2001).
5This literature also considered asymmetric conflict, by which one group aggregates effort according to a best-shot technology

and the other group aggregates according to a weakest-link technology (Clark and Konrad, 2007, Chowdhury and Topolyan,
2015).

6More recently a literature has addressed this problem and looked at outcomes in which several group members have to
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We approach the problem in several steps. Section 2 provides the main analysis. First, we outline the key

building blocks of the formal model, and then we study the equilibrium and its properties in the parameter

range in which the equilibrium is interior. Then we turn to the case of corner equilibria, which exhibit partial

“bunching.” Section 3 concludes.

2 The formal framework

We first describe the formal framework that combines the problem of preemption between groups with

the problems of free-riding and coordination within each group. Then we turn to the characterization of

equilibrium and study its properties.

2.1 Players, actions and payoffs

We define N the set of all players i and {N1, N2, ..., NK} a partition of these players intoK groups of identical

size with n players in each group. A representative player is denoted by i. This player is further characterized

by his cost of effort ci. All players’ cost parameters are drawn independently from the same atomless

cumulative distribution function F . We assume F is continuous and differentiable on its support [c, c̄] ⊂

(0,∞). We denote by f the density of F .

Each player i knows the value of his own ci and knows the distribution from which all players’ valuations

are drawn, but not the values of other players’ realized costs, neither for members of his own group nor for

members of the other groups.

Player i’s action is denoted by Ti and is chosen from the interval [0,∞]. The action is the time which

player i waits until the player provides the public good to his own group (“grabs”), provided that none of

the other Kn− 1 players grabbed prior to Ti. All players choose their Ti independently and simultaneously,

based on the information of their own cost, about the distribution F and the rules of the game. Players

cannot observe the actual choices of grabbing times Ti, but as time goes on, they observe whether one of

the other players has grabbed. If a player did not observe any of the other players grabbing prior to time

Ti, then i takes action at this point of time and the game ends.

The gross benefit for each member of a group is V if a member of the group grabs first. We assume

throughout that c̄ ≤ V . The payoff of player i with cost c is equal to (V − c)e−ρT if he is the player who

grabs first and at time T , equal to V e−ρT if a different player from the same group as i grabs first and at

take action, where some of the actions are more expensive than others, and the less expensive tasks may be awarded first. In
this framework the players have countervailing incentives. They prefer not to take any of the costly actions, but conditional on
taking up one of the costly tasks, they prefer to assume a task with a lower cost (see, e.g., Bonatti and Hörner, 2011).
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time T , and equal to zero if a player from another group grabs first.7 If several players grab at the same

time, we assume that then one of them is chosen at random and only that player incurs his cost.

It is important to note that the description of the cost and benefits allows for a number of interpretations

that are more general than the narrow notation suggests. In particular, the analysis includes an interpretation

in which V is the gross benefit for all players of the winning group who do not grab themselves, and

V̂ < V = V − c is the net benefit of the player who grabs first. This allows for a larger or smaller gross

benefit for the grabbing player himself, if c is simply defined as the difference c = V − V̂ between the player’s

net benefit if another member inside his group grabs and the net benefit if the player himself grabs. — KAI,

WE ARE NOT SURE WHAT YOU INTEND WITH THIS PARAGRAPH. If the point is to

allow c < 0, won’t everyone grab at t = 0?

2.2 Properties of an interior equilibrium
SS:interiorprop

Throughout we focus on symmetric equilibria. We describe a strategy of player by a function T : [c, c̄] →

[0,∞], where the function T (·) maps the player’s own cost c to the his conditional time of own grabbing,

T (c). In equilibrium, this choice is, indeed, dynamically consistent, for the same reasons described by Bliss

and Nalebuff (1984).

Standard incentive compatibility arguments imply that a player’s optimal strategy is weakly increasing

in c. We define a (symmetric) equilibrium as interior if the equilibrium strategy T is strictly increasing on

[c, c̄].8 Because there are no ties when T is strictly increasing, delay that does not change the probability

of grabbing first is wasteful—it follows that T (c) = 0 and T is continuous. Because T is nondecreasing, it

follows that T is differentiable almost everywhere. Our first proposition characterizes the interior symmetric

equilibrium.

p:interioreq Proposition 1. If c ≥ c0 ≡ (K−1)n
Kn−1 V , then the unique interior symmetric equilibrium strategy T satisfies

T (c) = 0 and T ′(c) =
f(c)

(1− F (c))

(Kn− 1)

ρ(V − c)

(
c− (K − 1)n

Kn− 1
V

)
∀c ∈ (c, c̄). (1) T-prime-Lemma-1

Proof. If the strategy T is strictly increasing, then a player with value c knows he will grab first, preempting

all others. Therefore, he will choose T (c) = 0 because if T (c) were larger than zero, then grabbing the prize

an instant sooner would be profitable deviation as it would reduce wasteful delay. Similarly, given that T

is strictly increasing it must be continuous, for otherwise some types just above the point of discontinuity

7The choice of a zero as the payoff of members of a non-winning group is simply a normalization. The analysis can easily
be modified to assume that members of non-winning groups receive a non-zero loser prize and that the benefit of being a
non-grabbing member of the winning group is some positive.

