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Abstract

Impure public goods, like environmentally-friendly and socially-responsible products, have

garnered sustained interest. However, existing research on impure public goods focuses on

individual consumer decision-making and Nash equilibrium outcomes; little has been done to

analyze how policy can improve e�ciency in such markets. We develop a cost sharing mechanism

to implement a Pareto optimal allocation in impure public good markets. We prove the existence

of the cost sharing solution and conditions for uniqueness. We also elucidate the e�ciency and

comparative static properties of the resulting equilibrium. Our analysis has many applications,

ranging from renewable energy to international environmental protection.
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1 Introduction

The private provision of public goods is a critical topic in economics. While early work considered

only pure public and pure private goods, impure public goods, which jointly produce public and

private bene�ts, have increasingly entered the spotlight. The theory of impure public goods has

grown in relevance, especially as a framework for analyzing environmentally-friendly and socially-

responsible consumption.

Impure public goods are commonplace. In a simple trip to the grocery store, a shopper will �nd

green goods like organic and sustainably harvested foods - products that jointly provide nutrition

(private) and environmental bene�ts (public). While such products are marketed as a blessing for the

environment, economic analysis suggests a need for caution. There are certainly cases where green

goods can deliver on this promise, but the introduction of a new green good or the enhancement of

an existing one need not result in greater environmental quality or welfare improvements; in fact,

there are even scenarios in which green markets can cause immiseration (Kotchen, 2006). Thus, it is

critical to explore corrective policies that can generate more e�cient outcomes. While such policies

have been examined extensively in markets with pure public goods, little work has been done in

extending this work to green goods in particular or impure public goods in general.

This paper describes one such approach. We use a cost sharing mechanism to achieve a Pareto

e�cient allocation. Under this mechanism, each agent is assigned a cost share that functions e�ec-

tively like a subsidy based on the marginal willingness to pay schedules of individuals throughout

the economy. This approach follows the basic intuition of Pigovian subsidies, and it generalizes

upon the Pigovian framework by allowing heterogeneous preferences across the population and by

considering a public good rather than a pure externality. Moreover, it is budget balancing, so that

there are zero net expenditures from the social planner. We �nd that this cost sharing approach will

always have a solution that is Pareto optimal. We also consider some of the properties of the cost

sharing equilibrium, including the change in welfare resulting from an improvement in technology.

We �nd that in equilibrium, a technology improvement can cause Pareto improvement or welfare

redistribution. However, immiseration is precluded, a notable departure from the Nash equilibrium

case discussed by Kotchen (2006).

Our work contributes to several lines inquiry, including impure public goods, corresponding corrective

policies, and cost sharing mechanisms. There is a large literature on impure public goods that

extends the linear characteristics model of Lancaster (1966) and Gorman (1980) to goods that

jointly provide private and public characteristics (Cornes & Sandler, 1984, 1994). Kotchen (2005)

and Chan & Kotchen (2014) examine comparative statics in impure public good markets on the

consumer level, while Kotchen (2006, 2009) considers Nash equilibria in markets with impure public

goods and impure public bads, respectively. We extend existing work on impure public goods by

considering corrective policies and optimality.

McMahon (2015) and Wichman (2016) both consider mechanisms for improving on the Nash equilib-

rium in a green good market. However, the policies studied by McMahon (2015) do not implement

optimal solutions and focus instead on compensatory taxation and marginal improvements to public
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good provision. Meanwhile, Wichman (2016) introduces an incentive compatible mechanism for

achieving an optimal allocation, a notable contribution given the information constraints that can

arise in these markets. However, his solution relies on the assumption of quasilinear preferences,

which diminishes the information burden. Moreover, he focuses on a special case of green goods

where there are no conventional substitutes for providing the private or public characteristics. We

consider a more general context where such substitutes exist, and our approach of cost sharing

ensures optimality for a much broader range of preferences (i.e., most well-behaved preferences),

although we abstract away from the question of preference revelation.

Our work is related to other research on cost sharing and matching schemes for public good pro-

vision (Lindahl, 1958; Foley, 1970; Kaneko, 1977a,b; Mas-Colell & Silvestre, 1989; Buchholz et al.,

2011). These face similar information burdens to ours. The solution concept we present is related

but distinct, as the bundling of characteristics in the impure public good presents an additional

constraint, a complication that is not addressed in prior work. As such, our model is uniquely posi-

tioned to address impure public goods and green markets. In addition to de�ning and analyzing the

mechanism and resulting equilibrium, we also characterize the properties of equilibrium, the method

of solution, and applications. Our analysis highlights the advantages and limitations of such a cost

sharing approach, and it provides a roadmap for informing policy design.

2 The Model

We begin with the impure public good market model prevalent in recent literature, whereby con-

sumers derive utility from characteristics of goods rather than goods per se. Following Kotchen

(2006), consider a market with i = 1, .., n consumers and three available goods: a pure private good

c, a pure public good d, and a green good g.1 Consumption of these goods provides private and

public characteristics x and Y , respectively. Each consumer i has a limited income wi that she

allocates between the three goods in order to maximize her utility function Ui(xi, Y ), where xi is

her consumption of the private characteristic and Y = yi + Y−i is the aggregate level of public

characteristic provided in the economy. We use yi to represent i's contribution to the public good,

while Y−i =
∑
j 6=i yj captures spill-ins from others' contributions.

For example, we can think of consumers as valuing electricity consumption xi and pollution abate-

ment Y . Consumers can purchase conventional electricity ci, which only provides xi; carbon o�sets

di, which only provide yi; and green electricity (e.g., from solar or wind generation) gi, which

simultaneously generates both xi and yi.

De�ne mrsi = ∂U/∂Y
∂U/∂xi

as the rate at which an individual consumer is willing to substitute xi for Y .

Assumption 1. For all i, Ui(xi, Y ) is such that:

1. Ui is strictly increasing in both characteristics whenever both arguments are positive. That is,

both characteristics are goods in the strict sense.

1We will use the terms impure public good and green good interchangeably.
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Figure 1: The individual budget frontier in characteristics space.

