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Abstract
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1 Introduction
The Condorcet Jury Theorem (CJT) suggests that democratic societies are better off by delegat-
ing decision rights to larger committees as such committees make better collective judgements
than smaller ones. As a result, if the cost of allowing an additional voter is insignificant, univer-
sal enfranchisement not only stands as a positive virtue of moral philosophy but also becomes
an economically efficient practice. In today’s age of media capture however, where expert opin-
ion is abundantly available and experts typically do not represent the preferences of an average
member of the society, committees – or empowered voters – can hardly operate in isolation as
has been assumed in the classical CJT framework. The literature around the CJT does not have
much to offer on whether biased expert opinions can be an important modifier of the theoretical
conclusions on committee size. In this paper we ask if a larger committee necessarily enhances
the quality of collective decisions when it is persuaded by an expert whose preferences are not
always aligned with those of the committee members. Furthermore, we ask whether expert
commentary, albeit informative, can hurt committee decisions even if voters understand that it
emanates from a biased source and accordingly make the committee optimally sized.

We address this question in the common interest voting model of Austen-Smith and Banks
(1996) with an odd number of voters (or committee members) to whom the society has del-
egated all decision rights.1 We extend this classical framework to one where we allow for
strategic information transmission by a single expert to a group of voters. While the expert’s
preferences are not aligned with those of the voters and he does not participate in the collective
decision (an ‘outsider’), he has free access to information. In particular, there are two possible
alternatives that the voters must choose from collectively: X or Y . The expert always prefers X
while the preference of the voters is state-dependent.2 There is a state variable ω such that if ω

is small enough then the voters also prefer X , but if ω is larger they instead prefer Y . Therefore,
the ‘magnitude’ of ω determines the extent to which the voters’ and the expert’s preferences
are misaligned. Any amount of information about the state ω is freely available to the expert,
while the voters only receive limited information about ω . In particular, each voter receives
privately an informative binary signal about the state ω with precision p. The expert chooses a
persuasion strategy that generates a public message about ω that is verifiable. Based on their
signal and the expert’s message, a member votes in favor of the alternative that maximizes his
expected utility and the committee is a priori unbiased so that the outcome voted for by the
majority of voters is chosen. Our results are based on how voters behave in the most efficient
Bayes-Nash equilibrium of the voting game.

The presence of expert persuasion is expected to provide additional public information and
hence intuitively one would envisage that the usefulness of an additional committee member
would get reduced when compared to the case without an expert. We find that while this is
indeed the case, the effect is staggering: the presence of expert persuasion removes all benefits
of large committees as we show that in no circumstance is it strictly beneficial for the society

1The literature on the CJT is large. Feddersen and Pesendorfer (1998) show that the unanimity rule can actually
reverse the efficiency of large committees by increasing the probability of convicting an innocent. Nevertheless,
even with strategic voting, certain environments yield equilibrium outcomes that converge to the efficient one as
the number of voters goes to infinity. Feddersen and Pesendorfer (1997) show that in a setting with heterogeneous
preferences where each voter receives a private signal about which alternative is best, there exists an equilibrium
for each population size such that the outcome converges to the full information outcome as the number of voters
goes to infinity. Myerson (1998) shows that asymptotic efficiency can be achieved even if there is population
uncertainty.

2Thus we address the case of pure persuasion although all our results are qualitatively robust to state-dependent
preferences of the expert as well.
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to have a committee larger than five. When the expert’s bias is small compared to that of the
members so that the probability of preference alignment is greater than 1/2, we prove that
the optimal committee size is one, that is, the society is equally well-off by delegating the
decision rights to a single decision-maker (Theorem 5). When the expert’s bias increases so
that the probability of preference alignment is below 1/2, optimal committees become larger
depending on the precision p of the members’ private information (Theorem 4). In particular,
if the probability of preference alignment is larger than a threshold of approx. 1/4, then the
optimal committee size increases monotonically in p with the largest required committee size
being three. On the other hand, when the probability of preference alignment is lower than
this threshold, the optimal committee size is non-monotonic in p: starting from a one-member
committee with a very low p, as p increases, we obtain a three-member and then a five-member
committee and as p rises further, the optimal size falls to three again.

As the presence of a biased expert restricts drastically the benefits from having large com-
mittees, we then ask if expert persuasion hurts or improves the quality of decision making of
‘optimally-sized’ committees, that is, committees that cannot improve by becoming larger in
size. Among other things, we show that whenever society delegates all decision rights to a sin-
gle voter (i.e. a one-member committee) the presence of a persuasive expert can never lower the
quality of the decision (Theorems 6 and 7 part c). However, when the size of the optimal com-
mittee is larger, the results are nuanced. For each precision level p of private information, there
exists a threshold value of the probability of preference alignment such that for all alignment
probabilities below that threshold, expert persuasion enhances the probability of correct collec-
tive decision while for alignment probabilities above, expert persuasion is harmful. Moreover,
this upper bound is non-increasing in p. In general, we also show that the presence of expert
persuasion is more harmful the larger the committee size. In particular we show that with seven
or more voters, persuasion unambiguously reduces the probability of a correct collective deci-
sion relative to a scenario without expert persuasion. Another robust conclusion from this study
is that more informed committees obtain more information from expert persuasion.

Given these findings, what can we say about the desirability of universal enfranchisement
and the usefulness of expert commentary in a democracy? From the CJT literature, we know
that as the number of voters increases so does the probability of correct decisions (the exact
conditions for this in our model is provided in Proposition 1). On the other hand we find that
under expert persuasion, the optional committee-size is small (i.e. no lager than five) and in
certain circumstances these committees perform better in the presence of the expert while in
other circumstances expert persuasion is harmful. So whenever expert persuasion is harmful,
it follows directly that the first-best scenario for the society is to impose universal voting rights
and discourage expert commentary. On the other hand, when persuasion is useful, there will
exist a threshold size of the society larger than the optimal committee size such that for all
societies smaller than the threshold size, the first best outcome is to have expert persuasion but
where decision rights are delegated to the optimal-sized committee, thereby violating univer-
sal enfranchisement. When the size of society is larger, the first best is to discourage expert
persuasion and impose universal voting rights.

What if society considers delegating the decision rights to the informed expert? If the bias
is small one may expect this to be desirable as this would minimize the variance of the action
without distorting it too much from the optimal one. In our model with pure persuasion, the ex-
pert always takes the action X which is, a priori, the correct decision for society with probability
F(ωv). Hence such a delegation is equivalent to taking that action with certainty. Our analy-
sis on equilibrium behavior (see Prop. 3 Part 2) shows that when the likelihood of preference
alignment between the expert and the voters is high and the precision of private information
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of the individual voters is small, expert persuasion is fully uninformative and each committee
member chooses alternative X . Hence in this case delegation to the expert is equivalent to
having a committee of any size. However, in all other cases (see Prop. 2 and Prop. 3), expert
persuasion is informative and influential but it is always the case that the committee chooses Y
for some message that arrives with strictly positive probability and whenever this happens the
decision is correct with probability 1. Hence in all other cases, delegation of decision rights to
the expert is strictly worse for society.3 To summarize, dictatorship of an informed and biased
expert is never strictly desirable no matter how small is the bias.

1.1 Related literature
There is a literature concerning optimal size of committees that arise from a different problem
faced by large committees. If individual members have to acquire private information through
costly investment (unlike in our case), large committees may generate more stringent free rider
problems: a single member has larger incentives to avoid this cost the larger is the committee
size, particularly in a decision problem with no conflict of interest (like in our case). In view
of this plausible source of inefficiency in large committees, Mukhopadhyay (2003) shows that
with fixed cost of acquiring information, the optimal size of a committee is indeed bounded.
Martinelli (2006) proves that with variable cost of acquiring private information where this
cost is fully responsive to the ‘quality’ of information obtained, this problem can be avoided
so that larger committees indeed perform better. Further, Koriyama and Szentes (2009) show
that though the optimal size of committee remains bounded when this cost has a fixed and a
variable component, the welfare loss from having a large committee is insignificant.

Austen-Smith and Banks (1996) also studies the impact of public information on committee
decisions although the dissemination of public information is non-strategic in their framework.
They show that with binary state-space where public information arrives non-strategically as
a binary public signal, sincere voting (meaning votes are solely based upon private signals)
cannot be informative (meaning votes mimic private signals) in equilibrium. However the
study does not address the issue of optimal committee-size.

The social value of public information in general has been a well addressed subject since
the work of Hirshleifer (1971). In a model with strategic complementarity, Morris and Shin
(2002) show that public information can hurt social welfare only if agents also have access to
independent sources of information. On the other hand, in the investment game of Angeletos
and Pavan (2004) public information necessarily improves welfare. Also, Angeletos and Pa-
van (2007) show how welfare properties of public information depend not only on the form of
strategic interaction but also on other external factors that determine the gap between equilib-
rium and efficient use of public information.4 However in these papers, public information is
non-strategic.

With this paper, we also add to the literature on strategic persuasion by complementing
the findings of Kamenica and Gentzkow (2011). In their framework, the receiver of expert
information is a single uninformed decision-maker, rather than a group of voters. Kamenica
and Gentzkow (2011) characterize sender-optimal persuasion strategies and show that (w.l.o.g.)
these strategies take the form of an action recommendation by the expert, which is duly fol-
lowed by the decision-maker. However, they only briefly discuss the possibility of extending

3This continues to hold even as we move out of pure persuasion so that in some states the expert also prefers
Y . See footnote 4.

4See also Bikchandani et al (1992) and Gersbach (2000), among others, for related works on impact of public
information on social welfare.
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their framework to either multiple receivers of information, or to a setting where the single
decision-maker receives a private signal in addition to the expert’s communication. Our setting
combines both these scenarios – multiple receivers who are privately informed – and shows
that the expert’s equilibrium persuasion strategy is no longer always simply a recommendation
as to how voters should vote that is then followed in equilibrium. Instead, in our model, there
are states of the world in which the expert conveys a public signal so that voters vote in line
with their private signals that are probabilistic. Ricardo and Câmara (2015) also study how an
outside expert can persuade voters who may have heterogeneous preferences over two alterna-
tives. In their model, however, voters do not receive private information and their focus is on
comparative statics with respect to the voting rule. Like us, they find that when there is a single
voter, persuasion is never harmful. However, contrary to our results, they find that if voters are
homogeneous, persuasion has no impact on the probability of correct decisions irrespective of
the voting rule used. This is driven by the fact that voters who are homogeneous in preferences
remain ‘informationally homogeneous’ at the time the expert releases information. In contrast,
in our model the interim preferences of voters always remain unpredictable as they depend on
voters’ private signals. This interim unpredictability of voters’ preferences has deeper conse-
quences in our model because Ricardo and Câmara (2015) find that when voters do not differ
in their information but solely in their preferences, then a majority of voters is always weakly
worse-off with persuasion when the collective decision is made using the simple majority rule.
This stands in stark contrast with our findings whereby expert persuasion can hurt as well as
help majoritarian committees. Therefore, there is a non-trivial difference between preference
heterogeneity with informational homogeneity and preference homogeneity with informational
heterogeneity. While both lead to ‘interim preference heterogeneity’, in our case it is incom-
plete information while in their case its full information.

The remainder of the paper is organized as follows. In Section 2 we describe the model.
Section 3 contains the equilibrium characterization. In Section 4 we present comparative statics
results with respect to the number of voters, allowing us to characterize the minimum number
of voters required to achieve the highest possible ex ante probability of a correct collective
decision (given the state of the world and the voters’ preferences). In Section 5 we investigate
whether biased expert persuasion is beneficial for voters, and if so for which model parameters.
We conclude in Section 6 and the present all proofs in an appendix (Section 7).

2 The Model
Basic setting. A committe of n voters (n≥ 1 odd) must make a collective choice δ from a set
of two alternatives {X ,Y}. Voters have identical preferences over {X ,Y}, and these preferences
depend on an unknown state of the world ω ∈ Ω ≡ [0,1]. There is an expert with access to
information about the true state of the world, but his preferences over {X ,Y} are not perfectly
aligned with those of the voters.