8It will follow from Lemma 1 below that an equilibrium strategy is interior if and only if it is strictly positive for all c > c.
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could increase their payoffs by reducing their grabbing time to avoid wasteful delay.

Now suppose T (·) is continuous and strictly increasing. Consider the calculus of a single player i contem-

plating grabbing at T (c∗). We first determine the probability that someone else will take action before date

t. This probability depends on the minimum realized cost among the other Kn− 1 players. The cumulative

distribution function of the minimum cost among them, denoted by cmin, is given by

Pr(cmin ≤ x) = 1− Pr(all other Kn− 1 costs exceed x) = 1− (1− F (x))Kn−1,

for which the associated density function is

(Kn− 1)(1− F (x))Kn−2f(x). (2) density

Moreover, if the game stops before T (c∗), then the probability that i’s team has won is n−1
Kn−1 because players

are acting symmetrically. Following Bliss and Nalebuff (1984), we can now write the payoff to a player with

cost c (a “type-c player”) acting as if his cost were c∗ as

U(c∗, c) = (V − c)e−ρT (c∗)(1− F (c∗))Kn−1 +
n− 1

Kn− 1
V

∫ c∗

c

e−ρT (x)(Kn− 1)(1− F (x))Kn−2f(x) dx

= (V − c)e−ρT (c∗)(1− F (c∗))Kn−1 + (n− 1)V

∫ c∗

c

e−ρT (x)(1− F (x))Kn−2f(x) dx. (3) utility general

The first addendum of the payoff displayed in (3) captures the possibility that this player carries his group

to victory, while the second corresponds to a teammate carrying the group to victory. The type-c player’s

first-order condition for choosing c∗ is

0 =
∂U(c∗, c)

∂c∗
= −ρT ′(c∗)(V − c)e−ρT (c∗)(1− F (c∗))Kn−1

− (Kn− 1)(V − c)e−ρT (c∗)(1− F (c∗))Kn−2f(c∗)

+ (n− 1)V e−ρT (c∗)(1− F (c∗))Kn−2f(c∗)

= e−ρT (c∗)(1− F (c∗))Kn−2

×
{
V (n− 1)f(c∗)− (Kn− 1)(V − c)f(c∗)− ρ(V − c)(1− F (c∗))T ′(c∗)

}
= e−ρT (c∗)(1− F (c∗))Kn−2

×
{[

(Kn− 1)c− (K − 1)nV
]
f(c∗)− ρ(V − c)(1− F (c∗))T ′(c∗)

}
.

(4) foc
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Where T (c) > 0, it must be that the first-order condition holds at c∗ = c, so (4) implies

T ′(c) =
f(c)

1− F (c)
× (Kn− 1)c− (K − 1)nV

ρ(V − c)
. (5) diffeq

(6)

Note further that T (c) as described in (1) identifies the global best response: equations (4) and (5) imply

∂U(c∗, c)

∂c∗
= e−ρT (c∗)(1− F (c∗))Kn−2f(c∗)

×
{
(Kn− 1)c− (K − 1)nV −

(
V − c

V − c∗

)
[(Kn− 1)c∗ − (K − 1)nV ]

}
︸ ︷︷ ︸

≡φ(c∗;c)

.

Now observe that φ(c; c) = 0 and

∂φ(c∗; c)

∂c∗
= −(V − c)

(n− 1)V

(V − c∗)2
< 0,

so U(c∗, c) is strictly quasi-concave in c∗ with a maximum at c∗ = c. Thus, φ(c; c) = 0 yields the best

response in (1).

The equilibrium strategy in Proposition 1 follows from balancing the marginal cost of delay with its

marginal benefit. As noted, a player with the lowest possible cost will grab immediately, i.e., T (c) = 0. Now

consider a player i with cost c who plans to grab at date T (c). The marginal cost of delaying slightly is

ρ (V − c)T ′(c),

i.e., the loss in the present (net) value of the prize, and the marginal benefit of delaying is

h (c) (Kn− 1)

(
c− (K − 1)n

Kn− 1
V

)
,

where h(·) is the hazard rate function for F , i.e., h(c) = f(c)/(1 − F (c)). The term h (c̃) (Kn− 1) is the

hazard rate of the minimum cost of all other agents at c̃: if the cdf of the minimum cost of all other agents

is G(c̃) ≡ 1− (1− F (c̃))
Kn−1

, then

g (c̃) ≡ G′(c̃) = (Kn− 1) (1− F (c̃))
Kn−2

f (c̃) ,
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so

g (c̃)

1−G(c̃)
=

(Kn− 1) (1− F (c̃))
Kn−2

f (c̃)

(1− F (c̃))
Kn−1

= (Kn− 1)
f(c̃)

1− F (c̃)
= (Kn− 1)h (c̃) .