2. Both characteristics are indispensable, meaning that limxi−→0mrsi = 0 and limY−→0mrsi =

∞.

3. xi and Y are strictly normal. This implies that mrsi(xi, Y ) is a continuous function strictly

decreasing in Y and strictly increasing in xi.

For simplicity, we normalize prices and units so that c, d, and g, each cost $1 per unit and so that one

unit of ci provides 1 unit of private characteristic xi (e.g., electricity) while one unit of di provides

one unit of yi (e.g., pollution abatement). One unit of gi, meanwhile, provides α units of xi and

β units of yi. To focus on the interesting case, we assume that the impure public good provides

an improvement upon the pure private and pure public goods (α + β > 1), but does not strictly

dominate the pure goods in the sole provision of xi or yi, respectively (α, β < 1). The initial budget

constraint in terms of goods is ci + di + gi = wi, which we can rewrite in terms of characteristics:

ΠXxi + ΠY yi = wi (1)

m

ΠXxi + ΠY Y = wi + ΠY Y−i (2)

where (ΠX ,ΠY ) are the implicit prices, given by:
(

1, 1−α
β

)
, when yi < βwi, which we refer to as

Facet I of the consumer's budget constraint; and
(

1−β
α , 1

)
, for yi > βwi, or Facet II. The implicit

prices capture the tradeo�s in characteristics space, and they are the standard implicit prices derived

in prior work on impure public goods (Kotchen, 2005, 2006; Chan & Kotchen, 2014). Figure 1

provides a graphical representation. Thus, in terms of characteristics, the individual e�ectively faces

a di�erent budget constraint depending on which facet her consumption bundle occurs.
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In Nash equilibrium, consumers will take Y−i as given and maximize their objective function:

max
ci,di,gi

U(xi, yi + Y−i) s.t. ci + di + gi = wi; yi = di + βgi; and xi = ci + αgi.

Rewriting the objective function in terms of characteristics and as a choice on aggregate Y yields

max
xi,Y

U(xi, Y ) s.t. ΠXxi + ΠY Y = wi + ΠY Y−i and Y ≥ Y−i.

Solving �rst-order conditions implies that each individual will consume such that mrsi = ΠY

ΠX
. As

discussed by Kotchen (2005, 2006), consumers will not simultaneously purchase ci and di, as gi o�ers

a more cost-e�ective means for obtaining xi and yi.

According to Samuelson (1954), a social optimum must satisfy

n∑
i=1

mrsi = MRT, (3)

where MRT is the marginal rate of transformation at the societal level. Here, MRT can be de�ned

as

MRT (Y ) =

 1−α
β Y < βW

α
1−β Y > βW

, (4)

where the total wealth in the economy is W =
∑n
i=1 wi. This MRT function assumes that societal

provision of Y will be done in a cost-e�ective manner (i.e., no simultaneous purchases of ci and di).

For simplicity of notation, we will refer to the MRT on Facet I as MRTI = 1−α
β and on Facet II as

MRTII = α
1−β .

Expression 3 indicates that the sum of individual marginal rates of substitution (e�ectively, willing-

ness to pay for Y ) sums to the overall marginal rate of transformation (the cost to society of providing

Y ). Note that underprovision of Y will occur in Nash equilibrium because the utility-maximizing

consumer will equate mrsi = ΠY

ΠX
, whereas a social optimum must satisfy

∑n
i=1mrsi = MRT .2

3 Cost sharing

Because the free market Nash equilibrium leads to a suboptimal allocation, corrective mechanisms are

of great interest, as they can enhance welfare. We construct and analyze a cost sharing mechanism

for attaining e�cient allocations.

2Optimality could additionally be violated if some consumers purchase ci and gi while others purchase gi and di,
as provision of (x1, ..., xn) and Y will not be cost-e�ective at the societal level.
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3.1 Lindahl sharing in pure public good markets

To provide intuition for our mechanism, we begin by describing the Lindahl equilibrium in a pure

public good market (Lindahl, 1958). For ease of exposition, consider for a moment a scenario

where the impure public good gi is unavailable, so the prices for xi and yi are both unity. Then

the budget constraint for the consumer in terms of characteristics is xi + yi = wi or equivalently

xi + Y = wi + Y−i. Thus, the MRT is constant and equal to one.

Suppose that the social planner assigns a Lindahl share τi to each consumer. This share holds

consumers accountable for providing a proportion of the aggregate public good such that yi = τiY .

The consumer's maximization problem is now

max
xi,Y

Ui(xi, Y ) s.t. xi + τiY = wi,

or equivalently,

max
xi,yi

Ui

(
xi,

yi
τi

)
s.t. xi + yi = wi. (5)

While these two expressions are equivalent, they demonstrate di�erent interpretations for imple-

menting the cost sharing rule as a policy. In the �rst, the consumer is given a subsidized rate for

purchasing Y , and she will purchase Y for the entire economy at that rate. In this respect, the

consumer's marginal cost becomes the marginal rate of transformation scaled by τi, i.e., τiMRT .

Meanwhile, the subsidy is funded through taxes on (or direct transfers from) other consumers who

pay (1−τi)Y to aid her purchase, and these other consumers do not directly purchase Y themselves.

In the second interpretation, the share τi represents that prescribed proportion of overall Y that i is

asked to purchase. She directly provides yi = τiY units of the public characteristics, and all other

consumers j 6= i do likewise by purchasing yj = τjY .

A third interpretation is also instructive:

max
xi,yi

Ui(xi, yi +
∑
j 6=i

yj) s.t. xi + τiyi +
∑
j 6=i

τi
1− τj

(1− τj)yj = wi (6)

This form matches most closely with the likely policy scenario, in which taxes and subsidies are

levied to encourage greater production of Y . In this scenario, i purchases yi at a discounted rate τi,

implying that her purchase is subsidized at the rate (1− τi). However, we require budget balancing
for the social planner, so i's subsidy must be funded by taxes on other members of the economy;

likewise, i must pay taxes to fund other individuals' purchases of yj . Each unit of yj receives a

subsidy rate of (1 − τj), and i funds a fraction of this τi
1−τj .