Preferences. Voters all have the same state-dependent preferences over {X ,Y} such that
(henceforth abbreviated by s.t.) for given ωv ∈ (0,1), X is strictly preferred to Y for all ω ≤
ωv, and Y is strictly preferred to X for all ω >ωv. These preferences are represented by a utility
function u : {X ,Y}×Ω→ R s.t. for

¯
u, ū ∈ R,

¯
u < ū, we have:

u(X ,ω) =

{
ū if ω ≤ ωv,

¯
u otherwise; and u(Y,ω) =

{
¯
u if ω ≤ ωv,
ū otherwise.
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The expert strictly prefers X over Y in all states. His preferences are represented by a utility
function um : {X ,Y}×Ω→ R s.t. for

¯
um, ūm ∈ R with

¯
um < ūm we have um(X ,ω) = ūm and

um(Y,ω) =
¯
um for all ω ∈Ω.5

Information structure. The state of the world ω is modeled as a random variable with a
common prior distribution. While the expert learns the realization of ω , voters only receive
partial information. In particular, given an unknown state ω , each voter i ∈ I observes privately
and independently the realization of a binary signal si ∈ S ≡ {X ,Y} with signal precision p≡
Pr[X |ω ≤ ωv] = Pr[Y |ω > ωv] ∈ (1/2,1). Note that these conditional i.i.d. signal distributions
are derived from underlying joint densities f (ω,sss) over the state space Ω and signal profiles
sss = (s1, . . . ,sn) ∈ Sn, and we assume that these joint densities are continuous in ω .6 From
the joint densities f (ω,sss) we can derive the prior probability that the expert’s and the voters’
preferences are aligned: F(ωv) = ∑sss∈Sn

∫
ωv
0 f (ω,sss)dω . If F(ωv) > 1/2, we shall say there is

high likelihood of preference alignment between voters and expert. If, instead, F(ωv) < 1/2,
we say there is low likelihood of preference alignment between expert and voters.

Communication. The expert can costlessly disseminate information about ω through his
choice of persuasion strategy, to which he commits, and which he announces before the state
of the world ω is realized. Under such a strategy, voters receive coarse information about the
state of the world in the form of a specific sub-interval of the state space containing the actual
realization of ω . Formally, a persuasion strategy is a partition of the interval Ω into a finite
number of closed sub-intervals whose union is Ω. For any integer k ≥ 1, the finite sequence
(ωt)t=1,...k of real numbers s.t. 0 = ω0 < ω1 < ω2 < .. . < ωk = 1 gives rise to k sub-intervals
Ωk

t ≡ [ωt−1,ωt ] that form the partition Ωk ≡ {Ωk
1, . . .Ω

k
k} of Ω. The sub-interval Ωk

t (with
t ∈ {1, . . . ,k}) is announced publicly to voters if and only if ω ∈ Ωk

t .

Voting. Voters cast their votes simultaneously, and abstention is not allowed. Given the ex-
pert’s public signal Ωk

t and the private signal si, each voter i forms a posterior belief f (ω,sss−i|Ωk
t ,si)

about the state of the world. A pure voting strategy is a function vi : Ωk × S → {X ,Y},
(Ωk

t ,si) 7→ vi(Ω
k
t ,si). Due to the fact that voters are ex ante symmetric in our model, we

restrict attention to symmetric voting strategies: vi(Ω
k
t ,s) = v(Ωk

t ,s) for all Ωk
t ∈ Ωk and all

i ∈ I. Let vvv(Ωk
t ,sss) = (v(Ωk

t ,s1), . . . ,v(Ωk
t ,sn)) ∈ {X ,Y}n denote the profile of n votes. Votes

are aggregated into a collective decision δ by simple majority rule. I.e. δ : {X ,Y}n→ {X ,Y},
vvv(Ωk

t ,sss) 7→ δ (vvv(Ωk
t ,sss)) s.t. δ (vvv(Ωk

t ,sss)) = X iff |i ∈ I : v(Ωk
t ,si) = X | ≥ n+1

2 .

3 Equilibrium characterization
In this section, we characterize by backward induction the perfect Bayesian equilibria of the
two-stage game in which the expert first chooses and commits to a persuasion strategy, and
voters subsequently vote after observing their respective private signals as well as the public
signal generated by the expert’s persuasion strategy. We start with the second stage of the game
in order to derive the Bayes Nash equilibrium of the voting subgame. As mentioned in the
model description above, in doing so we will focus on symmetric pure strategy equilibria.

5Our results remain qualitatively intact in a more general environment where in some states the expert prefers
alternative Y .

6E.g. Pr[X |ω ≤ ωv] = ∑sss−i∈Sn−1
∫

ωv
0 f (ω,X ,sss−i)dω/∑sss∈Sn

∫
ωv
0 f (ω,sss)dω
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3.1 Voting equilibrium under persuasion
Suppose the expert’s persuasion strategy has generated the public signal Ωk

t . A voting strategy
v is a symmetric Bayes Nash equilibrium of the voting subgame if for every voter i ∈ I and
every signal-pair (Ωk

t ,si) it is a best response to use v given that all other voters use v. That is:

v(si) = arg max
vi∈{X ,Y}

∫
Ωk

t

(
∑sss−i∈Sn−1 P[sss−i|ω]u(δ (vi,vvv−i(Ω

k
t ,sss−i)),ω)

)
f (ω|Ωk

t ,si)dω

where the maximand is voter i’s interim expected utility given signals (Ωk
t ,si), and vvv−i(Ω

k
t ,sss−i)

denotes the vote-profile across all voters other than i. In computing his best response, each voter
takes account of the fact that his vote affects the outcome only if he is pivotal. Note that there are
multiple symmetric pure strategy equilibria of the voting subgame: there is always one where
all voters vote X (Y resp.) regardless of their signal. The reason is that given these vote-profiles,
no voter is pivotal. This means that no voter has a strict incentive to change his vote as it does
not affect the collective decision. As a way of selecting a particular symmetric equilibrium for
the voting subgame, we focus on the equilibrium that maximizes the probability of a correct
decision. Note that this equilibrium exists and is unique for every persuasion strategy Ωk.

Proposition 1 (voting equilibrium). In the voting subgame that commences with a public
signal Ωk

t = [ωt−1,ωt ] ⊆ Ω from the expert, the unique symmetric pure strategy Bayes Nash
equilibrium that maximizes the probability of a correct decision is as follows: for every voter
i ∈ I and all si ∈ S:

v(Ωk
t ,si) =


Y if F(ωv)< pF(ωt−1)+(1− p)F(ωt)

si if pF(ωt−1)+(1− p)F(ωt)≤ F(ωv)< (1− p)F(ωt−1)+ pF(ωt)

X if F(ωv)≥ (1− p)F(ωt−1)+ pF(ωt)

In the remainder of this paper, we will follow Austen-Smith and Banks (1996) by using
the term informative voting to describe the strategy v(Ωk

t ,si) = si under which voters vote in
line with their respective private signals. Note that as a corollary of Prop. 1, whose proof can
be found in Sec. 7.1 of the appendix, we obtain the voting equilibrium for the setting without
expert communication (which is equivalent to the expert choosing the uninformative persuasion
strategy Ω1 where ω0 = 0 and ω1 = 1): if F(ωv)≥ p, the equilibrium is for every voter to vote
for X regardless of his private signal. Similarly, if F(ωv)< 1− p, the equilibrium is for every
voter to vote for Y regardless of his signal. Finally, if 1− p ≤ F(ωv) < p, the equilibrium
involves informative voting. It is only in this case that the Condorcet Jury Theorem prevails in
our setting where voters use pure strategies.

3.2 Equilibrium persuasion
We now go on to analyse the equilibrium of the full game. As in Kamenica and Gentzkow
(2011), a persuasion strategy constitutes an equilibrium if it maximizes the expert’s ex-ante ex-
pected payoff. Take a strategy-pair (Ωk,v) s.t. the symmetric voting-strategy v is the symmetric
pure strategy equilibrium of the voting subgame given the persuasion strategy Ωk. Then (Ωk,v)
is an equilibrium of the full game if for all other strategy-pairs (Ωk′,v′) we have:∫

Ω

(
∑sss∈Sn P[sss|ω][um(δ (vvv(Ωk(ω),sss)),ω)−um(δ (v′(Ωk′(ω),sss)),ω)]

)
f (ω)dω ≥ 0
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There may be multiple equilibria (Ωk,v) of the full game. But since all of them are payoff-
equivalent for the expert and the voters, we shall consider only the coarsest equilibrium per-
suasion strategy. Such a strategy features the minimum number of partitions k that elicit the
same voting behavior in every state of the world when compared to any other persuasion strat-
egy. Note carefully that in our setting, where voters classify states of the world according to
a binary criterion (namely those for which the correct decision is X , and those for which it is
Y ), the coarsest persuasion strategy features at most three partitions: Ω3 = {Ω3

1,Ω
3
2,Ω

3
3} with

Ω3
1 = [0,ω1], Ω3

2 = [ω1,ω2], Ω3
3 = [ω2,1] where ω1 ≤ ωv ≤ ω2.

3.2.1 Equilibrium persuasion when F(ωv)< 1/2

We begin our characterization of the expert’s equilibrium persuasion strategy with the case of
low likelihood of preference alignment between the expert and the voters. In order to state
our result, we begin by introducing some additional notation and terminology that will be used
throughout the remainder of this paper. First, denote by Jn(p) the probability that more than
half of the voters receive the correct private signal given the true state of the world:

Jn(p)≡∑
n
j= n+1

2

(
n
j

)
p j(1− p)n− j

Note that in any voting subgame where voters vote in line with their private signals, Jn(p)
captures the probability that the correct outcome is chosen (in the sense of voters’ favorite
outcome). In the following definition, we give a precise formal meaning to the statement that
with informative voting there is a high chance of voters making the correct collective choice

Definition 1. The odds Jn(p)/(1− Jn(p)) of a correct collective decision under informative
voting are said to be high if:

Jn(p)
1− Jn(p)

>
(1−F(ωv))p− (F(ωv)(1− p)+(1−F(ωv))(1− p))

F(ωv)(1− p)
(1)

Otherwise, we say that these odds are low.7

Before we provide some intuition for the condition in (1), we present the expert’s equilibrium
persuasion strategy, along with the induced voting equilibrium according to Prop. 1.

Proposition 2 (equilibrium persuasion for F(ωv) < 1/2). The unique coarsest equilibrium
persuasion strategy features a binary partition of the state space. In particular:

1. if F(ωv)> 1− p and:

(a) if the odds of a correct collective decision under informative voting are high,
then the expert’s persuasion strategy is Ω̂2 = {[0, ω̂1], [ω̂1,1]} with a threshold
ω̂1 that F(ω̂1) = F(ωv)/p. This implies ω̂1 > ωv. By Prop. 1, this persuasion
strategy induces the following equilibrium voting behavior: vi([0, ω̂1],si) = X and
vi([ω̂1,1],si) = Y for all si ∈ S;

7We show in Lemma 1 in the Appendix that (1) holds when the number of voters is sufficiently large (i.e. for
n≥ 5). It also holds if the electorate consists of n = 3 voters and F(ωv)≥ (1− p)(2p−1)(2p+1)/p(4p(1− p)+
1), and if the electorate consists of a single decision-maker and F(ωv)≥ (2p−1)/2p.
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(b) if the odds of a correct collective decision under informative voting are low, then
the expert’s persuasion strategy is Ω̃2 = {[0, ω̃1], [ω̃1,1]} with a threshold ω̃1 that
solves F(ω̃1)= (F(ωv)−(1− p))/p. This implies ω̃1 <ωv. By Prop. 1, this persua-
sion strategy induces the following equilibrium voting behavior: vi([0, ω̃1],si) = X
and vi([ω̃1,1],si) = si for all si ∈ S;

2. if F(ωv)< 1− p and:

(a) n ≥ 5, then the equilibrium persuasion strategy and induced voting behavior is as
in 1.(a);

(b) n = 3 and p < p̄3 ≈ 0.76069, then the equilibrium persuasion strategy and induced
voting behavior is as in 1.(a).8 If, instead, p> p̄3, then the expert’s persuasion strat-
egy is Ω̆2 = {[0, ω̆1], [ω̆1,1]} with threshold ω̆1 that solves F(ω̆1) = F(ωv)/(1− p).
This implies ω̆1 > ωv. By Prop. 1, this persuasion strategy induces the following
voting behavior: v([0, ω̆1],si) = si and v([ω̆1,1],si) = Y for all si ∈ S;

(c) n = 1 and p < p̄1 =
√

2/2 ≈ 0.70711, then the persuasion strategy and induced
voting behavior is as in 1.(a). If, instead, p > p̄1, then the equilibrium persuasion
strategy and induced voting behavior is as in case 2.(b).