Therefore, h (c) (Kn− 1) is the probability that by delaying slightly beyond T (c) player i is no longer the

first to grab. And the term c− (K−1)n
Kn−1 V is the change in player i’s payoff arising when, because of this delay,

he is not the first to grab—it is the saving in the cost of grabbing minus the value of being preempted by

another group. Now setting the marginal cost equal to the marginal benefit of delay yields

T ′(c) =
h(c)(Kn− 1)

ρ(V − c)
(c− c0),

which is equivalent to (1).

Note that, in the absence of possible preemption by another group (K = 1), equation (1) reduces to

equation (4) in Bliss and Nalebuff (1984) if we take into consideration that they assume ρ = 1 and derive

equilibrium for the game with n+ 1 agents.

Proposition 1 deals with a case of “high costs,” where c ≥ c0. This condition is necessary and sufficient

to ensure T ′ ≥ 0 in (1). Section 2.4 deals with the possibility of “low costs,” where c < c0. When low costs

are possible, some types of players will grab immediately, that is, there is partial bunching at T = 0 and an

interior equilibrium does not exist. We turn to the case of bunching in Section 2.4, but we note now that

arguments there developed to handle bunching will establish that the equilibrium described in Proposition 1

is the unique symmetric equilibrium if c ≥ c0, without restricting attention to strictly increasing strategies.

In the remainder of this section we maintain the assumption that c ≥ c0 and explore the properties of the

interior equilibrium.

Because T (c) = 0, we have

T (c) =

∫ c

c

T ′(y) dy, for all c ∈ [c, c̄].

Recalling from the proof of Proposition 1 that U(c∗, c) is the payoff to a player with cost c acting as if his

cost were c∗, by the envelope theorem we can write the equilibrium utility UE(c) ≡ U(c, c) as

UE(c) = V − c−
∫ c

c

e−ρT (y)(1− F (y))Kn−1 dy. (7) eq utility

For comparative statics we include the dependence of T and UE on K and n.9

p:interiorCST Proposition 2. For a player of a given type c, the grabbing time T (c;K,n) is (linearly) decreasing in the

number K of groups and it is (linearly) increasing in the size n of the groups.

9The next proposition extends the linearity property of T (c;K,n) with respect to n found by Bliss and Nalebuff (1984).
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Proof. Consider first an increase in K. We have, using (1),

∂T ′(c;K,n)

∂K
=

h(c)n

ρ(V − c)
(c− V ) = −h(c)n

ρ
< 0. (8) partial tp K

We now have

T (c;K,n)− T (c;K + 1, n) =

∫ K

K+1

∂T (c; k, n)

∂k
dk

=

∫ K

K+1

(∫ c

c

∂T ′(y; k, n)

∂k
dy

)
dk

=

∫ K

K+1

(∫ c

c

−h(y)n

ρ
dy

)
dk

=
n

ρ

∫ K

K+1

log( 1− F (c ) dk

= −n

ρ
log( 1− F (c) )

≡ ∆n(c),

where it is clear that ∆n(c) > 0 for all c ∈ (c, c̄) and ∆n(c) is independent ofK. By induction, T (c;K+1, n) =

T (c; 2, n)− (K − 1)∆n(c).

Consider next an increase in n. We have

T (c;K,n+ 1)− T (c;K,n) =

∫ c

c

h(z)

ρ(V − z)
[(K(n+ 1)− 1)z − (K − 1)(n+ 1)V − ((Kn− 1)z − (K − 1)nV )] dz

=

∫ c

c

h(z)

ρ(V − z)
[Kz − (K − 1)V ] dz ≡ ∆K(c).

Then, for z > c,

z > c ≥ c0 =
(K − 1)n

Kn− 1
V ≥ K − 1

K
V,

implying ∆K(c) > 0 for all c > c. Consequently, T (c;n + 1) > T (c;n) for all c ∈ (c, c̄]. That is, as the

number of players per team increases, free-riding is more pervasive, with all types above c grabbing at a later

dates. Further, since ∆K(c) is independent of n, we have T (c;K,n+ 1) = T (c;K, 2) + (n− 1)∆K(c).

One should note well that the comparative statics results reported in the foregoing proposition and

subsequently in this subsection implicitly assume changes in parameters continue to yield interior equilibria.

Recall that the condition for the interior equilibrium described by Proposition 1 is c ≥ c0 ≡ (K−1)n
Kn−1 V .

Because c0 is decreasing in n, it is clear that if one starts from an interior equilibrium then increasing n

continues to yield the interior equilibrium. In contrast, c0 increases in K, with limit V . Consequently,
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cet. par., as K becomes sufficiently large the symmetric equilibrium will not be interior. We consider such

equilibria in Section 2.4.