3 Therefore, i's budget constraint is

composed of three terms: 1) her purchases of xi; 2) her direct purchases of yi, which are subsidized;

and 3) the tax payments she is compelled to make in order to subsidize all other j 6= i.

3The fraction τi
1−τj

has an intuitive interpretation. All agents besides j must help fund j's subsidy, so i's overall

burden is her cost share τi, conditional on excluding j, which is why 1− τj is in the denominator.
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All three forms of the consumer problem are equivalent, and they o�er di�erent ways of interpreting

cost sharing. Interestingly, because of the budget balancing nature of this solution, the social planner

need not play a direct role in this scheme, as the individual agents in the economy can e�ectively

cross-subsidize one another's purchases without government involvement. In any case, each consumer

i will optimize such that mrsi = τiMRT .

If (τ1, ..., τn) are chosen appropriately, (i) the resultant bundles of (xi, Y ) will be utility maximiz-

ing for all i; (ii) each individual's budget constraint will be satis�ed; and (iii) the payments from

individuals will sum to the cost of providing Y . Formally, the Lindahl equilibrium is obtained by

solving a set of 2n+ 1 equations:

∀i : mrsi(x
∗
i , Y

∗) = τ∗iMRT (7)

∀i : x∗i + τ∗i Y
∗ = wi (8)

n∑
i=1

τ∗i = 1 (9)

Buchholz et al. (2008) have shown that, for a �xed income distribution, there exists a unique set

of shares that will implement this equilibrium. Importantly, this Lindahl equilibrium is Pareto

optimal; the Samuelson condition is clearly satis�ed, and this can be shown by combining the

conditions in Expression 7 and Expression 9. Moreover, this equilibrium is a Pareto improvement on

the corresponding Nash equilibrium with the same income distribution (Walker, 1981). This is an

important feature, as it is in individuals' best interest to participate in such a Lindahl policy if the

alternative is a suboptimal Nash equilibrium. However, to implement this solution, the social planner

needs full information regarding consumers' preferences; we discuss this challenge in subsequent

sections.

3.2 Cost sharing in impure public good markets

Now let us return to our three-good model. There are several notable features that distinguish

this setting from the simple Lindahl case and prior work on cost sharing. First, the availability of

the green good presents consumers with two distinct consumption regimes with di�erent tradeo�s

between xi and Y . Also, the necessity of obtaining characteristics via purchases of goods presents

an additional constraint, which we will call the bundling constraint, that is not operative in other

applications of cost sharing in Mas-Colell & Silvestre (1989) and Kaneko (1977a,b). Prior work on

cost sharing assumes that xi and Y can be provided directly (as opposed to indirectly via goods),

and they can be divided and distributed in any way by the social planner.

In the impure public good context, the social planner is constrained by the technological correspon-

dence between goods and characteristics. This complicates the social planner's problem, as the cost
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sharing system must respect the fact that the characteristics conferred by gi cannot be unbundled.

Therefore, an individual who purchases one unit of gi necessarily consumes α units of xi and pro-

vides β units of yi; the characteristics from her purchase of gi cannot be distributed to someone else.

Thus, if the equilibrium solution is such that i consumes x∗i on Facet II, it must also be the case

that i purchases g∗i =
x∗
i

α in the goods market.

Still, the general intuition for cost sharing parallels the Lindahl scheme described above. Consider

a mechanism that holds consumers accountable for a proportion τi of overall Y . Analogous to

Expression 5 above, the consumer maximization problem becomes

max
xi,yi

Ui

(
xi,

yi
τi

)
s.t. ΠXxi + ΠY yi = wi,

or

max
xi,yi

Ui(xi, yi +
∑
j 6=i

yj) s.t. ΠXxi + τiΠY yi +
∑
j 6=i

τi
1− τj

(1− τj)ΠY yj = wi, (10)

like in Expression 6.4

For interior solutions, the equilibrium conditions will be similar to that of the standard Lindahl

equilibrium, except with di�erent expressions for MRT due to the presence of an impure public

good.

De�nition 2. An interior cost sharing equilibrium is an allocation (x∗1, ..., x
∗
n, Y

∗) and a set of shares

(τ∗1 , τ
∗
2 , . . . , τ

∗
n) such that

∀i : mrsi(x
∗
i , Y

∗) = τ∗iMRT (Y ∗) (11)

∀i : wi = ΠXx
∗
i + ΠY y

∗
i . (12)

n∑
i=1

τ∗i = 1

y∗i = τ∗i Y
∗

De�nition 3. A kink cost sharing equilibrium is an allocation (x∗1, ..., x
∗
n, Y

∗) and a set of shares

(τ∗1 , τ
∗
2 , . . . , τ

∗
n) such that

∑n
i=1 τ

∗
i = 1; Y ∗ = βW ; and ∀i : τ∗iMRTI < mrsi(x

∗
i , Y

∗) < τ∗iMRTII ,

where MRTI and MRTII are as de�ned in Expression 4, and Expression 12 holds as before.

Proposition 4. For any distribution of total wealth W such that ∀i, wi > 0, there exists a cost

sharing equilibrium. This equilibrium is Pareto e�cient.

Proof. Proof is given in Appendix.

4As before, ΠX and ΠY vary by facet, and in the case of cost sharing, we de�ne facets based on the social budget.
That is, we have Facet I de�ned by Y < βW and Facet II by Y > βW .
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This proposition establishes the existence and optimality of the cost sharing equilibrium. The

detailed proof in the Appendix further outlines the conditions for uniqueness.

It is straightforward to see that summing the n equations represented by Expression 11 and using∑n
i=1 τ

∗
i = 1 yields

∑n
i=1mrsi = MRT , the Samuelson condition. Thus the interior cost sharing

equilibrium is optimal. Similarly, for the kink solution, summing the n equations in De�nition 3

yields a kink version of the Samuelson condition MRTI <
∑n
i=1mrsi(x

∗
i , Y

∗) < MRTII .