The proof is in Section 7.2 in the appendix. We now provide some intuitive understanding
for the results in Prop. 2 by focusing on the case where F(ωv)> 1− p. Without expert persua-
sion (i.e. when the uninformative persuasion strategy Ω1 is used), Prop. 1 tells us that the equi-
librium of the voting subgame involves informative voting. This means that in every state of the
world, there is a positive chance that voters collectively choose Y instead of the expert’s favorite
alternative X . In particular, the ex ante probability of Y is F(ωv)(1−Jn(p))+(1−F(ωv))Jn(p),
and the expert’s goal is to devise a persuasion strategy that brings this probability down. One
way of reducing the expert’s exposure to Y is to make voters vote X in as many states of the
world as possible. This gives rise to the persuasion strategy Ω̂2 in item 1.(a) of Prop. 2, which
offers the largest possible sub-interval s.t. voters vote X regardless of their private signals. It is
easy to see from Prop. 1 that no sub-interval Ωk

t = [ωt−1,ωt ] for which voters always vote X
can stretch all the way to the upper bound of the state space. The reason is that if Ωk

t features
an upper bound of ωt = 1, then there is no feasible lower bound ωt−1 so that voters would be
willing to ignore their signals and vote for X when the expert sends the public signal Ωk

t .9 If,
instead, Ωk

t features a lower bound of ωt−1 = 0, then the expert can stretch the upper bound all
the way up to ωt = F(ωv)/p.10 Note, however, that there is a ‘price’ to be paid for inducing a
guaranteed vote for X over such a large stretch of the state space: voters will ignore their signals
and vote for Y in all remaining states ω > F(ωv)/p. This generates an ex ante probability of Y
equal to 1− (F(ωv)/p).

As an alternative to the persuasion strategy Ω̂2 in item 1.(a) of Prop. 2, consider the strategy
Ω̃2 in item 1.(b). It stretches the sub-interval for which voters vote for X regardless of their
private signals only as far as is compatible with informative voting in all remaining states.11 As

8The precise expression for p̄3 can be found at the end of Sec. 7.2.2 of the proof of Prop. 2.
9The third branch of the equilibrium voting strategy in Prop. 1 implies a lower bound ωt−1 s.t. F(ωt−1) ≤

(F(ωv)− p)/(1− p), which cannot hold as F(ωv)< p.
10This also follows from the third branch of the voting strategy in Prop. 1, which now requires F(ωt) ≤

F(ωv)/p.
11The second and third branches of the equilibrium voting strategy in Prop. 1 dictate where the upper bound ω̃1

of this sub-interval is.
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a result, the ex ante probability of Y being chosen is ((1− p)(1−F(ωv))/p)(1−Jn(p))+(1−
F(ωv))Jn(p), which shows that Ω̃2 is always superior to the uninformative persuasion strategy
Ω1. In the proof of Prop. 2, we show formally that the expert’s choice of equilibrium persuasion
strategy boils down to a comparison of Ω̂2 and Ω̃2. The outcome of this comparison depends
on the model parameters n, p, and F(ωv) because:

• for states ω ∈ [ω̂1,1], the persuasion strategy Ω̃2 leads to a collective choice of Y with
probability Jn(p), while strategy Ω̂2 leads to Y for sure;

• for states ω ∈ [ωv, ω̂1], strategy Ω̃2 again leads to Y with probability Jn(p), while strategy
Ω̂2 leads to X for sure;

• for states ω ∈ [ω̃1,ωv], strategy Ω̃2 leads to Y with probability 1− Jn(p), while strategy
Ω̂2 leads to X for sure.

It is eqn. (1) in Definition 1 that determines whether the expected gain from the persuasion
strategy Ω̃2 (in terms of a lower probability of Y ) outweighs the expected losses in comparison
with persuasion strategy Ω̂2. Intuitively, when the preferences of the expert and the voters are
aligned, the expert would like the probability of a correct collective decision Jn(p) to be high
so as to avoid a ‘wrong’ choice of Y . However, if their preferences are misaligned, the expert
would like Jn(p) to be low so as to avoid a ‘correct’ choice of Y . The precise trade-off between
these counterveiling tendencies means that the persuasion strategy Ω̃2 is an equilibrium only if
the odds Jn(p)/(1−Jn(p)) of a correct collective decision under informative voting are low. A
necessary condition for this is that voters’ ex ante probability of a correct Y -signal (given by
(1−F(ωv))p) exceeds the ex ante probability of an incorrect signal (given by F(ωv)(1− p)+
(1−F(ωv)(1− p))).12

Remark 1. The threshold ω̂1 in item 1.(a) of Prop. 2 is decreasing in signal precision p, while
the threshold ω̃1 in item 1.(b) of Prop. 2 is increasing in p. Therefore, it is the case under both
persuasion strategies that more informed voters receive more accurate public information from
the expert.

3.2.2 Equilibrium persuasion when F(ωv)> 1/2

We present here the results for the case of a high likelihood of preference alignment between
the expert and the voters. The expert’s equilibrium persuasion strategy and the corresponding
equilibrium voting strategy according to Prop. 1 is as follows:

Proposition 3 (equilibrium persuasion for F(ωv) > 1/2). The unique coarsest equilibrium
persuasion strategy features a binary partition of the state space. In particular:

1. if F(ωv)> p, then the expert’s persuasion strategy is Ω̄2 = {[0, ω̌1], [ω̌1,1]} with thresh-
old ω̌1 = 1 (i.e. persuasion yields no information). By Prop. 1, this persuasion strategy
induces the following equilibrium voting behavior: v([0, ω̌1],si) = X for all si ∈ S;

2. if F(ωv) < p, then the expert’s persuasion strategy is the same as in item 1.(a) of Prop.
2: Ω̂2 = {[0, ω̂1], [ω̂1,1]} with threshold ω̂1 s.t. F(ω̂1) = F(ωv)/p, which induces the
following equilibrium voting behavior: v([0, ω̂1],si) = X and v([ω̂1,1],si) = Y for all
si ∈ S;

12This is evident from the numerator of the right-hand side ratio in equation (1).
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The proof is in Section 7.4 in the appendix. The intuition for the results in Prop. 3 is
straightforward. When F(ωv) > p it follows from Prop. 1 that in the absence of persuasion,
every voter votes for X irrespective of his private signal. This is the ideal scenario for the
expert and it is therefore optimal for him to choose the uninformative persuasion strategy Ω1.
If, instead, the voters’ signals are sufficiently informative (i.e. 1/2 < F(ωv) < p), then Prop.
1 states that in the absence of expert persuasion, voters vote in line with their private signals.
The inuition for item 2. of Prop. 3 is therefore the same as for Prop. 2 above, except that the
present parameter values p and F(ωv) are such that the odds of a correct collective decision
under informative voting are always high, so that it is optimal for the expert to induce voting
behavior in which voters disregard their private signals.

4 Optimal committee size and information aggregation
In this section, we present our insights into the optimal number of voters in the committee
when they are subject to expert persuasion. We use the term ‘optimal’ in the sense of the
minimum number of voters required to achieve the highest possible ex ante probability of a
correct collective decision from the voters’ point of view. We denote this ‘number’ by nmin.

4.1 Optimal committee size when F(ωv)< 1/2

We begin with the case of low likelihood of preference alignment between the expert and the
voters. Fig. 1 provides a graphical illustration of the parameter-pairs (p,F(ωv)) for which
the minimum committee size needed to achieve the maximum ex ante probability of a correct
collective decision is nmin = 1 (the white unshaded area of Fig. 1), nmin = 3 (the gray shaded
area), or nmin = 5 (the black shaded area).
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Figure 1: Optimal committee size with persuasion

The following result states formally what is illustrated graphically in Fig. 1:
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Proposition 4 (optimal committee size for F(ωv) < 1/2). The minimum number of voters
required to achieve the maximum ex ante probability of a correct collective decision varies as
follows with the model parameters p and F(ωv):

1. if F(ωv)> 1− p:

(a) and F(ωv) ∈ [2p−1
2p ,1/2), then nmin = 1;

(b) and F(ωv) ∈ [ (1−p)(2p−1)(2p+1)
p(4p(1−p)+1) , 2p−1

2p ), then nmin = 3;

(c) and F(ωv)<
(1−p)(2p−1)(2p+1)

p(4p(1−p)+1) , then nmin = 5.

2. if F(ωv)< 1− p:

(a) for p < p̄1 =
√

2/2≈ 0.70711, then nmin = 1;

(b) for p̄1 < p < p̄3 ≈ 0.76069, then nmin = 3;

(c) if p > p̄3, then nmin = 5.

The proof of Prop. 4 is in Sec. 7.5 of the appendix. They key idea behind this result is to
adjust the committee size n so as to ensure that the expert uses the signal-invariant persuasion
strategy Ω̂2 for all parameter-pairs (p,F(ωv)) with 1− p < F(ωv) < 1/2. To see why this
is optimal from the perspective of maximizing the ex ante probability of a correct collective
decision, recall that for five or more voters, the odds of a correct collective decision under
informative voting (Jn(p)/(1− Jn(p))) are high for all values of p. This makes informative
voting ‘too accurate’ from the expert’s point of view, who instead induces signal-invariant
voting through the persuasion strategy Ω̂2 in item 1.(a) of Prop. 2. Only for those model
parameters p, F(ωv), and n for which the odds Jn(p)/(1−Jn(p)) are low can the expert further
reduce the accuracy of collective decision-making (i.e. achieve a lower ex ante probability of
outcome Y than under Ω̂2) by resorting to the persuasion strategy Ω̃2 in item 1.(b) of Prop. 2.
This latter strategy involves informative voting for all states ω > ω̃1. As our goal of maximizing
the ex ante probability of a correct decision is diametrically opposed to what the expert wants,
we simply have to find for all parameters p and F(ωv) the minimum committe size n that makes
the odds Jn(p)/(1−Jn(p)) high in the sense of Definition 1 so as to ensure that the expert uses
the signal-invariant persuasion strategy Ω̂2 instead of Ω̃2.

Note that the optimal committee size nmin pictured in Fig. 1 is increasing with the preci-
sion p of voters’ private signals if F(ωv) > 1− p̄3 ≈ 0.24. If, instead, F(ωv) < 1− p̄3 the
optimal committee size is non-monotonic and drops from five to three as the signal preci-
sion p grows. The basic reason for this non-monotonicity is that when private signals become
perfectly informative (i.e. p→ 1), a single-decision maker’s odds of a correct ‘collective’
decision under informative voting, J1(p)/(1− J1(p)), become low in the sense of Definition 1
for all values of F(ωv) in [0,1/2]. In contrast, for any n ≥ 3, the odds Jn(p)/(1− Jn(p)) are
high for all F(ωv) as p becomes perfectly informative. The reason for this stark difference is
that with just one voter, the probability of a wrong signal, 1− p, equals the probability of a
wrong ‘collective’ decision under informative voting, 1− J1(p). In contrast, for three or more
voters, the chances that the collective makes a wrong decision when voting informatively are
always strictly lower than the probability that any one of them gets the wrong private signal.
To see all this formally, note first that the right-hand side ratio in eqn. (1) is decreasing in
F(ωv). This is due to the fact that in the numerator, the ex ante probability of a correct Y -
signal, (1−F(ωv))p, falls and the ex ante probability of a wrong signal remains unchanged
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(this is given by F(ωv)(1− p)+ (1−F(ωv))(1− p)). Furthermore, in the denominator the ex
ante probability of a wrong Y -signal, F(ωv)(1− p), goes up. We can therefore compute for
given n and p the maximum value of F(ωv) for which the odds Jn(p)/(1− Jn(p)) are low:
F̄n(p) ≡ (1− Jn(p))(p− (1− p))/(p(1− Jn(p))+ Jn(p)(1− p)). Using L’Hôpital’s Rule to
obtain the limit as p becomes perfectly informative, we find that F̄n(1) = J′n(1)/(1+ J′n(1)).
Thus, with a single decision-maker (for which J1(p) = p), we obtain F̄1(1) = 1, while with
a three-voter committee (for which J3(p) = p2 (3−2p)) we obtain F̄3(1) = 0. Furthermore,
F̄1(p) is an increasing function (which demarcates the gray area in Fig. 1), while F̄3(p) is a
decreasing one (which demarcates the black area in Fig. 1). Thus, there exist values p < 1 and
1− p < F(ωv)≤ F̄3(p) for which the odds J3(p)/(1−J3(p)) are low, so that the expert adopts
persuasion strategy Ω̃2. It is for all these values that we raise the committee size to nmin = 5,
which gives rise to the aforementioned non-monotonicity.

4.2 Optimal committee size when F(ωv)> 1/2

Here we consider briefly the case where the likelihood of preference alignment between the
expert and the voters is high:

Proposition 5 (optimal committee size for F(ωv)> 1/2). The probability of a correct collec-
tive decision is constant for all n, and so nmin = 1.