Proposition 2 highlights a major difference between the preemption game between groups and the

between-groups contest problem with a best-shot contest technology in Barbieri and Malueg (2016). The

qualitative comparative static properties of the grabbing time requires no assumptions regarding the shape

of F (e.g., nothing is invoked about elasticity of F ). Intuitively, for given n and K, the equilibrium function

T (c;K,n) describes the optimal timing of players. This timing is a function of the cumulative distribution

function F and sorts grabbing times according to the players’ grabbing costs. If there are more groups or

smaller groups, the strict order of grabbing times is maintained but the whole function T (·) shifts—for given

behavior of other players, each player has a higher preemption motive and a smaller free-riding incentive.

This direct effect also dominates in the new equilibrium.

Now consider reconstituting a given number of players into a smaller number of larger symmetric groups.

By Proposition 2 we know that decreasing the number of groups (without changing team size) would increase

grabbing times. And then increasing group size would further increase grabbing times. Thus, we have the

following corollary.

corT Corollary 1. Suppose Kn = K̃ñ and n < ñ (or, equivalently, K > K̃). Then for any c > c, T (c; K̃, ñ) >

T (c;K,n).

Corollary 1 says that T (c;K,n) is higher for a player with a given cost if the group size increases and

the number of groups decreases in a way that just keeps the size of the population constant. If groups can

be re-organized in a way that merges groups or re-groups players in a way that leads to a smaller number of

larger groups, this will make each player less eager to grab. Put differently, if existing groups can be split

into a larger number of smaller groups, this increases competition between groups and changes the free-riding

incentives inside the group in a way such that, overall, each player type grabs earlier.

We now calculate the expected time at which the game stops. Let TE(K,n) denote the equilibrium

random time at which the game stops when there are K groups of n players each, each player following the

strategy in Proposition 1. The expected time at which the game stops equals

ETE ≡
∫ c̄

c

T (c) d(1− (1− F (c))Kn)

=

∫ c̄

c

(∫ c

c

T ′(y) dy

)
d(1− (1− F (c))Kn)

=

∫ c̄

c

T ′(y)

(∫ c̄

y

d(1− (1− F (c))Kn)

)
dy
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=

∫ c̄

c

T ′(y)(1− F (y))Kn dy

=

∫ c̄

c

f(y)

1− F (y)
× (Kn− 1)y − (K − 1)nV

ρ(V − y)
(1− F (y))Kn dy

=

∫ c̄

c

1

Kρ

(
n− 1

n

y

V − y
− (K − 1)

)
d(1− (1− F (y))Kn), (9) ET

where the third equality follows from interchanging the order of integration, and the fifth uses the strategy

in (5). Equation (9) can be rewritten as

KρETE + (K − 1) =

∫ c̄

c

n− 1

n

y

V − y
d(1− (1− F (y))Kn). (10) ETr

The next proposition provides comparative statics properties for the expected duration of the game.

p:interiorCSET Proposition 3. The following comparative static results hold about the expected time at which the game ends:

The expected end occurs sooner (i) if the discount rate ρ is higher or if the gross benefit V for each group

member is higher or (ii) if the number K of groups is higher. (iii) If y(1−F (y))K

V−y is decreasing (increasing)

in y, then ETE increases (decreases) in n. (iv) Let F (c; z) represent the cdf for c with risk shift parameter

z. For a mean-preserving spread (in the sense of Rothschild and Stiglitz, 1970) ETE increases.

Proof. (i) From (10) it is immediate that an increase in the discount rate ρ or in the value of the gross benefit

V decrease ETE .

(ii) The result on an increase in the number of groups follows immediately from the comparative statics

of T (·) in Proposition 2 by which increasing K leads each type to grab sooner, which, even without there

being more players would result in the expected stopping time decreasing.

(iii) Consider an increase in n. We can rewrite the right-hand side of (10) as

∫ c̄

c

y(1− F (y))K

V − y
d
(
1− (1− F (y))K(n−1)

)
.

We see that the probability distribution in this equation is that of the minimum cost out of K(n − 1)

independent realizations. As n increases, this probability distribution decreases in the sense of first-order

stochastic dominance; therefore, if y(1−F (y))K

V−y is decreasing (increasing) in y, then ETE increases (decreases)

in n.

(iv) We consider the same increase in risk considered in Bliss and Nalebuff (1984): let F (c; z) represent

the cdf for c with a risk shift parameter z. Increasing z corresponds to a mean preserving increase in risk

in the sense defined by Rothschild and Stiglitz (1970) if, for some c̃, Fz(c; z) ≥ 0 if c ≤ c̃, while Fz(c; z) ≤
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0 if c ≥ c̃, and ∫ c̄

c

[1− F (c; z)]Kn−1Fz(c; z) dc = 0,

where the last condition keeps constant the mean of the minimum cost across all K × n agents. We can

rewrite (10) as

n

n− 1

(
KρETE + (K − 1)

)
= −

∫ c̄

c

y

V − y
d((1− F (y))Kn)

= V

∫ c̄

c

[(1− F (y)]
Kn

(V − y)2
dy +

c

V − c
,

after integrating by parts, and this expression is entirely analogous to equation (18ii) in Bliss and Nalebuff

(1984), so their proof carries though.