Solving for the cost sharing equilibrium yields a set of optimal cost shares that depend on exogenous

parameters (α, β,w) and individual preferences: {τ∗i (α, β,w)}ni=1. An example for calculating these

cost shares is given in the Appendix. Critically, these {τ∗i (·)}ni=1 have a useful policy application:

they map directly into corrective price instruments, as we describe in the next section.

3.3 Implementation

We have considered how the cost sharing solution manifests in the implied market for characteris-

tics. It is also worth considering what this method of pricing looks like speci�cally in markets for

goods, as policy makers in real world contexts often target policies on goods rather than embodied

characteristics.5 The implied subsidy (1 − τi) for characteristic yi described above will map into a

direct subsidy for goods gi and di.

The equivalent subsidies for green goods and direct donations, respectively, are given by:6

sgi =

(1− τi)(1− α), Y ∗ < βW

(1− τi)β, Y ∗ > βW
, (13)

and

sdi = 1− τi. (14)

Without subsidies, the consumer's budget constraint wi = ci+gi+di. When gi and di are subsidized,

this becomes

wi = ci + pgigi + pdidi +
∑
j 6=i

τi
1− τj

(
sgjgj + sdjdj

)
,

where pgi = (1−sgi) and pdi = (1−sdi) are the e�ective prices paid by i under the policy. Following

the intuition of Expression 10,
∑
j 6=i

τi
1−τj

(
sgjgj + sdjdj

)
is i's tax liability to fund subsidies for

others' purchases of gj and dj .

Note that the value of the subsidy for the green good di�ers in the two cases, so the policy maker

must set subsidies according to the facet of the desired social outcome. As in the Lindahl case above,

the social planner's budget is balanced, so she has no net revenues or expenditures. As such, it is

conceptually possible for consumers to arrive at this solution in a decentralized fashion by agreeing

among themselves to a schedule of transfers based on purchases of g and d.

5Examples include tax rebates, subsidies, expedited permits, and technical assistance for renewable energy projects
and green buildings.

6The equivalency is shown in full in the appendix (6.3).
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3.4 Properties of cost sharing equilibrium

Prior research on impure public goods has considered how green markets are a�ected by the intro-

duction of new green goods or technology improvements to existing green goods, and it shows that

such improvements can lead to a wide range of implications for public good provision and social

welfare. That is, overall public good provision can increase or decrease as a result of improvements

to a green good, which is rather counterintuitive. Furthermore, such changes can lead to Pareto

improvements, but they may also lead to immiseration, whereby all consumers are worse o�.

We consider these questions in the context of an optimal cost sharing policy, and our analysis has

implications for both e�ciency and equity. For example, does an improvement in solar technology

necessarily improve welfare for all consumers? Intuition might suggest that this will be unambigu-

ously bene�cial. However, in spite of the presence of a corrective policy, we show that it is not

always true that a Pareto improvement will result from an improvement in a green good.

First, we examine implications of a technology improvement for the public good provision (e.g.,

environmental quality) Y , and then we proceed to analyze welfare consequences.

Lemma. For a given level of Y and τi, an increase in α or β will increase the amount of xi that

consumer i can a�ord. That is, a technology improvement expands the budget set.

Proof. This follows from inspection of the consumer's budget constraint wi = Πxxi + τiΠY Y .

Proposition 5. In a cost sharing equilibrium on Facet I, a marginal increase in α or β will lead to

higher level of equilibrium environmental quality Y ∗∗ > Y ∗.

Proof. When the original equilibrium is on Facet I, the technology improvement lowers the relative

price for providing Y , taking cost shares as given. A technology improvement yields both an income

e�ect and a substitution e�ect, and each one tends to increase demand for Y on Facet I. Since every

consumer demands more Y for given shares, equilibrium provision of Y must increase.

Proposition 6. In a cost sharing equilibrium on Facet II, a marginal increase in α or β may result

in either an increase or decrease in equilibrium environmental quality.

Proof. When the original equilibrium is on Facet II, the technology improvement increases the

relative price of Y , taking cost shares as given. Each consumer experiences a positive income e�ect,

which increases demand for Y by normality. There is also a substitution e�ect, which tends to

decrease demand for Y on Facet II.

In summary, environmental quality may increase or decrease in response to a technology improve-

ment. For solutions on Facet I, the e�ect is unambiguous, but on Facet II, the direction of this

e�ect will depend upon whether xi and Y are complements or substitutes. Although this parallels

the �ndings of Kotchen (2006), it is perhaps somewhat more surprising in the present context given

the implementation of a cost sharing policy. However, as we now proceed to show, the welfare

consequences will di�er in meaningful ways.
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Proposition 7. In a cost sharing equilibrium, a marginal increase in α or β results in Pareto

improvements if Y ∗∗ ≥ Y ∗.

Proof. Proof is given in Appendix.

Proposition 8. If Y ∗∗ < Y ∗, Pareto improvement is not guaranteed, but immiseration is not

possible.

Proof. Proof is given in Appendix.

While the full proofs are in the Appendix, we o�er some intuition for these results here. We have

established that in Facet II, equilibrium public good provision could decrease. Given heterogeneous

preferences, it is possible for some people's cost shares to decrease while others experience higher

shares. Those experiencing an increased burden might be worse o� if the change in their bur-

den outweighs the positive income e�ect from better technology. Thus Pareto improvement is not

guaranteed. However, immiseration is not possible, because those who see their burdens decrease

experience an increase in purchasing power both from the improved technology and from the smaller

burden placed on them. Thus, a technology improvement can either cause Pareto improvement or

a redistribution of welfare.

Together, Propositions 7 and 8 reveal key di�erences between the cost sharing equilibrium and the

Nash equilibrium context characterized by Kotchen (2006). As described in Proposition 7, if public

good provision rises as a result of improvements in a green technology, everyone will be made better

o�. This contrasts with the more ambiguous results in Nash equilibrium, where such improvements

could yield Pareto improvements or redistribution of welfare (Kotchen, 2006). More broadly, a

technology improvement can cause immiseration, welfare redistribution, or a Pareto improvement

for the Nash equilibrium scenario. However, under cost sharing, a technology improvement can only

lead to welfare redistribution or a Pareto improvement, while immiseration is precluded.