Thus, when preference misalignment between expert and voters is unlikely, committee size is
irrelevant. This is because the expert’s equilibrium persuasion strategies in Prop. 3 are signal-
invariant, which means there is no information aggregation and benefit from larger committees.

5 Desirability of expert persuasion
In this section, we show that the expert’s communication can adversely affect the ex ante prob-
ability of a correct decision in both large and small committees.

5.1 Benefits from persuasion when F(ωv)< 1/2

We begin with a graphical illustration of our result regarding the desirability of expert per-
suasion when the likelihood of preference alignment is low. Fig. 2 shows (in the gray shaded
areas) for which parameter-pairs (p,F(ωv)) the presence of the expert helps generate a higher
ex ante probability of a correct decision in a committee of three (left-hand panel of Fig. 2) or
in a committee of five voters (right-hand panel of Fig. 2) than each committee could achieve
without the expert.

Proposition 6 (Desirability of expert persuasion for F(ωv)< 1/2). In the following, we state
for which model parameters p, F(ωv) and n biased expert persuasion benefits voters.

1. Let F(ωv)> 1− p.

(a) When the odds of a correct collective decision under informative voting are high,
then the ex ante probability of a correct collective decision is higher with biased
expert persuasion than without if F(ωv)< Gn(p), where:

Gn(p)≡ p
1− p

(1− Jn(p)). (2)
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If, instead, F(ωv) > Gn(p), then expert persuasion adversely affects the ex ante
probability of a correct decision.

(b) When the odds of a correct collective decision under informative voting are low,
then the ex ante probability of a correct collective decision is higher with biased
expert persuasion than without it.

2. Let F(ωv)< 1− p. The ex ante probability of a correct collective decision is higher with
biased expert persuasion than without it.
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Figure 2: Desirability of expert persuasion in committees of three and five voters

The proof of Prop. 6 is in Sec. 7.7 of the appendix. Whether expert persuasion is beneficial
for voters or not depends on the equilibrium persuasion strategy used by the expert. If the
odds Jn(p)/(1− Jn(p)) are high, then strategy Ω̂2 in item 1.(a) of Prop. 2 induces a signal-
invariant voting strategy for which the ex ante probability of a correct decision is independent
of the number of voters. In the expert’s absence, voters vote according to their private signals,
which implies that in large committees a large amount of information is being aggregated into a
collective decision. However, this improves on the the outcome induced by persuasion strategy
Ω̂2 only if private signals are sufficiently precise (i.e. if F(ωv)< Gn(p)).

If, instead, the odds Jn(p)/(1− Jn(p)) are low, then persuasion strategy Ω̃2 in item 1.(b) of
Prop. 2 is used by the expert. This induces voters to vote for X regardless of their respective
private signals in all states ω ∈ [0, ω̃1], while without expert persuasion they would cast their
vote according to their private signals. In all remaining states, they vote in line with their
private signals both with and without the expert. It is therefore immediately obvious that expert
persuasion enhances the chances of the committee making the correct decision. Note that
Gn(p)> Gn+1(p) for all p, which implies that the zone of benefit from persuasion shrinks with
committee size, as illustrated by Fig. 2.

Finally, in item 2. of Prop. 6 the signal precision p is sufficiently low so that in the absence
of expert communication voters vote for Y irrespective of their private signals. In this case, the
expert’s help in raising the probability of a correct collective decision when the state is in [0,ωv]
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outweighs any losses from manipuating voters into voting for X when the state is in [ωv, ω̂1]
or in [ωv, ω̆1] (see item 2. of Prop. 2 for the different persuasion strategies that can arise in
equilibrium).

5.2 Benefits from persuasion when F(ωv)> 1/2

Our final result shows that even when the expert and the voters are highly likely to agree on
what is the correct decision, the expert’s presence can still adversely affect the probability of
it being taken. In general, whether expert persuasion harms information aggregation or not
depends on the size n of the electorate. We will see that with seven or more voters, persuasion
unambiguously reduces the probability of a correct collective decision relative to a scenario
without expert persuasion. However, with three and with five voters, the situation is more
nuanced in that the result will depend on the interplay of signal precision p and the likelihood
of preference misalignment. In particular, for an intermediate level of signal precision, the
probability of a correct decision will be higher with persuasion, while for low and high levels
of signal precision it will be higher without persuasion.

Proposition 7. In the following, we state for which model parameters p, F(ωv) and n biased
expert persuasion benefits voters.

1. If p<F(ωv), the ex ante probability that voters collectively choose the correct alternative
is unaffected by the expert’s presence.

2. If p > F(ωv) and furthermore:

(a) if n≥ 7, the ex ante probability of choosing the correct alternative is higher without
expert persuasion;

(b) if n = 3,5, the ex ante probability of a correct collective decision is higher with
biased persuasion if F(ωv) < Gn(p), where Gn(p) is defined in (2). If, instead,
F(ωv)>Gn(p), then expert persuasion adversely affects the probability of a correct
decision.

(c) if n = 1, the ex ante probability of choosing the correct alternative is always higher
with persuasion.

The proof is in Sec. 7.9 of the appendix. In order to get a better sense for the results in Prop.
7, note that when signal precision is low (i.e. p < F(ωv)) each voter votes for X in all states
irrespective of his private signal and irrespective of the number of voters (see Prop. 3 above).
As a result, the probability of making the correct decision is the same whether or not an expert
is present. But when the signal strength is high (i.e. p > F(ωv)), the probability of making
the correct decision is higher without persuasion for a sufficiently large committee (i.e. n≥ 7).
This is because in the presence of the expert, voters opt wrongly for X when ω ∈ (ωv, ω̂1],
regardless of how many voters there are. Without an expert, voters instead vote in line with
their private signals so that the chance of a wrong decision in states ω ∈ (ωv, ω̂1] diminishes as
the size of the electorate grows.

Now consider the case of n = 3 or n = 5 voters. In these cases, Prop. 3 above implies that
the chance of voters making the right choice when voting informatively is low. It is here that
the analysis gets interesting due to the non-monotonicity in the ranking of the probabilities of a
correct decision with and without the expert: for p > F(ωv), the length of the interval (ωv, ω̂1]
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over which the expert can manipulate voters into choosing the wrong decision decreases with
p. I.e. for low p there is a large range of states for which voters are being manipulated, mean-
ing that the probability of a correct decision is higher without the expert. If, instead, the signal
precision p is very high, the chance that the collective will the correct alternative without per-
suasion is high in all states - even in such small committees. Only in an intermediate range of
p is it worthwhile to suffer the expert’s manipulation in exchange for his help in choosing the
correct alternative in all states except ω ∈ (ωv, ω̂1]).

6 Conclusion
In this paper we have studied the effect of expert persuasion on the general conclusion of the
Condorcet Jury Theorem that larger committees take better collective actions. Our main find-
ing is that in a common-interest non-deliberating voting model where collective decisions are
reached via the simple-majority rule, a small committee (of size ≤ 5) is ‘good enough’. We
also find that persuasion never limits information aggregation if the precision of voters’ private
signals is low. Otherwise, persuasion will hurt information aggregation in large committees.
This is because the information conveyed through the equilibrium persuasion strategy over-
powers voters’ private information and invariably makes them vote for a particular alternative.
In contrast, without persuasion voters will vote according to their private signals so that the
probability of the correct decision increases with the size of the electorate. Thus, absence of
expert advice can actually improve information aggregation in large constituencies. Another
key insight of this paper is that a similar issue arises even in small constituencies, even though
not for all constellations of the model parameters. We also find that in general the amount
of information transmitted through expert persuasion increases when each member gets more
precise private information.

We have used these results to draw conclusions regarding voting rights and the desirability
of expert commentary in a democracy. Our results can also enhance one’s understanding on
how firms may take their business decisions.Yermack (1996) studies the Fortune 500 firms and
finds a negative correlation between firm value and the size of a firm’s board of directors who
take decisions on behalf of the firm. This finding is not only confined to large firms. By studying
small and mid-sized Finnish firms, Eisenberg et al (1998) et al find a negative relation between
board size and profitability. The same negative relation is confirmed in other contexts by Bhagat
and Black (2002), Mak and Kusnadi (2005) and Conyon and Peck (1998). On the other hand,
there are also studies which support the opposite idea that group size and group performance are
positively linked. Guo and Schick (2003) surveyed 294 chairpersons and 223 members from
334 ethics committees in the USA in 2000, and found that larger committees are perceived to
be more successful. Hence the empirical evidence regarding group size and group performance
goes in both directions, and a theoretical framework is warranted to understand the relationship
better. Our results suggest the following in this regard. If decisions are majoritarian, very large
firms with many shareholders should take decisions by allowing all shareholders to vote and
by disallowing independent expert recommendations while smaller firms should form small
committees and invite outside experts for advice.

In our analysis we have assumed that the committee does not deliberate and this assumption
is common to most of the literature around CJT. If it did deliberate, then, given there is no con-
flict of interest amongst voters, the problem would be akin to the one with a partially informed
single decision maker (or receiver) who receives n independent private signals in addition to
any information transmitted by the expert. A single decision-maker with many binary signals
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may be harder to influence than one with a single binary signal because with more signals there
might be a chance that the expert’s information is drowned out by the private information of the
decision-maker. In any event, as private information does not hurt voters in our model, and as
expert persuasion cannot be detrimental to the social objective under a single-member commit-
tee, we expect that larger deliberating committees will make (weakly) better judgements and
expert commentary will also make a (weakly) positive impact.

Possible extensions to our model include alternative voting rules (such as approval voting
or cumulative voting), and three or more alternatives. It would also be quite natural to intro-
duce multiple experts with either similar or conflicting biases, and examine the effect of their
communication on the electorate’s chances of making the correct decision. We reserve these
for future research. Another aspect of our model that one could think of relaxing is the assump-
tion that voters receive their private signals without having to pay for them. In relation to this
possible extension, it is worth highlighting that Gershkov and Szentes (2009) study the design
of an optimal collective decision mechanism in a scenario without conflict of interest among
voters (like in the present paper) and without expert persuasion (unlike the present paper). In
their model, voters need to pay in order to obtain partially informative signals, which gives rise
to free-rider problems - particularly when voters are homogeneous. In order to mitigate this
source of inefficiency, Gershkov and Szentes (2009) show that the optimal mechanism must in-
volve an interesting protocol: voters are selected one-by-one at random and asked to acquire a
costly signal whose realization they must subsequently report to the mechanism designer. Vot-
ers are neither informed about their position in this sequence nor of the other voters’ reports.
As this is a very general property of an optimal mechanism (beyond the environments studied
by Gershkov and Szentes (2009)), we conjecture that it would remain optimal even if voters
were subject to persuasion by a biased expert.

7 Appendix

7.1 Proof of Proposition 1
Suppose all voters other than i use the same voting strategy v. As the collective decision is
made according to the simple majority rule, voter i is pivotal if and only if the remaining n−1
votes are split equally across the two alternatives. Let nX(vvv(Ωk

t ,sss−i)) be the number of votes
cast for alternative X among voters other than i. The event that voter i is pivotal given the other
voters’ strategies can then be captured by the set:

Πi(Ω
k
t ,v)≡ {sss−i ∈ Sn−1 : nX(vvv(Ωk

t ,sss−i)) = (n−1)/2}

As voter i faces a binary choice when computing best reponses (namely to either vote X or
Y ), his best response can be characterized easily on the basis of the interim expectation of the
utility-difference u(δ (X ,vvv−i(Ω

k
t ,sss−i)),ω)−u(δ (Y,vvv−i(Ω

k
t ,sss−i)),ω) from voting for X versus

voting for Y given signals (Ωk
t ,si). This expectation reduces to the following expression:

∑
sss−i∈Πi(Ω

k
t ,v)

(ū−
¯
u)P[sss−i|si]

(
2F(ωv|Ωk

t ,si,sss−i)−1
)

Voter i’s best response is to vote X if this expected utility-difference is positive, and to vote
Y if it is negative. In order to further characterize equilibrium voting behavior in terms of the
model parameters p and F(ωv), as well as the expert’s public signal Ωk

t , suppose first that the
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voting strategy v used by the n−1 voters other than i is s.t. voter i is not pivotal: Πi(Ω
k
t ,v) = /0.

In this case, our focus on the equilibrium that maximizes the probability of a correct decision
requires that voter i votes on the basis of his private signal si as if his vote alone determined
the outcome. Computing voter i’s interim utility-difference from voting for X versus Y given
signals (Ωk

t ,si) yields: ∫
Ω

(u(X ,ω)−u(Y,ω)) f (ω|Ωk
t ,si)dω

= (ū−
¯
u)
(

2F(ωv|Ωk
t ,si)−1

)
.