The unambiguous comparative static results (i) and (ii) in Proposition 3 are intuitively plausible. The

possibility described in part (iii) that n may increase or decrease ETE is also intuitive. An increase in n has

two countervailing effects: each player with a given type c grabs later, but as the number of players increases,

the probability distribution of the lowest cost type shifts. Indeed, the probability that the lowest realized

cost, among those of Kn players, is higher than a given c becomes less and less as n increases, for all possible

c inside the support. Our identifying a sufficient condition for either effect to dominate also improves on

Bliss and Nalebuff’s Theorem 5 that characterizes only the behavior at the tails.

The next proposition describes the effects parameter changes have on the expected utility.

p:interiorCSEU Proposition 4. (i) The expected payoff of a player with a given cost type c is higher if the size of all groups

is larger. (ii) The expected payoff is constant with respect to changes in the number of groups.

Proof. (i) Considering (7), we see that both e−ρT (y;n) and (1−F (y))Kn−1 decrease with n, so UE(c) strictly

increases for c > c, and the larger c, the larger the increase.

(ii) Constancy of UE(c) with respect to changes in K follows from the fact that the integrand in (7) is

constant with respect to K. To see this, we first take the natural log of the integrand to get

−ρT (c;K) + (Kn− 1) log( 1− F (c) )

and then differentiate with respect to K to get

−ρ
∂T (c;K)

∂K
+ nlog( 1− F (c) ) .

12



Now use ∂T (c;K)
∂K =

∫ c

c
∂T ′(y;K)

∂K dy and substitute for ∂T ′(y;K)
∂K from (7) to obtain

−ρ

∫ c

c

−h (y)n

ρ
dy + nlog( 1− F (c) ) = n

(
log( 1− F (c) ) +

∫ c

c

h (c) dc

)
= n

(
log( 1− F (c) ) +

∫ c

c

f(y)

1− F (y)
dy

)
= 0.

Because the log of the integrand is constant with respect to K, so too is the integrand itself.

An increase in n gives each player the same expected gross benefit V/K, but it dilutes the cost burden of

grabbing among a larger number of players. The proposition shows that this holds strictly, not only ex ante,

but also for all players, irrespective of their cost type, except for the type with the lowest possible type who

does not gain or lose. If there is only one group (as in Bliss and Nalebuff, 1984), this is easy to grasp: each

player has a higher probability that another player from his group grabs first, which preserves the benefit,

but probabilistically shifts the cost burden of grabbing. Proposition 4 shows that this effect carries over to

a multi-group framework with preemption.

The payoff neutrality with respect to the number of groups is less intuitive. A larger number of groups

makes it more likely that a single group is preempted. This reduces all players’ expected payoffs. However,

the increase in preemption pressure induces players of given types to grab earlier. This reduces wasteful

delay. The proposition shows that the two effects just offset each other.10 Therefore, the overall effect

of reconstituting a given number of players into a smaller number of larger symmetric groups is to raise

equilibrium payoffs:

Corollary 2. Suppose Kn = K̃ñ and n < ñ (or, equivalently, K > K̃). Then for any c > c, UE(c; K̃, ñ) >

UE(c;K,n).

2.3 A numerical example

We illustrate some of the comparative-statics results by way of a numerical example. In particular, the

example illustrates a non-monotonicity result suggested by part (iii) of Proposition 3.

Example 1 (The effect of n on expected stopping time). Let V = 2 and assume costs are distributed

according to F (c) = 2t
(
c− 3

2

)t
, for c ∈

[
3
2 , 2
]
.

10It is worth pointing out that we work under the assumption that c0 remains smaller than c so that an interior equilibrium
exists. If K is allowed to grow without bound, then c0 → V > c, so an interior equilibrium does not exist and Proposition 4
does not apply. Indeed, if K → ∞, then the symmetric-equilibrium gross benefit V/K converges to zero, and so do payoffs.
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First note that

sign

[
d

dy

(
y(1− F (y))K

V − y

)]
= sign [V −Ky(V − y)h(y)] . (11) dersign

We begin with K = 2, in which case c0 = n
2n−1 . Thus, the symmetric equilibrium is interior for all n ≥ 2.

Now consider t = 1. Here, we see that

V −Ky(V − y)h(y) = 2(1− y),

which is always negative for the relevant range. Therefore, (11) and part (iii) of Proposition 3 imply ETE

is increasing in n; Figure 1 depicts the relationship between ρETE and n for n = 2, ..., 30.