When considering distributional consequences, it is worth noting that our analysis assumes that the

initial distribution of income will remain unchanged, leading to a particular cost sharing equilibrium.

In principle, a policy maker can impose lump sum transfers to change the initial wealth distribution,

leading to a di�erent cost sharing equilibrium with a di�erent allocation and level of public good

provision. In the Lindahl context, any Pareto e�cient allocation is attainable as a Lindahl equilib-

rium via such transfers (Sandler & Posnett, 1991). Altering the initial allotment of wealth will have

a similar e�ect in our setting, allowing the social planner to attain di�erent distributional outcomes

via lump sum transfers.

However, such transfers may not be feasible in many policy contexts. Interestingly, even in a more

restrictive setting that forbids transfers, impure public goods provide some latitude for changing

distributional outcomes in cases with a kink solution. At the kink, there is a multiplicity of cost

shares that can beget an optimal outcome. This provides the social planner some, albeit limited,

power to manage for a desired distribution in equilibrium.

11



4 Discussion

One limitation of the cost sharing mechanism is that it does not satisfy the preference revelation

criterion, a classic consideration in the management of public goods. To our knowledge, the only

paper to investigate preference revelation in the impure public good context is Wichman (2016),

who adapts the Clarke-Groves mechanism. However, this paper assumes quasilinear utility, which is

restrictive. Another salient distinction is that the private characteristic is derived from warm glow,

which is only attainable through purchases of the green good. We examine a more general model

where there is a conventional good that provides an alternative means for obtaining the private

characteristic. Because of these di�erences, the preference revealing mechanism of Wichman (2016)

cannot be applied directly to the more general context we describe.

We o�er a di�erent angle on this problem by characterizing optimal policy for a broad set of potential

preference structures following in the tradition of Lindahl (1958), Kaneko (1977b,a), Mas-Colell &

Silvestre (1989), and others, leaving preference revelation to other means beyond the policy in

question. However, it is worth noting that preference revelation should be possible via a Clarke-

Groves mechanism if consumers have Bergstrom-Cornes preferences (Bergstrom & Cornes, 1983).

Because preference revelation is challenging in real-world applications, it is common to see Pigovian

policies that impose a �at tax or subsidy for goods based on estimates of marginal damages or

marginal bene�ts. As our analysis reveals, there are two shortcomings to this standard approach.

For one, such policies are not budget-balancing, so funds must be raised to subsidize public goods,

likely at a non-trivial cost to society (Bovenberg & Goulder, 1996). More importantly, Pigovian

instruments impose a single set of prices for all consumers. This represents an ine�cient policy for

public good provision, except in very special cases such as situations where all agents have identical

quasilinear preferences.

Our analysis thus brings to light important design principles for (impure) public good policies. In

particular, there are clear ways to improve upon existing Pigovian instruments by incorporating

variables that proxy for a consumer's strength of preference for the public good. For example,

higher income individuals could be assigned larger cost shares, so that they receive relatively smaller

subsidies and higher tax burdens. Such adjustments can enhance e�ciency relative to standard

Pigovian policies when preferences vary with income. While income is perhaps the most obvious

and easy-to-observe preference shifter to consider, market behavior, survey data, choice experiments,

or voting results can also o�er insights into how preferences di�er across demographics, social groups,

or geographies, thus paving the way for better-tailored price instruments.

Overall, the mechanism we describe is especially useful for scenarios where there are relatively

few agents and heterogeneous preferences over the public goods. For markets with an extremely

large number of agents or with homogeneous preferences, the public good problem approaches a

pure externality problem without strategic interactions. Moreover, in situations with many agents,

administrative costs become a challenge, as our mechanism requires personalized prices for agents

or groups based on individual utilities. For example, if the market of concern was organic food,
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supermarkets would have to give di�erent discounts to each consumer, which would be di�cult at

best.

However, there are many situations where our model can be implemented to improve upon Nash

equilibrium outcomes or even upon markets with typical Pigovian subsidies. Clean electricity o�ers

one useful context for application, as administrative burdens may be less concerning. While the

number of consumers in such a market may indeed be large, records for energy bills could be made

available with relative ease. Consider a context where consumers can purchase conventional energy,

green electricity, or make direct donations to environmental charities. Under our mechanism, each

consumer would be assigned a share determining the subsidized prices she faces for green electricity

and donations to environmental organizations; these shares generalize and improve upon classic

Pigovian subsidies that are typically used to incentivize green energy. The share would also determine

the new tax burden placed on each individual, o�ering a revenue-neutral and individually-rational

means for increasing environmental quality. As discussed above, even if full preference revelation is

challenging in such a context, the shares could at least be tailored based on income or preference

proxies like property value, neighborhood, etc.

This model can also apply well to scenarios where groups, rather than individuals, are concerned.

One example is international climate change mitigation. In such a case, countries would represent

the consumers. We could suppose that countries value economic development xi and environmental

quality Y . A country i could spend its resources wi on domestic improvements, which provide xi;

carbon sequestration, which augments Y ; or it could invest in clean energy, which jointly provides xi

and Y .7 We can imagine an international committee weighing available information, such as GDP

and perhaps voting statistics, to assign cost shares to each country. Each country would then face

international subsidies and taxes as outlined in Section 3.3. The international context is attractive

for several reasons. For one, the smaller number of participants eases the administrative burden.

Second, one could imagine that estimating countries' aggregate tradeo�s may be more reliable than

estimating individuals' preferences for public goods.

5 Conclusion

This paper expands our understanding of impure public goods by describing how to apply a cost

sharing framework to achieve a Pareto optimal allocation. While cost sharing and matching have

been analyzed previously, prior work focuses on the simpler case of pure public goods rather than

the more general case of impure public goods. Our approach implements the optimal allocation of

characteristics, and we furthermore provide a clear set of policies on goods to achieve this. Our

solution is attractive because it respects the bundling constraint presented by the impure public

good as well as the individual budget constraints of all consumers. It is also budget-balancing for

the social planner.