Therefore, if F(ωv|,Ωk
t ,si)> 1/2, it is optimal for voter i to vote for X . Instead, if F(ωv|,Ωk

t ,si)<
1/2, it is optimal for voter i to vote for Y . If F(ωv|,Ωk

t ,si) = 1/2, voter i is indifferent between
voting for X and Y . For simplicity, we assume in this case that any voter i acts in line with
the expert’s preference, which is to vote for alternative X . We can further characterize voter
i’s equilibrium voting strategy by computing the posterior F(ωv|Ωk

t ,si) using Bayes’ Rule. In
particular, if si = X :

F(ωv|Ωk
t ,X) =

P[X |ω ≤ ωv]F(ωv|Ωk
t )

P[X |ω ≤ ωv]F(ωv|Ωk
t )+P[X |ω > ωv](1−F(ωv|Ωk

t ))

=
p(F(ωv)−F(ωt−1))

p(F(ωv)−F(ωt−1))+(1− p)(F(ωt)−F(ωv))
.

Thus, voter i with private signal si =X votes for X if F(ωv)≥ pF(ωt−1)+(1− p)F(ωt), and he
votes for Y if F(ωv)< pF(ωt−1)+(1− p)F(ωt). If, instead, voter i’s private signal is si = Y ,
we obtain by Bayes’ Rule:

F(ωv|Ωk
t ,Y ) =

P[Y |ω ≤ ωv]F(ωv|Ωk
t )

P[Y |ω ≤ ωv]F(ωv|Ωk
t )+P[Y |ω > ωv](1−F(ωv|Ωk

t ))

=
(1− p)(F(ωv)−F(ωt−1))

(1− p)(F(ωv)−F(ωt−1))+ p(F(ωt)−F(ωv))
.

Thus, if si = Y voter i votes for X if F(ωv) ≥ (1− p)F(ωt−1)+ pF(ωt), and he votes for Y if
F(ωv)< (1− p)F(ωt−1)+ pF(ωt).

Next, suppose voter i is pivotal with positive probability: Πi(Ω
k
t ,v) 6= /0. Note that with our

focus on pure strategies, this is the case if and only if the n− 1 voters other than i either all
vote according to signal (v(s j) = s j for all j 6= i), or contrary to signal. In either case, for every
sss−i ∈Πi(Ω

1,v):
P[sss−i|ω ≤ ωv] = P[sss−i|ω > ωv] = p

n−1
2 (1− p)n−1

This implies that being pivotal reveals no additional information to voter i over and above the
information contained in his private signal:

F(ωv|Ωk
t ,X ,sss−i) =

pP[sss−i|ω ≤ ωv]F(ωv|Ωk
t )

pP[sss−i|ω ≤ ωv]F(ωv|Ωk
t )+(1− p)P[sss−i|ω > ωv](1−F(ωv|Ωk

t ))

= F(ωv|Ωk
t ,X)

Similarly: F(ωv|Ωk
t ,Y,sss−i) = F(ωv|Ωk

t ,Y ). It follows immediately that voter i’s equilibrium
voting behavior is the same as in the first part of this proof where Πi(Ω

k
t ,v) = /0.
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7.2 Proof of Proposition 2
Recall from Sec. 3.2 that the maximum number of partitions we have to consider as candidate
for the expert’s coarsest equilibrium persuasion strategy is three. We therefore commence the
proof by looking for the expert’s optimal persuasion strategy within the class of ternary parti-
tions Ω3 = {Ω3

1,Ω
3
2,Ω

3
3} with Ω3

1 = [0,ω1], Ω3
2 = [ω1,ω2], Ω3

3 = [ω2,1] where ω1 ≤ ωv < ω2.
Note that binary persuasion strategies Ω2 can be viewed as special cases of ternary partitions Ω3

(where either ω1 ∈ (0,ωv] and ω2 = 1, or ω1 = 0 and ω2 ∈ (ωv,1]). Likewise, the uninformative
persuasion strategy Ω1 is a special case of Ω3 with ω1 = 0 and ω2 = 1.

7.2.1 Optimal ternary persuasion strategy

We characterize the optimal partition Ω3 by choosing thresholds ω1 and ω2 so as to maximize
the expert’s ex ante expected utility, which can be expressed as follows:∫

Ω

(
∑sss∈Sn P[sss|ω]um(δ (vvv

(
Ω

3(ω),sss
)
),ω)

)
f (ω)dω (3)

We have to take into account how the expert’s choice of ω1 and ω2 affects voters’ equilibrium
voting strategy, which is detailed in Prop. 1:

• for any ω1 ≤ ωv, announcement of the sub-interval Ω3
1 = [0,ω1] induces voters to vote

for X regardless of their private signals as they know with certainty that X is the correct
choice given their preferences (this can also be seen formally from Prop. 1 as F(ωv) ≥
(1− p) ·0+ pF(ω1)).

• for any ω2 > ωv, announcement of the sub-interval Ω3
3 = [ω2,1] induces voters to vote

for Y regardless of their private signals as they know with certainty that Y is the correct
decision given their preferences (this can also be seen formally from Prop. 1 as F(ωv)<
pF(ω2)+(1− p) ·1).

• if the sub-interval Ω3
2 = [ω1,ω2] is announced, the voting strategy depends on the specific

values of the thresholds ω1 and ω2 as described in Prop. 1. I.e. the expert can choose
which one of the following three voting behaviors he wants to induce: either a vote for Y
regardless of voters’ private signals, or a vote for X regardless of voters’ private signals,
or a vote in line with each voter’s private signal.

We now compute explicitly the expert’s ex ante expected utility in (3) under each of the three
voting behaviors that he can induce through his choice of sub-interval Ω3

2. We then compute
the corresponding utility-maximizing values of ω1 and ω2:

1. Suppose v(Ω3
2,si) = Y for all si. By Prop. 1, this means that ω1 and ω2 are s.t. F(ωv)<

pF(ω1)+ (1− p)F(ω2). The expert’s expected utility in (3) can then be written as fol-
lows: ∫

ω1

0
ūm f (ω)dω +

∫ 1

ω1 ¯
um f (ω)dω =

¯
um +(ūm− ¯

um)F(ω1)

As this function is increasing in ω1, it is optimal to make its value as large as possible,
subject to the constraint that F(ωv) < pF(ω1)+ (1− p)F(ω2). Thus, we set ω1 = ωv
and can choose any ω2 > ωv.
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2. Suppose v(Ω3
2,si) = X for all si. By Prop. 1, this means that ω1 and ω2 are s.t. F(ωv)≥

(1− p)F(ω1)+ pF(ω2). The expert’s expected utility in (3) can then be written as fol-
lows: ∫

ω2

0
ūm f (ω)dω +

∫ 1

ω2 ¯
um f (ω)dω =

¯
um +(ūm− ¯

um)F(ω2)

As this function is increasing in ω2, it is optimal to make its value as large as possible,
subject to the constraint that v(Ω3

2,si) = X for all si. This constraint can be re-arranged
as follows: F(ω2) ≤ (F(ωv)− (1− p)F(ω1))/p. Thus, we set ω1 = 0 and choose the
value of ω2 that solves F(ω2) = F(ωv)/p. It is immediate that no persuasion strategy
Ω3 that maximizes the expert’s expected utility can involve the voting behavior detailed
in item 1. above, because a strictly higher expected utility can be guaranteed by inducing
the voting behavior detailed here in item 2.

3. Suppose v(Ω3
2,si) = si. By Prop. 1, this means that ω1 and ω2 are s.t. pF(ω1)+ (1−

p)F(ω2) ≤ F(ωv) < (1− p)F(ω1)+ pF(ω2). The expert’s expected utility in (3) can
then be written as follows:∫

ω1

0
ūm f (ω)dω +

∫
ωv

ω1

(Jn(p)(ūm− ¯
um)+ ¯

um) f (ω)dω

+
∫

ω2

ωv

(ūm− Jn(p)(ūm− ¯
um)) f (ω)dω +

∫ 1

ω2 ¯
um f (ω)dω

=
¯
um +(ūm− ¯

um) [(F(ω1)+F(ω2))(1− Jn(p))−F(ωv)(1−2Jn(p))]

As this function is increasing in F(ω1)+F(ω2), it is optimal to make the value of this
sum as large as possible, subject to the following constraints: (i) F(ω2) > (F(ωv)−
(1− p)F(ω1))/p and (ii) F(ω2)≤ (F(ωv)− pF(ω1))/(1− p). There are two candidate
solutions to this optimization problem:

(a) Set F(ω2) equal to its upper bound (F(ωv)− pF(ω1))/(1− p) given in constraint
(ii). This makes the expert’s expected utility a decreasing function of ω1 as F(ω1)+
F(ω2) = (F(ωv)− (2p− 1)F(ω1))/(1− p). It is therefore optimal to set ω1 = 0,
which implies that the optimal value of ω2 solves F(ω2) = F(ωv)/(1− p). Note
that this solution is feasible only if the model parameters are s.t. F(ωv)≤ 1− p.

(b) Set F(ω1) equal to the upper bound (F(ωv)− (1− p)F(ω2))/p, which can be ob-
tained by re-arranging constraint (ii) above. This makes the expert’s expected utility
an increasing function of ω2 as F(ω1)+F(ω2) = (F(ωv)+(2p−1)F(ω2))/p. It
is therefore optimal to set ω2 = 1, which implies that the optimal value of ω1 solves
F(ω1) = (F(ωv)− (1− p))/p. Note that this solution is feasible only if the model
parameters are s.t. F(ωv)≥ 1− p.

7.2.2 Equilibrium persuasion strategy

Given the optimal thresholds ω1 and ω2, we now compute the expert’s equilibrium persuasion
strategy (which is a binary partition, as shown in items 2. and 3. of Sec. 7.2.1 above).
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Suppose F(ωv) > 1− p. The difference in the expert’s expected utility from the persuasion
strategies in items 3.(b) and 2. of Sec. 7.2.1 is:

(ūm− ¯
um)

p(1− p)F(ωv)(1− Jn(p))

(
(1−F(ωv))(p− (1− p))

F(ωv)(1− p)
−1− Jn(p)

1− Jn(p)

)
(4)

If this difference is negative, then the persuasion strategy in item 2. of Sec. 7.2.1 is optimal for
the expert. If it is positive, then the persuasion strategy in item 3.(b) is optimal. The sign of
the utility difference in (4) depends on whether equation (1) in Definition 1 holds or fails. The
following result shows for which parameter values this is the case:

Lemma 1. Let F(ωv)> 1− p:

1. if F(ωv) ∈ ((
√

2−1)/
√

2,1/2) and:

(a) n = 1, then eqn. (1) in Definition 1 holds for all F(ωv) ≥ (2p− 1)/2p and fails
otherwise;

(b) n≥ 3, then eqn. (1) holds for all F(ωv)> 1− p;

2. if F(ωv) ∈ ((7
√

7−10)/(7
√

7+17),(
√

2−1)/
√

2] and:

(a) n = 1, then eqn. (1) fails for all F(ωv)> 1− p;

(b) n≥ 3, then eqn. (1) holds for all F(ωv)> 1− p;

3. if F(ωv)< (7
√

7−10)/(7
√

7+17) and:

(a) n = 1, eqn. (1) fails for all F(ωv)> 1− p;

(b) n = 3, eqn. (1) fails for p < p̂F
3 and holds otherwise, where p̂F

3 is the biggest real
root in (1/2,1) of 4p3− 4p2− p+ 1+F(ωv)/(1−F(ωv)). Note that this can be
expressed equivalently by saying that for given p s.t. F(ωv) > 1− p, eqn. (1) fails
for F(ωv)< (1− p)(2p−1)(2p+1)/p(4p(1− p)+1);

(c) n≥ 5, eqn. (1) holds for all F(ωv)> 1− p.

The proof of Lemma 1 is given below in Sec. 7.3. With the results from Lemma 1, item 1.
of Prop. 2 follows immediately.

Suppose F(ωv) ≤ 1− p. The difference in the expert’s expected utility from the persuasion
strategies in items 3.(a) and 2. of Sec. 7.2.1 is:

−F(ωv)(ūm− ¯
um)
[
Jn(p)p(2p−1)− p2− p+1

]
/p(1− p)

Label as η(n, p) the term in square brackets: η(n, p)≡ Jn(p)p(2p−1)− p2− p+1. Note that
η(5,1/2) = 1/4, η(5,1) = 0, and that the equation η(5, p) = 0 has no solution in p ∈ (1/2,1).
Thus, η(5, p) > 0 for all p ∈ (1/2,1). As p > 1/2 it follows that η(n, p) is increasing in
Jn(p). We now make recourse to the following result that is derived in the proof of Lemma 2
in Karotkin and Paroush (2003):

Lemma (Karotkin and Paroush, 2003). Jn(p) is increasing in n. In particular: Jn+2(p)−
Jn(p) = p(2p−1)

( n
n−1

2

)
p

n−1
2 (1− p)

n+1
2 .
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It follows that η(n, p) is increasing in n. This implies that η(n, p)> 0 for all n≥ 5, which
establishes the result in item 2.(a) of Prop. 2.