ρ× ETE

n

Figure 1: Effects of increasing n on ETE : V = K = 2 and F (c) = 2
(
c− 3

2

)
∀c ∈

[
3
2 , 2
]
. fig:ETincreasing

A pattern similar to that in Figure 1 holds for any t ≤ 1. Thus, for t ≤ 1 we see that the free-riding effect

is very strong and it overwhelms the presence of additional agents on each team, which would otherwise lead

to a lower expected stopping time. In contrast, if t = 2, for example, we find that ETE first increases and

then decreases with n, as depicted in Figure 2.

Here we see that ETE increases for n going from 2 to 4, but further increases in team size make ETE

smaller because the “order-statistic” effect of having a better distribution of the minimum cost eventually

prevails. Proposition 3 implies that y(1−F (y))K

V−y must be increasing for at least a range of y, as it is indeed

depicted in Figure 3.

The fact that y(1−F (y))K

V−y is first increasing and then decreasing in y helps rationalize why ETE is first

increasing with n, then it turns decreasing and it stays so. As n grows, the distribution of the minimum costs

is more and more concentrated towards lower values of c. Therefore, for n sufficiently large, the relevant part

of y(1−F (y))K

V−y is increasing and the result follows as for Proposition 3. A pattern similar to that in Figure 2 is

14



ρ× ETE

n

Figure 2: Effects of increasing n on ETE : V = K = 2 and F (c) = 4
(
c− 3

2

)2 ∀c ∈
[
3
2 , 2
]
. fig:ETincdec

1.6 1.7 1.8 1.9 2.0

1

2

3

4

y

Figure 3: Plot of y(1−F (y))K

V−y : V = K = 2. fig:t=2

displayed by all parameterizations with t > 1. It is interesting to note that, with more competing teams, the

switch in the direction of the relationship between ETE and n occurs later. Indeed, by (11), if K increases,

then y(1−F (y))K

V−y becomes decreasing for a larger set of y. For example, if t = 2 and K = 3, then ETE

remains increasing in n up to n = 7.11

2.4 “Corner” solutions
ss:cornersol

Proposition 1 provided the symmetric equilibrium strategy under the assumption that c ≥ c0 ≡ (K−1)n
Kn−1 V .

The strategy there fails to be weakly increasing if c < c0 because (1) shows T to be strictly decreasing for

c ∈ [c, c0). To maintain weak monotonicity of the equilibrium strategy, we now investigate the possibility

11One needs to be a little careful here because for K = 3 and n = 2, c0 = 8/5 > 3/2, which implies we need to analyze the
corner solution. But as explained in the next section, the comparative statics work out here, too. It is the case that for K = 3
and n ≥ 3, we have c0 ≤ 3/2.
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that an equilibrium strategy has a “flat spot,” that is, an interval over which it is constant. The following

lemma shows that if a symmetric equilibrium strategy T has a flat spot, then it must occur at 0, which

implies that, for some ĉ ≥ c, T (c) = 0 on [c, ĉ] and T is strictly increasing for c > ĉ. Moreover, the strategy

T must be continuous.

l:flats Lemma 1. Suppose T is a symmetric equilibrium strategy. Then T is continuous and if T is constant on

[c̃l, c̃h] and c ≤ c̃l < c̃h ≤ c̄, then T (c) = 0 for all c ∈ [c̃l, c̃h]. Further, c̃h ≤ c0.

From Lemma 1 we now see that if an equilibrium strategy has a flat spot it must be over an interval of

the form [c, c̃h], where T takes on value 0, and c̄h ≤ c0. Furthermore, for any c where T is strictly increasing,

the equilibrium analysis is precisely as for an interior equilibrium, thus requiring c ≥ c0. This reasoning

has two implications. First, the equilibrium in Proposition 1 is unique among all symmetric ones, without

focusing only on strictly increasing strategies. Second, we have the following:

p:corner Proposition 5. If c < c0, then the unique symmetric equilibrium strategy T satisfies T (c) = 0 for c ∈ [c, c0]

and

T ′(c) =
f(c)

(1− F (c))

(Kn− 1)

ρ(V − c)

(
c− (K − 1)n

Kn− 1
V

)
∀c ∈ (c0, c̄). (12) Tprimecorner

Once c0 is established as the point at which T begins increasing, the comparative statics described in

Section 2.2 can be seen to hold generally.

p:cornerCST Proposition 6. For each c ∈ [c, c̄], the equilibrium strategy T (c;K,n) is weakly decreasing in K and weakly

increasing in n. Furthermore, c0(K,n+ 1) < c0(K,n) < c0(K + 1, n), and if c < c0(K,n) ≡ (K−1)n
Kn−1 V , then

T (c;K,n+ 1) > T (c;K,n) ∀c ∈ (c0(K,n+ 1), c̄)

and

T (c;K,n) > T (c;K + 1, n) ∀c ∈ (c0(K,n), c̄).

Moreover, increasing K also decreases ETE.