7At present, carbon sequestration technologies are still in development, and may not o�er a cost-competitive means
for improving Y . Even in such cases, our model is still applicable; the absence of c or d does not fundamentally change
the analysis. In fact, our prior discussion remains important, as it demonstrates how sharing rules can be translated
into prices for goods and characteristics.

13



In addition to characterizing a general solution procedure, we also consider the properties of the cost

sharing equilibrium. We �nd that when a technology improvement causes equilibrium provision to

decrease, it may lower the welfare for some, but never all, individuals. Additionally, the possibility

of a kink solution in which only the green good is purchased allows for redistribution through

manipulation of the cost shares, which can help a policymaker address fairness concerns in a situation

where direct transfers are not allowed. Finally, we describe the implementation of cost sharing as a

set of price policies, and make suggestions for possible applications in contexts such as green energy

and international climate change mitigation.

14



6 Appendix

6.1 Proof of Proposition 4

Recall that under cost sharing, the individual maximization is

maxxi,Y Ui(xi, Y ) subject to ΠXxi + τiΠY Y = wi.

where (ΠX ,ΠY ) =


(

1, 1−α
β

)
Y < βW(

1−β
α , 1

)
Y > βW

.

Each individual takes τi as given and solves the maximization problem. Using the �rst interpretation

above, this yields a solution such that

∂U

∂xi
= ΠX

∂U

∂Y
= τiΠY

wi = ΠXxi + τiΠY Y.

Combining the three optimality conditions gives

mrsi

(
1

ΠX
[wi − τiΠY Y ] , Y

)
= τiMRT.

De�ne γ(τi, Y ) ≡ mrsi(
1

ΠX
[wi − τiΠY Y ] , Y ). Note that γτi < 0 and γY < 0, where γτi and γY

represent the derivatives with respect to the �rst and second arguments, respectively.8

We can rewrite the combined optimality condition as

f(τi, Y ) = γ(τi, Y )− τiMRT = 0.

From this, we can use the implicit function theorem (except at the kink point Y = βW , where there

is a discontinuity due to the change in implicit prices) to solve

∂Y

∂τi
= −

∂f
∂τi
∂f
∂Y

(15)

= −γτi −MRT

γY
< 0. (16)

This proves that demand Y is decreasing in τi for interior solutions.

8This follows from γτi = ∂mrs
∂xi

dxi
dτi

= ∂mrs
∂xi

(
−

ΠY

ΠX
Y

)
︸ ︷︷ ︸

<0

< 0 and γY = ∂mrs
∂xi

dxi
dY

+ ∂mrs
∂Y

∂Y
∂Y

=

∂mrs

∂xi︸ ︷︷ ︸
>0

(
−τi

ΠY

ΠX

)
︸ ︷︷ ︸

<0

+
∂mrs

∂Y︸ ︷︷ ︸
<0

< 0.
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Recognizing ∂Y
∂τi

< 0, we can invert to obtain a share function si(Y ) = τi = mrsi
MRT de�ned for Y 6= βW

that describes the cost share that would yield a prescribed level of demand Y . si(Y ) is proportional

to the consumer's inverse demand or the willingness to pay for Y at any given level of public good

provision.

At the kink point, the behavior of si(Y ) is ambiguous. As Y increases from Y < βW to Y > βW ,

two simultaneous changes occur: ΠX decreases and ΠY increases. For the latter, both the income

e�ect and the substitution e�ect decrease si(Y ). However, for the former, the substitution e�ect

will lead to a drop in si(Y ), while the income e�ect works in the opposite direction.

Two cases are possible in the neighborhood of Y = βW : 1) si(Y ) decreases in Y for all i, and 2)

si(Y ) increases in Y for some i, but sj(Y ) decreases in Y for some j 6= i.9

Case 1. In the neighborhood of Y = βW , si(Y ) decreases in Y for all i. De�ne S(Y ) =∑n
i=1 si(Y ). Because share functions si(Y ) are decreasing in Y , so too is S(Y ). There-

fore, there exists a unique Y ∗ satisfying the condition S(Y ∗) = 1 for an interior solution,

or S(Y ) crosses 1 at the point of discontinuity for a kink solution.10 The intuition for this

proof is illustrated in Figure 2. Using Y ∗, optimal shares can be calculated as τ∗i = si(Y
∗)

for all i (interior solution), or si(βW − ε) > τ∗i > si(βW + ε), where ε > 0 is arbitrarily

small (kink solution). Prescribing shares in this way will cause all parties to agree on the

optimal level of Y ∗.

Case 2. In the neighborhood of Y = βW , si(Y ) increases in Y for some i, but sj(Y ) decreases in

Y for others j. Consider S(Y ) =
∑n
i=1 si(Y ). There are two distinct subcases:

Case i. S(Y ) is non-increasing in Y . Then the proof follows Case 1 above, yielding a

unique optimum.

Case ii. S(Y ) is non-increasing in Y , except at the kink point Y = βW where there is

a discrete increase in S(Y ). If there is a unique value of Y satisfying S(Y ) = 1,

then existence and uniqueness follow as in Case 1. However, it is possible that

there are two values of Y for which S(Y ) = 1. Denote these two values with

subscripts a and b and let Ya < Yb. Then either will be implementable via cost

sharing using shares {si(Ya)}ni=1 or {si(Yb)}ni=1, respectively, and the social

planner can select her preferred equilibrium based on a social welfare function

or otherwise. These possibilities are illustrated in Figure 3.

9A third con�guration, where si(Y ) increases in Y for all i is not feasible, as this would violate the production
constraint for the economy.

10As Y approaches in�nity, si(Y ) approaches zero, and as τi approaches in�nity, demand for Y approaches zero.
Thus, from the intermediate value theorem, there exists a unique solution for S(Y ) = 1 (interior solution) or S(βW −
ε) > 1 > S(βW + ε), where ε > 0 is arbitrarily small (kink solution).
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(a) Interior solution. (b) Kink solution.