To prove part 2.(b), set n = 3. Note that η(3,1/2) = 1/4, η(3,1) = 0, and that η(3, p) = 0 has
a unique solution in p ∈ (1/2,1) given by p̄3 = ((27−3

√
78)1/3 +(3

√
78+27)1/3)/6≈ 0.76.

It follows that for all p ∈ (1/2, p̄3), we have η(3, p) > 0, while for all p ∈ (p̄3,1), we have
η(3, p)< 0. This proves item 2.(b) of Prop. 2.

Finally, to prove part 2.(c), set n= 1. Note that η(1,1/2) = 1/4, η(3,1) = 0, and that η(3, p) =
0 has a unique solution in p ∈ (1/2,1) given by p̄1 =

√
2/6 ≈ 0.71. It follows that for all

p ∈ (1/2, p̄1), we have η(1, p)> 0, while for all p ∈ (p̄1,1), we have η(1, p)< 0. This proves
item 2.(c) of Prop. 2. and completes the proof.

7.3 Proof of Lemma 1
To prove the result, we start by re-arranging eqn. (1) as follows:

F(ωv)

1−F(ωv)
> (1− Jn(p))

2p−1
1− p

For ease of notation, we define as Hn(p) the function of p on the right-hand side of this in-
equality. The proof idea is best gleaned from Fig. 3, which illustrates eqn. (1) for five different
committee sizes. The upward-sloping line and the curved single-peaked shapes in the fig-
ure represent the respective functions Hn(p) which capture the components of eqn. (1) that
vary with signal precision p. The horizontal line in Fig. 3 represents the odds in favor of
agreement. It is obvious that the graph of H1(p) = 2p− 1 has a unique intersection point

H5HpL

H3HpL

H7HpL

H57HpL

H1HpL

0.705 0.774 1-FHΩvL 1
p

F HΩvL

1-F HΩvL

0.32

HnHpL

Figure 3: Graphical illustration of eqn. (1)

p1 = 1/2(1−F(ωv)) with the horizontal line at F(ωv)/(1−F(ωv)) for any F(ωv) ∈ (0,1/2).
Furthermore, we have p1 ≥ 1−F(ωv) if F(ωv)≥ (

√
2−1)/

√
2. Thus, for n = 1 eqn. (1) fails

for all p > p1 if F(ωv)≥ (
√

2−1)/
√

2, and otherwise it fails for all p > 1−F(ωv).
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In the remainder of this proof, we show first that for any committee size n ≥ 3, the func-
tion Hn(p) features a single-peaked graph which, when intersected by a horizontal line, yields
exactly two strictly ordered intersection points p1

n and p2
n. We then show for a five member

committee that when signal precision p exceeds the likelihood of disagreement 1− F(ωv),
both intersection points with a horizontal line at any F(ωv)/(1− F(ωv)) below the maxi-
mum value H5(p∗5) ≈ 0.217549 lie outside the range of admissible values p ∈ (1−F(ωv),1).
Therefore, eqn. (1) holds for n = 5 and all p > 1− F(ωv). Finally, by virtue of the fact
that Hn+2(p) < Hn(p) for all p ∈ (1/2,1) due to the aforementioned lemma by Karotkin and
Paroush (2003), it follows immediately that eqn. (1) also holds for all p > 1−F(ωv) and all
n > 5. Thus, only in one-member and in three-member committees can eqn. (1) fail for some
p ∈ (1−F(ωv),1).

In fact, it is easy to compute that for n = 3, the maximum value of H3(p) = (1− p)(2p−
1)(1+2p) is reached at the point p∗3 = (

√
7+2)/6≈ 0.77429, with H3(p∗3) = (7

√
7−10)/27.

Therefore, if F(ωv)/(1−F(ωv))≥H3(p∗3) (which is equivalent to F(ωv)> (7
√

7−10)/(7
√

7+
17)), then eqn. (1) cannot fail for any n≥ 3. Observe that for F(ωv) = (7

√
7−10)/(7

√
7+17),

the corresponding lower bound on p is
¯
p(F(ωv)) ≡ 1−F(ωv) = (7

√
7− 17)/2 ≈ 0.76013.

Therefore: p∗3 >
¯
p(F(ωv)) = (7

√
7−17)/2. To see that for any F(ωv)< (7

√
7−10)/(7

√
7+

17) the corresponding lower bound
¯
p(F(ωv)) is smaller than the intersection point p2

3(F(ωv))
of the function H3(p) with the horizontal line at F(ωv)/(1−F(ωv)), note that a change in the
value of F(ωv) affects these two benchmarks in the following way: d

¯
p(F(ωv))/dF(ωv) =−1

and d p2
3(F(ωv))/dF(ωv) = 1/H ′3(p2

3(F(ωv))(1−F(ωv))
2 < 0 for all p2

3(F(ωv))> p∗3. In par-
ticular, it is straightforward to verify that a drop in the value of F(ωv) raises the value of the
lower bound

¯
p(F(ωv)) by 1, while it raises the value of the intersection point p2

3(F(ωv)) by
more than 1. Thus, for any F(ωv)< (7

√
7−10)/(7

√
7+17) we have p2

3(F(ωv)>
¯
p(F(ωv)),

and therefore eqn. (1) holds for all p ∈ (
¯
p(F(ωv)), p2

3(F(ωv))).

General shape of Hn. We now characterize the shape of the function Hn for arbitrary n≥ 3.
First, note that for all n: Hn(1/2) = 0 and Hn(1) = 0. Next, consider the monotonicity and
curvature of Hn. To this end, we define for ease of notation Ln, j (p) ≡

(n
j

)
p j(1− p)n− j. Also

let:

Kn (p)≡
n−1

2

∑
j=0

(
n
j

)
p j(1− p)n− j =

n−1
2

∑
j=0

Ln, j (p) .

As n is odd, the integer (n− 1)/2 is even. We can therefore express equivalently the function
Hn as: Hn(p) = ((2p−1)/(1− p))Kn(p). In order to obtain the derivatives of this function, it
is useful to note that:

L′n, j(p) = n
(
Ln−1, j−1(p)−Ln−1, j(p)

)
. (5)

Thus, K′n(p) = ∑

n−1
2

j=0 n
(
Ln−1, j−1(p)−Ln−1, j(p)

)
= −nLn−1, n−1

2
(p). We therefore obtain our

desired derivative:

H ′n(p) =
1

(1− p)2 Kn(p)− n(2p−1)
1− p

Ln−1, n−1
2
(p)

=

n−1
2

∑
j=0

(
n
j

)
p j(1− p)n− j−2−n(2p−1)

(
n−1
n−1

2

)
p

n−1
2 (1− p)

n−3
2 .
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We first evaluate the derivative at p = 1/2:

H ′n(1/2) = 4Kn(p) =
4
2n

n−1
2

∑
j=0

(
n
j

)
.

Note that ∑
n
j=0
(n

j

)
= 2n, and since n is odd, we also have ∑

n−1
2

j=0
(n

j

)
= (1/2)∑

n
j=0
(n

j

)
. Thus,

H ′n(1/2) = 2, which shows that Hn is strictly increasing at p = 1/2. Next, we evaluate the
derivative H ′n at p = 1:

H ′n(1) =

n−1
2

∑
j=0

(
n
j

)
1 ·0n− j−2−n

(
n−1
n−1

2

)
1 ·0

n−3
2

First consider the case n = 3:

H ′3(1) =
(

3
0

)
1 ·01 +

(
3
1

)
1 ·00−3

(
2
1

)
1 ·00.

As 00 = 1, this expression reduces to: H ′3(1)= 3−6=−3. Next, consider n≥ 5. In these cases,
the expression for H ′n(1) no longer features any expressions involving 00, but only expressions
where 0 is raised to a strictly positive power, which are all equal to zero. Thus, H ′n(1) = 0 for
all n ≥ 5. We can therefore infer from the fact that Hn is strictly increasing at p = 1/2 and
non-increasing at p = 1, that Hn must have a global maximum somewhere in (1/2,1). In fact,
we now argue that Hn has a unique critical point in (1/2,1), which must therefore be the unique
global maximum.

Uniqueness of critical point of Hn. For n≥ 3, at any critical point p∗n, the following condition
holds:

1
(1− p∗n)2 Kn(p∗n)−

n(2p∗n−1)
1− p∗n

Ln−1, n−1
2
(p∗n) = 0. (6)

Multiplying through (6) by (1− p∗n)
2 yields:

Kn(p∗n) = n(1− p∗n)(2p∗n−1)Ln−1, n−1
2
(p∗n).

To establish that there is a unique p∗n ∈ (1/2,1) for which this equality holds, we study sepa-
rately the functions Kn(p) and n(1− p)(2p− 1)Ln−1, n−1

2
(p) ≡ Λn(p). In fact, it will be more

useful for our purposes to study the behavior of the functions Kn(1−x) and Λn(1−x) for values
x ∈ [0,1/2], as illustrated in Fig. 4 for the case of n = 5. In the remainder of this section of the
proof, we establish that for any n ≥ 3, the functions Kn(1− x) and Λn(1− x) behave qualita-
tively in the way depicted in Fig. 4, so that we can conclude there exists a unique intersection
point in (0,1/2) of these two functions.
The reader can easily verify that Kn(1) = Λn(1) = Λn(1/2) = 0. Furthermore, it is straightfor-
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Figure 4: Uniqueness of critical point of Hn.

ward to obtain the first two derivatives of Kn and their signs:13

K′n(p) = − nΓ(n)
Γ2
(n+1

2

) p
n−1

2 (1− p)
n−1

2 < 0 for all p ∈ [1/2,1),

K′′n (p) =
nΓ(n)

2Γ2
(n+1

2

) p
n−3

2 (1− p)
n−3

2 (n−1)(2p−1)> 0 for all p ∈ (1/2,1).

This implies that, as illustrated in Fig. 4, the function Kn(1−x) is strictly increasing and convex
for all x ∈ (0,1/2). We can also easily compute the first derivative of Λn:

Λ
′
n(p) =− nΓ(n)

2Γ2
(n+1

2

) p
n−3

2 (1− p)
n−1

2
(
4(1+n) p2−2(1+2n)p+(n−1)

)
.

Note that:

Λ
′
n(p)> 0⇔ p > p̂n ≡

2n+
√

4n+5+1
4(n+1)

, (7)

and that Λ′n(p) < 0⇔ p < p̂n. Thus, Λn(p) has a critical point at p̂n. We can therefore state
that the function Λn(1− x) is strictly monotonically increasing in x for x < x̂n ≡ 1− p̂n, and
that it is strictly monotonically decreasing for x > x̂n. Next, note that:

K′n(p)> Λ
′
n(p) ⇔ 0 < p2− p+

n−1
4(1+n)

⇔ p > p̃n ≡
1
2

(
1+

√
2

n+1

)
, (8)

and that K′n(p) < Λ′n(p)⇔ p < p̃n. At the point p̃n both derivatives are equal. By comparing
the binomial expressions in (7) and (8) that define p̂n and p̃n, resp., it is easy to verify that

13In the following expressions, we use the Gamma function to express more compactly the familiar factorial
function: Γ(n)≡ (n−1)!.
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p̂n < p̃n. We can therefore state that while both functions Kn(1−x) and Λn(1−x) start at x = 0
with a value of 0, for values x < x̃n ≡ 1− p̃n, the function Λn(1− x) increases faster than the
function Kn(1− x). For any x ∈ (x̃n, x̂n), the function Kn(1− x) grows at increasing rate, while
the function Λn(1− x) now grows at a rate below that of Kn(1− x). Finally, for all x > x̂n, the
function Kn(1− x) continues to grow at increasing rate, while the function Λn(1− x) smoothly
falls back to a value of 0. In other words, for any n≥ 3, the behavior of the functions Kn(1−x)
and Λn(1− x) is as depicted in Fig. 4, which proves that there exists a unique intersection
point x∗n ≡ 1− p∗n of these two functions in (0,1/2). This point of intersection constitutes the
unique critical point of the function Hn, which therefore is the unique global maximum of Hn
in (1/2,1).