From Proposition 6 we see that an increase in the number of teams, by reducing individual player’s

grabbing times has the effect of decreasing the expected time at which the game ends. Indeed, because

c0(K,n) → V as K → ∞, everyone grabs almost instantly and ETE → 0. Not surprisingly, as the effect

of increasing n on the expected duration of the contest was ambiguous for interior equilibria, so too is it

ambiguous for corner equilibria. Surprisingly, however, while increasing n had the effect of increasing interim
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payoffs at interior equilibria, the effect is ambiguous for corner equilibria. This is most easily illustrated in

an example.

eg:ambign Example 2 (The effect of n on interim utility at corner equilibria). Suppose K = 2, V = 1, and F (c) = ct

on [0, 1], where t > 0.

Then c0(K,n) = n/(2n−1) and p = F (c0(K,n)) is the probability an individual player grabs immediately.

Consider the payoff of player i with cost c = 0. For this player, who is sure to grab at date 0,

UE(0;K,n) = Pr(someone on player i’s team is the (randomly) selcted grabber at date 0)

=
n−1∑
j=0

(K−1)n∑
k=0

(
n− 1

j

)(
(K − 1)n

k

)
pj(1− p)n−j−1pk(1− p)(K−1)n−k j + 1

1 + j + k
,

=

2n− 2 +
(

n
−1+2n

)−t
(
1−

(
1−

(
n

−1+2n

)t)2n
)

2(−1 + 2n)
,

where the last equality uses properties of the binomial distribution12 and substitutes for the value of p.

Table 1: Calculations of UE(0;K,n) for Example 2: K = 2 and F (c) = ct on [0, 1]. t:ambign

n → 2 3 4 5 6 7 8 9 10

t = 1 0.580247 0.565984 0.553429 0.544414 0.537872 0.532966 0.529166 0.526144 0.523684

t = 8 0.961987 0.975363 0.977773 0.977854 0.977097 0.975951 0.974598 0.973124 0.971574

Table 1 shows that for the uniform distribution (t = 1), interim utility of the player with cost 0 decreases

as n increases from 2 to 10; however, for t = 8 this interim utility increases as n increases from 2 to 5 and

then decreases.

Appendix

Proof of Lemma 1. Suppose T is a symmetric equilibrium strategy for which types c ∈ [c̃l, c̃h] grab at T̃ > 0,

i.e. a strategy with a strictly positive flat spot: T (c) = T̃ for all c ∈ [c̃l, c̃h]. We establish two facts to

show this cannot be an equilibrium strategy. First, under the equilibrium conjecture, type c̃h must prefer a

contribution of T̃ to one of T̃ +ε. As ε ↓ 0, this will imply c̃h ≤ c0. Second, type c̃l must prefer a contribution

of T̃ to one of T̃ − ε. As ε ↓ 0, this will imply c̃l ≥ c0. Therefore, a flat spot at T̃ > 0 cannot exist in

equilibrium.

12This is the same procedure used in the proof of Lemma 1 to reach (16) and (17), which then need to be added up.
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Consider first c̃h. The utility of one agent in group 1 with cost realization equal to c̃h that contributes T̃

is

n− 1

Kn− 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1−

(
1− F (x)Kn−1

))
+
(
1− F (c̃l)

Kn−1
)
e−ρT̃UI(c̃h), (13) ULN

where UI(c) represents the payoff of a type c agent if the minimum cost of all other agents is above c̃l, i.e.,

conditional on all other agents having cost above c̃l.

Now the logic behind (13) is this. The first addendum is the expected payoff if the minimum cost of all

other agents is below c̃l: the average present value of V multiplied by the probability that one of the other

group-1 agents wins, calculated under symmetry. The second addendum is the product of the probability

that the minimum cost of all other agents is above c̃l, multiplied by the present value of UI(c̃h), with UI(c)

defined as

UI(c) = V S1(n,K) + (V − c)S2(n,K),

where

S1(n,K) =
n−1∑
j=1

(K−1)n∑
k=0

(
n− 1

j

)(
(K − 1)n

k

)
pj(1− p)n−j−1pk(1− p)(K−1)n−k j

1 + j + k
,

S2(n,K) =
n−1∑
j=0

(K−1)n∑
k=0

(
n− 1

j

)(
(K − 1)n

k

)
pj(1− p)n−j−1pk(1− p)(K−1)n−k 1

1 + j + k
,

and

p ≡ F (c̃h)− F (c̃l)

1− F (c̃l)
. (14) pdef

The payoff UI can be understood as follows. Here j indexes other group 1 players and k indexes group

2 players. Beginning with S2, if there are j other players in group 1 bidding T̃ and k players in the other

K − 1 groups bidding T̃ (as well as this player of interest in group 1), then the player of interest in group

1 is selected with probability 1
1+j+k , in which case he earns payoff V − c; but (moving to S1) if one of the

other group-1 players is selected, which happens with probability j
1+j+k , then he gets the benefit V without

incurring any cost. And, of course, the probability of this configuration of other players bidding T̃ is

(
n− 1

j

)
pj(1− p)n−j−1

(
(K − 1)n

k

)
pk(1− p)(K−1)n−k.