Figure 2: These �gures provides intuition for Case 1 in the proof of Proposition 4 using a hypothetical
two-person economy. We can derive si(Y ) functions for each consumer, and the equilibrium will be
where the sum of these functions is unity.

(a) Interior solution. (b) Multiple equilibria.

Figure 3: These �gures provides intuition for Case 2 in the proof of Proposition 4 using a hypothetical
two-person economy. We can derive si(Y ) functions for each consumer, and the equilibrium will be
where the sum of these functions is unity.

6.2 Example: Deriving optimal cost shares and equilibrium

Consider an economy with with α = β = 0.6. Suppose that there are two individuals with preferences

given by U1(x1, Y ) = x0.2
1 Y 0.8 and U2(x2, Y ) = x0.1

2 Y 0.9, and let the initial wealth distribution be

w1 = w2 = 100.
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To solve for the cost sharing equilibrium, we must solve the system of equations described in Def-

inition 2. In equilibrium, consumers must choose bundles on the same facet. However, we do not

know a priori on which facet the solution will lie, so we begin by assuming Y < βW = 120. Now we

must solve: mrs1 = τ1MRT and mrs2 = τ2MRT . Di�erentiating each utility function by Y and xi

gives us the expression for each mrsi, and since there are only two individuals, we have τ1 + τ2 = 1.

We also �nd that MRTI = 2/3 and MRTII = 3/2. Finally, using Expressions 11 and 12, we get
4(100− 2

3 τ1Y )

Y = 2
3τ1 and

9(100− 2
3 τ1Y )

Y = 2
3τ2.

Solving these yields Y ∗ = 255, τ1 = 120
255 , and τ2 = 135

255 , which contradicts our initial assumption

Y ∗ < βW . Repeating the process, this time assuming that Y > βW = 120, yields
4(150− 3

2 τ1Y )

Y = 3
2τ1

and
9(150− 3

2 τ1Y )

Y = 3
2τ2.

Thus, the solution is Y ∗ = 170, τ1 = 80
170 , τ2 = 90

170 , which is consistent with our assumption. In

terms of private characteristics, we have x1 = 30, and x2 = 15.

6.3 Derivation of subsidies and subsidized prices

The consumer's budget constraint is wi = ci + di + gi. In a cost sharing system where goods gi and

di are subsidized, this becomes

wi = ci + pgigi + pdidi +
∑
j 6=i

τi
1− τj

(
sgjgj + sdjdj

)
,

where pgi = (1− sgi) and pdi = (1− sdi) are the prices inclusive of subsidies. Following the intuition
of Expression 10,

∑
j 6=i

τi
1−τj

(
sgjgj + sdjdj

)
is i's payment to fund subsidies for others' purchases.

In what follows, we demonstrate that the subsidies on goods

sgi =

(1− τi)(1− α), Y ∗ < βW

(1− τi)β, Y ∗ > βW
, (17)

and

sdi = 1− τi. (18)

will yield the desired tradeo�s in terms of characteristics as in Equation 12.

First, consider Facet I, where di = 0 so that

wi = ci + pgigi +
∑
j 6=i

τi
1− τj

sgjgj .

Given, sgi = (1−τi)(1−α), we have pgi = α+τi−ατi. Substituting this into the budget constraint,
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we have

wi = ci + [α+ τi − ατi] gi +
∑
j 6=i

τi
1− τj

[(1− τj)(1− α)] gj

= ci + αgi + (1− α)τigi +
∑
j 6=i

τi(1− α)gj

On Facet I, we have the following correspondence between goods and characteristics: xi = ci + αgi

and yi = βgi. Substituting these expressions into the equation above yields:

wi = xi + τi
1− α
β

yi +
∑
j 6=i

τi
1− α
β

yj ,

so the subsidies on goods achieve the desired budget in terms of characteristics.

wi = ci + pgigi +
∑
j 6=i

τi
1− τj

pgjgj .

Now consider Facet II, where ci = 0 so that

wi = pgigi + pdidi +
∑
j 6=i

τi
1− τj

(
sgjgj + sdjdj

)
.

Given sgi = (1− τi)β and sdi = 1− τi, we have pgi = 1− (1− τi)β and pdi = τi. Substituting this

into the budget constraint, we have

wi = pgigi + pdidi +
∑
j 6=i

τi
1− τj

(
sgjgj + sdjdj

)
= [1− (1− τi)β] gi + τidi +

∑
j 6=i

τi
1− τj

((1− τj)βgj + (1− τj)dj)

= (1− β) gi + τi (βgi + di) +
∑
j 6=i

τi (βgj + dj)

On this facet, xi = αgi and yi = βgi + di. Substituting these into the equation above gives

wi =
1− β
α

xi + τiyi +
∑
j 6=i

τiyj ,

so the subsidies achieve the desired budget in terms of characteristics.

6.3.1 Example: Implementation of subsidies

Suppose that in the market for green electricity, the technology parameters are given by (α, β) =

(0.6, 0.5). First, the policymaker must solve for the optimal level of Y . If Y ∗ > βW , then sgi =

(1− τi)β. Otherwise, it is sgi = (1− τi)(1−α). Either way, sdi = 1− τi. Let us focus on a consumer
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i with τi = 0.05. If the social planner imposes subsidies on Facet II in accordance with Equations 13

and 14, consumer i need only pay pgi = 1−sgi = 1−β+τi = $0.525 for each unit of gi. Although the

true cost of producing gi is $1, the remainder is covered by a subsidy of $0.475 per unit. Similarly,

pdi = 1− sdi = $0.05 for each unit of di, with the remaining $0.95 of the cost covered by subsidies.

Meanwhile, i must also reciprocally subsidize others' purchases of gi and di according to her cost

share τi.