Having argued that for any n ≥ 3 the function Hn starts and ends with a value of zero, and
has a unique interior maximum, we now turn to the question of how this function varies with
committee size n. By the above lemma due to Karotkin and Paroush (2003) (see proof of Prop.
2), we know that Jn+2(p) > Jn(p) for all p ∈ (1/2,1). It therefore follows immediately that
Hn(p)> Hn+2(p) for all p ∈ (1/2,1).

Evaluating eqn. (1) for n = 5. For committee size n = 5 we can explicitly write H5(p) =
(1− p)2 (2p−1)

(
3p+6p2 +1

)
. Now fix a value F(ωv)∈ (0,1/2). This implies the following

lower bound on the admissible values of p: p≥
¯
p = 1−F(ωv). We now ask if the function H5,

when evaluated at the lower bound
¯
p, satisfies or violates eqn. (1). I.e. we check if:

H5(
¯
p)S

F(ωv)

1−F(ωv)
=

1−
¯
p

¯
p
⇔

¯
p
(
1−

¯
p
)(

2
¯
p−1

)
S

1
1+3

¯
p(1+2

¯
p)

, (9)

where
¯
p ∈ [1/2,1].

First consider the function
¯
p(1−

¯
p)(2

¯
p− 1), and note that both its limits as

¯
p→ 1/2 and

¯
p→ 1, resp., are equal to zero. Furthermore, the derivative of this function w.r.t.

¯
p is 6

¯
p(1−

¯
p)− 1. Thus, for

¯
p ∈ [1/2,1/2+

√
3/6), the function

¯
p(1−

¯
p)(2

¯
p− 1) is strictly increasing,

while for
¯
p ∈ (1/2+

√
3/6,1] it is strictly decreasing. At

¯
p = 1/2+

√
3/6, the function has a

critical point, which constitutes its global maximum as the second derivative, when evaluated
at

¯
p = 1/2+

√
3/6, takes the value −2

√
3. We can therefore conclude that the function

¯
p(1−

¯
p)(2

¯
p−1) reaches its maximum value of

√
3/18 at

¯
p= 1/2+

√
3/6, while taking strictly lower

values for all other
¯
p.

Next, consider the denominator of the fraction on the right-hand side of (9). The quadratic
polynomial 1+ 3

¯
p(1+ 2

¯
p) is strictly increasing (its derivative is 12

¯
p+ 3) and takes values in

[4,10]. This implies that the right-hand side fraction in (9) is a strictly decreasing function that
reaches its global minimum at

¯
p = 1, where it takes the value 1/10. Now observe that the

maximum value of
√

3/18 of the function
¯
p(1−

¯
p)(2

¯
p−1) is strictly lower than the minimum

value of the fraction 1/(1+ 3
¯
p(1+ 2

¯
p)). We can therefore conclude that eqn. (1) is satisfied

when p takes its lowest possible value of
¯
p, regardless of what this value

¯
p is.

Now suppose that F(ωv)≤ H5(p∗5)/(1+H5(p∗5)), where p∗5 is the unique global maximum
point of the function H5, at which it takes the value H5(p∗5). For any such F(ωv), the horizontal
line at F(ωv)/(1−F(ωv)) will intersect the graph of the function H5 at two points: p1

5(F(ωv))
and p2

5(F(ωv)) (with p1
5(F(ωv)) < p2

5(F(ωv))), where H5(pi
5(q)) = F(ωv)/(1−F(ωv)) for

all i = 1,2. Fig. 5 provides an illustration. Also indicated in Fig. 5 is the lower bound
¯
p =

1−F(ωv) of admissible values p, which illustrates our finding above that H5(1−F(ωv)) <
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Figure 5: Eqn. (1) for n = 5

F(ωv)/(1−F(ωv)). In the remainder of this section of the proof of Lemma 1, we focus on
showing that for all F(ωv) ∈ (0,1/2), it holds that

¯
p = 1−F(ωv)> p2

5. To see this, note that:

H5(1−F(ωv))<
F(ωv)

1−F(ωv)
= H5(pi

5(F(ωv))),

so that we have either 1−F(ωv) < p1
5(q) (due to the fact that H5 is strictly increasing for all

p < p1
5(F(ωv))), or 1−F(ωv)> p2

5(F(ωv)) (due to the fact that H5 is strictly decreasing for all
p > p2

5(F(ωv))).

As the function H5 is a polynomial of order 5, we can neither compute analytically its global
maximum p∗5, nor the two points p1

5(F(ωv)) and p2
5(F(ωv)) for given F(ωv) ≤ H5(p∗5)/(1+

H5(p∗5)). Therefore, we take an indirect approach to establishing that 1−F(ωv) > p2
5(F(ωv))

by verifying that H ′5(1−F(ωv))< 0 for all F(ωv)≤H5(p∗5)/(1+H5(p∗5)). To do this, we recall
that the function H3 has a global maximum at p∗3 = (

√
7+ 2)/6, with associated maximum

value H3(p∗3) = (7
√

7− 10)/27. Thus, if F(ωv) = F∗3 ≡ (7
√

7− 10)/(7
√

7+ 17), we have
H3(p∗3) = F∗3 /(1−F∗3 ). Note that p∗3 is in the admissible range because 1−F∗3 = (7

√
7−

17)/2 < p∗3 = (
√

7+2)/6.

We now evaluate the derivative H ′5 at the point 1−F∗3 , which yields H ′5(1−F∗3 )= (6517630−
2463433

√
7)/2. It is easy to verify analytically that this number is strictly negative (and is ap-

prox. equal to −0.54473). This shows that the maximum of H5 must occur at some point
p∗5 < 1−F∗3 < p∗3. Thus, H3(p∗3)> H3(p∗5)> H5(p∗5), where the latter inequality follows from
the aforementioned Lemma by Karotkin and Paroush (2003). Therefore, we know that:

F∗3 =
H3(p∗3)

1+H3(p∗3)
>

H5(p∗5)
1+H5(p∗5)

,
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which implies that for any F(ωv)≤ H5(p∗5)/(1+H5(p∗5)) we have:

p∗5 < 1−F∗3 < 1−
H5(p∗5)

1+H5(p∗5)
≤ 1−F(ωv).

Due to the fact that H ′5(p)< 0 for all p > p∗5, we can finally state that H ′5(1−F(ωv))< 0. This
is what we needed in order to prove that for any F(ωv) ≤ H5(p∗5)/(1+H5(p∗5)), eqn. (1) is
sastisfied for all p ∈ (1−F(ωv),1). This, finally, establishes that eqn. (1) is satisfied for n = 5
and all F(ωv) ∈ (0,1/2) and p ∈ (1−F(ωv),1) as claimed in Lemma 1.

7.4 Proof of Proposition 3
The details of the proof mirror those in the proof of Prop. 2 in Sec. 7.2: we characterize the
optimal partition Ω3 by choosing thresholds ω1 and ω2 so as to maximize the expert’s ex ante
expected utility. As explained in Sec. 7.2.1, we only have to consider those threshold-values
for which either v(Ω3

2,si) = X for all si, or v(Ω3
2,si) = si.

1. Suppose v(Ω3
2,si) = X for all si. From item 2. in Sec. 7.2.1 it follows immediately that

for 1/2 < F(ωv) < p the optimal thresholds are ω1 = 0 and ω2 s.t. F(ω2) = F(ωv)/p.
If, instead, F(ωv) > p, then it is easy to see that the optimal thresholds are ω1 = 0 and
ω2 = 1.

2. Suppose v(Ω3
2,si) = si. From item 3. in Sec. 7.2.1 it is easy to see that the threshold ω2

in item 3.(a) is not feasible as F(ωv)> 1/2 > 1− p. Thus, the optimal thresholds for any
F(ωv)> 1/2 are those given in item 3.(b) of Sec. 7.2.1: ω1 s.t. F(ω1) = (F(ωv)− (1−
p))/p and ω2 = 1.

Given these optimal thresholds ω1 and ω2, we can compute the expert’s equilibrium per-
suasion strategy. First suppose that F(ωv) > p. In this case, the expert can induce voters to
vote for his preferred alternative regardless of their private signals by setting Ω3

2 = [0,1]. No
other persuasion strategy can give the expert a higher utility. This established item 1. of Prop.
3.

Now suppose that 1/2 < F(ωv) < p. In this case, the difference in the expert’s expected
utility from the persuasion strategies in items 1. and 2. of the present proof is given by (4). If
this difference is negative, then the persuasion strategy in item 1. is optimal for the expert. If it
is positive, then the persuasion strategy in item 2. is optimal. The sign of the utility difference
in (4) depends on whether eqn. (1) holds or fails. Note that the left-hand side of eqn. (1) is
increasing in the value of Jn(p). By Karotkin and Paroush’s lemma stated above in the proof of
Prop. 2, it follows that if eqn. (1) is holds for n = 1, then it will also hold for all odd n > 1. It
is easy to verify that eqn. (1) holds for n = 1. Note that J1(p) = p. Suppose now that eqn. (1)
is violated for n = 1. I.e.:

2p≥ 1+
F(ωv)

1−F(ωv)

This latter inequality cannot hold: as F(ωv)> 1/2, the expression on the right-hand side of the
inequality is strictly larger than 2, while the value of 2p on the left-hand side is at most 2. We
can therefore conclude by contradiction that the expert’s utility-difference in (4) is negative for
all n≥ 1. This establishes item 2. of Prop. 3.
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7.5 Proof of Proposition 4
First consider the case F(ωv) > 1− p. If eqn. (1) holds, then by item 1.(a) of Prop. 2, the
probability of making the correct collective choice is constant and will therefore not rise if
additional voters are added: 1−F(ωv)(1− p)/p. Now contrast this with the case where eqn.
(1) fails. In this latter case (which corresponds to item 1.(b) of Prop. 2), the probability of
making the correct collective choice is 1− (1− Jn(p))(1−F(ωv))/p. Note that the former
probability of correct decision-making is higher than the latter iff:

1− Jn(p)>
F(ωv)(1− p)

1−F(ωv)
. (10)

Note that this inequality holds whenever eqn. (1) in Definition 1 fails (i.e. the odds Jn(p)/(1−
Jn(p)) are low). We can express equivalently as follows: (1− Jn(p))(2p− 1) > F(ωv)(1−
p)/(1−F(ωv)). If this in equality holds, it is obvious that the inequality in (10) also holds. This
implies that the probability of correct decision-making is lower under the voting equilibrium
induced by the expert’s persuasion strategy Ω̃2 in item 1.(b) of Prop. 2 than it would be under the
persuasion strategy Ω̂2 in item 1.(a). In order to make the strategy Ω̂2 the expert’s equilibrium
choice, the number of voters must be raised to the minimum for which eqn. (1) in Definition 1
holds. Lemma 1 above allows us to establish this minimum number for every parameter-pair
(p,F(ωv)) s.t. F(ωv)> 1− p.

Now consider the case of F(ωv) < 1− p. By item 2. of Prop. 2 the probability of correct
decision-making is 1−F(ωv)(1− p)/p when either n ≥ 5, or n = 3 and p < p̄3, or n = 1 and
p< p̄1. Thus, for p< p̄1 < p̄3 committee size is irrelevant, and a single voter generates the same
probability of correct decision-making as any larger committee. Next consider p∈ (p̄1, p̄3) and
compare a committee with three or more voters to one with just a single decision-maker, for
whom the probability of a correct decision is 1−F(ωv). Comparing these two probabilities
of correct decision-making, we find that a ‘large’ committee (with n ≥ 3 voters) is superior
to a single decision-maker. Finally, consider p > p̄3 and compare a committee with five or
more voters to one with just three voters, for which the probability of a correct decision is
1−F(ωv)(1− J3(p))/(1− p). Comparing the probabilities of correct decision-making across
these two committee sizes, we find that a ‘large’ committee (with n ≥ 5 voters) is superior to
the three-member one iff:

1− J3(p)>
(1− p)2

p
⇔ (2p−1)(1+ p)(1− p)2

p
> 0. (11)

As p ∈ (1/2,1), the inequality on the right-hand side of (11) always holds. Thus, any ‘large’
committee with five or more voters maximizes the probability of correct decision-making when
p ∈ (p̄3,1−F(ωv)).