With a similar logic, the limit for ε ↓ 0 of the utility of one agent in group 1 with cost c̃h that contributes

T̃ + ε is

n− 1

Kn− 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1−

(
1− F (x)Kn−1

))
+
(
1− F (c̃l)

Kn−1
)
e−ρT̃UR(c̃h), (15) URN
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where UR(c̃h) is this player’s payoff “from the right”:

UR(ĉ) = V S3(n,K) + (V − ĉ)(1− p)Kn−1,

where

S3(n,K) =

n−1∑
j=1

(K−1)n∑
k=0

(
n− 1

j

)(
(K − 1)n

k

)
pj(1− p)n−j−1pk(1− p)(K−1)n−k j

j + k

and p is again given by (14).

Using properites of a binomial distribution, one can establish

S1(n,K) =
n− 1

Kn− 1

(
1− 1− (1− p)Kn

pKn

)
(16) S1simple

S2(n,K) =
1− (1− p)Kn

pKn
, (17) S2simple

and

S3(n,K) =
n− 1

Kn− 1

(
1− (1− p)Kn−1

)
. (18) S3simple

Since utility in (13) must be at least as large as the one in (15), we have

V S1 + (V − c̃h)S2 = UI(c̃h) ≥ UR(c̃h) = V S3 + (V − c̃h) (1− p)
Kn−1

, (19) c0boundabove

and the extremes of (19) imply V (S1 + S2 − S3 − (1 − p)Kn−1) ≥ c̃h(S2 − (1 − p)Kn−1), and therefore,

substituting from (16)–(18), we have c̃h ≤ c0.
13

Moving now to c̃l, the utility of one agent in group 1 with cost realization equal to c̃l that contributes T̃

is

n− 1

Kn− 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1−

(
1− F (x)Kn−1

))
+
(
1− F (c̃l)

Kn−1
)
e−ρT̃UI(c̃l), (20) URNN

while the limit for ε ↓ 0 of the utility of one agent in group 1 with cost c̃l that contributes T̃ − ε is

n− 1

Kn− 1
V ×

∫ c̃l

c

e−ρT (x) d
(
1−

(
1− F (x)Kn−1

))
+
(
1− F (c̃l)

Kn−1
)
e−ρT̃ (V − c̃l) . (21) ULNN

13We note that S2 − (1− p)Kn−1 > 0 is equivalent to

1 > (1− p)Kn−1(1− p+ pKn) ≡ ψ(p).

This latter inequality is satisfied because ψ(0) = 1 and ψ′(p) < 0 . Therefore, if a flat spot exists, then p > 0 and S2 − (1 −
p)Kn−1 > 0.
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Since utility in (20) must be at least as large as the one in (21), we have

V S1 + (V − c̃l)S2 = UI(c̃l) ≥ V − c̃l,

and the extremes of the above-displayed equation imply c̃l(1− S2) ≥ V (1− S1 − S2), or c̃l ≥ c0. Thus, we

obtain c̃l = c̃h, so a flat spot at T̃ > 0 is impossible in equilibrium.

To see that T is continuous note that any discontinuity must be a jump discontinuity. If such a jump

occurs at c′, then for sufficiently small δ > 0 the types in (c′, c′ + δ) will find it strictly profitable to decrease

their grabbing times discretely to avoid wasteful delay (there is no chance of a tie since there are no flat

spots at positive times).

Finally, note that the logic leading to (19) remains valid even if T̃ = 0. Therefore, even if T is flat at zero

for c ∈ [c, c̃h], we obtain c̃h ≤ c0.

Proof of Proposition 6. First consider the effect of increasing n. Because c0(K,n+ 1) < c0(K,n), it follows

that T (c;K,n + 1) = T (c;K,n) = 0 for c ≤ c0(K,n) and T (c;K,n + 1) > T (c;K,n) for c ∈ (c0(K,n +

1), c0(K,n)]. Finally, T (c;K,n + 1) > T (c;K,n)0 for c ∈ (c0(K,n), c̄] because T (c0(K,n);K,n + 1) >

T (c0(K,n);K,n) and T ′ increases with n on (c0(K,n), c̄]. To see this latter property, note that

∂T ′(c;K, n̂)

∂n̂
=

h(c)K

ρ(V − c)

(
c− K − 1

K
V

)

>
h(c)K

ρ(V − c)

(
c− (K − 1)n̂

Kn̂− 1
V

)
(because K ≥ 2)

> 0,

where the second inequality follows because T (c;K, n̂) > 0 implies c > c0(K, n̂) ≡ (K−1)n̂
Kn̂−1 V .

One similarly shows that an increase in K reduces T . Analogously to the proof of the effect of increasing

n, here we use the fact that increasing K increases c0(K,n) and decreases T ′ (see (8)). Moreover, because

individual grabbing strategies decrease with an increase in K and because increasing K increases the number

of players, it follows immediately that ETE also decreases with K.
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