Suppose that consumer i buys 10 units each of gi and di, and ten other consumers j 6= i each have

a cost share of τj = 0.095 and purchase 10 units of dj . In this case, i spends $5.75 on her purchases,

taking advantage of $14.25 in subsidies. At the same time, she must pay
∑
j 6=i

τi
1−τj

(
sgjgj + sdjdj

)
=∑

j 6=i
0.05
0.905 ∗ 0.905 ∗ 10 = $5 to others.

6.4 Proof of Propositions 7 and 8:

We consider a marginal increase in the technology parameters, so that the new equilibrium is char-

acterized by the same facet as the previous equilibrium. Such an improvement will decrease MRTI

while increasing MRTII . We prove our claim by considering two primary cases:

Case 1. Equilibrium is on Facet I. On Facet I, the technology improvement leads to Y ∗∗ > Y ∗, as

described in the proof of Proposition 5, implying that all consumers demand more envi-

ronmental quality in equilibrium. According to individual maximization, mrsi(xi, Y ) =

τiMRTI for all i in equilibrium. Suppose that some consumer i is not better o�. For

this to be the case, it must be that τ∗∗i MRT ∗∗I ≥ τ∗iMRT ∗I , implying that her e�ective

price for providing the public good has weakly increased. Then, according to individual

maximization, it must also be true that mrs(x∗∗i , Y
∗∗) ≥ mrs(x∗i , Y

∗). However, by as-

sumption, Y ∗∗ > Y ∗ and τiMRTI weakly increases. Since the consumer is by assumption

not better o�, we must have x∗∗i < x∗i . This contradicts mrsi(x
∗∗
i , Y

∗∗) > mrsi(x
∗
i , Y

∗),

as the inequality cannot hold for x∗∗i < x∗i and Y
∗∗ > Y ∗ given strict normality. There-

fore, a Pareto improvement must occur.

Case 2. Equilibrium is on Facet II. Here, the technology improvement can yield higher or lower

environmental quality in equilibrium, so we consider these as two subcases.

Case i. Y ∗∗ ≥ Y ∗. According to individual maximization, mrsi(xi, Y ) = τiMRTII

for all i in equilibrium. Suppose that some consumer i is not better o�. For

this to be the case, it must be that τ∗∗i MRT ∗∗II > τ∗iMRT ∗II , implying that her

e�ective price for providing the public good has increased.11 Combining this

condition with the individual maximization condition, we have

τ∗∗i MRT ∗∗II = mrsi(x
∗∗
i , Y

∗∗) > mrsi(x
∗
i , Y

∗) = τ∗iMRT ∗I ,

11It is straightforward to see that i experiences a higher utility after the technology improvement if τ∗∗i MRT ∗∗II <
τ∗i MRT ∗II .
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Because Y ∗∗ ≥ Y ∗, we know mrsi(x
∗
i , Y

∗) ≥ mrsi(x
∗
i , Y

∗∗) due to strict nor-

mality. Thus, mrsi(x
∗∗
i , Y

∗∗) > mrsi(x
∗
i , Y

∗∗) by transitivity, which in turn

implies that x∗∗i > x∗i . Thus, a consumer who faces a higher e�ective cost

τ∗∗i MRT ∗∗II > τ∗iMRT ∗II will consume x∗∗i > x∗i and Y
∗∗ > Y ∗, leading to an

increase in utility. Therefore, a Pareto improvement must occur.

Case ii. Y ∗∗ < Y ∗. A Pareto improvement is possible, as shown in the example in

the next section, but it is not guaranteed. Consider individual i. She may

be worse o� if her equilibrium cost share increases, as she will enjoy less Y

and potentially less xi. This possibility is also shown in the next section.

However, immiseration is not possible. It follows from the Lemma that an

individual can only be made worse o� by a technology improvement if her cost

share increases. By de�nition, the cost share cannot increase for everyone, as∑n
i=1 τi = 1. Therefore, immiseration is impossible.

Combining our results, we see that Pareto improvement results if Y ∗∗ > Y ∗, and that immiseration

is impossible.

6.5 Examples of welfare changes from technology improvements

We here provide an example of a Pareto improvement from an improvement in technology as well

as an example in which welfare is redistributed.

Consider an economy with 2 individuals, each with wi = 100, and utility given by u1(x1, Y ) = (x0.5
i +

Y 0.5)1/0.5 and u2(x2, Y ) = (x0.9
2 +Y 0.9)1/0.9. With technology parameters (α, β) = (0.6, 0.5), we �nd

that in equilibrium, τ∗1 = 0.5402, τ∗2 = 0.4598, x∗1 = 47, x∗2 = 58, Y ∗ = 112, u∗1 = 305, and u∗2 = 183

(rounded to the nearest integer value). Consider a technology change so that (α′, β′) = (0.9, 0.5).

Given existing shares τ∗1 and τ∗2 , type 2 would like to overprovide Y while type 1 would like to

underprovide. Thus, individual 1 sees a fall in her cost share, while 2 sees an increase in her cost

share. In the new equilibrium, τ∗∗1 = 0.509, τ∗∗2 = 0.491, x∗∗1 = 86, x∗∗2 = 89, Y ∗∗ = 103, u∗∗1 = 376,

and u∗∗2 = 207. Consumer 2 experiences an increase in her cost share that is more than o�set by the

positive income e�ect from better technology, resulting in a Pareto improvement.

On the other hand, if we increase the number of type 1 individuals, the overproviding type 2 will

experience a larger increase in her burden. Consider the same scenario as before but with 10

individuals of type 1. Now we get τ∗1 = 0.09401, τ∗2 = 0.0599, x∗1 = 12, x∗2 = 51 Y ∗ = 956,

u∗1 = 1184, and u∗2 = 1033 for the initial equilibrium and τ∗∗1 = 0.09385, τ∗∗2 = 0.0615, x∗∗1 = 26,

x∗∗2 = 79 Y ∗∗ = 912, u∗∗1 = 1246, and u∗∗2 = 1025 after the technology improvement. In this case,

the type 2 consumer sees a larger increase in her share, which more than o�sets the bene�ts from

higher technology.
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