7.6 Proof of Proposition 5
By Prop. 3, we know that all voters use the same signal-independent voting strategy. This
results in a constant probability of making the correct choice (namely F(ωv) in the scenario
where p<F(ωv), and 1−F(ωv)(1− p)/p if p>F(ωv)) regardless of the size of the electorate.
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7.7 Proof of Proposition 6.
First consider the case where F(ωv) > 1− p, and suppose that eqn. (1) holds. Rewriting eqn.
(1), it is easy to verify that this is the case iff F(ωv)> (1−Jn(p))(2p−1)/(p−Jn(p)(2p−1)).
Now recall that Prop. 1 implies that the ex ante probability of a correct collective decision
in the absence of persuasion is Jn(p) as voters vote according to their private signals. With
persuasion, item 1.(a) of Prop. 2 implies that the correct collective decision is made with ex
ante probability 1−F(ωv)(1− p)/p. Thus, expert persuasion aides information aggregation
iff F(ωv) < Gn(p). Observe that these two boundaries on the value of F(ωv) are mutually
compatible iff Jn(p)< (1−3p(1− p))/p(2p−1), which is true for all p ∈ (1/2,1).

Now note that G1(p) = p so that 1− p < F(ωv) < 1/2 < G1(p) for all p ∈ (1/2,1). This
implies that persuasion always enhances the likelihood that a single decision-maker takes the
correct decision. Next, note that for all n ≥ 3, the function Gn is continuously differentiable,
that Gn(0) = Gn(1) = 0, and that Gn(1/2) = 1/2. The behavior of Gn is further characterized
by the following lemma:

Lemma 2. For all n≥ 7, the function Gn(p) is strictly decreasing for all p ∈ [1/2,1).

The proof of this lemma is in Section 7.8 below, and Fig. 6 provides a graphical illustration of
Gn for select n ≥ 7. Furthermore, Fig. 7 shows that for committee sizes n = 3,5 the functions
G3 and G5 have a unique maximum in the interior of the range (1/2,1) at p3 and p5, resp. Thus,
as F(ωv) < 1/2, it is obvious that for every n there exists an interval whose boundaries arise
from the intersection of the horizontal line at F(ωv) with the graph of Gn. For signal precision
p within this interval, expert persuasion - despite its bias - enhances the probability of a correct
collective decision relative to the benchmark of no persuasion.

G7HpL

G7HpL

G17HpL

G17HpL

G57HpL

G57HpL

0 1
p

1�2

2�3

GnHpL

Figure 6: Three illustrations of the function Gn defined in (2)

Now let F(ωv) > 1− p and suppose that eqn. (1) fails. In this case, item 1.(b) of Prop. 2
implies that the probability of a correct collective decision is 1− (1− Jn(p))(1−F(ωv))/p. It
is straightforward to verify that this probability exceeds the probability Jn(p) that voters will
make a correct decision in the absence of persuasion.
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Figure 7: Illustration of the functions G3 and G5 for values p ∈ [1/2,1]

Finally, consider the case where p < 1−F(ωv). By Prop. 1 the ex ante probability of a
correct decision in the absence of persuasion is 1−F(ωv), regardless of the number of voters,
as they disregard their private signals and vote for Y . In the presence of the expert, item 2.(a)
of Prop. 2 implies that for n≥ 5 voters, the ex ante probability of a correct collective decision
is 1−F(ωv)(1− p)/p. Thus, expert persuasion always harms information aggregation. The
same results follows by item 2.(b) of Prop. 2 for n = 3 voters and signal precision p < p̄3, and
for n = 1 voters and signal precision p < p̄1. If, instead, n = 3 and p > p̄3, or n = 1 and p > p̄1,
then item 2.(b) of Prop. 2 implies that the ex ante probability of a correct collective decision is
1−F(ωv)(1− Jn(p))/(1− p). It is straightforward to verify that this probability exceeds the
probability Jn(p) with which voters make a correct decision in the absence of persuasion.

7.8 Proof of Lemma 2
Recall the function Gn which was introduced in (2) in the main text. Using the notation intro-
duced above in the proof of Lemma 1, we can write: Gn(p) = (p/(1− p))Kn(p). Furthermore,
recalling the expression for K′n(p) given there, we obtain:

G′n(p) =
1

(1− p)2 Kn(p)+
p

1− p
K′n(p)

=
1

(1− p)2 Kn(p)− np
1− p

Ln−1,(n−1)/2(p).

Observe that we have G′n(p)< 0⇔Kn(p)< np(1− p)Ln−1,(n−1)/2(p)≡ Λ̂n(p). To see that this
inequality holds for all p ∈ [1/2,1) and any n≥ 7, we study the behavior of the two functions
Kn and Λ̂n. In the proof of Lemma 1, we have already obtained the first two derivatives of Kn,
and so we know that it is a strictly decreasing and convex function that starts at p = 1/2 with
a value of Kn(1/2) = 1/2, and ends at p = 1 with a value of Kn(1) = 0. Next consider the
function Λ̂n. Its first derivative is:

Λ̂
′
n(p) =−n(n+1)Γ(n)

2Γ2
(n+1

2

) (2p−1)p
n−1

2 (1− p)
n−1

2 ,
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which is negative for all p ∈ (1/2,1), with Λ̂′n(1/2) = 0. The second derivative is:

Λ̂
′′
n(p) =

n2(n+1)Γ(n)
Γ2
(n+1

2

) (p(1− p))
n−3

2

(
p2− p+

n−1
4n

)
,

which is negative if p < (
√

n+ 1)/2
√

n. Thus, Λ̂n is decreasing and concave for p < (
√

n+
1)/2
√

n, and decreasing and convex for p > (
√

n+1)/2
√

n. Furthermore:

Λ̂n(1/2) =
nΓ(n)

2n+1Γ2
(n+1

2

) and Λ̂n(1) = 0.

Note that for n = 7, we have Λ̂7(1/2) = 35/64≈ 0.54688. Also, an increase in committee
size raises the value of Λ̂n(1/2) as Λ̂n+2(1/2)− Λ̂n(1/2) = Λ̂n(1/2)/(n+1). We can therefore
conclude that for any odd n ≥ 7, the value Λ̂n(1/2) strictly exceeds 1/2. This means that at
p = 1/2, the function Kn starts at a lower value than the function Λ̂n.

To complete the proof, we now show by contradiction that Kn(p) < Λ̂n(p) for all p ∈
[1/2,1). For this purpose, we assume that the two functions intersect at some point p∗n (given
that both functions are strictly decreasing, there can be at most one intersection point), as
illustrated in Fig. 8. As the figure illustrates, this implies that there exist two points p̃n and p̂n

KnHpL

L
`

nHpL

pn
*p� n p` n 1

p

1�2

L
`

nH1�2L

Figure 8: Monotonicity of Gn for n≥ 7.

(with p̃n < p∗n < p̂n) at which the first derivatives of the two functions are identical, so that for
any p ∈ (p̃n, p̂n) the function Λ̂n falls more steeply than Kn. However, a comparison of the two
derivatives shows:

Λ̂
′
n(p)< K′n(p)⇔ p >

1
2
+

1
n+1

.

Thus, there is only the single point 1/2+1/(n+1) at which the two derivatives are identical.
Note that there cannot be an intersection point to the left of this value, as Kn starts below Λ̂n
and initially declines more sharply than Λ̂n. Furthermore, there cannot be an intersection to the
right of 1/2+ 1/(n+ 1) as Λ̂n falls more steeply than Kn and would have to end up taking a
negative value at p = 1, in contradiction to the fact that Λ̂n(1) = 0. We can therefore conclude
that there exists no intersection point of Kn and Λ̂n.
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7.9 Proof of Proposition 7
First consider the case p<F(ωv). Item 1 follows immediately from Prop. 1 and item 1. of Prop.
3. Next, consider the case p > F(ωv). From Prop. 1 it follows that, in the absence of an expert,
voters cast their votes in line with their respective private signals. As a result, they choose the
correct alternative with probability Jn(p), which converges to 1 as the size of the electorate gets
large. By item 2. of Prop. 3. we know that, in the presence of an expert, the equilibrium (Ω̂2,v)
induces the following probability of making the correct decision: 1−F(ωv)(1− p)/p. Thus,
expert persuasion harms information aggregation iff F(ωv)> Gn(p), where the function Gn(p)
is defined in (2). As we have F(ωv) > 1/2, it is immediate that the condition F(ωv) > Gn(p)
holds for all p ∈ (1/2,1) if n≥ 7. This establishes that expert persuasion impedes information
aggregation in electorates with seven or more voters. In the case of a single decision-maker
(item 2.(c) of Prop. 7), the result is obvious as G1(p) = p and therefore F(ωv)< G1(p) = p for
all p under consideration.

We now turn to the proof of item 2.(b) of Theorem 7. The idea behind the proof can
be readily understood by looking at Fig. 7, which shows that the functions G3 and G5 each
have a unique maximum in the interior of the range (1/2,1). Thus, if F(ωv) exceeds this
maximum, then expert persuasion harms information aggregation. If, instead, F(ωv) is below
this maximum, then there exists an interval whose boundaries arise from the intersection of
the horizontal line at F(ωv) with the graph of Gn (n = 3,5). For signal precision p within this
interval, expert persuasion - despite its bias - enhances the probability of a correct collective
decision relative to the benchmark of no persuasion.

To show this formally, we start by considering the case of n = 3 voters. The left-hand panel
of Fig. 7 shows the graph of the function G3(p) = p+ p2− 2p3. Note that G′3(1/2) = 1/2,
and that the first-order condition G′3(p) = −6p2 + 2p+ 1 = 0 yields a unique critical point
p3 = (1+

√
7)/6 ≈ 0.60763. As G′′3(p) < 0 for all p ∈ [1/2,1], the function G3 is strictly

concave everywhere in this range, and so the point p3 is the unique global maximum of G3. The
corresponding functional value is G3(p3) = (7

√
7+ 10)/54, which we label as q3. Note that

since q3 ∈ (1/2,1), it follows immediately that in settings where F(ωv)> q3, expert persuasion
is detrimental to information aggregation. Now suppose instead that 1/2 < F(ωv)< q3. As G3
is strictly concave and G′3(p) < 1 for all p ∈ [1/2,1], the equation p+ p2− 2p3 = F(ωv) has
two real-valued solutions pF,1

3 and pF,2
3 with F(ωv) < pF,1

3 < pF,2
3 < 1. For all p ∈ (pF,1

3 , pF,2
3 )

we have G3(p)> F(ωv), and for all p /∈ [pF,1
3 , pF,2

3 ] we have G3(p)< F(ωv).
Next, consider the case of n = 5 voters. The right-hand panel of Fig. 7 shows the graph

of the function G5(p) = p(1− p)2(6p2 + 3p + 1). Note that G′5(1/2) = 1/8, and that the
first-order condition G′5(p) = (1− p)(1+ 3p+ 6p2− 30p3) = 0 yields a unique critical point
p5 = (2 + (548− 30

√
290)1/3 + (548 + 30

√
290)1/3)/30 ≈ 0.51761. Note that whilst it is

tedious to compute the roots of the cubic function G′′5(p) = 2((1+3p)− (2p2(27−30p))) in
order to ascertain the curvature of G5, it is easy to verify that G′′5(p)< 0 for all p ∈ [1/2,3/5].
To see this, note that both the functions 1+ 3p and 2p2(27− 30p) are strictly increasing for
p ∈ [1/2,3/5), and that the maximum value of the former function (i.e. 2.8 when p = 3/5) is
strictly lower than the minimum value of the latter function (i.e. 6 when p = 1/2). Therefore,
G5 is strictly concave for all p ∈ [1/2,3/5]. From this, we can conclude that the point p5 is the
unique global maximum of G5.

Rather than incur the tedium of verifying directly that the corresponding functional value
q5 ≡ G5(p5) lies strictly in the range (1/2,1), we simply argue that for any n it holds that
Gn(p)< 1 for all p ∈ [1/2,2/3). The condition Gn(p)< 1 is equivalent to (1− Jn(p))< (1−
p)/p. Recall that Jn(1/2) = 1/2 and Jn(1) = 1. Thus, (1−Jn(p))∈ [0,1/2] for all p∈ [1/2,1].
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Now note that (1− p)/p strictly exceeds 1/2 for all p ∈ [1/2,2/3), which immediately implies
that G5(p5)< 1. We can therefore state that in settings where F(ωv)> q5, expert persuasion is
detrimental to information aggregation.

Finally, the fact that G5 is strictly concave for all p ∈ [1/2,3/5], that G′5(p) < 1 for all
p ∈ [1/2,1], and that G5(3/5) = 1488/3125 ≈ 0.47616 < 1/2 implies immediately that in
settings where 1/2 < F(ωv) < q5, the equation G5(p) = F(ωv) has two real-valued solutions
pF,1

5 and pF,2
5 with F(ωv) < pF,1

5 < pF,2
5 < 1. For all p ∈ (pF,1

5 , pF,2
5 ) we have G5(p) > F(ωv),

and for all p /∈ [pF,1
5 , pF,2

5 ] we have G5(p)< F(ωv).
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